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FINDING AUTOMATIC SEQUENCES WITH FEW CORRELATIONS

Vincent Jugé1,* and Irène Marcovici2,

Abstract. Although automatic sequences are algorithmically very simple, some of them have pseudo-
random properties. In particular, some automatic sequences such as the Golay–Shapiro sequence are
known to be 2-uncorrelated, meaning that they have the same correlations of order 2 as a uniform
random sequence. However, the existence of ℓ-uncorrelated automatic sequences (for ℓ ⩾ 3) was left as
an open question in a recent paper of Marcovici, Stoll and Tahay. We exhibit binary block-additive
sequences that are 3-uncorrelated and, with the help of analytical results supplemented by an exhaustive
search, we present a complete picture of the correlation properties of binary block-additive sequences
of rank r ⩽ 5, and ternary sequences of rank r ⩽ 3.
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1. Introduction

A k-automatic sequence is a sequence that can be computed by a finite automaton in the following way: the
nth term of the sequence is a function of the state reached by the automaton after reading the representation
of the integer n in base k. Alternatively, a k-automatic sequence can also be described with the help of an
infinite fixed point of a k-uniform morphism. We refer to the book of Allouche and Shallit [1] for a complete
survey on automatic sequences. It is known that some automatic sequences present pseudo-random properties.
In particular, a succession of works [2–4] has shown that different generalisations of the Golay–Shapiro sequence
(also known as the Rudin–Shapiro sequence, see Ex. 3.4) have the same correlations of order 2 as a sequence of
symbols chosen uniformly and independently at random. On the other hand, as the subword complexity of an
automatic sequence is at most linear (see [1], Sect. 10.3), it is clear that automatic sequences cannot look “too
much” like random sequences. In this work, we continue to address the question of “how random” an automatic
sequence can look.

As in the references cited above, we focus on block-additive automatic sequences [3, 5, 6], also known as
digital sequences [7]. They are obtained by sliding the representation of the integer n in base k with a window of
length r, and summing the weights of the subwords read, for a given weight function; see Section 2 for a formal
definition.
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2 V. JUGÉ AND I. MARCOVICI

In [3], the existence of a block-additive sequence being ℓ-uncorrelated for an integer ℓ ⩾ 3 (i.e., having
the same correlations of order ℓ as a uniform random sequence) was left as an open question. In
Section 3, we prove that, when ℓ is even, a binary block-additive sequence is ℓ-uncorrelated if and only if it is
(ℓ+ 1)-uncorrelated (Thm. 3.3). As a consequence, all the binary sequences that are known to be 2-uncorrelated
are also 3-uncorrelated.

Then, in Section 4, we present a semi-decision algorithm providing a criterion for being ℓ-correlated (Alg. 1
and Thm. 4.1). Conversely, Section 5 provides new explicit criteria to ensure that a function is 2-uncorrelated.
These criteria are based on a broadening of the notion of fibre introduced in [3], and extend the difference
condition that was defining the previous generalisations of the Golay–Shapiro sequence. Combining these results,
an exhaustive search allows us to obtain a complete description of the correlation properties of binary block-
additive sequences of rank r ⩽ 5, and ternary sequences of rank r ⩽ 3 (Thm. 5.13). Finally, we complete the
panorama of uncorrelated sequences by giving in Section 6 some relations between uncorrelated sequences, and
we conclude by some discussion and open questions in Section 7.

2. Definitions

Below, let N denote the set of non-negative integers. For all integers k ⩾ 0, let Σk denote the set
{0, 1, . . . , k − 1} and let Zk denote the set Z/kZ. For all finite sets S , let |S | denote the cardinality of S , i.e.,
the number of elements of S .

In general, let 0 (resp., 1) denote a tuple whose coordinates are all equal to 0 (resp., to 1), and let 1i denote
a tuple whose ith coordinate is 1 and the other coordinates are 0; the dimension of the tuple is left implicit.
Moreover, given a sequence (un)n⩾0 and a tuple δ = (δ1, δ2, . . . , δℓ) of non-negative integers, let un+δ denote
the tuple (un+δ1 , un+δ2 , . . . , un+δℓ). We also say that δ is increasing if δ1 < δ2 < · · · < δℓ, and that δ is initial
if it is increasing and δ1 = 0.

Finally, for all integers n ⩾ 0 and k ⩾ 1, let (n mod k) denote the unique element x ∈ Σk such that k divides
n− x. If k ⩾ 2, let ⟨n⟩k denote the little-endian representation of n in base k, i.e., the unique sequence (xi)i⩾0

with values in Σk such that

n =
∑
i⩾0

xik
i.

Definition 2.1. Let k ⩾ 2 and r ⩾ 1 be integers, and let f : Σr
k → Zk be a function such that f(0) = 0. For all

n ⩾ 0, let un be the element of Zk defined by

un =
∑
i⩾0

f(xi, xi+1, . . . , xi+r−1),

where (xi)i⩾0 = ⟨n⟩k. The sequence (un)n⩾0 is said to be block-additive in base k with rank r, and we say that
this sequence is associated with the function f .

The block-additive sequence (un)n⩾0 associated with a function f also has the following characterisation.

Remark 2.2. Let A be the automaton over the alphabet Σk with state set Q = Zk × Σr−1
k , initial state

q0 = (0,0) and transition function ∆: Q× Σk → Q defined by

∆: ((v, (x1, x2, . . . , xr−1)), i)→ (v + f(i, x1, x2, . . . , xr−1), (i, x1, x2, . . . , xr−2)).
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The value of un is obtained by letting the automaton A read the infinite word (xi)i⩾0 = ⟨n⟩k from right to left
(because we us little-endian representations):1 A goes through each tuple (xi, xi+1, . . . , xi+r−1), stores its r− 1
coordinates (xi, xi+1, . . . , xi+r−2) and accumulates, in the first component of each state, the sum of the values
of f(xi, xi+1, . . . , xi+r−1) it has already encountered.

Let ϕ : Q∗ → Q∗ be the morphism of monoids that sends a state s ∈ Q to the word ϕ(s) =
∆(s, 0)∆(s, 1) . . .∆(s, k − 1) ∈ Qk. Projecting on their first component the letters of the infinite fixed-point
ϕω(q0) ∈ QN provides us with the infinite word u0u1u2 . . ., which we identify with the sequence (un)n⩾0 itself.
The automaton A is said to generate the sequence (un)n⩾0.

Definition 2.3. Let ℓ ⩾ 1 be an integer and let S be a finite set. Given a sequence u = (un)n⩾0 with values
in S , an increasing tuple δ ∈ Nℓ and a subset S of S ℓ called a pattern set, we introduce the set

Du
δ (S) = {n ∈ N : un+δ ∈ S}.

