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S. lividans and S. coelicolor are phylogenetically closely related strains with different abilities to produce
the same specialized metabolites. Previous studies revealed that the strong antibiotic producer,
S. coelicolor, had a lower ability to assimilate nitrogen and phosphate than the weak producer, Strepto-
myces lividans, and this resulted into a lower growth rate. A comparative proteomic dataset was used to
establish the consequences of these nutritional stresses on the abundance of proteins of the translational
apparatus of these strains, grown in low and high phosphate availability. Our study revealed that most
proteins of the translational apparatus were less abundant in S. coelicolor than in S. lividans whereas it
was the opposite for ET-Tu 3 and a TrmA-like methyltransferase. The expression of the latter being
known to be under the positive control of the stringent response whereas that of the other ribosomal
proteins is under its negative control, this indicated the occurrence of a strong activation of the stringent
response in S. coelicolor. Furthermore, in S. lividans, ribosomal proteins were more abundant in phosphate
proficiency than in phosphate limitation suggesting that a limitation in phosphate, that was also shown
to trigger RelA expression, contributes to the induction of the stringent response.

© 2023 Published by Elsevier Masson SAS on behalf of Institut Pasteur.
1. Introduction

S. coelicolor (SC) and S. lividans (SL) are phylogenetically closely
related model strains possessing the same specialized metabolite
biosynthetic pathways but these are mainly highly expressed in SC
[1]. Consequently, the comparative study of these two strains is
useful to get a better understanding of what triggers antibiotic
biosynthesis in Streptomyces species. Previous comparative studies
revealed that SC has a lower growth rate than SL [2,3]. This might be
due, at least in part, to the fact that SC has a lower ability than SL to
assimilate nitrogen (N) as well as phosphate (P) and this results
into nutritional stress [1,3,4]. In most microorganisms, N stress is
known to trigger the stringent response that leads to the inhibition
of the synthesis of ribosomal components [5]. Indeed, N limitation
omyces lividans.
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leads to amino acid starvation and thus to the depletion of ami-
noacylated (charged) tRNA pools, resulting in the accumulation of
ribosomes stalled at the ribosomal site A with non-aminoacylated
(uncharged) tRNA [6,7]. The ppGpp synthetase RelA is then
recruited to stalled ribosomes and activated to synthesize (p)
ppGpp from GTP [8,9]. ppGpp is the mediator of the stringent
response and controls at the transcriptional and translational levels
a broad range of metabolic processes that allows the adaptation of
the bacteria to nutritional limitation and is correlated with a
reduction of growth rate.

In Escherichia coli, as in other microorganisms, the expression of
genes involved in r-RNA and r-protein biosynthesis is down-
regulated in condition of stringent control. Indeed, ribosome
biogenesis and assembly involve the transcription, processing,
folding, and modification of r-RNA and r-proteins and the binding
of the latter to r-RNAs. The completion of functional ribosomes is
facilitated by a broad range of proteins: GTPases, RNA helicases,
endonucleases, modification enzymes, molecular chaperones etc…
that assist proper r-RNAs and r-proteins folding and proper r-pro-
teins-r-RNA interactions [10]. Subsequently, the translational pro-
cess itself that involves initiation [11], elongation [12], termination
nt response is strongly activated in the antibiotic producing strain,
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steps as well as the recycling of ribosomal components, requires the
interaction and correct positioning of the ribosomal particles on
mRNA (initiation), the synthesis of tRNAs, their charging by a
specific amino acid by aminoacyl-tRNA synthetases [13] and their
possible modification. The elongation step requires a correct
codoneanticodon interaction and involves the peptidyl transferase
center of the ribosome as well as elongation factors for the syn-
thesis of peptidyl-tRNA. At last, when a stop codon is encountered,
termination factors hydrolyze the ester bond of the peptidyl-tRNA
and release the nascent protein that has to be correctly folded [14].
In E. coli, the synthesis of most ribosomal protein (r-protein) is
coordinated with that of rRNA by mechanisms acting both at the
transcriptional and translational levels [15e18]. ppGpp binds
directly to the RNA polymerase [19] and in association with DksA
regulates the transcriptional activity of r-proteins promoters [20].
Furthermore, the 50 region of the r-proteinmRNA is often the target
for translational feedback regulation [15]. ppGpp also inhibits the
activity of several enzymes involved at key stages of mRNA trans-
lation including initiation, elongation and termination [21] and
alters the formation of active 70S ribosomes by inhibiting small
GTPases involved in ribosome maturation [22e24]. Altogether,
these effects lead to a drastic reduction of the translation rate and
thus of protein synthesis resulting into a reduced growth rate
[25,26].

