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Abstract 

Background: Advances in high‑throughput technologies have originated an ever‑
increasing availability of omics datasets. The integration of multiple heterogeneous 
data sources is currently an issue for biology and bioinformatics. Multiple kernel learn‑
ing (MKL) has shown to be a flexible and valid approach to consider the diverse nature 
of multi‑omics inputs, despite being an underused tool in genomic data mining.

Results: We provide novel MKL approaches based on different kernel fusion strategies. 
To learn from the meta‑kernel of input kernels, we adapted unsupervised integration 
algorithms for supervised tasks with support vector machines. We also tested deep 
learning architectures for kernel fusion and classification. The results show that MKL‑
based models can outperform more complex, state‑of‑the‑art, supervised multi‑omics 
integrative approaches.

Conclusion: Multiple kernel learning offers a natural framework for predictive models 
in multi‑omics data. It proved to provide a fast and reliable solution that can compete 
with and outperform more complex architectures. Our results offer a direction for bio‑
data mining research, biomarker discovery and further development of methods 
for heterogeneous data integration.

Keywords: Multi‑omics, Data integration, Kernel methods, Deep learning, Data 
mining, Biomarker

Introduction
Data integration has recently attracted substantial attention in the research litera-
ture, both for the statistical challenges and promising potential applications in fields 
such as biology and medicine. Multi-omics data have become increasingly available 
following the significant growth of high-throughput technologies. The availability of 
such rich while complex data has expanded the number of available algorithms and 
methodologies to properly conduct analyses, with the possible need to create novel 
research profiles [1]. In this context, Kernel methods have proven to be a very promis-
ing technique for integrating and analyzing high-throughput technologies-generated 
data. Kernel methods benefit from the possibility of providing a nonlinear version 
of any linear algorithm that relies solely on dot products. For instance, unsuper-
vised methods such as Kernel Principal Component Analysis [2], Kernel Canonical 
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Correlation Analysis [3], Kernel Discriminant Analysis [4] and Kernel Clustering [5] 
are all examples of nonlinear algorithms enabled by the so-called kernel trick.

Kernel-based methods also include supervised classification algorithms. Support 
vector machine is the most popular one, along with Kernel partial least squared 
regression [6] or Kernel discriminant analysis [7].

Several methodologies are also available to integrate multiple high throughput data 
sources through the so-called Multiple kernel learning (MKL) approach. These meth-
ods combine modern optimization techniques’ power with kernel methods’ frame-
work, providing a new multi-source genomic data learning tool.

In this work, we review classical MKL algorithms, while also exploring alternative 
MKL approaches. Specifically, we propose a novel approach that consists of adapt-
ing unsupervised algorithms for multiple kernel integration to a supervised context, 
i.e., fitting an SVM classification model on a fused kernel obtained through an unsu-
pervised algorithm for the convex linear combination of input kernels. This approach 
mimics what more recent deep learning-based methods realize using Autoencoders 
[8]. First, the lower dimensional latent representation is learned in an unsupervised 
way by an Autoencoder, and then this embedding is used to perform a downstream 
task such as classification [9].

More recently, Deep learning has emerged as a valid alternative to dealing with 
data integration challenges. A key strength of deep learning lies in its ability to learn 
homogeneous representations from heterogeneous data sources (images, text, tabular 
data), making it a perfect candidate for multi-omics integration problems.

Different deep learning methods have already been applied in this domain with 
promising results. Architectures such as Autoencoders [8, 10], Graph Neural Net-
works [11, 12] or Multi-head Attention [13] have been successfully adapted to differ-
ent multi-omics integration tasks reaching the state-of-the-art.

Deep learning has also been used as an alternative approach to multiple kernel 
fusion [14] to integrate different kernels from a single data source. This type of archi-
tecture can be easily adapted to integrate heterogeneous data sources, such as multi-
omics datasets. With this intention, we introduce a novel deep learning framework 
tailored for Multiple kernel learning (MKL), namely DeepMKL, specifically within 
multi-omics integration. This method exploits both the advantages of kernel learning 
and deep learning by transforming the input omics using different kernel functions 
and guiding their integration in a supervised way, optimizing the neural network 
weights to minimize the classification error.