We define the frequency of the pattern set S in the sequence (un+δ)n⩾0 as the real number

frequδ (S) = lim
N→+∞

|Du
δ (S) ∩ ΣN |

N
,

when this limit exists.
Note that, if the automaton A that generates u is strongly connected, the sequence u is a morphic primitive

sequence, which ensures that all the densities are well-defined.
We say that u is ℓ-uncorrelated if frequδ (S) = |S|/|S |ℓ for all tuples δ and all sets S ⊆ S ℓ. Otherwise, we say

that u is ℓ-correlated.

A sequence whose terms are chosen independently and uniformly at random in Zn is almost-surely
ℓ-uncorrelated for every integer ℓ ⩾ 0. However, no automatic sequence, and in particular no block-additive
sequence, can be ℓ-uncorrelated for every ℓ ⩾ 0, since this would in particular require the sequence to be
normal, while the subword complexity of an automatic sequence is at most linear.

3. Correlations, block-additivity and base 2

It follows from Remark 2.2 that, if the automaton A that generates the block-additive sequence u is strongly
connected, all the letters of Σk (i.e., patterns of length 1) have a well-defined frequency in u. Furthermore,
this frequency is equal to 1/k. Indeed, each state in Q is the target of k edges from A , so that the uniform
probability measure on Q is the unique stationary measure of the Markov chain associated with A , where each
edge has weight 1/k. We extend this argument to prove that this property still holds for the subsequences of u
of the form (ua+kbn)n⩾0, as stated in the lemma below.

Lemma 3.1. Let (un)n⩾0 be a block-additive sequence in base k ⩾ 2 whose generating automaton is strongly
connected. For all integers a ⩾ 0, b ⩾ 0 and all s ∈ Zk,

lim
N→+∞

|{n ∈ ΣN : ua+kbn = s}|
N

=
1

k
.

Proof. First, observe that if the result is true for some pair (a, b) with a ⩾ kb, then it is also true for the pair
(a − kb, b). So, we can assume without loss of generality that a < kb. The sequence (ua+kbn)n⩾0 is a result of
a process very similar to the one described in Remark 2.2. Let us consider the automaton A that generates u.

1This procedure is well-defined because (xi)i⩾0 ends with 0 terms only, and the automaton does not leave its initial state when
reading a 0. Alternatively, we might truncate the sequence (xi)i⩾0 at least r positions after its rightmost non-zero term, and let
the automaton read the resulting finite word from right to left.
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Instead of transforming the word ϕω(q0) into the sequence (un)n⩾0 by using directly the projection τ on the
first component, we use the morphism τa,b : Q→ Zk defined by

τa,b = τ ◦∆( · , α0) ◦∆( · , α1) ◦ · · · ◦∆( · , αb−1),

where (αi)i⩾0 = ⟨a⟩p and each function ∆(·, i) is identified with a function from Q to itself.
Since A has a self-loop around the state q0, and identifying A with a Markov chain M in which each edge

has probability 1/k, this Markov chain is ergodic. Then, since each state in Q is the target of k edges from A ,
the uniform probability measure on Q is the unique stationary measure of M. Consequently, the letters of the
infinite word ϕω(q0) have the same density.

Moreover, the relations

τa,b(u, x1, x2, . . . , xr) = u+ τa,b(0, x1, x2, . . . , xr),

hold for all states (u, x1, x2, . . . , xr) ∈ Q, which proves that all elements of Zk have the same number of
antecedents by τa,b. Hence, the k possible letters of the word τa,b ◦ ϕω(q0) = (ukbn+a)n⩾0 all have the same
density.

From this lemma, we derive the following characterisation of ℓ-uncorrelated block-automatic sequences.

Proposition 3.2. Let u = (un)n⩾0 be a block-additive sequence in base k ⩾ 2, and let ℓ ⩾ 2 be an integer. The
sequence u is ℓ-uncorrelated if and only if

frequδ (s+ Zk1) =
1

kℓ−1

for all initial tuples δ ∈ Nℓ and all tuples s ∈ Zℓ
k, where s+ Zk1 denotes the set {s+ x1 : x ∈ Zk}.

Proof. The “only if” part is a direct consequence of Definition 2.3. Thus, we focus on the “if” part. Let u be a
sequence that meets the requirements of Proposition 3.2. We wish to prove that u is ℓ-uncorrelated.

First, we prove that the automaton A that generates u is strongly connected. To do this, it is sufficient to
show that, for all x ∈ Zk, the state (x,0) is accessible from the initial state q0 = (0,0).

Let r be the rank of u, and let δ be an initial tuple such that δ2 = kr−1. Since we assumed that
frequδ (12 + Zk1) = k1−ℓ > 0, there exists an integer n and an element t of Zk such that un = t and
un+kr−1 = t + 1. Noting (xi)i⩾0 and (x′

i)i⩾0 the representations of n and n + kr−1 in base k, we observe
that xi = x′

i for all i ⩽ r − 2. Thus, both states q1 = (t, (x0, x1, . . . , xr−2)) and q2 = (t + 1, (x0, x1, . . . , xr−2))
are accessible in A . Then, starting from q1 and following r − 1 times the transition with label 0, we arrive in a
state (y,0); starting from q2, we would have arrived in the state (y + 1,0).

Consequently, the set G = {x ∈ Zk : (x,0) is accessible from 0 in A } contains both y and y + 1. Since G is
a subgroup of (Zk,+), it must coincide with Zk itself, and A is strongly connected.

Now, let δ = (δ1, δ2, . . . , δℓ) ∈ Nℓ be an arbitrary initial tuple. Then, consider an element s = (s1, s2, . . . , sℓ)
of Zℓ

k and a real number ε > 0. Let b ⩾ logk(δℓ/ε) be an integer such that

|Du
δ (s+ Zk1) ∩ Σkb+r | ⩾ (k1−ℓ − ε)kb+r.

Finally, let S be the set of integers n ⩾ 0 such that (n mod kb) ∈ Σ(1−ε)kb .

For every integer n ∈ S , and since (1 − ε)kb ⩽ kb − δℓ, the value of the tuple un+δ − un 1 depends only
on (n mod kb+r); indeed, for all i ⩽ ℓ, only the b least significant bits of n + δi may differ from those of n.
Consequently, for all integers a ∈ S ∩Du

δ (s+ Zk1) ∩Σkb+r and all integers n ⩾ 0 such that a = (n mod kb+r),
we have un+δ = s as soon as un = s1. Furthermore, since A is strongly connected, Lemma 3.1 proves that there
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exists an integer N0 such that

|{n ∈ ΣN : ua+kb+rn = s1}|
N

⩾
1− ε

k

for all integers a < kb+r and N ⩾ N0.
Finally, consider an arbitrary integer M ⩾ kb+rN0, and let N = ⌊M/kb+r⌋. The set S ∩Du

δ (s+Zk1)∩Σkb+r

contains at least (k1−ℓ−ε)kb+r−krε ⩾ (k−ℓ−ε)kb+r+1 elements a and, for each such a, the set S ∩ΣM contains
at least (1− ε)N/k integers n for which a = (n mod kb+r) and un = s1. It follows that

|Du
δ ({s}) ∩ ΣM | ⩾ |Du

δ ({s}) ∩S ∩ ΣM |
⩾ (1− ε)(k−ℓ − ε)kb+rN

⩾ (1− ε)(k−ℓ − ε)(M − kb+r).

