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Abstract

This paper presents results and convergence study of the Global-Local Iterative

Coupling through the implementation in the commercial software Abaqus making

use of the co-simulation engine. A hierarchical modeling and simulation approach

is often required to alleviate modeling burdens. Particular focus has been devoted

here on convergence acceleration and performance optimization. Two applications

in statics with nonlinear material behavior and geometrically nonlinear formulation

are considered here: �rst a holed curved plate under traction with elastic-plastic

material, then a pre-stressed bolted joint connecting two plates between each other

and subjected to traction load. Three di�erent convergence acceleration techniques

are compared in terms of convergence performance and accuracy. An inexact solver

strategy is proposed to improve computing time performance. The results show

promising results for the coupling technology and constitute a step forward in the

availability of non-intrusive multi-scale modeling capabilities for complex structures

and assemblies.

1 Introduction

Due to the complexity of aeronautical structure assemblies, engineers are used to building
models across multiple levels of abstraction. At the highest level, a comprehensive model
of the full aircraft is built from mid-surfacing and de-featuring the exact shapes of the
assembly, with imposing a coarse �nite elements mesh size, and simplifying assembly
connections and interactions. Material non-linearities are usually not considered at this
level. The lower levels of abstractions are locally and hierarchically built, considering the
exact geometry at the lowest level where a more re�ned �nite elements mesh and material
non-linearities are usually considered. As the lowest levels are local, their simulations are
based on internal forces or boundary conditions coming from their highest level.

A main challenge today for aeronautic industry is to foster more agile connections
between the di�erent abstraction levels: by setting up accelerated paths from top to
bottom levels, upwards and backwards (accelerated design); and also by refurbishing data
�ows between tests and simulations at di�erent levels in the �test pyramid� (simulation
aided certi�cation).

As a preliminary step towards such high level objectives, the sub-modeling technique
is often employed. It consists in applying the results of the global coarse simulation as
boundary conditions in the local more re�ned simulation. As the sub-modeling technique
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is sequential (global-to-local), an error is introduced and quanti�ed as the di�erence be-
tween the integrals of the local reaction forces and global interface forces, where the local
model cuts the global one. This error is due to di�erent modeling assumptions in the
global and local models (constitutive law, connection modeling, mesh re�nement. . . ). A
more accurate coupling technique would require the global and local models to exchange
data in both directions, paying the price of a higher computational cost, as simulations
run concurrently.

Multiple strategies exist to couple global and local simulations together. The most
straightforward strategy consists in directly installing the local �nite elements model into
the global model with bonding interactions, possibly from solid to shell, and then running
a full monolithic simulation. An alternative strategy consists in using domain decom-
position techniques, pioneered in [39, 29] as Schwarz alternating method, reformulated
exchanging Neumann conditions in [40] or imposing the interface constraints by Lagrange
multipliers in [20, 19]. A more comprehensive summary of domain decomposition tech-
niques is presented in [30]. A chief advantage of domain decomposition techniques is intro-
duced in [32, 11, 33, 21] for dynamic applications, as di�erent time integration schemes or
time increments can be applied to each sub-domain (sub-cycling), without compromising
stability. An interesting generalization to a multi-physic application is presented in [12].

However, the chief issue with the aforementioned structural multi-scale techniques,
the monolithic and the domain decomposition ones, is that the models abstractions need
to be generated and adjusted for each simulation, aggravating the proliferation of models
and increasing modeling complexity. A less intrusive approach from the (non-negligible)
modeling point of view is to keep the global coarse models unchanged, as it is the case of
the sequential sub-modeling technique, and concurrently iterate between the global and
local simulations. This is what we will refer to as the Global-Local Iterative Coupling
(GLIC) in the following. After the pioneering works of [46], the formulation of the GLIC
applied to nonlinear statics was revisited in [27, 26], reviewed in [43], studied in the context
of shell-to-solid coupling in [34, 35] and [2] and of uncertainty quanti�cation in [42]. In
similar manner to the sub-cycling in domain decomposition, the GLIC was also extended
to explicit dynamics in [7, 8] and applied to a high-velocity impact causing composite
delamination in [9]. More recent works have proposed the application of the Generalized
Finite Element Method to the local model in [38, 37] and the possibility to evolve the
size and location of the local patch in order to capture the propagation of fracture using
non-local damage phase-�eld equations in [3, 4, 41, 28].

Although a global-local approach relieves from highly time consuming modeling tasks
(that are not scalable with computing resources), a chief drawback for the GLIC is the
computational cost introduced with global-local iterations. The computing times of the
GLIC are approximately equal to the total computing time of the direct simulation mul-
tiplied by the average number of global-local iterations during the simulation. As sum-
marized in [31, 10, 5], acceleration techniques can be employed as mitigation of increased
computing costs and to improve robustness, similarly to �uid-structure interaction tech-
niques as, for instance, the Anderson acceleration scheme [6], more recently revisited in
[13].

With these works, the Authors explore and test the GLIC as implemented in Abaqus
through co-simulation, which is a special technique that allows users to run simulations
concurrently, exchanging quantity values through a �nite element interface. In the case
of the GLIC, co-simulation is run to couple the global simulation to the local one and
to exchange displacements and reaction forces. The �elds are exchanged through a user-
de�ned surface in common between the two �nite element models. A con�guration �le
needs to be written to provide instructions to the Abaqus co-simulation engine on how to
coordinate the two simulations.
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Figure 1: Reference problem with two local patches and a non-empty complement zone.

Particular focus has been devoted on the study of the convergence and on the in-
vestigation of inexact convergence, as in classical multi-grid schemes as for instance
[22, 23, 24, 25], in order to reduce even further the computation expenses. After this
Introduction, Section 2 is devoted to the formulation of the iterative scheme and the pre-
sentation of accelerators, Section 3 describes some challenging use cases and Section 4
proposes concluding remarks and future works.