In Actinobacteria, as in other Gramþ, the regulation of the
stringent response slightly differs from that of E. coli. In
Gramþ bacteria, the signal molecules ppGpp and c-di-GMP that
regulate morphological and metabolic differentiation, both origi-
nate from GTP [27]. The lowering of intracellular GTP levels, linked
to the biosynthesis of these molecules, might lead to a reduction of
the transcription of genes requiring GTP as the initiating nucleotide,
such as rRNA genes [27]. Furthermore, the biosynthesis of ppGpp
was shown to be necessary for the production of antibiotics in SC as
well as in other Streptomyces species [28e31]. Indeed, the inacti-
vation of the two genes encoding the enzymes known to modulate
the levels of ppGpp in SC, sco1513 encoding the ppGpp synthetase
RelA and sco5794 encoding the ppGpp synthetase/hydrolase RshA/
SpoT, abolishes the synthesis of ppGpp as well as that of the blue
polyketide antibiotic, actinorhodin (ACT) under nitrogen-limiting
conditions [32e34]. The production of these metabolites could
thus be considered as part of the stringent response and the nature
of the link between these two processes is discussed.

In order to determine whether the stringent response was more
activated in SC than in SL, data corresponding to proteins playing a
pivotal role in the triggering of the stringent response (RelA, RshA/
SpoT and DksA) as well as to those of the translational apparatus
were extracted from a previous proteomic dataset of SC and SL,
grown in condition of low and high phosphate availability (dataset
identifier PXD029263 and 10.6019/PXD029263). This analysis
revealed that most proteins of the translational apparatus, whose
expression in known to be under the negative control of the
stringent response, were less abundant in SC than in SL with the
exception of two proteins, ET-Tu 3 (SCO1321) [35] and the TrmA-
like methyltransferase (SCO5901) [36], whose expression is
known to be under the positive control of the stringent response.
These proteins weremore abundant in SC than in SL. This suggested
the occurrence of a strong activation of the stringent response in SC.
Interestingly our data also revealed the up-regulation of RelA
expression in condition of Pi limitation and consistently the
abundance of most proteins of the translational apparatus was
down-regulated in Pi limitation or in other terms up-regulated in
condition of Pi proficiency in S. lividans. However such regulation
did not occur in S. coelicolor. These regulatory differences between
these two strains are discussed and an explanatory hypothesis are
proposed.
2

2. Materials and methods

2.1. Bacterial strains, media and culture conditions

Spores of S. coelicolor M145 (SC) [37] and S. lividans TK24 (SL)
[38] used in this analysis were prepared from solid Soya Flour
Mannitol (SFM) medium [39]. The 2 strains were grown, in qua-
druplets, on solid modified R2YE medium, with no sucrose added,
on 5 cm diameter Petri dishes. The modified R2YE medium [40]
contained glucose (50 mM) as major carbon source and was sup-
plemented or not with K2HPO4. R2YE not supplemented with
K2HPO4 contained 1mM free Pi originating from the constituents of
the growth medium (Pi limitation) and that supplemented with
K2HPO4 contains 5 mM Pi (Pi proficiency), as determined with a
PiBlue phosphate assay kit (Gentaur, France). Spores (106) of the
strains were plated on the surface of cellophane disks (Focus
Packaging & Design Ltd, Louth, UK) laid down on the top of agar
plates and incubated at 28 �C in darkness for 48 h or 60 h. The time
points of 48 and 60 h were chosen as they correspond to the
beginning of the production of the blue pigmented polyketide
antibiotic, actinorhodin (ACT), in SC [6]. Mycelial lawns of the 4
independent biological replicates of each strainwere collected with
a spatula, washed twice with deionized water, lyophilized and
weighted.

2.2. Proteins sample digestions

The 32 protein samples (2 strains x 2 media x 2 culture times x 4
biological replicates) compared in this analysis were prepared as
described previously [4] for an in-depth shotgun proteomic anal-
ysis and label-free relative quantification. Briefly each protein
sample was alkylated, digested using Lysyl-Endopeptidase (Wako
Chemicals USA) and sequencing-grade-modified trypsin (Prom-
ega). After pre-cleaning, proteolytic peptides were concentrated
under vacuum and stored.

2.3. Mass spectrometry-based protein identification and relative
protein quantification

The mass spectrometry proteomics data reanalyzed in this pa-
per are included in to the dataset identifier PXD029263 and
10.6019/PXD029263 deposited to the ProteomeXchange Con-
sortium via the PRIDE partner repository [41,42]. These data were
obtained from 1 mg of proteolytic peptides using nanoLC-MS/MS
(liquid chromatography tandem mass spectrometry) with a nano-
Elute liquid chromatography system (Bruker) coupled to a timsTOF
Promass spectrometer (Bruker) and included the conversion of raw
MS and MS/MS data into mgf files as described previously [43].
Protein identifications against SC and SL protein database from
UniprotKB (15012020) using the MASCOT search engine (Matrix
science, London, United Kingdom) and changes in protein abun-
dance by label-free mass spectrometry-based quantification using
spectral counts or MS1 ion intensities named XIC (for extracted ion
current) were performed as described previously [1,4].