We conclude that frequδ ({s}) ⩾ k−ℓ by choosing ε arbitrarily small and M arbitrarily large. This inequality
being valid for the kℓ elements s of Zℓ

k, it is in fact an equality. Finally, summing these equalities for all s ∈ S
proves that frequδ (S) = |S|/kℓ.

Theorem 3.3. Let ℓ be an even positive integer and let u be a block-additive sequence in base 2. This sequence
is ℓ-uncorrelated if and only if it is (ℓ+ 1)-uncorrelated.

Proof. First, every (ℓ+ 1)-uncorrelated sequence is clearly ℓ-uncorrelated. Conversely, let u be an ℓ-uncorrelated
block-additive sequence in base 2, let δ ∈ Nℓ+1 be an increasing tuple, and let s be an element of Zℓ+1

2 . Let |s|1
denote the number of entries equal to 1 in the tuple s, i.e., |s|1 = |{i : si = 1}|.

Since u is ℓ-uncorrelated, we know that frequδ (s) + frequδ (s+ 1i) = 2−ℓ for all tuples s ∈ Zℓ+1
2 and all integers

i ⩽ ℓ+ 1. Hence, and since ℓ+ 1 is odd, an immediate induction on |s|1 proves that frequδ (s) = frequδ (0) if |s|1
is even, and that frequδ (s) = frequδ (1) otherwise. It follows that

frequδ (s+ Z21) = frequδ (Z21) = 2−ℓ

for all s ∈ Zℓ+1
2 , and Proposition 3.2 then proves that u is (ℓ+ 1)-uncorrelated.

We prove now, by giving two examples, that the conclusions of Theorem 3.3 are no longer ensured if ℓ is odd
or if (un)n⩾0 is block-additive in a base k ⩾ 3. These examples also serve as toy cases for Theorem 4.1 below.

Example 3.4. Let (un)n⩾0 ∈ ΣN
2 be the block-additive sequence associated with the function f : Σ2

2 7→ Z2

defined by f(x1, x2) = x1x2. This sequence is known as the Golay–Shapiro or Rudin–Shapiro sequence [8],
Remark 1. It is both 3-uncorrelated and 4-correlated.

Proof. It is known (see [9] and the subsequent generalisations [2–4]) that (un)n⩾0 is 2-uncorrelated, and thus
Theorem 3.3 proves it is also 3-uncorrelated. Consider the tuples δ = (0, 1, 2, 3) ∈ N4 and s = (0, 0, 0, 1) ∈ Z4

2.
Let (xi)i⩾0 = ⟨n⟩2 be the representation of an integer n in base 2. If n ∈ 8N, i.e., if x0 = x1 = x2 = 0, one
checks that

un = un+1 = un+2 = un+3 − 1 =
∑
i⩾3

xixi+1.

This shows that un+δ = s + un 1, i.e., that n ∈ Du
δ (s + Z21). One checks similarly that n ∈ Du

δ (s + Z21) if
n ∈ 16N+ 11. Hence, frequδ (s+ Z21) ⩾ 3/16 > 2−3, so that (un)n⩾0 is 4-correlated.

Example 3.5. Let (vn)n⩾0 ∈ ΣN
3 be the block-additive sequence associated with the function f : Σ2

3 7→ Z3

defined by f(x1, x2) = x1x2. The sequence (vn)n⩾0 is both 2-uncorrelated and 3-correlated.
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Proof. It is known (same references as above) that (vn)n⩾0 is 2-uncorrelated. Consider the tuple
δ = (0, 1, 2)∈N3, and let (xi)i⩾0 = ⟨n⟩3 be the representation of an integer n in base 3. If n ∈ 9N, i.e., if
x0 = x1 = 0, one checks that

vn = vn+1 = vn+2 =
∑
i⩾2

xixi+1;

this proves that n ∈ Dv
δ (Z31). Similarly, n ∈ Dv

δ (Z31) whenever n ∈ 27N + 1. It follows that freqvδ (Z31) ⩾
4/27 > 3−2, so that (vn)n⩾0 is 3-correlated.

4. Detecting correlations

In this section, we focus on the following problem. Given an integer ℓ ⩾ 1 and a block-additive sequence
u = (un)n⩾0 in base k ⩾ 2, is u ℓ-correlated? We provide two partial results. First, we propose an algorithm
for detecting ℓ-correlations, when they exist. This algorithm extends the method used for the sequences of
Examples 3.4 and 3.5. Second, we propose a criterion that is sufficient for being 2- or 3-uncorrelated when k = 2.

Theorem 4.1. Algorithm 1 is a semi-decision algorithm for deciding if a given block-additive sequence is
ℓ-correlated. More precisely, when given integers k ⩾ 2, r ⩾ 1, ℓ ⩾ 1 and a function f : Σr

k → Zk such that
f(0) = 0 as input, Algorithm 1 eventually returns true if the block-additive sequence associated with f is
ℓ-correlated; otherwise, it runs forever.

Algorithm 1: Detecting ℓ-correlations in block-additive sequences

Input : Integers k ⩾ 2, r ⩾ 1 and ℓ ⩾ 1.
Function f : Σr

k → Zk such that f(0) = 0.
Result : true if the block-additive sequence (un)n⩾0 associated with f is ℓ-correlated.

for m = 1, 2, 3, . . . :
for all initial tuples δ = (δ1, . . . , δℓ) ∈ Nℓ such that δℓ ⩽ m :
for all ℓ-tuples s = (s1, . . . , sℓ) ∈ Zℓ

k such that s1 = 0 :
c(s)← 0

for n = 0, 1, . . . , km+r − 1 :
if (n mod km) ∈ Σkm−m :

s← un+δ − un 1
c(s)← c(s) + 1

if c(s) > km+r+1−ℓ :
return true

Proof. Let u = (un)n⩾0 be the block-additive sequence associated with the function f . For all m ⩾ 1, let

Sm = {n ∈ N : (n mod km) ∈ Σkm−m}.

Provided that δℓ ⩽ m, then, for all integers n ∈ Sm, the value of un+δ − un 1, i.e., the tuple s ∈ Zℓ
k such that

s1 = 0 and n ∈ Du
δ (s+ Zk1), depends only on (n mod km+r).

