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Abstract: Organ transplantation remains the treatment of last resort in case of failure of a vital
organ (lung, liver, heart, intestine) or non-vital organ (essentially the kidney and pancreas) for which
supplementary treatments exist. It remains the best alternative both in terms of quality-of-life and
life expectancy for patients and of public health expenditure. Unfortunately, organ shortage remains
a widespread issue, as on average only about 25% of patients waiting for an organ are transplanted
each year. This situation has led to the consideration of recent donor populations (deceased by brain
death with extended criteria or deceased after circulatory arrest). These organs are sensitive to the
conditions of conservation during the ischemia phase, which have an impact on the graft’s short- and
long-term fate. This evolution necessitates a more adapted management of organ donation and the
optimization of preservation conditions. In this general review, the different aspects of preservation
will be considered. Initially done by hypothermia with the help of specific solutions, preservation is
evolving with oxygenated perfusion, in hypothermia or normothermia, aiming at maintaining tissue
metabolism. Preservation time is also becoming a unique evaluation window to predict organ quality,
allowing repair and/or optimization of recipient choice.
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1. Introduction

Transplantation remains the best therapeutic alternative in the event of terminal organ
failure, both in terms of quality-of-life and life expectancy, as well as in terms of public
health expenditure. The number of candidates for transplantation is constantly increasing
and there is now a very important organ shortage (only 15 to 35% of patients on the waiting
list receive an organ, Figure 1), particularly due to population ageing and the increasing
incidence of cardiovascular diseases, both of which lead to organ failure.
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Figure 1. Evolution of the number of organ transplants performed as a percentage of the waiting list
in several transplantation areas: France, Eurotransplant and Organ Procurement and Transplantation
Network (OPTN).

There are three types of organ donation: (i) living donors (kidney and, exceptionally,
part of the liver); (ii) brain-dead donors (DBDs) (kidney, liver, heart, lung, pancreas and
intestine); and (iii) deceased donors after circulatory arrest (DCDs) (kidney, liver, lung
and heart). In recent years, the contraindications to donation have been revised in order
to better meet the demand for organs. Indeed, in order to increase the number of organs
available for transplantation, there has been a renewed interest in donation from DCDs [1],
which is considered an effective way to increase the number of potential donors [2]. In
addition, organ selection criteria for DBDs have been expanded (e.g., for kidney: donor
age > 60 years or donor age > 50 years in cases of death from vascular causes, creatinine
level > 1.5 mg/dL (137 mmol/L) and/or history of hypertension [3]. Unfortunately, these
“new” grafts are more susceptible to ischemia-reperfusion (IR) injury (IRI). IR starts as soon
as the organ is no longer supplied by the bloodstream (ischemia), and is enhanced when
the organ is revascularized (reperfusion) and can induce a wide array of injury mechanisms
which have detrimental effects on both short- and long-term outcome. It is therefore
necessary to adapt the means of graft preservation, which is why organ transplantation is
in a phase of profound changes.

The main purpose of organ preservation is to maintain the viability of individual
organs ex vivo for a period of time that is commensurate with the type of organ being
considered. It must be sufficient for the eventual transport of the organs from the procure-
ment center to the transplant center(s) in order to be allocated according to the degree of
priority and/or best tissue compatibility. The management of these organs is very different
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depending on whether it is a vital organ such as the heart, liver or lung, or the kidney and
pancreas for which a delay in the recovery of the graft function is “tolerable” thanks to the
availability of substitution therapeutics (dialysis and/or insulin). Preservation also aims at
reducing IRI. Importantly, tolerance to IRI varies according to the type of organ and the
type of donor.

2. The Different Types of Donors

Organ transplant teams determines three categories of donors: living donors, donation
after brain death donors (DBDs) and donation after circulatory death donors (DCDs).