To sum up, while Multiple kernel learning remains an under-utilized tool for 
genomic data mining [15], in this work, we propose MKL methods to integrate 
multi-omics data based both on unsupervised convex linear optimization and deep 
learning. We aim to show the advantages of this setting by comparing it with state-of-
the-art methods. Our results align with recent findings in Brouard et al. [16], where 
the authors compare traditional machine learning (ML) models with Graph Neural 
Networks (GNNs) in single omics analysis, concluding that the benefits of GNNs are 
overstated. We similarly demonstrate that classical ML approaches, such as MKL 
methods, show competitive results against GNNs in the context of multi-omics 
analysis.
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Related work
Many machine learning methods are available to unravel biological system mechanisms 
and find new biomarkers. The big challenges associated with multi-omics data mining 
and integration are the intrinsic high dimensionality, heterogeneity and nonlinearity of 
the sample space. For this reason, refined methods are needed to give practitioners new 
direction and solutions for analyzing such complex datasets.

Numerous integration strategies are available in the literature, including early, mixed, 
hierarchical, intermediate and late integration. In this work, we focus on the mixed inte-
gration type, which has demonstrated to ensure great adaptability for omics data fusion 
as reviewed in Picard et al. [17].

Early stage integration, the easiest and fastest procedure available, nonetheless poses 
intrinsic drawbacks. More specifically, since early integration is based on the concat-
enation of the original data, it naturally increases the input dimensionality while giv-
ing more importance to omics with a bigger number of features. Moreover, while being 
extremely easy and fast to realize, this practice tends to mislead learning algorithms as it 
does not consider the specific data distribution of each input dataset.

On the contrary, mixed integration allows ML algorithms to conduct the learning 
phase on more refined and less dimensional datasets. As these methods produce new 
versions of the input datasets which are more homogeneous than original versions, it 
facilitates ML algorithms to operate on a unified single input for learning.

Furthermore, another very popular strategy is late integration, which consists of apply-
ing each machine learning model separately on each input dataset and then of combin-
ing their respective predictions in a later stage. However, as claimed in Picard et al. [17], 
this approach may not be relevant for biological applications. Indeed, an integration 
based solely on the combination of different model predictions cannot be compared to a 
procedure that directly considers complementary information among different omics, as 
it can be seen as a multiple single-omics analyses.

In the present work, we will investigate mixed integration techniques for multi-omics 
data integration in comparison to the state-of-the-art method i.e. MOGONET in Wang 
et al. [12], a late integration methodology based on GNNs.

Mixed integration

It is generally accepted that a classification model trained with information obtained 
from different sources leads to a more comprehensive overview of the problem [18, 19].

In the field of omics sciences, when different data obtained on the same individuals 
are available, the integrated analysis can provide richer information about the biologi-
cal system compared to the results achieved using a single layer of information. New 
achievements have been reached in a wide area of research, for instance allowing the 
identification of molecular signatures of human breast tumours [20] or for microbial 
communities profiling [21].

Each omic dataset contains a different aspect of the mechanisms regulating a biologi-
cal phenotype. In addition, the technologies used to collect them differ. Consequently, 
the nature and structure of those data are usually very diverse, generating a remarkably 
heterogeneous framework. Mixed integration or transformation-based strategies under-
take the flaws of concatenation-based approaches applying ML algorithm to a simpler 
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representation of each input dataset. The original omics are transformed separately to 
obtain a clearer, richer and lower in dimensions version. Standard transformation meth-
ods that can be used are kernel-based, graph-based, and deep learning methods.

In this work we will focus our attention on kernel-based integration and on deep 
learning-based methods applied on kernel learning.

Multiple kernel learning

Kernel methods have been shown to offer an elegant and natural mathematical solution 
to address data integration from heterogeneous sources, as using kernels enables the 
representation of the datasets in terms of pairwise similarities between sample points 
[22, 23]. Given a dataset of n observations x1, . . . , xn with xi ∈ IRp , a function k defined 
as k: IRp × IRp −→ IR is a valid kernel if it is symmetric and positive semi-definite i.e. 
k(xi, xj) = k(xj , xi) and cTKc � 0, ∀c ∈ IR

n , where K  is the n× n kernel matrix contain-
ing all the data pairwise similarities K = k(xi, xj).