If u is ℓ-correlated, Proposition 3.2 proves that there exists a tuple s ∈ Zℓ
k and an initial tuple δ ∈ Nℓ such

that frequδ (s+Zk1) ̸= k1−ℓ. Since the average of these densities is k1−ℓ, the largest one is larger than k1−ℓ, i.e.,

frequδ (s+ Zk1) ⩾ k1−ℓ + 2ε

for some tuple s ∈ Zℓ
k and some real number ε ∈ (0, 1). Without loss of generality, we even assume that s1 = 0.
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Consider some integer m ⩾ δℓ such that ε > m/km and

|Du
δ (s+ Zk1) ∩ Σkm+r | ⩾ (k1−ℓ + ε)km+r.

By construction, s = un+δ − un 1 for each integer n ∈ Du
δ (s + Zk1). Moreover, at most mkr elements of

Du
δ (s+ Zk1) ∩ Σkm+r belong to N \Sm. The

(k1−ℓ + ε)km+r −mkr > km+r+1−ℓ

(or more) remaining elements all contribute to incrementing the counter c(s), and thus Algorithm 1 returns
true.

Conversely, if Algorithm 1 returns true, there exist an increasing tuple δ ∈ Nℓ, a tuple s ∈ Zℓ
k and an integer

m such that

|Sm ∩Du
δ (s+ Zk1) ∩ Σkm+r | > km+r+1−ℓ.

But then, every integer n such that (n mod km+r) ∈ Sm ∩Du
δ (s+ Zk1) belongs to Du

δ (s+ Zk1), and therefore

frequδ (s+ Zk1) > km+r+1−ℓ/km+r = k1−ℓ.

5. Constructing 2-uncorrelated functions

A difference condition, sufficient for ensuring that a block-additive sequence of rank r = 2 is 2-uncorrelated,
was developed in [3]. In this section, we extend that condition, and we identify some cases where our extended
condition is also necessary. This condition is based on the notion of fibres.

Definition 5.1. A partition of N into a collection of finite sets (Fx)x∈X is called a fibration if it satisfies the
criterion C1 below; the sets Fx are then called fibres.

C1: The proportion of elements of ΣN that belong to a part Fx included in ΣN is arbitrarily close to 1 when
N grows arbitrarily; in other words,

lim
N→+∞

|{n ∈ ΣN : ∃x ∈ X s.t. n ∈ Fx and Fx ⊆ ΣN}|
N

= 1.

Then, let k ⩾ 2 and δ ⩾ 1 be integers, and let u be a block-additive sequence in base k. We say that a finite
subset F of N is δ-balanced for u if it satisfies the criterion C2 below.

C2: The k subsets {n ∈ F : un+δ − un = d} obtained when d ∈ Zk have the same cardinality.

Finally, we say that a fibration (Fx)x∈X is δ-balanced for u if each fibre Fx is δ-balanced for u.

Proposition 5.2. Let k ⩾ 2, and let u be a block-additive sequence in base k. The sequence u is 2-uncorrelated
if and only if it admits a δ-balanced fibration for all δ ⩾ 1.

Proof. Let δ ⩾ 1 be an integer, let δ = (0, δ), and let ε > 0 be an arbitrary positive real number. For all d ∈ Zk,
let Sd denote the subset (0, d) + Zk1 of Z2

k.
First, if u is 2-uncorrelated, we know that frequδ (Sd) = 1/k for all d ∈ Zk. This means there exists an integer

N ⩾ 0 such that |Du
δ (Sd) ∩ Σm| ⩾ (1− ε)m/k for all integers m ⩾ N . In particular, the set Du

δ (Sd) is infinite.
For each integer x ⩾ 1, let Fx be the set that contains the xth smallest elements of each of the k sets Du

δ (Sd).
The collection (Fx)x⩾1 forms a partition of N and each set Fx clearly satisfies C2. Moreover, for all m ⩾ N , at
least (1 − ε)m elements of Σm belong to some set Fx that is included in Σm. Hence, C1 is also satisfied, and
(Fx)x⩾1 is a δ-balanced fibration for u.



8 V. JUGÉ AND I. MARCOVICI

Conversely, assume that u admits a δ-balanced fibration for all integers δ ⩾ 1. Consider some tuple δ = (δ1, δ2)
such that 0 = δ1 < δ2, and let (Fx)x∈X be a δ2-balanced fibration for u. Then, let s be a tuple in Z2

k, and let
d = s2 − s1. Finally, for all N ⩾ 0, let ΩN be the set {x ∈ X : Fx ⊆ ΣN}. By criterion C1, for every ε > 0, and
if N is large enough, we know that

∑
x∈ΩN

|Fx| ⩾ (1− ε)N . It follows, for such integers N , that

|Du
δ (s+ Zk1) ∩ ΣN | = |{n ∈ ΣN : un+δ − un = d}|

⩾
∑

x∈ΩN

|{n ∈ Fx : un+δ − un = d}|

⩾
∑

x∈ΩN

|Fx|/k

⩾ (1− ε)N/k.

This inequality being valid for all tuples s ∈ Z2
k and for arbitrarily small values of ε, it follows that

frequδ (s+ Zk1) = 1/k. By Proposition 3.2, this implies that the sequence u is 2-uncorrelated.

Aiming to simplify the problem of deciding whether u is 2-uncorrelated, we look for simple fibrations. The
conditions we are looking for are threefold: (i) the fibres into which N is partitioned should be as simple as
possible; (ii) there should be a finite algorithm for checking whether u admits such a δ-balanced fibration;
(iii) all known cases of 2-uncorrelated sequences should admit such a δ-balanced fibration.

Definition 5.3. Let k ⩾ 2, a ⩾ 0, b ⩾ 0 and δ ⩾ 1 be integers. Given an integer n ⩾ 0, let (xi)i⩾0 = ⟨n⟩k and
(yi)i⩾0 = ⟨n+ δ⟩k be the representations of n and n+ δ in base k, and let ck(n, n+ δ) = max{i ∈ N : xi ̸= yi}
be the carry distance of n and n+ δ.

We call (k, a, b, δ)-fibre of n the set Fk,a,b,δ(n) that consists of those integers m ⩾ 0 whose representation
(zi)i⩾0 in base k satisfies the equality xi = zi whenever i < ck(n, n+ δ)− a, i ⩾ ck(n, n+ δ) + b or xi ̸= yi.

Example 5.4. If k = 2, a = 3, b = 2, δ = 25 and n = 332, the binary expansions of n and n+ δ are

(xi)i⩾0 = 00 1 1 00 1 0 1 0 0 . . .

and (yi)i⩾0 = 10 1 0 01 1 0 1 0 0 . . .