2.4. Protein abundance changes and statistical analysis of proteins
involved in translation

The data corresponding to the two strains, SC and SL, were
extracted from the large dataset 10.6019/PXD029263 deposited to
the ProteomeXchange. Statistical analyses of protein abundance
changes in these two strains was performed in R Studio (version
1.4.17.17) using the homemade R script as described previously [1].
The present analysis thus consisted in a pairwise comparison of 28
combinations and focuses exclusively on proteins involved in the
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translational process identified using the UniprotKB (15012020)
protein database and the annotations of the KEGG pathway. For
each of the identified proteins, a significant difference was set to 10
for spectral count and 1 Log2 fold change for label-free quantitation
(LFQ) values. Additionally a threshold of 4 significant pairs and an
adjusted p-value of 0.05 was set to consider a protein abundance as
significantly variable. The selected proteins were used for heat-map
representation.

3. Results

3.1. Proteins involved in the stringent response

Data corresponding to proteins playing a role in the stringent
responsewere extracted from our previous a proteomic dataset of SC
and SL, grown in condition of low and high phosphate availability
(dataset identifier PXD029263 and 10.6019/PXD029263). DksA
(SCO2075) [44] was not detected in our study but SpoT/RshA
(SCO5794) [45] and RelA (SCO1513) were identified. The abundance
of SpoT/RshA (SCO5794) was similar in all the conditions tested
whereas an up-regulation (1.7 fold) of RelA abundance was noticed
at 48 h and 60 h in SL and SC, respectively, in condition of Pi limi-
tation. This triggering was correlated, as expected, with the down-
regulation of most r-proteins in SL in Pi limitation whereas the
abundance of r-proteins remained low in both Pi conditions in SC.
The up-regulation of RelA abundance in Pi limitation suggested that
its expression might be under the positive control of the two com-
ponents system PhoR/PhoP (SCO4229/SCO4230) and thus belongs to
the Pho regulon [46]. A close inspection of the relA promoter region
indeed revealed the presence of a rather well conserved Pho box
(Fig. S1). This suggests that a Pi limitation contributes to the trig-
gering of the stringent response via the up-regulation of RelA
abundance in Pi limitation. A contribution of phosphate limitation in
the triggering of the stringent response was previously reported in
another Actinobacteria, Mycobacterium tuberculosis [47].

3.2. Proteins involved in rRNA modification and ribosome assembly

The 26 proteins, detected in our study that are involved in rRNA
modifications, fall into 2 groups (A and B) as shown in Fig. 1:

- Group A includes 7 proteins that had a similar abundance in the
2 strains and whose abundance did not vary significantly with Pi
availability nor with time point. This group includes 2 GTPases
RsgA-like (SCO5211 and SCO6149) involved in the late steps of
the maturation of the functional core of the 30S ribosomal
subunit [48] as well as the GTPase HflX (SCO5796) that acts as a
ribosome splitting factor that disassembles the 70S ribosomes
into its subunits [49]; a methyltransferase type G (SCO3885) of
the 16S rRNA that in Bacillus subtilis specifically methylates the
N7 position of guanine in position 527 of 16S rRNA [50]; a
methylase of polypeptide chain release factors (SCO5361) that is
required for normal translation termination in vivo [51], the
ribosome maturation factor RimM (SCO5593) involved in the
late assembly stage of the 30S ribosomal subunit [52] and the
ribosome silencing factor RsfS (SCO2577) that slows down cell
growth by inhibiting protein synthesis during periods of
reduced nutrient availability [53].

- Group B includes 19 proteins. Most of these proteins were more
abundant in SL than in SC in both Pi conditions and were up-
regulated in Pi proficiency in SL but not in SC. One noticeable
exception was the TrmA-like methyltransferase (SCO5901) that
catalyzes the S-adenosylmethionine-dependent methylation of
the uracil in position 54 in all E. coli tRNAs and is essential for
viability [54], whose abundance was higher in SC than in SL.
3

Otherwise this group includes 9 methyltransferases [55], 3
GTPases [56], the methylthiotransferase RimO (SCO5752)
involved in the methylthiolation of the ribosomal protein S12
[57], 2 proteins involved in the maturation of the 30S sub-unit
RimP (SCO5703) [52] and RbfA (SCO5708) [58], the ribosome
associated translation inhibitor RaiA (SCO3009) that may play a
role in translation fidelity [59] and the ribosome binding ATPase
YchF (SCO5627), involved in ribosome recycling [60]. Interest-
ingly the absence of YchF, was shown to enhance the translation
of leaderless mRNA in stressful conditions in E. coli [61]. The 9
methyltransferases that might be involved in the fine tuning of
ribosomal decoding center [62] include 4 putative tRNA/rRNA
methyltransferases of the SpoU family (SCO3836, SCO1552,
SCO1597 and SCO4236) [63], 4 methyl transferases of the small
subunit of the rRNA: RsmC-like (SCO1041) [64], RsmE-like
(SCO2552) [65], RsmH-like (SCO2092) [66] and RsmI-like
(SCO3253) [67] as well as a rRNA adenine dimethylase of the
KsgA family (SCO3149) [68]. The 3 GTPases involved in ribosome
assembly and homeostasis [69] belong to the Era (SCO2539)
[70], Der/EngA (SCO1758) [71] or Obg (SCO2595) [72] families.
Interestingly, in condition of over-expression Obg has a negative
impact on aerial mycelium formation in SC [73].
3.3. Ribosomal proteins

