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Low phase noise and narrow linewidth lasers are achieved by 
implementing self-injection locking of a DFB laser on two 
distinct fiber Fabry-Perot resonators. More than 45 dB 
improvement of the laser phase or frequency noise is observed 
when the laser is locked. In both cases, a frequency noise floor 
below 1 Hz2/Hz is measured. The integrated linewidth of the 
best of the two lasers is computed to be in the range of 400 Hz 
and appears to be dominated by vibration noise close to the 
carrier. The results are then compared with a model based on 
the retro-injected power and the Q factors ratio between the 
DFB laser and the resonator. This straightforward model 
facilitates the extraction of the theoretical performance of 
these sources close to the carrier, a characteristic still hidden 
by vibration noise. 
 

 
High spectral purity optical sources play a critical role in various 
applications including coherent optical communications, high 
precision interferometric sensors [1,2], low-noise LiDARs [3], 
millimeter wave generation [4] and pump laser for high quality 
optical micro-combs [5,6]. In these applications, the laser frequency 
(or phase) noise is either demodulated or directly transferred to the 
output signal. Therefore, minimizing this noise is crucial, and the use 
of a high quality factor (Q) resonator to stabilize the laser frequency 
fluctuations is mandatory. Indeed, the phase noise of any oscillator is 
inversely proportional to the square of the resonator Q factor 
included in the oscillating loop [7]. If the resonator cannot be used 
directly in the oscillator, the optical source must be stabilized on an 
external resonator with a wideband locking process.  
Two approaches exist for this stabilization scheme: electronic 
feedback and optical feedback. Electronic feedback, commonly used 
in laboratory systems, particularly with the Pound Drever Hall 
(PDH) approach [8], provides a precise control of the loop 
parameters. However, wideband and high gain operation are limited 
by the system stability. Optimizing these two parameters is crucial to 

reduce the phase noise of the locked laser, especially when the Q 
factor of the stabilizing resonator is orders of magnitude greater 
than the Q factor of the free running laser. Additionally, the electronic 
circuits in this approach are quite intricate and may pose challenges 
for integration, especially if one desires to keep access to certain 
tuning parameters. Consequently, optical feedback emerges as the 
preferred approach in integrated systems [9-11], except for large-
size resonators [12] where the PDH is the only viable solution. 
Optical feedback is simple and efficient, with locking parameters 
solely controlled by the amount of power in the optical feedback [13-
15]. Wideband and high gain lock is possible with this technique. 
However, finding a compromise is essential, as strong feedback 
minimizes noise but also increases the possibility for system 
instability (multimode behavior or, in some cases, chaotic behavior). 
System instability also occurs more often in large resonators with a 
small free spectral range (FSR), for which many simultaneous 
oscillating conditions can be found. 
The choice of the resonator to stabilize a semiconductor laser 
depends on various parameters. Naturally, the Q factor should be 
maximized. Additionally, a resonator with an FSR in the microwave 
range helps to prevent mode jumps, especially in an optical locking 
approach. Hence, self-injection locking is primarily implemented 
with small-size resonators, such as integrated ring resonators [9-11], 
polished crystalline mini-disks [14-16] and fiber Fabry-Perot [17] 
resonators. For all these technologies, the resonator Q factor 
typically lies in the range of 106 to 109, which allows a strong 
frequency noise improvement compared to the semiconductor laser 
for which the intrinsic resonator Q factor is in the range of a few 103 
only. Finally, resonator temperature stability and/or frequency 
tunability may be an issue in certain applications. 
In this study, we take benefit of a fiber Fabry-Perot (FP) resonator 
technology we have developed to stabilize, through self-injection 
locking, a distributed feedback (DFB) laser. The resonators feature 
the advantages of relatively low cost and easy connection to a fiber 
system. The laser is a commercial device from Gooch & Housego, 
delivering up to 100 mW power near 1550 nm and which is 
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available without an isolator. The resonators, 1 cm or 2 cm long, are 
fiber resonators created using a piece of single mode fiber (SMF) 
inserted in a zirconium ferrule. The fiber ends are polished and 
cleaned and high reflectivity mirrors are deposited through RF 
Plasma-Assisted Reactive Magnetron sputtering (Bühler Leybold 
Optics HELIOS). The Bragg mirrors are low-loss Bragg quarter-wave 
layers featuring a reflectivity of 99.54 % for the 1 cm resonator and 
99.86 % for the 2 cm resonator. Attempts have been made to 
stabilize this laser on longer (and higher Q factor) resonators, but the 
stability of the lock was not consistently maintained with, as an 
example, 1.5 GHz FSR resonators. Consequently, only 5 GHz and 
10 GHz FSR resonators have been selected for this study. 
Resonator characterization has been performed using an 
opto-RF technique [18] (an example of measured data is 
shown in Fig. 1). The resonator parameters have been 
extracted using a Fabry-Perot model based on S parameters, 
primarily focusing on two main parameters: resonator 
reflectivity R and intra-cavity attenuation A. The intrinsic Q 
factor is derived by setting the R parameter to 1. The 1 cm 
resonator was placed in a temperature-regulated housing, 
whereas the 2 cm resonator was simply embedded in a 
metallic housing. 
Table 1 presents the optical parameters of these resonators. In this 
table, L and f3 dB are the measured parameters: transmission losses 
and resonator bandwidth. QL and Qo denote the loaded and intrinsic 
Q factors. Finesse is calculated from the intrinsic Q factor. The first 
resonator corresponds to previous achievement with more intra 
cavity losses, thus featuring a finesse lower than the second one.  
 