The first category is the living donor (kidney and liver). These transplants are not
without morbidity and mortality, but their evolution is very favorable and superior in terms
of short- and long-term outcomes for the graft and the patient [4]. The development of
kidney transplantation from living donors is ongoing, but will likely not meet the increase
in demand for grafts, and regarding the liver, it is mostly exceptional and indicated for
paediatric patients [5].

Because the number of standard criteria donors (SCDs) is not sufficient to meet the
demand, it was necessary to resort to alternative sources of organs, such as expanded criteria
donor (ECDs) [6,7]. Thus, for the kidney, ECDs are donors either >60 years old or aged 50
to 59 years with at least two of the following three comorbidity criteria: (i) cerebrovascular
accident as cause of death; (ii) serum creatinine level > 1.5 mg/dL (137 mmol/L); and
(iii) preexisting history of systemic hypertension (Table 1). Extended criteria have also been
defined for other organs [7].

Table 1. Criteria for deceased kidney donors: SCDs, ECDs and DCDs.

Categories Short Description Description
Standard-Criteria Donor

(SCD)
Donor under 60 years of age and do not meet any of the criteria

of Expanded Criteria Donors (ECD)

Expanded Criteria Donor
(ECD)

Donor either > 60 years or aged 50 to 59 years with at least 2 of
the following three criteria: (i) cerebrovascular accident as cause
of death; (ii) serum creatinine level > 1.5 mg/dL (137 mmol/L);

(iii) preexisting history of systemic hypertension

Uncontrolled DCD I
Found dead

I a. Out of hospital
I b. In the hospital

Unexpected circulatory arrest
with no resuscitation.

Can donate tissue (cannot
donate organs).

Uncontrolled DCD II

Cardiac arrest in front of a
witness

II a. Out-of-hospital
II b. In-hospital

Unexpected circulatory arrest
with failed resuscitation

Controlled DCD III Withdrawal of life-sustaining
therapy

Planned withdrawal of
life-sustaining therapy.
Limiting and stopping

treatment in the intensive care
unit (ICU). Primary donor

type (only type in some
countries).

Controlled DCD IV Circulatory arrest while brain
dead

Circulatory arrest in a
brain-dead candidate for

donation.

Controlled DCD V Medical assisted circulatory
arrest

Expected circulatory arrest as
a result of euthanasia (depend

of countries legislation).

DCDs are categorized according to the Maastricht classification (Table 1). Their hearts
stop before organs are collected. Kidney, liver, pancreas, lung and, more recently, heart
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donations are eligible from DCDs. In the case of uncontrolled donation, only kidneys, livers
and lungs have been successfully transplanted [2].

The practice of solid organ transplantation from DCDs poses certain ethical, and
pathophysiological problems in relation to cardiac arrest [7]. It is a process involving the
donor, organ preservation and the recipient. The management of the donor also involves or-
ganizational and ethical aspects. Both the use of the ‘rapid retrieval’ [8] and Normothermic
Regional Perfusion (NRP) are possible, with the latter being recommended by consensus in
many countries [9], followed by a judicious choice of preservation means and in particular
the use of perfusion machines, whose protocols are being optimized in terms of perfusion
medium, oxygenation and temperature [7,10]. Our own work demonstrated the importance
of timing during NRP, showing that there was a minimal time required to obtain the most
optimal organ rejuvenation conditions (4 h) and that either shortening or prolonging NRP
could have detrimental effects on graft quality [11]. The role of preservation in the graft
journey according to the type of donor (e.g., kidney) is shown in Figure 2. Management
protocols for DCD donors are presented in Figure 3.
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Figure 2. Graft course according to donor type (e.g., kidney). Abbreviations: extended criteria donors
(ECDs); deceased donors after circulatory arrest (DCDs); brain-dead donors (DBDs); delayed graft
function (DGF); primary non-function (PNF); static conservation at 4 ◦C (SC); normothermic regional
perfusion (NRP); warm ischemia (WI); hypothermic conservation on perfusion machine (HMP).
Figure adapted from Franzin et al. [12].
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Figure 3. Management protocols for DCDs. Top: organization and timeframes for organ retrieval
using NRP from donors who have died after circulatory arrest (NRP—normothermic regional perfu-
sion; HMP—hypothermic machine perfusion; MAP—mean arterial pressure). Figure from the French
Association of Urology [13]. Bottom: management of Maastricht III donors. NRP—normothermic
regional perfusion. Figure adapted from the Agence de Biomedecine.
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3. Ischemia-Reperfusion