Ribosomes are made of several rRNA molecules and of 50e80
proteins that play a role in assembly, structure and function of the
ribosome [74,75]. The 58 ribosomal proteins detected in our study
fall into 4 groups (A to D) as shown in Fig. 2:

- Group A includes 15 proteins (25,8% of total ribosomal proteins)
that were more abundant in SL than in SC especially in Pi pro-
ficiency at both time points as well as in Pi limitation at 48 h.
This group includes 7 and 8 proteins belonging to the 50S (L4,
L5, L10, L19, L23, L27, L28) and 30S (S1, S2, S4, S5, S7, S13, S16,
S17) subunits, respectively. Interestingly, the S1 protein was far
more abundant in Pi limitation than in Pi proficiency at 48 h in
SL. In Pi limitation, this protein might play a role in mRNA decay
besides its role in translation [76,77].

- Group B includes 22 proteins (37,9%) that were up-regulated in
Pi proficiency in SL but not in SC. These include 16 and 7 proteins
belonging to the 50S (L1, L2, L3, L6, L9, L13, L14, L15, L16, L18,
L20, L21, L22, L24, L35) and 30S (S3, S8, S9, S11, S12, S17, S19)
subunits, respectively.

- Group C includes 8 proteins (13,7%) that were up-regulated in Pi
proficiency in a similar way in both strains. These includes 3 and
5 proteins belonging to the 30S (S6, S14 and S18) and 50S (L7/12,
L28, L31, L32.2 and L33.1) subunits, respectively.

- Group D includes 11 proteins (18,96%) that had a similar abun-
dance in the two strains and their abundance did not signifi-
cantly vary with Pi availability. These includes 5 and 6 proteins
belonging to the 30S (S8, S10, S15, S18 and S20) and 50S (L11,
L25, L28, L29, L30, L33.2) subunits, respectively. The expression
pattern of L31 (SCO5359) did not fit into any of the 4 groups. L31
was far more abundant in SC than in SL in Pi limitation, at both
time points. L31 is thought to contribute to sub-units association
[78] and to enhance initiation of translation efficiency as well as
to reduce frameshifting andmiscoding [79]. In SC the expression
of L31 was shown to be under the positive control of Sigma R
[80] that controls the expression of genes involved in the
resistance to oxidative/disulfide stress [81]. So the high
expression of L31 in SC is likely to be due to high oxidative stress
linked to the previously reported strong activation of the
oxidative metabolism of this strain [1,2,82].



Fig. 1. Heatmap representation of the abundance of proteins involved in rRNA modification of SL and SC grown for 48 h or 60 h in R2YE medium either limited (-Pi, 1 mM) or
proficient (þPi, 5 mM) in phosphate. This heatmap is divided in 2 sub-clusters A and B. Cluster A includes 7 proteins that have a similar abundance in the two strains, conditions and
time points. Cluster B includes 19 proteins more abundant in SL than in SC and up-regulated in Pi proficiency in SL but not in SC.
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The abundance of proteins of group A and B (65.5% of total ri-
bosomal proteins) was up-regulated in condition of Pi proficiency
in SL but not in SC. A similar absence of up-regulation in Pi profi-
ciency was previously reported for some proteins belonging to C
and N metabolism in SC [1,3,4]. However, obviously proteins of
groups C and D escape this regulation and these might constitute a
minimal ribosome machinery abundant in SC that would be able to
translate a subset of proteins involved in the alleviation of the
multiple stresses this bacteria is suffering from.
3.4. Enzymes involved in tRNA synthesis or modification

The 48 proteins, detected in our study that are involved in tRNA
synthesis or modification, fall into 6 groups (A to F) as shown in
Fig. 3:

- Group A includes 6 proteins that were mainly expressed in SC in
both Pi conditions and at both time points. This group includes
Cys, Arg, Phe, Lys andVal tRNA synthetases, enzymes that catalyze
the esterification of the corresponding amino acid on the 30 end of
tRNA [83], as well as the Glu-tRNAGln amidotransferase subunit B
(SCO5501) that allows the formation of correctly charged Gln-
tRNA(Gln) through the transamidation of misacylated Glu-
tRNA(Gln) when glutaminyl-tRNA synthetase is missing [84].

- Group B includes 4 proteins mainly expressed in SC in Pi profi-
ciency at both time points as well as in SL in Pi limitation but
mainly at 60 h. Its includes the Glu-tRNAGln amidotransferase
subunit C (SCO5498), the deacylase YkaK-like (SCO1311)
involved in the tRNA editing of mis-charged tRNAs [85] as well
as 2 tRNA-specific adenosine deaminases (SCO4038 and
4

SCO4039). These enzymes catalyze the editing of adenosine into
inosine at the wobble position of tRNAArg in prokaryotes
[86e88]. This modification is necessary to allow a single tRNA
specie to recognize synonymous codons when tRNA specie
recognizing the precise codon is poorly available [89].