Every kernel function is associated with an implicit function φ : IRp −→ H which maps 
the input points into a generic feature space H , with possibly an infinite dimensionality, 
with the expression k(xi, xj) = �φ(xi),φ(xj)� . This relation allows the implicitly compu-
tation of the dot products in the feature space by applying the kernel function to the 
input objects, without explicitly computing the mapping function φ [24].

It is generally accepted that the sample space of many research problems, such as 
omics data, is often nonlinear [25]. This nonlinearity is linked also to the incomplete 
understanding, for instance, of gene interactions and biological pathways, which sug-
gests that genes are not connected in a simple linear way. In this context, kernel meth-
ods offer a natural and not computationally expensive approach to kernelized i.e. obtain 
nonlinear version of any algorithm purely based on dot-product calculations. Indeed, by 
replacing the linear dot product in the input space by the kernel pairwise values, it is 
possible to implicitly obtain the value of the dot product as it was computed directly in 
the feature space. This is the so-called kernel trick, which allows algorithms designed ini-
tially for linear data to be extended to nonlinear frameworks by implicitly mapping the 
input points into high-dimensional feature spaces induced by the kernel.

In the context of multi omics integration, given different datasets based on the same n 
observations, kernel methods provide another advantage, namely they allow to represent 
every original dataset with a n× n kernel matrix K  . So, even if the original data types 
are heterogeneous (counts, factors, continuous data, networks, images), after the kernel 
transformation, all the M input datasets will have the form of a n× n matrix with real 
numbers as entries, with M equal to the number of available omic datasets.

Moreover, the meta-kernel obtained from the combination of the M input kernels is a 
global similarity matrix containing the sample’s similarities based on the original data-
sets’ variables. MKL assures great adaptability as many kernel functions are available, 
such as linear, Gaussian, polynomial, or sigmoid. In this way it is possible to choose and 
to apply a specific kernel function on a certain omic input, as each function may be more 
suitable for a specific omic.

The most common approach in Multiple kernel learning is to compute a convex lin-
ear combination of kernel Gram matrices. Analytically, given M different datasets, MKL 
consists of the linear combination of the M kernel matrices, as in
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with βm  = 0 and 
∑M

m=1 βm = 1.
It directly follows that the simplest solution is to fix all the weights to be equal, i.e. to 

1
M . Of course, this setting does not allow us to benefit from the adaptability of the multi-
ple kernel framework. All kernels will contribute equally to the classifier, not taking into 
account possible redundant or less informative sources of information. The experiment 
section will denote this setting as MKL-naive.

Contrarily, the βm weights can be optimized more appropriately. Usually, in supervised 
learning, they are tuned, minimizing the prediction error. The literature offers many 
algorithms for supervised MKL optimization. For instance, in the work in Lanckriet 
et  al. [26], the weights are optimized with semidefinite programming techniques. The 
fused kernel is then used to train an SVM classifier, giving better performances than sin-
gle omic analysis.

Another approach can be found in Rakotomamonjy et al. [27] where the convex lin-
ear combination is obtained through a weighted 2-norm regularization constrained for-
mulation to promote a sparse kernel combination and using a subgradient descent for 
weights optimization. The so-called SimpleMKL method is available in the R package 
RMKL developed by Wilson et al. [15].

The RMKL package proposes several other algorithms such as SEMKL, Simple and 
Efficient MKL by Xu et al. [28] where the weights computation is based on the equiva-
lence between group-lasso and MKL. Both SimpleMKL and SEMKL belong to the class 
of algorithms known as wrapper methods for Multiple kernel learning, thus updating 
kernel weights after each iteration.

A more sophisticated version of these wrapper methods specialized in the reduction 
of the number of SVM computations is SpicyMKL in Suzuki and Tomioka [29], which 
is a proximal minimization method that converges super-linearly. This algorithm is also 
implemented in the RMKL package under the name of DALMKL.