2 Formulation and study of the Global-Local Iterative

Coupling

We consider a (quasi)-static mechanical problem set on a domain Ω. We assume that
a �rst global (superscript G) �nite element modeling is available, capable of correctly
grasping the long-range trends in the structure. The global model need not be linear, in
which case an incremental study is conducted, and for simplicity reason we only consider
one load increment in this paper, multiple increments with time grids adapted to the
models have been studied in [10]. The system to be solved can be written as:

Find u so that fGint(u
G) + fGext = 0, (1)

where fext stands for the (generalized) external forces, fint is the vector of internal forces
and u is the vector of unknown displacements (Dirichlet conditions are assumed to have
been eliminated). Of course, in the case of a linear problem, the internal forces take the
form of a linear application:

fGint(u
G) = −KGuG (2)

where KG is the sparse symmetric de�nite positive sti�ness matrix.
We suppose that this global model is insu�cient in some local areas: the geometry, the

heterogeneity or the material law are too simpli�ed, or the mesh is too coarse. . . . These
regions (Ωs,G)s>0 are assumed to be non-overlapping sets of connected elements of the
global mesh. For simplicity we consider that the meshes are matching at the interface,
that is to say that there is a one-to-one correspondence between degrees of freedom.
A possibility to implement this hypothesis is to have a copy of the global mesh of the
interface on each patch and to use a tie constraint with the re�ned mesh.

On these regions, there exists a local modeling (superscript L) with adapted geometry,
mesh, elements, material law. . . , nevertheless we suppose that the interface is preserved
in the modelings: ∂Ωs,L ∩ Ω = ∂Ωs,G ∩ Ω. The zone of the global mesh which is not
covered by patches, sometime referred to as complement zone, is written with index 0:
Ω0,G = ΩG \ ∪s>0Ω

s,G. Note that this zone may not exists if the global model is fully
covered by patches. Our reference is the assembly of all the local models and of the
complement zone: Ω0,G ∪

(
∪s>0Ω

s,L
)
, see Figure 1.

We note Γs = ∂Ωs ∩ Ω the interface of the patches, and ΓG = ∪s>0Γ
s the global

interface. We introduce the trace operators (TG,Ts,L) that extract the interface degrees
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Figure 2: Global problem and topological operators (traces and assembly � Use the trans-
pose to follow the opposite direction).

of freedom. We also introduce the injection operators As which position Γs with ΓG, see
Figure 2.

We consider Dirichlet problems on the patches with the imposed displacement inher-
ited from the global problem. Let Subscript i denote internal degrees of freedom of the
patches and Subscript Γ interface degrees of freedom.

Dirichlet condition: us,L
Γ = AsTTGuG

Internal nonlinear problem: Find us,L
i such that f s,Lint,i

(
us,L
i

us,L
Γ

)
+ f s,Lext,i = 0

Interface post-processing: λs,L = −f s,Lint,b

(
us,L
i

us,L
Γ

)
− f s,Lext,b

(3)

λs,L is the vector of nodal reaction associated with the imposed displacement AsTTGuG,
it can also be obtained as the Lagrange multiplier which imposes the given displacement.

At this point, we have carried out a classical sub-modeling approach. This approach
is known to potentially brings lots of errors because the e�ect of the local models is
not brought back on the global model, which in particular prevents interactions between
patches.

The residual rΓ can be measured as the lack of balance between the re�ned patches
and the subdomain 0:

rΓ = −

(
A0λ0,G +

N∑
s=1

Asλs,L

)
. (4)

The reaction on subdomain 0 is de�ned as λ0,G = −f0,Gint,b

(
u0,G
i

u0,G
Γ

)
− f0,Gext,b. A formula which

avoids the management of Subdomain 0 will be given soon.
The global/local coupling simply consists in doing a Richardson iteration to try to

reduce the residual. To do so, we introduce the (initially null) corrective load TGT
pG
Γ

applied to the global model. The update of the load and its application in the corrected
global problem can be written as:

pG
Γ ← pG

Γ + ωrΓ,

fGint(u
G) + fGext +TGT

pG
Γ = 0.

(5)

where ω > 0 is a relaxation parameter.

Remark 1. Other implementations of the global-local coupling, like the one in [16], prefer
to use uG as the main unknown to be updated with relaxation at each iteration. When the
global problem is linear, uG depends on pΓ in an a�ne manner and the two approaches are
strictly equivalent. The approaches may di�er slightly if the global problem is nonlinear,
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and we prefer our approach where the unknown has the same physical dimension (and
vector size) as the �natural� residual which is the lack of balance between the models.
Like in any other domain decomposition method, it highlights the crucial role played by
the interface.

The existence of a non-empty interval of values of the relaxation coe�cient for which
the algorithm converges is proved for an elastic global model coupled with monotonic
patches (e.g. visco-plasticity with positive hardening). In practice the convergence is
observed in more general cases, like with an elasto-visco-plastic global model or softening
(but stable) patches. Moreover, all �xed-point accelerators can be used to improve the
convergence.

Once the iteration has converged, we recover the reference model constituted by the
complement zone Ω0,G and the patches (Ωs,L) where the displacement is continuous at the
interface and the nodal reaction are balanced, that is to say all interactions between the
complement zone and the patches have been counted for.

Algorithm 1 recalls the classical global-local coupling method.