- Group C includes 7 proteins with a similar abundance in the two
strains, Pi conditions and time points. This group includes Thr, Arg,
Met and Ileu tRNA synthetases as well as the following tRNA
modifying enzymes: tRNA N6-adenosine threonylcarbamoyl-
transferase (SCO4752) [90], tRNA (guanine-N(7))-methyltransfer-
ase (SCO4111) [91], Met-tRNA formyl transferase (SCO1473) [92]
and methionyl-tRNA formyltransferase (SCO5791) [93].

- Group D includes 9 proteins strongly up-regulated in Pi profi-
ciency in SL but not in SC. It includes Tyr and Lys tRNA synthe-
tases [94], putative archaeal-like Glu-tRNAGln amidotransferase
subunit E (SCO3581) and the following tRNA modifying en-
zymes: the pseudouridine tRNA synthase (SCO1768) that cata-
lyzes a post-translational modification of uridine in some tRNA
that might stabilize the correct anticodon-codon pairing during
translation [95], tRNA threonylcarbamoyl adenosine modifica-
tion protein YjeE-like (SCO4747) [90], tRNA (guanine-N1)-
methyltransferase (SCO5594) which may which prevent fra-
meshifting [96], ribosomal RNA large subunit methyltransferase
N (SCO5645) [97] and tRNA (5-methylaminomethyl-2-
thiouridylate)-methyltransferase (SCO5488) [98].

- Group E includes 13 proteins far more abundant in SL than in SC
in both Pi conditions and at both time points. This group in-
cludes Pro, Thr, 2 Trp, Lys, Gly, Leu, Ala and Met tRNA-
synthetases as well as the following tRNA modifying enzymes:
pseudouridine tRNA-synthase (SCO5709) [95], D-tyrosyl-
tRNA(Tyr) deacylase (SCO4182) that removes some D-amino



Fig. 2. Heatmap representation of the abundance of ribosomal proteins of SL and SC grown for 48 h or 60 h in R2YE medium either limited (-Pi, 1 mM) or proficient (þPi, 5 mM) in
phosphate. This heatmap is divided in 4 sub-clusters. Cluster A includes 15 proteins more abundant in SL than in SC and especially abundant in SL at 48 h and 60 h in Pi limitation
and proficiency, respectively. Cluster B includes 21 proteins more abundant in SL than in SC and up-regulated in Pi proficiency in SL but not in SC. Cluster C includes 8 proteins
similarly abundant in SL than in SC and up-regulated in Pi proficiency in both strains. Cluster D includes 11 proteins that have a similar abundance in the two strains, conditions and
time points. Two proteins S14 type Z (SCO4715) and L31 (SCO5359) do not fit in any of these clusters.
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acids frommischarged tRNAs allowing their replacement by the
L form used in translation [99,100] and a dimethylallyl adeno-
sine tRNA methylthiotransferase MiaB (SCO5787) thought to be
involved in improvement of reading framemaintenance [79,80].
Mutation in miaB were shown to affect morphological differ-
entiation and secondary metabolism in Streptomyces [81e84].

- Group F includes 6 proteins more abundant in Pi limitation than
in Pi proficiency in both strains and more abundant at 48 h and
60 h in SL and SC, respectively. These proteins were also more
abundant in Pi proficiency in SL than in SC. This group includes
Ser, Phe, Glu, Asp, His tRNA synthetases and the pseudouridine
synthase (SCO4731) [95].

The regulation of the expression of aminoacyl-tRNA synthetases
in prokaryotes proved to be complex and diverse [101]. Our results
indicate that tRNA synthetases of Fig. 3/groups D and E were more
abundant in SL than in SC but in contrast tRNA synthetases of Fig. 3/
group A (cys-tRNA ligase (SCO4235), the-tRNA ligase beta subunit
(SCO1594), val-tRNA ligase (SCO2615), arg-tRNA ligase (SCO3304)
and the Glu-tRNAGln amidotrannsferase (SCO5501) were more
abundant in SC than in SL.
5

Even if the expression of most aminoacyl-tRNA ligases/synthe-
tases is coordinated with the synthesis/availability of their cognate
amino acids [102] and increases with growth rate [101], up-
regulation of tRNA synthetases abundance has been reported in
B. subtiliswhen the availability of their substrates is low [101]. In SC,
a similar regulation might occur indicating the low availability of
some amino acids due to the reduced ability of this strain to up-take
amino acids present in the R2YE medium.
3.5. Proteins involved in translational initiation, elongation and
termination processes

The 13 proteins, detected in our study that are involved in
translational initiation, elongation and termination, fall into 2
groups (A and B) as shown in Fig. 4:

- The 2 proteins of group A had a similar abundance in the two
strains and their abundance did not vary with Pi availability nor
with time point. This group includes the translational initiation
factors IF1 [103] and IF3 [104,105].