The use of lower-quality organs, including those from DCDs, has become an estab-
lished routine but increases the risk of graft dysfunction. This risk is further compounded
by IRI, which is unavoidable during the transplantation process [14–16]. Graft injury be-
gins in the DBD donor at the time of brain death, which results in a significant systemic
inflammatory response syndrome (SIRS). This is characterized by a massive release of
pro-inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin (IL)-1 or
IL-6, associated with an endothelial hyperexpression of cell adhesion molecules, such as
selectins, and ICAM and VCAM integrins [17]. This response is followed by tissue infiltra-
tion by activated inflammatory cells, including macrophages and neutrophils. This first
phase is thus at the origin of lesions that will initiate the phenomena responsible for the
alteration of the primary function recovery and the chronic dysfunction of the grafts. In the
case of DCD donors, the lesions begin at the time of functional warm ischemia following
circulatory arrest. This initial phase is followed by graft collection. It is marked by a short
period of warm ischemia, linked to the surgical process of graft removal, following the
clamping of the celiac aorta. This phase is followed by a phase of cold ischemia, secondary
to the cooling of the organ by the preservation solution previously maintained at 4 ◦C
and which will remain so in the case of hypothermic preservation. The ischemic phases
are characterized by a decrease in the supply of oxygen and nutrients to the organ, and
consequently of energy substrates [16,18]. This lack of supply is responsible for a decrease
or even a halt in mitochondrial activity, the organelle responsible for the majority of cellular
energy production. The lack of oxygen induces a reduction in ATP synthesis, which is
responsible for a shutdown of ATP-dependent ion pumps, disrupting cellular ion home-
ostasis and promoting a series of harmful metabolic processes and cellular changes. This
is associated with an increase in intracellular calcium concentration, responsible for the
activation of calcium-dependent enzymes such as phospholipases involved in various
processes. Depending on the duration of ischemia, these processes lead to more or less
reversible mechanisms such as activation of the endothelium and cell death by necrosis
or apoptosis. This phase also sees activation of hypoxia adaptation mechanisms, such as
the activation of hypoxia inducible factor 1a (HIF1a) [19,20]. This is a transcription factor
sensitive to tissue oxygen partial pressure, stabilized during hypoxia and which has the
capacity to stimulate the expression of numerous genes whose proteins are pro-angiogenic
or activate glycolysis under anaerobic conditions. During transplantation, reperfusion is
defined by the revascularization of the ischemic organ and is at the origin of the reintroduc-
tion of energy and oxygen supplies. This sudden oxygenation of the ischemic territory is
responsible for a process called oxidative stress. It is defined by the production of partially
reduced oxygen species which have the characteristic of being reactive towards all the
major classes of biological molecules such as carbohydrates, proteins, DNA, RNA and
lipids. This process is therefore responsible for cell damage that can lead to cell death.
Moreover, endothelial activation and endothelial damage are major processes induced
during reperfusion that favor acute or chronic graft dysfunction. Indeed, activation of the
endothelium will be responsible for a pro-aggregating state hindering reperfusion and
partly responsible for “no reflow”, which is a partial reperfusion of the ischemic territory.
Our team has studied this endothelial dysfunction by showing its link to a rarefaction of
microvessels responsible, during reperfusion, for chronic hypoxia which is increased in the
long term by the establishment of scar tissue: fibrosis [21,22]. Activation of the endothelium
will increase during the initial stages of reperfusion and lead to the recruitment of inflam-
matory cells, which are mainly represented at this stage by monocytes/macrophages and
neutrophils. This innate immunity is notably dependent on damage associated molecular
patterns (DAMPS), alarmins capable of activating receptors such as toll-like receptors (TLR)
and stimulating the inflammatory process. A summary diagram of the main cellular im-
pacts of ischemia-reperfusion is presented in Figure 4. Adaptive immunity is also activated
in a second step by the recruitment of T cells. Our team has also demonstrated the role
of innate immunity and IL-33 in the context of IR [23]. These IR lesions are more or less
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severe depending on the type of donor and the conditions and duration of graft storage.
For example, grafts from donors in a precarious hemodynamic state or with comorbidity
factors such as a history of hypertension, dyslipidemia, or impaired renal function are
particularly susceptible to IR lesions, highlighting already-established lesions [24,25]. Our
unit has provided data on the role of dyslipidemias [20].
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Figure 4. Cellular impacts of ischemia reperfusion. The sequence of events taking place during
ischemia reperfusion is displayed, from the arrest of oxygen supply and consequences during
ischemia, to the oxidative stress resulting from resumption of oxygen supply and the resulting
sterile inflammation.