Algorithm 1: Non-invasive stationary iterations with relaxation

Arbitrary initialization pΓ,0

for j ∈ [0, · · · , jmax] do
Global solve: Find uG

j such that:

fGint(u
G
j ) + fGext +TGT

pG
Γ,j = 0

Global post-process of λ0,G
j (if it exists):

λ0,G
j = −T0,G

(
f0,Gint (u

0,G) + f0,Gext

)
Local solves: ∀s > 0, �nd us,L

j ,λs,L
j such that:{

Ts,Lus,L
j = AsTTGuG

j

f s,Lint (u
s,L
j ) + f s,Lext +Ts,LT

λs,L
j = 0

Assembly of residual: rΓ,j = −
(
A0λ0,G

j +
∑N

s=1 A
sλs,L

j

)
if ∥rΓ,j∥ small enough then Break
Update: pΓ,j+1 = pΓ,j + ωrΓ,j

end

Remark 2. The post-processing of λ0,G is sometimes di�cult to implement in commercial
software. A workaround consists in extracting the global version of the patches, solve the
same Dirichlet problem as their re�ned counterparts and obtain the global nodal reactions
on the patches λs,G. Since the extra load pΓ introduces a stress discontinuity on the global
model, we have: ∑

s⩾0

Asλs,G = pΓ, (6)
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and thus
A0λ0,G = pΓ −

∑
s>0

Asλs,G

pΓ ← (1− ω)pΓ + ω
∑
s>0

As(λs,G − λs,L)
(7)

2.1 Use of inexact solvers

In the case of nonlinear problems, the classical solution strategy is to use a Newton-
Raphson or a quasi Newton iterative procedure. In that case, a stopping criterion must
be used. Typically, the global solver can be written as: Find uG such that:

fGint(u
G) + fGext +TGT

pG
Γ = ρG, with ∥ρG∥ < εGr . (8)

Another possible control is the use the length of the last correction to the unknown
∥δuG∥ < εGδ . (εGr , ε

G
δ ) are the convergence thresholds (in term of residual and in term

of variation). Those thresholds are often written in a relative way by introducing some
normalization (e.g. the norm of the external load ∥fGext∥). A classical question [15, 17] is to
try to tune the values of the thresholds in agreement with current outer loop residual, in
our case ∥rΓ∥, in order to avoid oversolving while preserving the good convergence rate. In
this work, the authors make use of the Abaqus convergence controls [1], which correpond
to relative convergence criteria εGr = 1 (the default value being 0.005) and εGδ = 1 (the
default value being 0.01), where the normalizing factors are respectively the average �ux
norm and the norm of solution increment.

The fundamental equation to drive the thresholds, is the evaluation of the residual:

rΓ,j = −

(
A0λ0,G

j−1 +
N∑
s=1

Asλs,L
j

)
+

(
A0ρG

Γ,j +
∑
s>0

As,Lρs,L
Γ,j

)
(9)

In order for the global-local residual to be correctly evaluated, it is important to ensure
that the residuals of the global and local solves remain negligible in comparison. If we use
the notation ∆ for the variation of quantities from one global-local iteration to another,
we have:

pΓ,j+1 = pΓ,j − ω

(
A0∆jλ

0,G +
N∑
s=1

As∆jλ
s,L

)
+ ω

(
A0ρG

Γ,j +
∑
s>0

As,Lρs,L
Γ,j

)
(10)

A good control appears to be ∥ρG
Γ,j∥ ⩽ α∥∆jλ

0,G∥, with α≪ 1, and the same relation for
the patches. A simpler control is to use ∥ρG

Γ,j∥ ⩽ α∥rΓ,j−1∥, and the same relation for the
patches.

2.2 Accelerators

The Richardson iteration of Algorithm 1 is the simplest example of �xed-point methods.
Its convergence can be slow and it may even lack robustness, failing to converge on too
sti� problems. This section investigates the use of 3 standard accelerators to overcome
these issues.

For simpler presentation, we rephrase the coupling in terms of abstract operators:

uG
Γ = SG−1

(pΓ) obtained from eq. (5)

rΓ = SL(uG
Γ ) obtained from eq. (3) and (4)

(11)
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The standard �xed-point system relies on the sequential Gauss-Seidel execution of
solvers: (

SL ◦ SG−1
)
(pΓ) = pΓ (12)

SG and SL refer to the computation of one global time increment and one local time
increment respectively. The notations are further simpli�ed by introducing the operator
H = SL ◦ SG−1

and omitting the index Γ in the unknown p:

H : Rn → Rn, H (p) = p (13)

In the reminder of this section, the lower j denotes the iteration index to solve the
�xed-point equation. p̃j denotes the j−th Picard iterate p̃j = H (pj). For some problems,
such as Fluid-Structure Interaction with moderate/large density ratios or structural multi-
scale problems, a moderate to strong physical coupling bonds the subdomains. More
elaborated algorithms such as the Aitken's relaxation or Quasi-Newton algorithms [14,
45], referred as accelerators, must be employed in order to get a stable solution and
good convergence properties. The cost associated with this additional acceleration step is
negligible compared to the Picard iteration itself, especially for cases with surface coupling.
Once the Picard iteration is computed, a correction is applied using accelerators:

pj
Picard

⇝ p̃j
Acc.

⇝ pj+1 (14)

The classical residual can then be written as rj = p̃j − pj.

2.2.1 Aitken's relaxation

The simplest accelerators are based on relaxation techniques:

pj+1 = pj (1− ωj) + p̃jωj (15)

A relaxation method with constant parameters might be su�cient for certain problems
involving weak coupling. However, Aitken's relaxation is often used to improve the e�-
ciency with a very limited additional computation cost. The Aitken's dynamic relaxation
factor is provided by:

ωj = ωj−1

rTj−1 (rj − rj−1)

∥rj − rj−1∥22
(16)

2.2.2 Multi-secant methods

In [18], Fang and Saad present multi-secant methods to solve the nonlinear problem
r(p) = H(p) − p = 0. The �xed-point problem is formally inverted in order to expose
Picard iterations outputs:

r (p) = H (p)− p ≈ 0⇒ r̃ (p̃) = p̃−H−1 (p̃) ≈ 0 (17)

Introducing ∆p̃j = p̃j+1− p̃j and the Jacobian Jr̃ (p̃j), the transition from the Picard
step to the subsequent iterate in the Newton-Raphson update is articulated as follows:

Jr̃ (p̃j)∆p̃j = −r̃j (p̃j) (18)

pj+1 = p̃j +∆p̃j (19)
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Approximate of the interface Jacobian Jr̃ is computed using input-output information:

Wj =

[
∆p̃0,∆p̃1,

. . . ,∆p̃j−1

]
, with ∆p̃j = p̃j+1 − p̃j

Vj =

[
∆r0,∆r1,

. . . ,∆rj−1

]
, with ∆rj = rj+1 − rj

(20)