Fig. 3. Heatmap representation of the abundance of enzymes involved in tRNA synthesis or modification of SL and SC grown for 48 h or 60 h in R2YE medium either limited (-Pi,
1 mM) or proficient (þPi, 5 mM) in phosphate. This heatmap is divided in 6 sub-clusters A to F. Cluster A includes 6 proteins more abundant in SC than in SL in both Pi conditions and
at both time points. Cluster B includes 4 proteins more abundant in SC than in SL and up-regulated in Pi proficiency in SC but not in SL. Cluster C includes 7 proteins that have a
similar abundance in the two strains, conditions and time points. Cluster D includes 9 proteins more abundant in SL than in SC and up-regulated in Pi proficiency in SL but not in SC.
Cluster E includes 13 proteins more abundant in SL than in SC in both Pi conditions and at both time points. Cluster F includes 6 proteins more abundant in SL than in SC and up-
regulated in Pi limitation in both strains.
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- Most of the 11 proteins of group B were more abundant in SL
than in SC in both Pi conditions. This group includes the trans-
lation initiation factor IF2 [106], 7 elongation factors [12], 2
peptide chain release factors [107] and one peptidyl tRNA hy-
drolase [108]. However, the elongation factor EF-Tu3 (SCO1321)
escapes this rule since that it was far more abundant in SC than
in SL in Pi limitation at both time points.
3.6. Proteins involved in protein folding and modification

The 20 proteins, detected in our study and involved in protein
folding and modification, fall into 5 groups (A to E) as shown in
Fig. 5:

- Group A includes two chaperones DnaJ2 (SCO2554) and HtpG
(SCO7516) [109,110] and a peptidyl-prolyl cisetrans isomerase
(PPIase, SCO1639) [111] that were up-regulated in Pi limitation
in both strains. PPIases assist protein folding via the catalysis of
cis/trans isomerization of peptide bonds preceding prolyl resi-
dues [112].

- Group B includes 4 proteins, the chaperone (SCO4761), two Heat
Shock Proteins (HSP) HspR (SCO3668) [113] and SCO1405
(Hsp90 family) [114] and a peptide deformylase (SCO0883)
6

[115]. These proteins were up-regulated in Pi limitation in both
strains but were far more abundant in SC than in SL. Peptide
deformylases remove the formyl group from the for-
mylmethionine present at the N-terminus end of all nascent
peptides [116]. These proteins are thought to contribute to the
correct folding of membrane proteins and thus to maintain
proper structure and function of the membrane [116]. The over-
expression of SCO0883 in SC might contribute to fight mem-
brane stress that occurs in SC [1,4].

- Group C includes 6 proteins, two chaperones, DnaK (SCO3671)
[117] and the ATP-dependent chaperon ClpB (SCO3661) [118],
three PPIases (SCO3856, SCO1638 and SCO7510) and a peptide
deformylase (SCO5221). These proteins were up-regulated in SL
in Pi limitation but not in SC.

- Group D includes 4 proteins, two chaperones, DnaJ (SCO3669)
and SCO2899, the heat shock protein GrpE-like (SCO3670) [119]
and a second PPIase (SCO1510). These proteins had a similar
abundance in the two strains and their abundance did not vary
with Pi availability nor time points.

- Group E includes 3 proteins, the heat shock protein GrpE-like
(SCO1771) and two 60 KDa chaperones, GroEL2 (SCO4296)
and GroEL1 (SCO4762) [120]. These proteins were up-
regulated in SC in Pi proficiency at both time points but not
in SL.



Fig. 4. Heatmap representation of the abundance of proteins involved in translation initiation, elongation and termination processes of SL and SC grown for 48 h or 60 h in R2YE
medium either limited (-Pi, 1 mM) or proficient (þPi, 5 mM) in phosphate. This heatmap is divided in 2 sub-clusters A and B. Cluster A includes 2 proteins that have a similar
abundance in the two strains, conditions and time points. Cluster B includes 11 proteins more abundant in SL than in SC in both Pi conditions and at the two time points.

Fig. 5. Heatmap representation of the abundance of proteins involved in proteins folding and modification enzymes of SL and SC grown for 48 h or 60 h in R2YE medium either
limited (-Pi, 1 mM) or proficient (þPi, 5 mM) in phosphate. This heatmap is divided in 5 sub-clusters A to E. Cluster A includes 3 proteins more abundant in SL than in SC and up-
regulated in Pi limitation. Cluster B includes 4 proteins more abundant in SC than in SL and up-regulated in Pi limitation in SC. Cluster C includes 6 proteins more abundant in SL than
in SC and up-regulated in Pi limitation in SL but not in SC. Cluster D includes 4 proteins that have a similar abundance in the two strains, conditions and time points. Cluster E
includes 3 proteins up-regulated in Pi proficiency in SC but not in SL.
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The higher abundance of proteins of groups A and B in both
strains or of proteins of group C in SL, in Pi limitation, suggest that
these proteins may belong to the Pho regulon.