Thus, one of the current challenges for the transplant community is to improve the
quality of preservation in order to reduce complications related to IR. The use of cold
storage conditions for flushing and static cold storage (CS) has been the standard storage
technique for many years. However, new donor demographics, such as expanded criteria
donors (ECDs) and DCDs, have led to the development of more diverse preservation
techniques [26]. We refer the reader to recent reviews on the pathophysiology of the IR
syndrome [14,16,27,28].

4. Means of Organ Preservation

Static storage in hypothermia without oxygen supply has been the chosen solution for
decades. The purpose of hypothermia (between 4 and 6 ◦C) was to limit metabolism and
oxygen requirements [29]. Many solutions of different compositions are marketed (Table 2)
and have shown promising effects in decreasing ischemic injury and improving graft quality
and function in preclinical animal studies. Our own work highlighted the superiority of
extracellular composition for the preservation solution [30], and in particular demonstrated
the advantages of using polyethylene glycol as a colloid in the composition of the solution.
Indeed, this compound has very interesting properties with regards to the challenges of
organ preservation: it does not present the pro-coagulant inconvenient of hydroxyethyl
starch, and furthermore it adsorbs to the plasma membrane and creates an ‘exclusion space’
which prevents fixation of immune cells and therefore decreased post-ischemia reperfusion
sterile inflammation. This phenomenon is termed ‘immunocamouflage’ [31].
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Table 2. Some of the most common preservation solutions and machines used in the clinic.

Preservation in Static Hypothermic Condition

Organ Preservation Solutions Adaptable to Static or Sometimes Dynamic Preservation

Solutions K+ (mM) Na+ (mM) Buffer pH Impermeants Adenosine
(mM) Anti-Oxidant Colloid (g/L) Organs

Blood 4.25 139 HCO3− 7.4 + 0 + Albumin (50 g/L) All

HTK
(Custodiol®) 10 15 Histidine 7.2 + 5 - - Kidney, liver,

pancreas, heart,

UW
(Viaspan®)

(Bridge to life®)
(SPS-1®)

(Bel-Gen®)

100 28.5 (K)H2PO4
HEPES 7.4 + 5 Glutathione HES (50 g/L) Kidney, liver,

pancreas

Celsior® 15 100 HEPES 7.3 + 0 Glutathione - Kidney, liver,
pancreas, heart, lung

IGL-1® 30 125 (K)H2PO4 7.3 + 5 Glutathione
Allopurinol PEG 35 kDa (1 g/L) Kidney, liver,

pancreas

SCOT 15® 5 118 HCO3− 7.4 + 0 - PEG 20 kDa (15 g/L) Kidney, liver

PERFADEX®

Plus
6 138 - 5.5 + - - Dextran 40 (5%) Lungs

Preservation in dynamic condition

Infusion machines

Machine Pulsatile perfusion Temperature Oxygenation

ORS—LifePort® Hypothermia No Kidney

IGL—WAVES® + Hypothermia Yes Kidney
pancreas
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Table 2. Cont.