Using the two datasets Wj and V j, the multi-secant equation for the inverse interface
Jacobian reads:

J−1
r̃ (p̃j)Vj ≈Wj (21)

Anderson acceleration [6] We seek for the minimum of the approximate inverse Jaco-
bian norm while satisfying the multi-secant equation constraint. Let L be the associated
Lagrangian:

L
(
J−1
r̃ , λ

)
:=

1

2
∥J−1

r̃ ∥
2

F + λ
(
J−1
r̃ Vj −Wj

)
(22)

λ is the Lagrange multiplier associated with the multi-secant constraint. The solution(
λ̄, J̄−1

)
is obtained by making stationary the Lagrangian. The inverse of the Jacobian

can be written as:
J̄−1 = Wj

(
VT

j Vj

)−1
VT

j (23)

The Anderson acceleration does not provide an approximation for the entire inverse
Jacobian matrix; it focuses solely on the pertinent directions leading to the zero residual.
We seek for the vector α minimizing the norm:

αj = argmin
α
∥Vjα + rj∥2 (24)

The same direction is then applied toWj to get the prediction in terms of input variations:

pj+1 = p̃j +Wjαj (25)

Information from past increments can be used to improve the performance. However,
the optimal number of reused time increments for the Anderson acceleration is highly de-
pendent on the problem at stake. During the iterative process, dependent data within the
data-setsWj andVj are removed using vector orthogonalization based on QR algorithms.
Algorithm 2 lists the details of the Anderson accelerator.

Broyden's quasi-Newton method The Broyden's quasi-Newton method approxi-
mates the full inverse Jacobian matrix by minimizing the di�erence with the Jacobian
at the previous increment under the multi-secant equation constraint:

L
(
J−1
r̃ , λ

)
:=

1

2
∥J−1

r̃ (pj)− J
−1,(N)
r̃ (pj)∥

2

F + λ
(
J−1
r̃ Vj −Wj

)
(26)

Information from previous time increments are captured implicitly throughout this ap-
proach. The inverse of the Jacobian minimizing the Lagrangian function reads:

J̄−1 = J
−1,(N)
r̃ +

(
Wj − J

−1,(N)
r̃ Vj

) (
VT

j Vj

)−1
VT

j (27)

Storing the complete inverse Jacobian matrix is impractical for real problems. Therefore,
the inverse Jacobian storage is implemented through a truncated Singular Value Decom-
position (SVD) to mitigate memory consumption. The SVD update is carried out using
an incremental SVD [44] to minimize computational costs. By using such an approach,
the full rank SVD is never computed.
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Algorithm 2: Anderson acceleration

Extrapolation: p0 = f(pn,pn−1, ...)
Constant relaxation: p̃0 = H(x0), r0 = p̃0 − p0

p1 = p0 + ω0r0
for j ∈ [0, · · · , jmax] do

Compute Picard iterate and residual: p̃j = H(pj), rj = p̃j − pj

if (!converged) then
Build Vj and Wj input-output datasets: Vj = [∆r0, . . . ,∆rj−1],
∆ri = ri+1 − ri
Wj = [∆p̃0, . . . ,∆p̃j−1], ∆p̃i = p̃i+1 − p̃i

Perform QR decomposition of Vj: Vj = QU
Minimize ∥Vjα + rj∥2 using a least-square method: Uα = −QT rj
Compute the correction and the accelerated solution: ∆p̃j = Wjα
pj+1 = p̃j +∆p̃j

end

end

The solution correction ∆p̃j is obtained using the Newton-Raphson update formula.
The predicted (or the accelerated) value reads:

p̃j+1 = p̃j +∆p̃j = p̃j − J−1
r̃ rj (28)

The pseudo-code of the Broyden's algorithm is detailed in Algorithm 3.

Remark 3. The GLIC is implemented in Abaqus through co-simulation. With this ap-
proach, the co-simulation coordinates two Abaqus concurrent simulations and their com-
munications between each other. The quantities communicated in the GLIC case are
displacements from global to local and reaction forces from local to global. Automatic
mapping enables couplings between �nite element interfaces with mismatching nodes, with
a linear interpolation in space. If the simulations run with di�erent increment sizes, a
linear interpolation in time occurs. However, within this paper, only matching nodes and
increment sizes have been considered. All the three accelerators described in Section 2.2
are implemented in the Abaqus co-simulation engine. From the practical point of view,
beside running the global and local simulations concurrently, a so-called con�guration �le
needs to be written and run in order to drive the Abaqus co-simulation engine. Within
the con�guration �le, the user selects the accelerator technique and associated parame-
ters, de�nes the �eld quantities that are exchanged and the pairs of outputs/inputs for,
provides convergence and communication controls. Last but not least, it is important to
note that users can substitute one of the two Abaqus simulations in the GLIC with their
own third-party code, making use of special co-simulation APIs.

Remark 4. It is important to state that, despite all the e�orts to accelerate the conver-
gence of the global-local iterations and optimize the number of global and local Newton-
Raphson iterations, the GLIC will never be more e�cient in terms of computing time than
the monolithic �nite elements model direct simulation, that will be taken as reference for
accuracy measurements in what follows. More precisely, the GLIC will be slower by the
factor close to the average number of global-local iterations during a given co-simulation
run. However, for most of industrial cases, the computing time from simulations is often
negligible in comparison to the time spent by engineers in building �nite element mod-
els and, most importantly, is scalable with computing resources. The convenience of a
global-local approach resides in the mitigation of the modeling burdens for creating mul-
tiple complex �nite element models for multiple load cases or geometry con�gurations.
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Algorithm 3: Broyden's quasi-Newton method

Extrapolation: p0 = f(pn,pn−1, ...)
Constant relaxation:
p̃0 = H(x0), r0 = p̃0 − p0

p1 = p0 + ω0r0
for j ∈ [0, · · · , jmax] do

Compute Picard iterate and residual: p̃j = H(pj), rj = p̃j − pj

if (!converged) then
Build Vj and Wj input-output datasets:
Vj = [∆r0, . . . ,∆rj−1], ∆ri = ri+1 − ri
Wj = [∆p̃0, . . . ,∆p̃j−1], ∆p̃i = p̃i+1 − p̃i