3.7. Relative abundance of proteins translated from leaderless RNA
in S. coelicolor and S. lividans

Our data revealed that a most elements of the translational
apparatus were less abundant in SC than in SL whereas a few
were similarly abundant in the two strains. These few proteins
7

might thus constitute the core of minimal ribosomal particles
that would be more abundant in SC than in SL. Since some
reports in the literature mention that minimal ribosomal par-
ticles might preferentially translates leaderless mRNAs
(lmRNAs) [121e123], we uploaded the list of SC's lmRNAs from
Jeong et al. [124] in order to determine whether they would be
more efficiently translated in SC than in SL. Among the 713
lmRNAs mentioned in Jeong et al. [124], 368 were detected in
our study. These lmRNAs could be classified into 6 groups
(Figure S2AeF).
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Proteins translated from lmRNAs of groups A1 (9.5%), A3 (5.1%)
and A4 (4.6%) were more abundant in Pi limitation than in Pi pro-
ficiency, especially in SC and proteins of group A5 (3.8%) were more
abundant in SC than in SL in Pi proficiency. Proteins of group A2
(2.17%) were similarly up-regulated in Pi limitation in both strains.
Group A2 includes proteins belonging to the Pho regulon [46,125]:
the sensor kinase PhoR (SCO4229), the polyphosphate kinase Ppk
(SCO4145) [126] as well as 6 genes encoding proteins involved in
the biosynthesis of teichulosonic acid cell wall glycopolymers
(SCO4877 to SCO4882) [127,128]. Phosphate free teichulosonic and
teichuronic acids cell wall glycopolymers are known to replace
phosphate rich teichoic acids in Gram þ bacteria in condition of Pi
limitation [129].

Proteins translated from lmRNAs of groups B and C (35,6% of
total lmRNAs) were clearly more abundant in SC than in SL. Proteins
of group B were more abundant in SC than in SL in both Pi condi-
tions whereas proteins of group C were mainly up-regulated in Pi
limitation in SC.

Proteins translated from lmRNAs of group D1 (5.1%) were more
abundant in Pi proficiency than in Pi limitation in both strains but
rather more abundant in SL than in SC. Proteins of group D2 (2.4%)
were similarly up-regulated in Pi proficiency in both strains. Pro-
teins of group D3 (9.78%) were also up-regulated in Pi proficiency
but mainly in SC.

In contrast proteins belonging to groups E and F (21,46% of total
lmRNAs) were clearly more abundant in SL than in SC. Proteins of
group E (16%) were more abundant in SL than in SC in both Pi
conditions. The 8 proteins of group F1 (2.17%) were clearly up-
regulated in Pi proficiency in SL but not in SC and the 12 proteins
of group F2 (3.26%) were up-regulated in Pi limitation in SL but not
in SC. Group F1 includes 3 genes encoding large (SCO2486 and
SCO2487) and small (SCO2488) subunits of the nitrite reductase,
the heme peroxidase (SCO6042), two transcriptional regulators
(SCO3810 and SCO4766) and the phosphoribosyltransferase
(SCO3677) that belongs to the purine salvage pathway that is
usually up-regulated during the stringent response [130]. Group F2
includes the response regulators SCO3013, located downstream the
translation initiation factor SCO3014 and PhoP (SCO4230) that
governs adaptation to Pi limitation, the inositol monophosphatase
(SCO6445) that might be involved in a phosphophatidylinositol
signaling pathway controling cell growth in Streptomyces [131] and
the ribokinase (SCO2158) that is involved in the biosynthesis of
ribose 5 phosphate, a metabolite proposed to link nucleotide and
amino acids metabolism in condition of stringent control [132].

Our data indicate that only 7% of total proteins belonging to
groups A2 (up-regulated in Pi limitation), D1 and D2 (up-regulated
in Pi proficiency) were similarly regulated in both strains whereas
54.6% of the proteins translated from lmRNAs were more abundant
in SC than in SL (72 and 59 proteins from groups B and C, 33 proteins
from groups A3/A5 and 37 proteins of group D3) when only 27,4 %
of the proteins translated from lmRNAs were more abundant in SL
than in SC (59 and 20 proteins of groups E and F and 14 and 8
proteins of groups D1 and D3). Proteins translated from lmRNAs are
thus two fold more abundant in SC that in SL but it cannot be
concluded with certainty whether this is due to higher transcrip-
tional level of lmRNAs or to higher translational rate of the latter's,
that might be linked to the higher abundance of minimal ribosomal
particles, in SC than in SL.

4. Discussion

The regulatory process called “stringent response” that is aimed
at the adaptation of bacterial growth to nutrient limitation is
known to be highly conserved throughout the bacterial domain of
life [17]. Stringent control is known to regulate negatively the
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expression of most ribosomal proteins [25,26]. Our data indicated
that the majority of ribosomal proteins (Fig. 2, groups A and B), of
proteins involved in rRNA modifications (Fig. 1, group B), of en-
zymes involved in tRNA synthesis and modification (Fig. 3, groups
D and E) and of proteins involved in translation initiation, elonga-
tion and termination processes (Fig. 4, group B) were less abundant
in SC than in SL. In consequence, the reduced abundance of these
proteins in SC is proposed to be due to the strong activation of the
stringent response in this strain that is most likely linked to the
reduced ability of this strain to assimilate nitrogen as well as
phosphate, to a lesser extent [1,3,4]. This hypothesis is supported by
the observation that two proteins whose expression is known to be
under the positive control of stringent response in other bacteria
were over-expressed in SC compared to SL. These are the
tRNAm5(U34) methyltransferase TrmA-like (SCO5901) (Fig. 1) [36]
and the elongation factor EF-Tu3 (SCO1321) (Fig. 4) [35]. The pro-
tein L31 (SCO5359) was also found more abundant in SC than in SL
at 48 h and 60 h in Pi limitation. The expression of this protein was
shown to be under the positive control of Sigma R that controls the
expression of genes involved in the resistance to oxidative/disulfide
stress in Streptomyces {Paget, 1998 #1191] [80]. So the high
expression of L31 in SC ought to be related to high oxidative stress
linked to the previously reported strong activation of the oxidative
metabolism of this strain [1,2,82]. Interestingly, it was recently
demonstrated that ppGpp is also involved in the response to
oxidative [133] and heat stresses [134]. ppGpp might thus be
involved in the response to any stresses that would lead to a growth
slow down mediated by a downregulation of the translational
process. Such regulation would also reduce the load on the protein
quality control system (including numerous chaperones and pro-
teases) that is induced by these stresses.