A different way to find the kernel coefficients in the convex linear combination of ker-
nels can be found in Yang et al. [30] with GA-fKPLS, where the authors propose to com-
pute the kernel parameters and weights using genetic algorithms.

A different approach to MKL is presented in Gönen and Alpaydin [31] and Gönen and 
Alpaydın [32], where the authors question the practice of assigning the same weight to a 
kernel over the whole input space. In this work, they propose a localized Multiple kernel 
learning LMKL based on the local selection of the appropriate kernel function, allowing 
to reduce the number of support vectors.

To be noted that these wrappers methods have been recently tested in Wilson et al. 
[15], where it has been shown that all these algorithms seem to have similar performance 
in the case of an analysis with few kernels.

Multiple kernel learning can also be used in the unsupervised learning framework. 
In this context, selecting appropriate criteria for weight optimization is less straightfor-
ward, as it cannot be based on a target variable of interest. In other words, as it is natural 
to optimize the weights through the minimization of the prediction error for supervised 
learning, the same does not apply in an unsupervised context. Hence, the algorithms 

(1)K ∗ =

M

m=1

βmK
m,
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available to effectively determine a strategy to guide the fusion process of the input ker-
nels in an unsupervised framework are less numerous than in the supervised literature 
in Mariette and Villa-Vialaneix [33], the authors proposed STATIS-UMKL, a method-
ology to provide an approach to reach a consensus kernel based on the resemblance of 
the different kernels. Specifically, the meta kernel is defined by maximizing the average 
similarity between kernels, measured using their cosines according to the Frobenius dot 
product. The similarity matrix between two kernels C = (Cmm′)m,m′=1,...,M gives insight 
into how the different kernels relate to each other, revealing whether they complement 
or provide distinct information. This matrix can then be used to derive the meta kernel 
K ∗ , which maximizes the overall similarity with all other kernels in the set.

We have previously introduced how kernels enable us to map data into a higher-
dimensional feature space without explicitly computing that space. In this new space, 
data that are not linearly separable in the original input space may become linearly sepa-
rable, making it easier to apply linear classification techniques. While kernel methods 
offer this advantage of making previously nonlinearly separable data linearly separable, 
this benefit comes with a trade-off. The original features are no longer explicitly acces-
sible after the kernel transformation, as the data is represented through similarities in 
a new feature space. Consequently, this makes interpreting the model more challeng-
ing, as it becomes difficult to directly trace back the role of individual features in the 
transformed space to the original input variables without referring to a label. In this con-
text in Mariette and Villa-Vialaneix [33], the authors proposed a method based on ker-
nel PCA and random permutation to evaluate the importance of the original variables. 
Specifically the idea consists in recomputing the Km kernels after the permutation of all 
the values of the samples for a given measure j, obtaining a new kernel K̃m,j . The Crone-
Corsby distances of kernel matrices are then computed to assess which variables lead to 
the most significant differences between the original kernel and the new kernels K̃m,j . 
Also, in Briscik et al. [34], the authors proposed KPCA-IG, an approach which provides 
a data-driven feature importance, where the influence of each original variable can be 
computed in the space of the kernel principal components as in the standard PCA. This 
method offers a computationally fast feature ranking methodology to identify the most 
relevant original variables, solely based on partial derivative of the kernel function.

Deep learning approaches

Deep learning techniques are increasingly being employed in the context of multi-omics 
data analysis. One of the advantage of deep learning is its capacity to learn homoge-
neous representations from different input sources. In particular, multi-modal architec-
tures allow the use of heterogeneous datasets, such as images, tabular data, time series, 
or graphs, to learn the underlying complex relationships among different aspects of a 
biological phenotype.

As reviewed in Stahlschmidt et al. [35], this kind of architecture is gaining popularity 
in the biomedical field, where data are becoming increasingly multi-modal. Recently, in 
this context, different works introduced approaches based on multi-modal deep learn-
ing to deal with different types of omics data, these multi-modal architectures are suited 
for both Mixed and Late integration strategies. As introduced, we will concentrate on 
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Mixed integration approaches compared to the Late integration methods that can be 
regarded as the state-of-the-art for the datasets of interest in our analysis [12, 13, 36].