Perform QR decomposition of Vj: Vj = QU

Compute Z =
(
VT

j Vj

)−1
VT

j = U−1QT

Update the approximate inverse Jacobian:

J−1
r̃ rj (p̃j) = J

−1,(n)
r̃ +

(
Wj − J

−1,(n)
r̃ Vj

)
Z

Compute the correction and the accelerated solution:
∆p̃j = −J−1

r̃ (p̃j) rj
pj+1 = p̃j +∆p̃j

end

end

Indeed, the GLIC proposes a unique global �nite element model that is used for multiple
simulations, whereas multiple specialized local models are applied where required, while
keeping the global model unchanged. This is especially practical and a powerful approach
in the aeronautic industry, where multiple levels of abstraction are de�ned for a given
aircraft. The Authors refer to this concept as non-intrusive modeling.

3 Use cases

A set of generic use-cases was de�ned to mimic situations met by Airbus where a direct
unidirectional sub-modeling approach is not satisfactory:

� signi�cant material non-linearity occurs locally in an area that is not modeled at
global scale (plate with hole)

� signi�cant material non-linearity occurs locally in an area that is modeled at global
scale, but through a macro-element (elementary bolt)

3.1 Holed plate with localized elasto-plasticity

The �rst case under study is a cylindrical holed plate section with localized elasto-plastic
behavior. Figure 3 shows the monolithic �nite element model of reference. The plate
has width 10 cm along the X direction, length 20 cm along the Z direction, thickness
1 mm and a cylindrical curvature along the X direction of radius 0.2 m. The hole is
perfectly centered with respect to the plate and measures 6 mm of radius. A mesh of
solid elements is applied all around the hole to an outer radius of 12 mm, with 8-node
hexahedral elements with reduced integration of variable size counting 8 times through
the thickness, 56 times in the tangential direction through the full circle and 8 times
through the radial direction, for a total of 3584 solid elements. The rest of the plate is
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meshed with 4-node shell elements with Simpson reduced integration up to a mesh size of
6 mm and connected to the solid elements with a shell-to-solid coupling (see [1] for details
on this type of connection).

Figure 3: Holed plate �nite element model of reference.

The plate is clamped at the bottom end at Z = 0.2 m along the full width and
pulled at the top end at Z = 0 m with an imposed displacement of 1 mm along the
Z direction. An elastic material is applied to the full model with a Young modulus of
210 GPa and Poisson coe�cient of 0.3. The plastic material behavior is de�ned linearly
interpolating the tabular values of Table 1 and is applied to the solid elements around
the hole. A nonlinear static analysis under the assumption of �nite strains is therefore
run with Abaqus, starting with a increment 50 times smaller than the full step size and
making use of the default convergence controls that adjust the increment size in function
of convergence rates up to a maximum increment size 10 times smaller than the full step
size.

Stress (MPa) Plastic strain
400 0.0
420 0.02
500 0.2
600 0.5
625 0.6
650 0.8

Table 1: Plastic material behavior on the solid elements around the hole.

The contour plot in Figure 4 shows results in terms of displacement magnitude pro-
jected to the deformed full mesh. All nodal displacements magnitudes vary between 0
mm along the clamp and 1 mm at the other end of the plate.

The contour plot in Figure 5 shows results in terms of equivalent plastic strain pro-
jected to the solid elements mesh around the hole, which was the only part of the model
subjected to elasto-plastic material behavior. Equivalent plastic strains reach a maximum
plastic strain value of 0.04486 on the side faces of the hole, where stresses concentrate.

The solution in Figures 4 and 5 has been achieved with 26 increments with a number
of Newton-Raphson iterations varying between 2 (at the beginning of the simulation) and
6 (when yield stress is reached).
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Figure 4: Results in terms of displacement magnitude (mm) for the holed plate �nite
element model of reference.

Figure 5: Results in terms of equivalent plastic strain for the holed plate �nite element
model taken as reference.
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The GLIC approach is applied here with coupling a coarse global model with uniform
mesh of quadrilateral shell elements of size 6 mm without considering the presence of
the hole to a local mesh that is identical to the mesh of the reference simulation on
the squared patch of size 60 mm around the hole. Automatic convergence controls of
the global-local iterations have been implemented, namely, an increment-focused absolute
criterion, an increment-focused relative criterion and a step-focused relative criterion, that
have been set to 10−3 s, 10−3 s and 10−4 s, respectively, in what follows. This use case
is challenging for the GLIC algorithm as the local model is di�erent from the overlapped
global region on multiple sides: element type, mesh size, material de�nition and evolution
during the simulation. As the simple �xed-iteration coupling scheme converges too slowly
for practical usage, only the accelerator techniques can be considered for this use case.

To appreciate the theoretical aspects of the GLIC, the contour plots from Figure 6
show Von Mises stress �elds in the global and local analyses for the co-simulation run
with Aitken's relaxation (GLIC-Aitken). The contour plot color values vary in the range
[500, 1250] MPa in order to qualitatively highlight the stress variation at the global-local
interface. The overlapped region in the global model can be nicely identi�ed with the
larger jump in Von Mises stress values at the 9×9 elements squared patch over the center
of the model: this is due to the correction forces in the global analysis that applied all
along the global-local interface in the global model. On the other hand, the Von Mises
stress values at the elements along the boundary of the local analysis are in accordance
with the Von Mises stress values in the non-overlapped region of the global analysis.

(a) Global analysis. (b) Local analysis.

Figure 6: Results in terms of Von Mises stress (MPa) from the GLIC-Aitken simulation.