Interestingly, the abundance of 31 proteins, 8.4% of total pro-
teins detected (Fig. 1, 7 of group A; Fig. 2, 11 of group D; Fig. 3, 7 of
group C; Fig. 4, 2 of group A and Fig. 5, 4 of group D), was similar in
the two strains in both Pi conditions. These proteins might thus
constitute the core of a minimal translational apparatus that would
be relatively more abundant in SC than in SL and might be
responsible for the more efficient translation of lmRNAs in SC than
in SL.

Furthermore, the abundance of most ribosomal proteins (Fig. 2,
group B), of proteins involved in rRNA modifications (Fig. 1, group
B), of enzymes involved in tRNA synthesis and modification (Fig. 3,
groups D and E) and of proteins involved in translation initiation,
elongation and termination processes (Fig. 4, group B) was up-
regulated in Pi proficiency in SL but such up-regulation did not
occur in SC except for group C of ribosomal proteins (Fig. 2). These
observations indicate that high Pi availability reduces the intensity
of the stringent response in SL or in other terms that Pi limitation
contributes to the stringent response. However this regulatory
process does not occur in SC since the abundance of most proteins
of the translational apparatus remains similarly low in both Pi
conditions. We propose that the absence in SC of this phosphate-
mediated up-regulation of ribosomal proteins in Pi proficiency
might be due a default in external phosphate sensing and/or up-
take. This default itself might be due to the strong activation of the
stringent response occurring in this strain that would control
negatively phosphate assimilation and phosphate-mediated regu-
lation. Indeed, the assimilation of nitrogen (N), phosphate (P) and
carbon (C), ought to be coordinated in Streptomyces [135], as in all
living organisms. The poor ability of SC to assimilate N is correlated
with the reduced abundance of proteins playing a role in C up-take
and assimilation such as the glucose permease (SCO5578) (Fig. 16B
of [1]) and all glycolytic enzymes in SC compared to SL (Fig. 2 of [1])
as well as of proteins of the Pho regulon [3]. The low affinity
phosphate transporter PitH1 (SCO4138) is also poorly expressed in
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Pi proficiency in SC compared to SL (Group D of Fig. 6 of [1]) and
consequently some proteins involved in Pi re-cycling such as the
nucleases SCO4152 and SCO1908, the phospholipases SCO6691 and
SCO1048, the phosphodiesterases SCO1968 and SCO1565 and the
phosphatase SCO2068 were up-regulated in SC compared to SL, in
condition of Pi proficiency (Groups A and C of Fig. 6 of [1]). This
suggests that despite the abundance of Pi in the growthmedium, SC
does not up-take it efficiently. SC is thus limited in phosphate, even
when Pi is abundant in the growth medium, and is forced to
degrade its phosphate-rich constituents in order to recycle phos-
phate. Altogether our data suggest that nitrogen and phosphate
limitation both contribute to the triggering of the stringent
response that in turn controls negatively nitrogen, phosphate as
well as carbon metabolism to achieve growth reduction in SC. In
contrast the stringent response obviously controls positively the
expression of some specialized metabolites biosynthetic pathways
[28]. Similar regulations were shown to occur in Pseudomonas
protegens [136].

The production of these specialized metabolites could thus be
considered as part of the stringent response. Since the main aim of
the stringent response is to reduce growth when essential nutri-
ments, such as N or P, are poorly available, we can consider that
some specialized metabolites also contribute to growth slow down.
Interestingly ACT, as well as other specialized metabolites of the
polyketide family, were proposed to be able to capture electrons of
ROS/NOS as well as of the respiratory chain, thanks to their quinone
groups [137]. This ability would confer them anti-oxidant and anti-
respiratory properties leading to a reduction of ATP generation
[137]. Consistently, the onset of ACT production was shown to
coincide with an abrupt drop in the intracellular ATP concentration
[2] that might contribute to growth slow down.

Further studies are needed to elucidate the complex regulatory
network governed by ppGpp in Streptomyces but it should be
stressed that these studies have great fundamental as well as
practical interest since the stringent response has a strong positive
impact on the production of bio-active specialized metabolites that
have considerable utility in the medical and agricultural fields.
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