Their carry distance is c2(332, 357) = 5, as indicated in bold red: indeed, x5 < y5, whereas xi = yi for all i ⩾ 6.
Consequently, the fibre F2,3,1,25(332) consists of those integers m ⩾ 0 whose representation (zi)i⩾0 in base 2 is
a sequence of the form 0 0 • 1 • 0 • 0 1 0 0 . . ., where each • may be a 0 or a 1. In other words,

F2,3,2,25(332) = {264, 268, 280, 284, 328, 332, 344, 348}.

The sets Fk,a,b,δ(n), as their name suggests, form a fibration (with duplicates, i.e., a given fibre may be equal
to Fk,a,b,δ(n) for more than one integer n ⩾ 0). This is the object of the following two results.

Lemma 5.5. For all integers k ⩾ 2, a ⩾ 0, b ⩾ 0 and δ ⩾ 1, the (k, a, b, δ)-fibres form a partition of N.

Proof. Let m be some element of a fibre Fk,a,b,δ(n), and let (ui)i⩾0 = ⟨m⟩k and (vi)i⩾0 = ⟨m + δ⟩k be the
representations of m and m+ δ in base k. An immediate induction on i proves that either ui = vi = xi = yi, or
ui = vi ̸= xi = yi, or ui = xi ̸= yi = vi. Consequently, the carry distances ck(n, n+ δ) and ck(m,m+ δ) coincide
with each other, and so do the fibres Fk,a,b,δ(n) and Fk,a,b,δ(m). The desired result follows.

Lemma 5.6. For all integers N ⩾ 0, there are no more than kb+1δ logk(N) elements of ΣN whose (k, a, b, δ)-fibre
is not included in ΣN .
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Proof. Consider some integer n < N whose fibre Fk,a,b,δ(n) is not included in ΣN . Every element of this fibre
is an integer m such that ck(n,m) ⩽ ck(n, n+ δ) + b. Moreover, every integer m such that ck(n,m) < ck(n,N)
belongs to ΣN . Consequently, ck(n, n+ δ) + b ⩾ ck(n,N).

Now, let (zi)i⩾0 = ⟨N⟩k be the expansion of N in base k. For all integers d ⩾ b, the integers n < N such
that ck(n,N) = d are those integers whose expansion (xi)i⩾0 in base k is such that xd < zd and xi = zi for all
i ⩾ d+ 1. Therefore, there are exactly zdk

d such integers n.
Moreover, among any kd−b consecutive integers, there are exactly min{kd−b, δ} integers n such that

ck(n, n+ δ) ⩾ d− b. Therefore, there are at most δkbzd integers n < N such that ck(n,N) = d ⩽ ck(n, n+ δ)+ b.
Summing this for all integers d, there are at most

δkb(z0 + z1 + z2 + · · · ) ⩽ δkb+1 logk(N)

integers n < N whose fibre is not included in ΣN .

Definition 5.7. Let k ⩾ 2, a ⩾ 0 and b ⩾ 0 be integers, and let u be a block-additive sequence in base k. We
say that u is (a, b)-strongly 2-uncorrelated if, for each integer δ ⩾ 1, the fibration (Fk,a,b,δ(n))n⩾0 is δ-balanced.

As a special case of Proposition 5.2, we obtain the following sufficient criterion for being 2-uncorrelated.

Proposition 5.8. Every block-additive sequence that is (a, b)-strongly 2-uncorrelated for some integers a ⩾ 0
and b ⩾ 0 is 2-uncorrelated.

It remains, however, to decide whether the block-additive sequence u associated with a given function
f : Σr

k → Zk is (a, b)-strongly 2-uncorrelated. A first step in that direction consists in observing that we might
simply choose b = r.

Lemma 5.9. Let a ⩾ 0, b ⩾ 0 and r ⩾ 1 be integers, and let u be a block-additive sequence with rank r. If u is
(a, b)-strongly 2-uncorrelated, it is also (a, r)-strongly 2-uncorrelated.

Proof. Let k ⩾ 2 be the base in which u is block-additive. Since every (k, a, b+ 1, δ)-fibre is a disjoint union of
(k, a, b, δ)-fibres, the desired result is immediate if b ⩽ r.

Conversely, if b ⩾ r, consider some (k, a, b + 1, δ)-fibre F , and let n be the smallest element of F . Let
(xi)i⩾0 = ⟨n⟩k be its decomposition in base k, and c = ck(n, n+ δ) be its carry distance with with n+ δ.

By minimality of n, we have xc+1 = xc+2 = · · · = xc+b = 0. Consequently, F is the disjoint union of the sets
Fk,a,b,δ(n) + kc+bd, where 0 ⩽ d < k.

Now, consider some integer m ∈ Fk,a,b,δ(n), some base-k digit d ∈ Σk, and let m′ = m+ kc+bd. Let (xi)i⩾0,
(yi)i⩾0, (zi)i⩾0 and (wi)i⩾0 be the decompositions of the integers m, m + δ, m′ and m′ + δ in base k. By
construction, we have xi = yi = zi = wi for all i ⩾ c+1, whereas xi = zi and yi = wi for all i ⩽ c+ b− 1. Since
b ⩾ r, it follows that

um′+δ − um′ =
∑
i⩾0

f(wi, wi+1, . . . , wi+r−1)− f(zi, zi+1, . . . , zi+r−1)

=

c∑
i=0

f(wi, wi+1, . . . , wi+r−1)− f(zi, zi+1, . . . , zi+r−1)

=

c∑
i=0

f(yi, yi+1, . . . , yi+r−1)− f(xi, xi+1, . . . , xi+r−1)

= um+δ − um.

In particular, for all d ∈ Zk, the set {m ∈ F : um+δ = um + d} just consists in k copies of the set
{m ∈ Fk,a,b,δ(n) : um+δ = um + d}, shifted by kc+b. Consequently, if u is (a, b + 1)-strongly 2-uncorrelated,
it is also (a, b)-strongly 2-uncorrelated.
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It remains to verify whether u is (a, r)-strongly 2-uncorrelated. Below, we present this verification in detail
when (k, a, r) = (2, 1, 3). We will then describe this verification in general.

However, before we do so, let us slightly modify the representations of integers that we use. We note Σk⊥
the union Σk ∪ {⊥}, and ⟨⟨n⟩⟩k the unique sequence (xi)i∈Z with values in Σk⊥ such that

xi = ⊥ for all i ⩽ −1 and n =
∑
i⩾0

xik
i.

In other words, the bi-infinite sequence ⟨⟨n⟩⟩k consists in an infinity of terms ⊥, followed by the usual
representation ⟨n⟩k of n in base k. This bi-infinite sequence is called the extended representation of n in
base k.

Then, we extend every function f : Σr
k → Zk to Σr

k⊥, by setting f(x) = 0 whenever x has a coordinate equal
to ⊥. With these new notations, we simply have

un =
∑
i∈Z

f(xi, xi+1, . . . , xi+r−1).