In terms of accuracy, the contour plots in Figure 7 show results in terms of equivalent
plastic strains obtained with Aitken's relaxation (GLIC-Aitken), Anderson acceleration
technique (GLIC-Anderson) and Broyden quasi-Newton method (GLIC-Broyden) in Fig-
ures 7a, 7b and 7c, respectively. Such results are identical for engineering purposes and
consistently show a maximum peak in equivalent plastic strain of 0.04485, which is equiv-
alent to an error of 0.02% due to the same global-local convergence threshold for all three
simulations.

In terms of performance, the numbers of iterations in time are reported in Figure 8.
The plot on the top shows the total number of Newton-Raphson iterations in the global
analysis (elastic �nite strain model), the plot in the middle shows the total number of
Newton-Raphson iterations in the local analysis (elasto-plastic �nite strain model with
coarse uniform mesh) and the plot on the bottom shows the number of iterations for
the global-local coupling, which is a common multiplier of both global and local total
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(a) GLIC-Aitken simulation.

(b) GLIC-Anderson simulation.

(c) GLIC-Broyden simulation.

Figure 7: Results in terms of equivalent plastic strain for the GLIC simulations.
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Newton-Raphson iterations. The blue squares, the red circles and the black triangles
are on curves out of the GLIC-Aitken simulation, GLIC-Anderson and GLIC-Broyden
simulation, respectively. Whereas curves from the GLIC-Anderson and GLIC-Broyden
simulations are perfectly overlapped with most of the iterations happening in the �rst
half of the analysis, the GLIC-Aitken simulation curve behaves di�erently, with a sudden
peak after time instant 0.4 s, a few increments after a cutback in the increment size is
triggered by the solver to optimize convergence.

The Authors want to note that the curves out of the global analysis quickly converge
at each increment and global-local iteration, as the model is elastic.

Overall, the GLIC-Aitken simulation is the fastest, independently from the sizes of
global and local models. As highlighted in Table 2, the total number of global-local
iterations NGL is 1.5 times smaller in GLIC-Aitken than in GLIC-Anderson and GLIC-
Broyden. As a consequence, also in terms of total number of Newton-Raphson iterations
in the global analysis NG

iter
and in the local analysis NL

iter
, GLIC-Aitken is 1.57 times faster

than both GLIC-Anderson and GLIC-Broyden in the global analysis and 1.51 times in
the local analysis. Due to convergence control heuristics, the number of increments in the
global analysis NG

inc
and in the local analysis NL

inc
are di�erent. Namely, they are both

smaller in the GLIC-Aitken than in both GLIC-Anderson and GLIC-Broyden, because
of faster convergence on average. Last but not least, also the total number of global-
local iterations is 1.52 times smaller in GLIC-Aitken than in both GLIC-Anderson and
GLIC-Broyden.

NG
inc

NG
iter

NL
inc

NL
iter

NGL

GLIC-Aitken 32 163 35 338 65
GLIC-Anderson 41 256 44 513 99
GLIC-Broyden 41 256 44 513 99

Table 2: Comparison of total performance values between GLIC-Aitken, GLIC-Anderson
and GLIC-Broyden.

The Newton-Raphson convergence controls employed in the simulation above have
been set to the values that are proposed by default in the Abaqus solver. The readers
are encouraged to consult the Abaqus manual [1] for comprehensive details on such con-
vergence control values. To verify the inexact solver strategy introduced in Section 2.1
(GLIC-IS), the following simulation have been run relaxing the convergence controls.
Namely, the convergence criterion for the ratio of the largest residual to the correspond-
ing average �ux norm for convergence and the convergence criterion of the ratio of the
largest solution correction to the largest corresponding incremental solution value have
been increase from 0.005 and 0.01 to 1 and 1, respectively, for both global and local anal-
yses. Contour plots in Figure 9 show the comparison in terms of equivalent plastic strain
in the local model between the GLIC-Aitken and GLIC-IS-Aitken simulations.

Maximum values for the equivalent plastic strains are 0.04485 for the GLIC-Aitken
simulation and 0.04486 for the GLIC-IS-Aitken simulation, with a negligible degradation
in accuracy of approximately 0.02%. On the other hand, in terms of performance, the plots
in Figure 10 show the comparison of the number of Newton-Raphson iterations during
the global and local analyses between GLIC-Aitken and GLIC-IS-Aitken simulations.
Although the curves have similar values in terms of iteration numbers on the vertical
axes, the total number of iterations is lower in the relaxed case, due to larger increments,
resulting in less equation solves. Indeed, the time increment is automatically increased or
cut o� based on convergence rate, which is faster with relaxed parameters.

As a more accurate performance analysis, the same numbers considered for the com-
parison between GLIC-Aitken, GLIC-Anderson and GLIC-Broyden are considered here
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Figure 8: Comparison of the number of iterations in time between the GLIC-Aitken,
GLIC-Anderson and GLIC-Broyden simulations.
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Figure 9: Results in terms of equivalent plastic strain in the local analysis from the GLIC-
IS-Aiken simulation.

in Table 3, comparing GLIC-Aitken and GLIC-IS-Aitken. Whereas the total number of
global-local iterations NGL is very similar in both simulations, as well as the total number
of Newton-Raphson iterations in the global analysis NG

iter
, which is counterintuitively 3%

smaller in GLIC-Aitken than in GLIC-IS-Aitken. The total number of Newton-Raphson
iterations in the local analysis NL

iter
is 11% smaller in GLIC-IS-Aitken than in GLIC-

Aitken, due to small numbers of increments in both global and local analyses, NG
iter

and
NL

iter
, respectively.

NG
inc

NG
iter

NL
inc

NL
iter

NGL

GLIC-Aitken 32 163 35 338 65
GLIC-IS-Aitken 24 168 27 304 64

Table 3: Comparison of total performance numbers between GLIC-Aitken and GLIC-IS-
Aitken.

This time, the convenience in terms of performance depends on the size of the global
and local models. As the number of variables in the local model is 16269, much larger than
the number of variables in the global model, that is 2880, then in this case GLIC-IS-Aitken
is more convenient than GLIC-Aitken.

Similar behaviors are encountered relaxing convergence criterion values with the An-
derson acceleration and Broyden's method.