One of the most commonly used deep learning methods for Mixed integration strat-
egies is Autoencoder. Autoencoder is an unsupervised deep learning method used to 
learn a latent representation of the data by minimizing the reconstruction error between 
the input and the reconstructed output. In the context of Mixed integration, they can be 
easily used to learn independent homogeneous latent representations to integrate them 
in a final shared layer [9]. Autoencoders can also be used to learn latent representations 
that depend on different omics inputs, as in Wu and Fang [8]. In this case, the approach 
uses Autoencoders in two different steps, first as a pre-processing for the two different 
inputs and then as an integration step, part of the learning process.

Other possible approaches for Mixed integration involve the use of feedforward neu-
ral networks. In particular, in Lin et al. [37], the authors built an architecture based on 
different encoding sub-networks to learn homogeneous representations from the dif-
ferent types of omics data, then a fusion step to create a concatenated representation 
of multi-omics, and finally, a classification sub-network is used to perform the cancer 
subtype classification. Alternatively, in Sharifi-Noghabi et al. [38], a similar architecture 
equipped with a triplet loss is used for drug response prediction.

Despite this, several state-of-the-art methods belong to the Late integration family, 
such as MOGONET by Wang et  al. [12], MOADLN by Gong et  al. [13] and Dynam-
ics in Han et al. [36]. MOGONET transforms the input data into matrices of similarity 
among observations to build a graph structure and apply a Graph Convolutional Neural 
Network to each omic to obtain an initial prediction. After this first step, a View Cor-
relation Discovery Network (VCDN) finally combines all the independent predictions to 
determine the correct label.

MOADLN, instead, uses the Self-attention mechanism to build a similarity network 
and exploit the correlation between intra-omic observations. In this case, each input 
instance is an element of a set i.e. a specific observation within a single omics type, and 
the Self Attention mechanism learns the weights for each of these elements, meaning 
that it determines the significance of each instance in relation with others within the 
same omics type. Also, for MOADLN, the first step is the initial independent prediction 
for each omics type, followed by a final combination through a Multi-Omics Correlation 
Discovery Network (MOCDN) to explore the cross-omics relations. Dynamics assesses 
feature-level and modality-level informativeness dynamically across different samples. 
It incorporates a sparse gating mechanism to capture variations in features information 
within each omics while using actual class probability to asses the classification confi-
dence at the modality level [36].

Materials and methods
As considered in the previous section, Wang et al. [12] and Gong et al. [13] claim to be 
the state-of-the-art in terms of predictive performance.

In this section, we present all the experiments to test different MKL methods, archi-
tectures and combinations in order to compare possible solutions for multi-omics data 
integration.
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Datasets

The datasets considered in this work are the publicly available ROSMAP for Alzheimer’s 
Disease classification, BRCA for breast invasive carcinoma PAM50 subtype classifica-
tion, LGG for grade classification in low-grade glioma and KIPAN for kidney cancer type 
classification. In order to be sure to conduct a fair comparison with MOGONET, we 
used the same datasets. Wang et al. [12] performed an initial feature selection obtained 
through the sequential calculation of an ANOVA F-value on the original data to evalu-
ate whether a feature was significantly different across different classes. Moreover, the 
authors kept the number of features such that the first principal component after feature 
pre-selection explains at least 50% of the variance.

In the case of ROSMAP and BRCA, as also Gong et al. [13] proceeded, we conducted 
the analysis on the preprocessed datasets available in Wang et al. [12] GitHub repository. 
Instead, for LGG and KIPAN, we downloaded the datasets and performed the same pre-
processing steps as in Wang et al. [12] since the author did not provide the preprocessed 
ones. Details on data availability are provided in “Data availability” section. For each of 
the 5 datasets three types of omics are considered for classification purposes: mRNA 
expression (mRNA), DNA methylation (meth), and miRNA expression data (miRNA). 
Table 1 contains all the details for the five datasets.