Preservation in Static Hypothermic Condition

Organ Preservation Solutions Adaptable to Static or Sometimes Dynamic Preservation

Solutions K+ (mM) Na+ (mM) Buffer pH Impermeants Adenosine
(mM) Anti-Oxidant Colloid (g/L) Organs

Kidney Assist (XVIVO) + Hypothermia to normothermia Yes Kidney

Liver Assist (XVIVO) + Hypothermia to normothermia Yes Liver

Lung Assist (XVIVO) +/− Hypothermia to normothermia Yes Lung

VITASMART™ (Bridge to Life) Hypothermia Yes Liver,
kidney

LIFECRADLE™ (Bridge to Life) Hypothermia Yes Heart

EVOSS™ (Bridge to Life) Normothermia Yes Lung

Organ Care System—OCS™
Lung (transmedics) s+ Normothermia Yes Lung

Organ Care System—OCS™
heart (transmedics) + Normothermia Yes Heart

Organ Care System—OCS™ liver
(transmedics) + Normothermia Yes Liver

Steen Preservation Heart System
(XVIVO) Hypothermia Heart

XVIVO XPS™—XVIVO LS™
(XVIVO) Normothermia Yes Lung

Paragonix SherpaPak + Hypothermia +/− Heart,
lung
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Table 2. Cont.

Other solutions suitable for infusion machines

Solutions K+ (mM) Na+ (mM) Buffer Impermeants Anti-oxidant Colloid (g/L) Organs

KPS-1® 25 97.5 (K)H2PO4
HEPES + + HES (50 g/L) Kidney

Belzer MPS®

PERF-GEN® 25 100 (K)H2PO4
HEPES + + HES (50 g/L)

Kidney,
liver,

pancreas

IGL2® 25 125 (K)H2PO4
Histidine + + PEG 35 kDa

(5g/L) Liver, pancreas

OCS Lung
Solution 6 136 Phosphate + Dextran 40

(50 g/L) Lung

STEEN Solution
™ “low” (Na)H2PO4 + Human albumin

Dextran 40 Lung
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However, clinical evidence is still lacking [28,32,33]. Indeed, the clinical literature does
not allow a clear discrimination between solutions, highlighting a lack of large-scale clinical
trials. It is also necessary to take into account the specifications of these solutions aimed
at counteracting the mechanisms of ischemic injury: oxidative stress, apoptosis/necrosis,
inflammation, cellular/tissue edema, alteration of cellular and mitochondrial integrity [32].

Today, given the evolution of donors, hypothermic machine perfusion (HMP) is
recommended for DCDs [2]. Our group has provided further cognitive insight into the
mechanism of machine perfusion protection, chief among which is the maintenance of NO
signaling through eNOS activation by AMPK signaling, which improves kidney quality [34].
This technique has been chosen as the standard preservation method for deceased kidneys
in The Netherlands in 2016, and the results of this measure have shown that HMP is
associated with a significant reduction of DGF across all donor types [35]; however, the
benefits on long term outcome appear to be more linked to donor parameters rather than
the use of HMP [36]. This positive effect on early outcome was also found in the liver [37],
however in the heart, HMP did not demonstrate superiority to standard cold storage [38].
Hence, there is still room for improvement regarding these means of preservation, for
instance through oxygenation, temperature and/or pharmaceutical agents.

4.1. Temperature

Hypothermia is currently being reevaluated as it is suspected of having deleterious
effects. For instance, ex vivo normothermic perfusion (EVNP) maintains cellular pro-
cesses at physiological temperature. This technology has been widely tested in the UK,
Canada, The Netherlands and the United States, and several studies have demonstrated
the advantages of EVNP over hypothermia [26,39–42]. The few existing clinical studies
demonstrate that this EVNP technique is both feasible and safe, notably by the Cambridge
group [43,44]. This group is conducting a multicenter randomized controlled phase II
clinical trial (ISRCTN15821205), which has finished recruitment and results are expected
soon. A recent study started to evaluate possible additional benefits of this technique when
complementing regular HMP for suboptimal donor kidneys (NCT04882254) [45].