3.2 Structure with bolted joints

The second case under study is a bolted joint connecting two planar plates together. Even
if derived into a simplistic use-case (Figure 11), the situation explored here is represen-
tative of actual industrial concerns where elementary bolts are represented by connector
elements at global scale and may meet critical loading conditions, which requires further
re�ned investigations with local models of higher physical representability. The full model
is an assembly composed of 3 parts in contact between each other: the two plates and the
bolt. Figure 11 shows the reference �nite element model applied to the geometry. The
two plates are identical, of width 40 mm along the X direction, length 100 mm along the
Y direction, thickness 2 mm along the Z direction and are stacked in the Z direction.
As for the holed plate, the bolt is perfectly centered across the two plates, its head has a
diameter 10 mm and height 3 mm, its body has a diameter 6.35 mm and a height 7 mm.
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Figure 10: Comparison of the number of iterations in time between the GLIC-Aitken and
GLIC-IS-Aitken simulations.
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A mesh of solid elements is applied around the bolt up to a diameter 15 mm, with 4-noded
tetrahedric elements of variable size, with smaller ones over the surfaces in contact. As
for the holed plate, the rest of the assembly is meshed with 4-noded shell elements with
Simpson reduced integration up to a mesh size 2.5 mm.

Figure 11: Bolted joint �nite element model of reference.

As one of the plates is clamped on the bottom edge and simply supported in the Z
direction on the top edge, the other plate is simply supported in the Z direction on the
bottom edge and pulled up in the Y direction on the top edge for a displacement of 2.
Elastic materials are applied to the plates and the bolt with Young moduli 70 GPa and
110 GPa, respectively, and a Poisson coe�cient 0.3 in both cases. Small sliding contact
with friction 0.2 and slip tolerance 0.005 mm is de�ned between the plates and between
the bolt and the plates. A nonlinear static analysis under the assumption �nite strains is
run with Abaqus in two steps. In the �rst step, a pre-load of 1 kN is applied to the bolt
as compression in the Z direction through bushing connectors of elasticity 100 kN/mm
for axial forces against translations and 105 for moments against rotations. In the second
step, one of the plate is pulled and loads the bolt with shear stress through contact.

The contour plot in Figure 12 shows results in terms of displacement magnitude pro-
jected to the deformed full mesh. All nodal displacements magnitudes vary between 0
mm along the clamp and 2.058 mm.

Figure 12: Results in terms of displacement magnitude (mm) for the bolted joint assembly
�nite element model of reference.
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The contour plot in Figure 13 shows results in terms of contact pressure and contact
shear, respectively, projected to the solid elements mesh of the bolt. Contact pressure
goes up to an absolute value of 6.96 ·103 MPa in the middle of the bolt body in an almost
symmetric manner. Contact shear participates with values ranging between −1.25 · 103
MPa and 1.37 · 103 MPa.

(a) Contact pressure. (b) Contact shear in Z direction.

Figure 13: Results in terms of contact interaction (MPa) on the bolt �nite element model
taken as reference.

The solution in this case has been achieved with 15 increments per step. The �rst step
ran with a number of Newton-Raphson iterations varying between 1 and 7, on average
2.13, the peak of 7 caused by contact severe discontinuities. The second step ran with a
number of Newton-Raphson iterations varying between 5 and 9, on average 6.26, in part
due to contact, in part due to geometrical nonlinearities.

In accordance to the GLIC strategy and similarly to the �rst use case described in
Section 3.1, the global model is meshed with a uniform coarse mesh of 4-noded shell
elements of mesh size 2.5mm, whereas the local model is de�ned on the central 30×30mm2

squared patch that covers the bolt and the immediate area of the two plates, meshed partly
with 4-noded shell elements and partly with 3-noded tetrahedric elements, connected
with shell-to-solid coupling. The overlap of the local model to the global model exactly
represents what was de�ned in the reference model of Figure 11, as the goal of this
veri�cation exercise is to obtain identical results to reference. Automatic convergence
control tolerances of 10−4, 10−3 and 10−3 have been used to stop global-local iterations as
increment-focused absolute criterion, increment-focused relative criterion and step-focused
relative criterion, respectively.

As the bolt is fully modeled in 3D in the local model, its behavior is captured in the
global model with a bushing connector with elastic behavior of 275 kN/mm in X and Y
directions and 348 · 103 kN/mm in the Z direction.

This case is particularly challenging for the �xed-point GLIC algorithm as the local
model is much more re�ned and globally sti�er than the global overlapped region and
the spectral radius of the ampli�cation matrix might likely be larger than 1, which would
lead to divergence. Indeed, also in this case, the �xed-iteration GLIC algorithm without
any acceleration failed to converge. Therefore, only the results obtained with accelerator
techniques are detailed in what follows.

In terms of accuracy, Figure 14 shows contour plot results in terms of contact pressure
and contact shear in the Z direction for co-simulation runs with GLIC-Aitken, Anderson
accelerator technique and GLIC-Broyden. Results are qualitatively identical between
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each other and are close enough to the reference solution, as detailed on maximum and
minimum values with Table 4. This possibly indicates that the error is chie�y due to the
GLIC convergence criteria rather than the chosen accelerator methodology.

Max CPRESS Max CSHEAR1 Min CSHEAR1
Reference 6.959 1.371 −1.247
GLIC-Aitken 7.01 1.377 −1.252
GLIC-Anderson 7.01 1.377 −1.252
GLIC-Broyden 7.01 1.377 −1.252

Table 4: Contact interaction results comparison (values expressed in GPa).

In terms of performance, the numbers of iterations in time are reported in Figure 15
for the second step of the analysis only. The plot on the top shows the total number of
Newton-Raphson iterations in the global analysis (elastic �nite strain model with coarse
uniform mesh), the plot in the middle shows the total number of Newton-Raphson itera-
tions in the local analysis (where contact occurs) and the plot on the bottom shows the
number of iterations for the global-local coupling. The blue squares, the red circles and
the black triangles are results from GLIC-Aitken, GLIC-Anderson and GLIC-Broyden,
respectively. This time, the red and black curves are not perfectly overlapped but are
roughly on top of each other, whereas the blue curve is consistently on the bottom part
of the plot.