Example 5.10. If k = 2, a = 1, r = 3, and f : Σ3
2 → Z2 is a function such that f(0) = 0, let us look at those

constraints that f must satisfy to make its associated block-additive sequence u a (1, 3)-strongly 2-uncorrelated
sequence.

Let x = ⟨⟨n⟩⟩2 and y = ⟨⟨n+ δ⟩⟩2 be the extended representations of some integers n and n+ δ in base 2, and
let c = c2(n, n+ δ) be their carry distance. Then, let m be an element of the fibre F2,1,3,δ(n), and let z = ⟨⟨m⟩⟩2
and v = ⟨⟨m+ δ⟩⟩2. If we set

X =
∑

i⩽c−4

f(xi, xi+1, xi+2)

Y =
∑

i⩽c−4

f(yi, yi+1, yi+2)

Z =
∑

i⩾c+1

f(zi, zi+1, zi+2)

and remembering that xc = 0 and yc = 1, we can observe that

um = X+ Z + f(xc−3, xc−2, zc−1) and um+δ = Y + Z + f(yc−3, yc−2, vc−1)
+ f(xc−2, zc−1, 0) + f(yc−2, vc−1, 1)
+ f(zc−1, 0, zc+1) + f(vc−1, 1, zc+1)
+ f(0, zc+1, zc+2) + f(1, zc+1, zc+2).

Consequently, we consider two cases:

� If c ⩾ 1 and xc−1 = yc−1, we have zc−1 = vc−1. Thus, the difference

um+δ − um = Y −X + f(yc−3, yc−2, zc−1) − f(xc−3, xc−2, zc−1)
+ f(yc−2, zc−1, 1) − f(xc−2, zc−1, 0)
+ f(zc−1, 1, zc+1) − f(zc−1, 0, zc+1)
+ f(1, zc+1, zc+2) − f(0, zc+1, zc+2)

must take the value 0 four times and the value 1 four times when zc−1, zc+1 and zc+2 vary in Z2. Since
the sums X and Y are independent of zc−1, zc+1 and zc+2, this amounts to demanding that the difference
(um+δ − um)− (Y −X) itself should take the values 0 and 1 equally often.
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That family of differences depends only on the tuple (xc−3, yc−3, xc−2, yc−2), which can have 0, 2 or
4 coordinates ⊥: it can be (⊥,⊥,⊥,⊥), if (n, n + δ) = (0, 2); or any tuple (⊥,⊥, x, y) with x, y ∈ Z2,
if (n, n+ δ) = (x, 4+y); or any tuple (x, y, x′, y′) in Z4

2, if (n, n+ δ) = (2c−3x+2c−2x′, 2c−3y+2c−2y′+2c).
� If c = 0 or xc−1 ̸= yc−1, we have zc−1 = xc−1 and vc−1 = yc−1. Thus, the difference

um+δ − um = Y −X + f(yc−3, yc−2, yc−1) − f(xc−3, xc−2, xc−1)
+ f(yc−2, yc−1, 1) − f(xc−2, xc−1, 0)
+ f(yc−1, 1, zc+1) − f(xc−1, 0, zc+1)
+ f(1, zc+1, zc+2) − f(0, zc+1, zc+2)

must take the value 0 twice and the value 1 twice when zc+1 and zc+2 vary in Z2; so must
the difference (um+δ − um) − (Y − X). The latter family of differences depends only on the tuple
(xc−3, yc−3, xc−2, yc−2, xc−1, yc−1); as in the previous case, this tuple may be either (⊥,⊥,⊥,⊥,⊥), or
of the form (⊥,⊥,⊥,⊥, x, y) with x ̸= y, or (⊥,⊥, x, y, x′, y′) with x′ ̸= y′, or any tuple (x, y, x′, y′, x′′, y′′)
in Z6

2 with x′′ ̸= y′′.

Therefore, overall, checking that u is (1, 3)-strongly 2-uncorrelated amounts to computing finitely 21 families
of 8 differences and 43 families of 4 differences, and checking that each family contains as many 0s as 1s.

Here is an intuition about how the previous example may be generalised. When considering the extended
representations of two integers n and n + δ with carry distance c, we should just focus on a window of width
2r + a− 1 that consists of those digits in positions c− (a+ r − 1) to c+ (r − 1), and identify this window with
a tuple in Σ2r+a−1

k⊥ . We shall then look at similar representations for the integers m and m+ δ obtained when
m varies in Fk,a,r,δ(n); in each case, we will focus on the difference (um+δ − um)− (Y −X), and demand that
this difference takes every value in Zk with the same frequency.

Formalising this intuition provides us with the following definition.

Definition 5.11. Let k ⩾ 2, a ⩾ 0 and r ⩾ 1 be integers, let w = 2r+ a− 1, and let f : Σr
k → Zk be a function.

For each tuple x = (x0, x1, . . . , xw−1) in Σw
k⊥, let f(x) be the sum

w−r∑
i=0

f(xi, xi+1, . . . , xi+r−1).

We say that a tuple x = (x0, x1, . . . , xw−1) in Σw
k⊥ is well-formed if there exists an integer t ⩽ w − r such

that xi = ⊥ for all i ⩽ t − 1 and xi ∈ Σk for all i ⩾ t; in that case, t is called the weight of x. Then, we say
that two well-formed tuples x and y in Σw

k⊥ are related if (i) they have the same weight; (ii) xw−r < yw−r;
(iii) xi = yi whenever w − r < i < w.

Given two related tuples x and y with weight t, we call tuple fibre of the pair (x,y) the set F (x,y) that
consists of those pairs (z,v) of related tuples in Σw

k such that (i) zi = vi = ⊥ for all i ⩽ t− 1; (ii) zi = xi and
vi = yi whenever i ⩽ r − 1 or xi ̸= yi; (iii) zi = vi whenever i ⩾ r and xi = yi.

Finally, the function f is called a-strongly 2-uncorrelated if, for every tuple fibre F , the k sets given by
{(z,v) ∈ F (x,y) : f(v) = f(z) + d}, where d ∈ Zk, have the same cardinalities.

Theorem 5.12. Let k ⩾ 2, a ⩾ 0 and r ⩾ 1 be integers, let f : Σr
k → Zk be a function such that f(0) = 0, and

let u be the block-additive sequence associated with f . The sequence u is (a, r)-strongly 2-uncorrelated if and
only if f is a-strongly 2-uncorrelated.