Table 1. Resonators parameters 

 FSR 
(GHz) 

L  
(dB) 

f3dB 
(MHz) 

QL Qo 
Finesse 

(int.) 

1 cm 
Ferrule 

10.29 -4.4 38 5106 1.3107 690 

2 cm 
Ferrule 

5.11 -12.5 4.0 4.8107 6.3107 1660 

 

 

Fig. 1.  Measured frequency response of the 2 cm resonator. The opto-RF 
technique [18] allows the precise measurement of the optical transfer 
function after calibration of the peak maximum. 
 

The system under study is depicted in Figure 2. The signal from the 
DFB laser goes through the resonator and a portion of the signal is 
sent back to the laser. Compared to self-injection locking on ring 
resonators, this configuration is more complex but it offers the 

advantage of a control of the feedback power thanks to the 
attenuator, which is the only tuning parameter able to change the 
locking conditions. The entire system is in a metal housing and 
shielded from vibrations and temperature fluctuations by foam. 
Excessive feedback may destabilize the laser, while insufficient 
feedback results in poor phase noise performance. In our case, the 
total loop attenuation (resonator + coupler + VOA) is at least 20 dB. 
The locking conditions are obtained through a slight variation of the 
laser current, which otherwise is maintained close to 300 mA 
(corresponding to a little less than 80 mW output power).  

 

 

Fig. 2.  Schematic of the self-injection locked laser referenced on the fiber 
Fabry-Perot resonator. 
 

 
Fig. 3.  Optical frequency noise measurement system 

 
The laser output signal is directed to a custom measurement system 
depicted in Figure 3 and based on a self-heterodyne optical 
frequency discriminator [19]. The whole system is embedded in a 
metal box with foam to isolate the interferometer from acoustic and 
mechanical vibrations. The output of this measurement bench is an 
80 MHz signal, which is then analyzed with a Keysight E5052B phase 
noise measurement bench. The optical frequency discriminator 
incorporates a 2 km optical delay line, providing high sensitivity and 
a low-noise measurement floor essential for characterizing high-
quality optical sources [19]. It enables frequency noise 
measurements up to 1 MHz offset from the carrier when the Sinc 
function response is properly calibrated and corrected (first zero at 
100 kHz). 