This means that the GLIC-Aitken turns out to be the faster accelerator technique
when counting the number of total iterations during the analysis. More precisely, as
evaluated with numbers in Table 5, global and local Newton-Raphson convergence rates
are similar, but the global-local iteration is faster with GLIC-Aitken than with GLIC-
Anderson and GLIC-Broyden. The number of increments is identical in the three cases,
meaning that the convergence control heuristics work in the same way. The total number
of Newton-Raphson iterations in the global analysis NG

iter
is 1.49 times smaller in GLIC-

Aitken than in GLIC-Anderson and 1.59 times than GLIC-Broyden. The total number of
Newton-Raphson iterations in the local analysis NL

iter
is 1.4 times smaller in GLIC-Aitken

than in GLIC-Anderson and 1.51 times than in GLIC-Broyden.

NG
inc

NG
iter

NL
inc

NL
iter

NGL

GLIC-Aitken 14 434 14 1093 151
GLIC-Anderson 14 647 14 1533 220
GLIC-Broyden 14 691 14 1648 234

Table 5: Comparison of total performance numbers between GLIC-Aitken, GLIC-
Anderson and GLIC-Broyden for the bolted-joint use case.

Relaxing the convergence criteria in the very same way of the �rst use case of Sec-
tion 3.1 once more does not a�ect accuracy, as contact pressure and contact shear in Z
direction do not change, but improve performance.

Figure 16 shows contour plots of contact interaction results in terms of contact pressure
and contact shear in Z direction. Values are in line with reference results, maximum
and minimum values being in between reference and co-simulation with Abaqus default
convergence criteria.

In terms of performance, Figure 17 shows the comparison in the total number of
Newton-Raphson iterations in time between the Abaqus default convergence criteria and
the relaxed convergence criteria. The performance gain using the latter strategy are
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(a) Contact pressure with GLIC-Aitken. (b) Contact shear (Z dir.) with GLIC-Aitken.

(c) Contact pressure with GLIC-Anderson.
(d) Contact shear (Z dir.) with GLIC-

Anderson.

(e) Contact pressure with GLIC-Broyden.
(f) Contact shear (Z dir.) with GLIC-

Broyden.

Figure 14: Results in terms of contact interaction (MPa) on the bolt for the GLIC simu-
lations.
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Figure 15: Comparison of the number of iterations in time between the GLIC-Aitken,
GLIC-Anderson and GLIC-Broyden simulations for the bolted joint use case.
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(a) Contact pressure. (b) Contact shear (Z direction).

Figure 16: Results in terms of contact interaction (MPa) with the GLIC-IS-Aitken simu-
lation.

appreciated chie�y on the local analysis, especially in the second half of the analysis,
whereas there are no remarkable gains in the global analysis.

Also in this case, more precise numbers are listed in Table 6, comparing GLIC-Aitken
and GLIC-IS-Aitken. As curves of global Newton-Raphson iterations and global-local
iterations were almost completely overlapped, the total number of global-local iterations
NGL and the total number of Newton-Raphson iterations in the global analysis NG

iter

are also in this case slightly smaller in GLIC-Aitken than in GLIC-IS-Aitken, namely,
2.6% and 2.5% smaller, respectively. On the other hand, the total number of Newton-
Raphson iterations in the local analysis NL

iter
is 1.5 times smaller in GLIC-IS-Aitken than

in GLIC-Aitken. Also in this case, the number of increments NG
inc

and NL
inc

are identical
in GLIC-Aitken and GLIC-IS-Aitken.

NG
inc

NG
iter

NL
inc

NL
iter

NGL

GLIC-Aitken 14 434 14 1093 151
GLIC-IS-Aitken 14 445 14 727 155

Table 6: Comparison of total performance numbers between GLIC-Aitken and GLIC-IS-
Aitken for the bolted joint use case.

As also in this case the local model (33393 variables) is much larger than the global
one (8412 variables), the GLIC-IS-Aitken approach is more convenient.

4 Conclusions and future works

Recent research works have proven the GLIC in conjunction with acceleration techniques
as a robust and accurate solution for bridging multiple levels of modeling abstraction in
computational structural mechanics, which is often a necessary approach when models
are complex, in order to reduce the high and non-scalable modeling times and burdens.
However, the simulation performance of the GLIC has always been reason of concern for
the daily engineering practice. Within this article, the Authors study the GLIC imple-
mented in Abaqus through co-simulation and compare acceleration techniques such as the
Aitken's relaxation, Anderson acceleration and Broyden's quasi-Newton method. For the
two highly nonlinear use cases under study, the Aitken's relaxation proved slightly more
e�ective than the other techniques, as long as straightforward on implementation concerns
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Figure 17: Comparison of the number of iterations in time between the GLIC-Aitken and
GLIC-IS-Aitken simulations for the bolted joint use case.
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The coupling reached acceptable levels of convergence with approximately 10 iterations,
in line with the most challenging multi-physics coupling strategies. Furthermore, the Au-
thors could prove the employment of inexact solver strategy (GLIC-IS) more e�ective,
with negligible loss of accuracy for engineering purposes, improving performance leverag-
ing loosened tolerance values on the Newton-Raphson iteration schemes of the global and
local analyses.

As the mitigation of the robustness and performance issues of the GLIC improves
the appeal of the methodology for an e�ective engineering practice, the full promise of
non-intrusive modeling is not fully met yet: in the presented works, the authors needed
to manufacture local models with solid-to-shell coupling in order to align global and local
interfaces to the facets of global elements, in order to avoid to cut through global element
with the local patch. This issue was successfully tackled with a re-meshing strategy in
the local model by [10], translating modeling intrusivity to implementation intrusivity.
The authors would also like to explore new opportunities in future works such as the
employment of virtual elements [47] or enhanced elements [36] where global elements are
cut by the coupling interface.
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