An international comparative study has shown that DCD donor livers maintained
under oxygenated hypothermia perfusion (HOPE) or NRP have post-transplant survival
rates comparable to those of standard liver [46]. The use of the normothermia perfusion
machine (NMP) on human livers considered acceptable for transplantation has been eval-
uated in several clinical studies [47]. The results of a European randomized clinical trial
of normothermic preservation in liver transplantation showed that peak serum aspar-
tate aminotransferase was lower in the NMP group compared to the static hypothermia
group [48]. A recent review highlights the superiority of NMP over HMP in the liver, with
additional benefits regarding length of hospital stay and the risk of primary non-function
on all donor types [37].

For the lung, several clinical trials (NCT01190059 and NCT01963780) have shown that
EVNP is a real alternative for high-risk donor lungs in transplantation, with similar results
to those obtained with conventionally selected lungs [49,50]. In addition, normothermic
perfusion preservation of hearts from DCDs is a realistic possibility with possibly longer
preservation times [51]. Another aspect is the speed of reaching EVNP and its prolonged
duration, which seem to be essential factors for organ protection [43,52–55]. Finally, heart
preservation by NMP is feasible and appears to preserve the hearts from extended criteria
and DCDs with comparable results to SCS; however, the technique is not as safe and simple
as HMP [38].

Another strategy is investigated: controlled oxygen rewarming (COR). This technique
was performed in humans, using a kidney graft from an extended criteria donor. The kidney
was preserved during ex vivo perfusion by a machine from hypothermia to normothermic
conditions (35 ◦C with 100% oxygen), and the results seem promising [56].

Several reviews complement the data on the value of temperature and perfusion
machines, especially in marginal donors [7,57–60].
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4.2. Oxygen

Several works emphasize the provision of oxygen to improve hypothermic perfu-
sion [61,62]. Several solutions exist, but it should be noted that the addition of oxygen
could have double-edged effects, as excessive oxygenation can induce the production of
free radical oxygen species [63], although this side effect seems minimal. Preclinical models
have shown that the provision of gaseous oxygen during organ perfusion can improve renal
graft quality, as observed by (i) a more rapid increase in renal flow, a decrease in lactate
and an increase in ATP, (ii) improved creatinine clearance, (ii) improved recovery of organ
function, and a decrease in interstitial fibrosis [63–67]. Clinical studies have been initiated,
such as the “COMPARE” clinical trial evaluating oxygenated PMH by the Consortium
for Organ Preservation in Europe (COPE; COMPARE trial, ISRCTN32967929). Published
in November 2020, this study showed that oxygenated hypothermic machine perfusion
(HMPO2) of DCD kidneys is safe and reduces post-transplant complications [62], but the
estimated glomerular filtration rate (eGFR) at 12 months was not significantly different
between the HMPO2 and HMP groups. However, potential beneficial effects of HMPO2
were suggested by the authors with the analysis of secondary outcomes. More nuanced
results were obtained with the NCT03378817 clinical trial [68,69]. Regarding the benefits,
recent work highlighted that oxygenation is more relevant when used in combination with
normothermia [70].

Another alternative is the use of oxygen carriers during organ preservation. A re-
cent review on the use of oxygen carriers has been published [71]. Different molecules
(Hemopure, M101, HbV, Erythromer and Hemerythrine) have been studied with interesting
results [72–75]. Our own work with M101, in a pig kidney autotransplantation model,
demonstrated superiority of M101-supplemented solutions, lowering the peak of serum
creatinine and increasing the speed of function recovery. Furthermore, tissue integrity was
better maintained, with less brush border loss and endoluminal cellular detachment. Fol-
lowing the animals for 3-month follow-up period, we showed that M101 supplementation
was beneficial in term of survival, function and the progression of interstitial fibrosis and
tubular atrophy [76].