Proof. Let w = 2r+a− 1. Then, let n ⩾ 0 and δ ⩾ 1 be integers, and let (xi)i∈Z = ⟨⟨n⟩⟩k and (yi)i∈Z = ⟨⟨n+ δ⟩⟩k
be the extended representations of n and n+ δ in base k. Also, let c = ck(n, n+ δ) be their carry distance, and
let Ω = {i ∈ Z : c− (a+ r− 1) ⩽ i ⩽ c+ (r− 1)}. We map the pair (n, n+ δ) to the pair of related tuples (x,y)
in Σw

k⊥ given by x = (xi)i∈Ω and y = (yi)i∈Ω.
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Let ϕ be this mapping, so that ϕ : (n, n + δ) → (x,y). By construction, ϕ induces a bijection from the set
{(m,m+ δ) : m ∈ Fk,a,r,δ(n)} to F (x,y). Moreover, if we set

X =
∑

i⩽c−(a+r)

f(xi, xi+1, . . . , xi+r−1),

Y =
∑

i⩽c−(a+r)

f(yi, yi+1, . . . , yi+r−1) and

Z =
∑

i⩾c+1

f(xi, xi+1, . . . , xi+r−1),

and if we note (z,v) the pair ϕ(m,m+ δ), we can observe, as in Example 5.10, that

(um+δ − um)− (Y −X) = f(v)− f(z).

Consequently, the (k, a, r, δ)-fibre Fk,a,r,δ(n) is δ-balanced for u if and only the k sets {(z,v) ∈ F (x,y) : f(v) =
f(z) + d} where d ∈ Zk have the same cardinalities.

It remains to prove that every tuple fibre F (x,y) is the image of some set {(m,m + δ) : m ∈ Fk,a,r,δ(n)}
by ϕ or, equivalently, that every pair of related tuples (x,y) in Σw

k⊥ is the image of some pair (n, n+ δ) by ϕ.
This last step is straightforward. Indeed, if t is the weight of both well-formed tuples x = (x0, x1, . . . , xw−1) and
y = (y0, y1, . . . , yw−1), it suffices to choose

n =

w−1∑
i=t

ki−txi and n+ δ =

w−1∑
i=t

ki−tyi.

Finally, the usefulness of the notion of (a, r)-strong 2-correlation comes from the following partial classification
result.

Theorem 5.13. Let k ⩾ 2, r ⩾ 1 and ℓ ⩾ 2 be integers, and let u be the block-additive sequence associated with
a function f : Σr

k → Zk such that f(0) = 0.

1. If r = 1, the sequence u is ℓ-correlated.
2. If k = 2, 2 ⩽ r ⩽ 5 and 2 ⩽ ℓ ⩽ 3, the sequence u is ℓ-uncorrelated if and only if it is (r − 2, r)-strongly

2-uncorrelated.
3. If k = 2, 2 ⩽ r ⩽ 5 and ℓ ⩾ 4, the sequence u is ℓ-correlated.
4. If k = 3 and 2 ⩽ r ⩽ 3, the sequence u is 2-uncorrelated if and only if it is (0, 2)-strongly 2-uncorrelated.
5. If k = 3, 2 ⩽ r ⩽ 3 and ℓ ⩾ 3, the sequence u is ℓ-correlated.

Proof. The proof of points 2 to 5 is computation-intensive, yet conceptually straightforward. It simply follows
from an exhaustive search among the kk

r−1 possible functions f and associated sequences u: in cases 2 and 4,
Theorem 5.12 allows us to detect some (r− 2, r)-strongly 2-uncorrelated sequences u, which are thus 2- or even
3-uncorrelated; the other sequences treated in cases 2 and 4, and every sequence treated in cases 3 and 5, are
proved to be ℓ-correlated by using Theorem 4.1 and Algorithm 1.

The code we used is available at [10].

https://github.com/VincentJuge1987/AutomaticSequences.

It uses Lemma 6.2 and similar acceleration techniques (e.g., identifying as ℓ-correlated entire classes of functions
whose differences are generated by the function g of Lemma 6.1, or by similar functions), thereby tackling cases
2 and 4 in 20 minutes, and cases 3 and 5 in 10 hours, on the authors’ personal computers.

https://github.com/VincentJuge1987/AutomaticSequences
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Thus, we focus on proving point 1. With that goal in mind, let us assume that r = 1. If k = 2 and f(1) = 0, we
know that un = 0 for all n ⩾ 0, so that frequ(0,1)({(0, 0)}) = 1. If k = 2 and f(1) = 1, we know that un+1−un = 1
whenever n ∈ 2N or n ∈ 8N+ 3, so that frequ(0,1)((0, 1) + Z21) ⩾ 5/8. Thus, in both cases, u is 2-correlated.

Now, let us assume that k ⩾ 3. For all s ⩽ k − 2, let ∆f (s) = f(s+ 1)− f(s). If ∆f coincides on two base-k
digits s and t smaller than k− 1, we can observe that un+1−un ≡ ∆f (s) (mod k) whenever n ≡ s or t (mod k).
Consequently, in that case, we have frequ(0,1)((0,∆f (s)) + Zk1) ⩾ 2/k, and u is 2-correlated.

If, however, ∆f is injective, let d be the unique element of Zk that does not belong to the range of ∆f . There
exists at most one base-k digit, say s0, such that s0 < k − 1 and ∆f (s0) + f(0)− f(k − 1) = d. For every other
base-k digit s < k − 1, and whenever n ≡ sk + k − 1 (mod k2), we still have un+1 − un ≡ ∆f (s) + f(0) −
f(k − 1) ̸≡ d (mod k). Thus, Du

(0,1)((0, d) + Zk1) is a subset of k2N + {s0, k − 1}k + (k − 1), and

frequ(0,1)((0, d) + Zk1) ⩽ 2/k2, so that u is 2-correlated.

6. Relations between uncorrelated sequences

Theorem 5.13 allows to compute the exhaustive list of binary functions of rank 3 for which the associated
sequence is 3-uncorrelated. It turns out that there are 40 such functions, among the 27 = 128 binary functions of
rank 3 satisfying f(0, 0, 0) = 0. Thanks to the following general lemmas, we can, however, match the functions
in groups of two, or even eight functions.

Lemma 6.1. Let k ⩾ 2, ℓ ⩾ 2 and r ⩾ 2 be integers. Let g : Zr
k → Zk be the function defined by

g(a1, . . . , ar) = a1 − a2,

and let f : Zr
k → Zk be a function such that f(0) = 0. The sequence associated with f is ℓ-uncorrelated if and

only if the sequence associated with f + g is ℓ-uncorrelated.

Proof. Let u, v and w be the sequences associated with f , g and f + g. By definition of g, for every inte-
ger n ⩾ 0 with base-k expansion (xi)i⩾0, we can observe that vn =

∑
i⩾0 xi − xi+1 = x0. This means that

vn ≡ n (mod k). Consequently, for every increasing tuple δ ∈ Nℓ and every integer n ⩾ 0,

wn+δ = un+δ + vn+δ = un+δ + n1+ δ.