Figure 4 depicts the frequency noise Sf  of the laser unlocked (with 
an isolator on its output) and locked with the setup depicted in 
Figure 2 using the two different resonators. A frequency noise floor 
far from the carrier below 1 Hz2/Hz and below 0.1 Hz2/Hz is 
observed for the 1 cm and 2 cm resonator respectively. In the 
vicinity of the carrier, between 10 Hz and 1 kHz, noise induced by 
vibrations limits the performance. The best of the two lasers feature 
a measured frequency noise level of 10 Hz2/Hz at 1 kHz offset, just 
before the onset of the vibration noise. This performance, combined 
with the noise floor, surpasses previously published results with a 
similar approach by two decades [17]. While still slightly noisier (by 
one decade) compared to the best published results with crystalline 
mini-disks [15,16] or long (4 m) integrated delay lines resonators 
[12], understanding the observed noise bump around 10 kHz and 
suppressing vibration noise could bring the performance close to 
these lasers. 



 

 
Fig. 4.  Frequency noise of the free running laser (above, blue) and the two 
locked lasers: 1 cm resonator (violet) and 2 cm resonator (green). Red dots 
correspond to the measurement system noise floor [19]. 

 
A model was employed to assess whether the observed noise 
performance could be accounted for by the rise of the resonator Q 
factor and to evaluate the other possible noise contributions on the 
locked laser. This model has been initially proposed for microwave 
oscillators [20]. It is an extension of Adler’s [21] approach of 
synchronized oscillators, adapted to the case of self-injection. This 
model calculates the locked phase noise from the free-running one 
with the following formula: 

𝑆𝜑 𝑙𝑜𝑐𝑘𝑒𝑑(𝑓) =  
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with Qr the Q factor of the external resonator, Qlaser the one of the 
laser, f  the distance from the carrier, o the optical frequency and  
the amplitude ratio of the feedback signal to the laser output signal.  
All these parameters can be easily measured, except for the laser Q 
factor. To obtain the Qlaser value, a specialized experiment (Fig. 5) was 
designed based on Adler’s approach [21] of injection-locked 
oscillators. A small portion of the power from a tunable laser is 
injected into the laser under test. The locking bandwidth is 
measured using a photodiode and an electrical spectrum analyzer 
(ESA). Subsequently, Qlaser is computed using Adler’s formula: 

𝑄𝑙𝑎𝑠𝑒𝑟 =  
𝜈0

2Δ𝜈𝑙𝑜𝑐𝑘
  𝜌        (2) 

lock being the measured locking bandwidth. For our DFB laser, in 
similar injection conditions than in the re-injection experiment (  in 
the same range), we found Qlaser  = 2500. 
 
 

 
 
Fig. 5.  Measurement of the DFB laser Q factor with Adler’s approach 
 

The frequency noise of the DFB laser is fitted with a simple model 
incorporating a 1/f component and a white noise floor. 
Subsequently, the theoretical phase noise spectra are computed 
from equation (1). Close to the carrier, the main parameter in this 

formula is:   (1 + 𝜌 
𝑄𝑟

𝑄𝑙𝑎𝑠𝑒𝑟
)

2

. Achieving low phase noise necessitates 

a high   value and a large Qr/Qlaser ratio. However, we observed that 
 exceeding 0.1 results in laser instability, so   is  kept below 0.1 but 
close to this value (-20 dB).  More precisely, the total feedback losses 
are -20 dB for the 1 cm resonator and -26 dB for the 2 cm one. The 
simulated results are depicted in Figure 6, alongside the measured 
phase noise (same data as in Fig. 4). For both locked lasers, it is clear 
that the vibration noise dominates close to the carrier. Above 10 kHz 
there is a good agreement between theory and experiment for the 
1 cm resonator. However, the agreement is not as good for the other 
resonator, where excess noise close to 10 kHz prevents reaching the 
simulated noise values.  

 

Fig. 6.  Free running laser (blue: measured; red: fitted) and locked lasers’ SSB 
phase noise: 1 cm resonator (violet) and 2 cm resonator (green). Model from 
fitted laser noise: regular lines, same color as measured data. 