These preclinical studies led the molecule to be accepted for clinical trials, with the
results of the safety trial (OXYOP), published in June 2020, showing that the use of marine
worm hemoglobin M101 is safe and has promising efficacy data (no immunological, allergic
or prothrombotic effects were reported). The authors reported less delay in recovery of renal
graft function, fewer dialysis sessions per patient in the first month, a decrease in creatinine
levels over the first 7 days, and a better time to reach creatinine <250 µmol/L in the M101
group compared with the contralateral group without M101 [77]. These results show
that oxygenation during preservation could be beneficial, and the combination of the two
approaches has been tested for the liver [78,79]. Our own team tested the combined benefits
of oxygen and M101 in a pig kidney autotransplantation model with long term follow up,
demonstrating a degree of additivity between the two strategies, chiefly regarding chronic
development of tissue injury [61].

Interestingly, a group in Guangzhou evaluated a procedure, called ischemia-free organ
transplantation (IFOT), to optimize organ transplantation in humans. They demonstrated
that the liver and kidney can be collected, preserved and implanted under continuous
normothermic oxygen machine perfusion to limit ischemia. Under these conditions, the
liver did not suffer in the post-reperfusion period, with minimal injury, little inflammation
and no complications [80], and nor did the kidney, with lower markers of injury and rapid
functional recovery [81].

A recent review offers an in-depth exploration of the impact of oxygen in organ preser-
vation [82]. Additionally, various perfusion techniques are being developed. In addition to
hypothermic perfusion, normothermic and subnormothermic perfusion, controlled oxygen
reheating, and more recently supercooling are being developed [58,83–86].

Ex vivo preservation is also a window to evaluate organs and implement therapeutic
strategies exerting antioxidant, anti-inflammatory and anti-apoptotic activities, siRNA
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delivery or even cell therapy. The combination of different perfusion methods is also
explored, which implies a tailor-made organ preservation in connection with the evaluation
of the organs but also the donor in order to best match the recipient [10,69,86]. In all, this
extracorporeal period of organ preservation is a critical time that requires improvements to
resuscitate and optimize graft quality. It is a period that can be used to identify diagnostic
biomarkers of ischemic damage that predict organ transplantation outcomes. Collectively,
these various advances point to the possibility of personalized and predictive medicine
and a new era for organ preservation.

4.3. Pharmacological Agents

The preservation period is a very interesting therapeutic window allowing the use
of targeted pharmacological agents. One of the difficulties is to have agents that can act
in static or perfusion conditions and in particular in hypothermia. The development of
normothermia and the evolution of perfusion media should allow the use of molecules that
can act in a more physiological manner. Several recent reviews have presented the different
pharmacological agents that can be used [12,59,87].

Among these, two strategies stand out the most:
Mitonchondrial protection targeting the factor eIF5A (eukaryotic initiation factor 5A)

and its enzymatic activation step (hypusination) using a spermidine-like compound (GC7).
This molecule induces a drastic fall of oxygen consumption associated with a reduction
of the mitochondrial membrane potential and a decreased expression of mitochondrial
complexes [88]. We tested this strategy in a porcine preclinical model of kidney transplan-
tation [88], showing that treating the donor with GC7 before renal pedicle clamping greatly
improved the recovery of the renal function at least up to 3 months. We further tested the
protective properties of this molecule in a brain death model of pig kidney transplantation,
again demonstrating the important of preconditioning, through mitonchondrial targeting,
to improve success [88,89].

Mineralocorticoid receptor modulation, which can lead to a better management of kid-
ney function, improved protection against inflammation and maintenance of the integrity
of the vascular bed, a key target of ischemia reperfusion injury [21,90]. In a preclinical
study on a large White Pig, we showed that Soludactone (a Mineralocorticoid receptor
antagonist) was highly efficient to prevent ischemia reperfusion injury and acute kidney
injury both on the short and long term [91].