In particular, for every tuple s ∈ Zℓ
k, the term wn+δ belongs to s + Zk1 if and only if un+δ belongs to

(s− δ) + Zk1.
If u is ℓ-uncorrelated, Proposition 3.2 states that frequδ (s + Zk1) = k1−ℓ. It follows that

freqwδ ((s+δ)+Zk1) = k1−ℓ. The tuple δ being fixed, and by letting s vary in Zℓ
k, it follows that freq

w
δ (t+Zk1) =

k1−ℓ for all tuples t ∈ Zℓ
k. The latter equality being valid for all initial tuples δ ∈ Nℓ, Proposition 3.2 again

proves that w is ℓ-uncorrelated.
Finally, if w is ℓ-uncorrelated, the same reasoning proves that the sequence w+v is ℓ-uncorrelated. Repeating

this argument, the sequences w + 2v,w + 3v, . . . are all ℓ-uncorrelated. Hence, the sequence u = w + (k − 1)v
is itself ℓ-uncorrelated.

Lemma 6.2. Let k ⩾ 2, a ⩾ 0 and r ⩾ 2 be integers. Consider some integer i ⩽ r and some element q of Zk

and let pi→q : Zr
k → Zk be the selection-projection function defined by

pi→q(a1, . . . , an) =

{
1 if ai = q ;

0 otherwise.

Finally, let f : Zn
k → Zk be a function such that f(0) = 0. If q ̸= 0, the sequence associated with f is (a, r)-

strongly 2-uncorrelated if and only if the sequence associated with f + pi→q is (a, r)-strongly 2-uncorrelated.
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Proof. Let u and v be the sequences associated with f and f + pi→q, and let w = 2r + a − 1. Let us assume
that u is (a, r)-strongly 2-uncorrelated. Theorem 5.12 proves that f is a-strongly 2-uncorrelated, and we shall
prove that so is f + pi→q. To do that, let us extend pi→q to tuples in Zr

k⊥ by setting pi→q(x) = 0 whenever x
has a coordinate equal to ⊥.

For all pairs of related tuples (x,y) = ((x0, x1, . . . , xw−1), (y0, y1, . . . , yw−1)) and (z,v) = ((z0, z1, . . . , zw−1),
(v0, v1, . . . , vw−1)) in Σw

k⊥ such that (z,v) belongs to the tuple fibre F (x,y), note that pi→q(x) is equal to the
number of coordinates xj such that i ⩽ j ⩽ w− r+ i and xj = q; the numbers pi→q(y), pi→q(z) and pi→q(v) can
be expressed similarly. But then, for each such index j, either (xj = yj and zj = wj) or (xj = zj and yj = vj),
so that the jth coordinate does not contribute to the sum (pi→q(y)− pi→q(x))− (pi→q(v)− pi→q(z)).

Therefore, for each d ∈ Zk, the sets

{(z,v) ∈ F (x,y) : (f + pi→q)(v) = (f + pi→q)(z) + d}

and

{(z,v) ∈ F (x,y) : f(v) = f(z) + d+ pi→q(x)− pi→q(t)}

coincide with each other. Thus, the k sets obtained when d ∈ Zk have the same cardinalities. This means that
f + pi→q is a-strongly 2-uncorrelated, i.e., that v is (a, r)-strongly 2-uncorrelated.

Conversely, if v is (a, r)-strongly 2-uncorrelated, so are the sequences associated with each function of the
form f +λpi→q when λ ⩾ 1; choosing λ = k provides us with the function f itself, which completes the proof.

Using the above observations, we can group the 3-uncorrelated binary functions of rank 3 in only 5 different
classes of functions, each of cardinality 8. A representative from each class is given in the table below: every
binary function of rank 3 associated with a 3-uncorrelated sequence can be written as

f + ϵ1p1→1 + ϵ2p2→1 + ϵ3p3→1,

where f is one of the five functions from the table below, and ϵ1, ϵ2, ϵ3 ∈ Z2.

Expression of f(x1, x2, x3) Patterns counted by f

1 x1x2 1 1 •
2 x1x3 1 • 1
3 x1(x2 + x3) 1 0 1 and 1 1 0

4 (x1 + x2)x3 0 1 1 and 1 0 1

5 (x1 + x2)(x2 + x3) 0 1 0 and 1 0 1

Note that the first function is in fact a function of rank 2, and the associated sequence is the Golay-Shapiro
sequence, as mentioned in Example 3.4.

Similarly, we can group the 2-uncorrelated ternary functions of rank 2 in one single class of functions, of
cardinality 2× 34. These are the functions of the form

ϵ0f + ϵ1p1→1 + ϵ2p1→2 + ϵ3p2→1 + ϵ4p2→2,

where f(x1, x2) = x1x2 is associated with the generalised Golay-Shapiro sequence, ϵ0 is a non-zero element of
Z3, and ϵ1, ϵ2, ϵ3, ϵ4 ∈ Z3.
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7. Discussion and questions

Theorem 5.13 provides a complete picture of the correlation properties of binary block-additive sequences of
rank r ⩽ 5, and ternary sequences of rank r ⩽ 3. As a consequence of Theorem 3.3, we have proven the existence
of binary block-additive sequences that are 3-uncorrelated, but we have not found any 4-uncorrelated block-
additive sequences, so that the existence of an ℓ-uncorrelated sequence for ℓ ⩾ 4 remains an open question. An
interesting approach would be to extend the notion of strongly ℓ-uncorrelated sequences to integers ℓ ⩾ 3 and
to see if the sufficient criterion thus obtained could provide some examples. Observe also that our exhaustive
search has shown that the reciprocal of Proposition 5.8 is true for binary and ternary sequences of small rank,
that is to say, all the 2-uncorrelated sequences of small rank (r ⩽ 5 for k = 2, r ⩽ 3 for k = 3) are (a, b)-strongly
2-uncorrelated for some integers a ⩾ 0 and b ⩾ 0. We believe that this property holds more generally but it
remains to be proven.

Another possible extension of our work would be to study block-additive sequences of dimension greater than
or equal to 2. In the same vein as the results on multi-dimensional sequences presented in [3], we can expect
that all our results will adapt to the higher dimension without particular difficulty.

Data Availability Statement. The research data/code associated with this article are available in Zenodo, under the reference
doi:10.5281/zenodo.10792181.
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[10] V. Jugé, Detecting correlations in automatic sequences, (2024), 1, 10.5281/zenodo.10792181

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to publish
this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal
donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

10.5281/zenodo.10792181
mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Finding automatic sequences with few correlations
	1 Introduction
	2 Definitions
	3 Correlations, block-additivity and base 2
	4 Detecting correlations
	5 Constructing 2-uncorrelated functions
	6 Relations between uncorrelated sequences
	7 Discussion and questions

	References