Very often, the overall quality of an optical frequency source is 
specified in terms of linewidth, which can be declined with different 
definitions. The first one is the so-called “instantaneous linewidth” 
from the classical Lorentzian lineshape, related to the frequency 
noise floor (inst =  Sf @ 1 MHz). In our case, the instantaneous 
linewidth inst of the two locked lasers is 0.15 Hz and 1.5 Hz. This 
instantaneous linewidth has limited interest in the main applications 
of such high spectral purity laser sources. A more interesting concept 
is the one of integrated linewidth. Far from the carrier, the SSB phase 
noise corresponds to the power ratio between the noise wings and 
the carrier. Closer to the carrier, the frequency modulation process 
is no longer linear and creates the linewidth bump. To obtain 
information on the carrier spectral width, it is possible to integrate 
the phase noise spectrum from a given offset frequency to the 
measurements maximum offset frequency [22]. When this integral 
equals approximately 1 rad2 (see equation (3)), the power in the two 
lateral sidebands equals the one of the carrier central region.  

∫ 𝑆𝜑

∞

𝛥𝜈
2

(𝑓) 𝑑𝑓 = 1 rad2          (3) 

However, this expression of the linewidth does not align with the 



classical Lorentzian lineshape model derived for a white frequency 
noise. Another approach termed “1/effectivelinewidth” has been 
suggested [12,15,16] wherein 1/is used instead of 1 rad2. 
However, this expression uses in the lower limit of the integral  
instead of /2 while the phase noise is plotted versus the offset 
from carrier. Thus it is the half bandwidth /2, like in expression 
(3), which must be used for integral linewidth computation. We, 
therefore, propose another expression, consistent with the case of 
constant (white) frequency noise: 

∫ 𝑆𝜑

∞

𝛥𝜈
2

(𝑓) 𝑑𝑓 =
2

𝜋
 rad2          (4) 

One should note that this expression is very different from the “1/ 
effective linewidth” because, even if the two expressions lead to  
 =  Sf  for a constant Sf , they give totally different results when 
integrating a function with an arbitrary shape.  
This integral can be computed from the phase noise or frequency 

noise data: 𝑆𝜑(𝑓) =
𝑆∆𝑓(𝑓)

𝑓2  . It is plotted in Figure 7 versus fmin = /2 

for the best of the two locked lasers (2 cm resonator).  

 

 

Fig. 7.  Integrated phase noise versus the lower limit of the integral for the 
laser locked on the 2 cm resonator. The upper curve (red) is calculated from 
the measured phase noise data (including the spurious). The lower curve 
(green) corresponds to the model from equation (1). The blue dotted lines 
show the linewidth corresponding to equation (3).  

 
From this plot and a linear fit of the lower part of the curve, the 
integrated linewidth of this laser is 400 Hz according to equation (3), 
500 Hz according to equation (4) and only 300 Hz according to the 
1/ effective linewidth. 
If we perform the same computation from the theoretical curve of 
Figure 6, the integrated linewidth becomes 56 Hz from equation (3) 
and 70 Hz from equation (4). This highlights the potential of this 
system if vibration noise can be reduced using a compact device. 
In conclusion, the complete optical stabilization of a DFB laser on 
small-length and large FSR fiber FP resonators has been 
demonstrated. More than a 45 dB improvement on the phase noise 
(or frequency noise) is observed when the locking process occurs. 
The feedback coefficient is always below 10 % in amplitude (-20 dB 

max) to maintain good laser stability. Vibration noise is observed 
close to the carrier and is likely the main limiting factor for the laser. 
For further studies, intrinsic noise contributions inside the resonator 
must also be considered, such as thermorefractive noise. If these 
noise contributions (vibrations and intra cavity noise) can be 
reduced, the simulations based on the free running laser phase noise, 
the Q factor ratio and the reinjection power ratio show that a 
theoretical improvement of 58 dB in phase noise is possible with the 
best of the two resonators.  
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