Numerous other candidates have been studied over the past few decades but with very
few clinical outcomes. Moreover, there is a need to target the primary pathophysiological
mechanisms involved during preservation without ignoring the donor and recipient.

5. Perspectives and Conclusions

Given the diversity of organ quality in DCD, and the fact that donor inclusion criteria
will need to be expanded to address the growing organ shortage, new quality classification
tools are needed. There is an increasing need for pre-transplant prognostic models of
recipient outcomes based on accurate surrogates of organ quality, not only for health care
organizations responsible for transplant allocation, but also for physicians and patients.
This would increase the organ pool of deceased donors, improve donor-recipient matching,
and facilitate decision making for living donors (Figure 5, top).

One such tool is the Kidney Donor Risk Index (KDRI), which takes into account
demographic and clinical characteristics related to the donor and transplantation [92,93].
Another such algorithm is the iBox, which has a much better area under the ROC curve
(mean c-index: 0.8), but is a post-transplant tool [94].

Other means such as the metabolic, transcriptomic or metabolic approach are inter-
esting perspectives to optimize the organ donation process. A better knowledge of the
physiopathology specific to each type of donation, as well as the implementation and
application of specific protocols, would eventually allow a personalized management of
the grafts from the selection of the donor to their conservation and transplantation.
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at the level of the donor in the event of characterization of this quality as soon as brain death, but 
also once the removal has been carried out with a wide range of technical and molecular options. 
Bottom: proposal for the organization of the organ pathway towards perfusion centers, allowing an 
ad hoc evaluation of the organ and the implementation of high-quality preservation/repair proto-
cols, thanks to the concentration of means. 
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Figure 5. Proposed organ-management algorithms for transplantation. Top: Decision-making
algorithm based on the quality of the organ to be transplanted. Depending on the quality of the
organ, and thus its degree of damage, it could be directed towards adapted management protocols,
notably at the level of the donor in the event of characterization of this quality as soon as brain death,
but also once the removal has been carried out with a wide range of technical and molecular options.
Bottom: proposal for the organization of the organ pathway towards perfusion centers, allowing an
ad hoc evaluation of the organ and the implementation of high-quality preservation/repair protocols,
thanks to the concentration of means.

There is a need for teams involved in this area to consider networking in order to
have coordinated protocols. There is also a need to establish international registries and to
target key questions in unified international efforts. The metabolic aspect is emerging for
both the tissues that make up the organs and the inflammatory cells involved. A recent
study indicated that the liver and kidney have a markedly different metabolic profile in



Int. J. Mol. Sci. 2022, 23, 4989 15 of 19

deceased organ donors, with a preference for alanine production in the liver and lactate
in the kidney [95]. Expression of the renal lactate-transporter gene MCT4 increased as a
support for the changing metabolic profile. Recent work on the metabolic reprogramming
of innate immune system cells has placed cellular and mitochondrial metabolism at the
center of the macrophage differentiation program [95]. Recent studies showing that cells of
the innate immune system can undergo functional reprogramming, facilitating a more rapid
and enhanced secondary response, support a new concept called innate immune memory
or trained immunity [96]. Trained immunity not only involves the reprogramming of
intracellular immune signaling in innate immune cells, but also induces profound changes
in cellular metabolic pathways such as glycolysis, oxidative phosphorylation, fatty acid
and amino acid metabolism [97]. Given the role of innate immunity in IR, these findings
open up avenues of interest for research that could explain, for example, the link between
acute injury and the development of chronic injury.

The final point to emphasize, given the complexity of organ assessment and man-
agement, with the multiplicity of investigative tools and preservation techniques, would
be the creation of Organ Hubs (Figure 5, bottom), strategically located within an organ
donation/transplantation network. This would be a one-stop shop that would allow a
greater concentration of resources to obtain the tools and therapeutics necessary to provide
the most up-to-date management protocols and thus increase transplant success.
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