Methods

Both in Wang et al. [12] and Gong et al. [13], the authors compared the performance of 
their methods, MOGONET and MOADNL, respectively, with other typical classifica-
tion algorithms such as K-nearest neighbours (KNN), Support vector machine (SVM), 
LASSO regression and block s(PLSDA) as in DIABLO [39].

Taking SVM as an example, the analysis is applied to the concatenation of the 3 multi-
omics datasets, where its performance shows a significantly lower accuracy in both stud-
ies. However, as SVM can be viewed as a kernel-based classification algorithm, applying 
it to an early stage integration, i.e., to a combined dataset obtained by simple concat-
enation of the input datasets, as we have seen, it can be seen as an oversimplification. 
Moreover, a proper parameters tuning must be carried out along with the choice of a 
suitable kernel function. Thus, our analysis compares MOGONET’s performance with 
more suitable and fair usage of Multiple kernel learning with support vector machines.

Table 1 The ROSMAP dataset contains two classes: Alzheimer’s disease (AD) patients and normal 
control (NC). The breast invasive carcinoma dataset (BRCA) contains PAM50 subtype classes: normal‑
like, basal‑like, human epidermal growth factor receptor 2 (HER2)‑enriched, Luminal A, and Luminal 
B. The KIPAN dataset contains different kidney cancer type: chromophobe renal cell carcinoma 
(KICH), clear renal cell carcinoma (KIRC), and papillary renal cell carcinoma (KIRP). Finally, the LGG 
dataset is for grade classification in low‑grade glioma (LGG)

Dataset Classes Number of features 
mRNA, meth, miRNA

Features for training 
mRNA, meth, miRNA

ROSMAP NC: 169, AD: 182 55,889; 23,788; 309 200; 200; 200

BRCA Normal‑like: 115, Basal‑like: 131, HER2‑
enriched: 46, Luminal A: 436, Luminal B: 147

20,531; 20,106; 503 1000; 1000; 503

KIPAN KICH: 65; KIRC: 345 ; KIRP: 297 60,484; 25,972 ; 1882 2000; 2000; 445

LGG Grade 2: 257 ; Grade 3: 266 60,484; 25,972 ; 1882 2000; 2000; 548
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Moreover, new approaches of Multiple kernel learning in combination with deep 
learning classification models are presented in order to exploit at the same time the 
adaptability of kernel methods avoiding the optimization of the weights in the convex 
linear combination and the classification power of deep architectures.

Multiple kernel learning ‑ SVM

As presented in “Related work” section, there are many optimization algorithms to com-
pute the coefficients of the convex linear combination of input kernel gram matrices in 
the literature.

For completeness, in this work, we will present the results obtained using MKL-
naive, SimpleMKL and SEMKL in the case of binary classification problem and 
STATIS-UMKL.

On the contrary, STATIS-UMKL in Mariette and Villa-Vialaneix [33] is an algorithm 
to obtain a consensus meta-kernel in an unsupervised framework. To the best of our 
knowledge, STATIS-UMKL has never been used with support vector machines for clas-
sification purposes. However, the peculiarity of this procedure, which aims to take the 
different specificities of each dataset into account by fusing them into a single meta-
kernel, may also enhance classification performance. In Fig. 1, it is possible to see the 
network structure for all the SVM algorithms that are used for the experiments. This 
architecture belongs to the Mixed integration type as the integration of the input omics 
is preceded by a data transformation, and the SVM algorithm is applied to the convex 
linear combination of the datasets performed at the feature space.

For completeness, we also trained a support vector machine on the direct concatena-
tion of original datasets (SVM-concat) using the same tuning procedure for the hyper-
parameters used for the other algorithms.

Deep multiple kernel learning

As introduced previously, employing neural network architectures is another way to 
combine the input kernel matrices by avoiding the task of convex linear optimization. 
More specifically, in Song et al. [14], a deep learning architecture that includes a dense 
embedding of kernels and a multi-modal neural network is used for fusing multiple 
kernels.

In our case, we adapted this approach to a multi-omics analysis, meaning that the ker-
nel matrices represent different data sources, i.e different omics, and not different repre-
sentations of a single data source, as in a classic multiple kernel fusion problem. As shown 
in Figs. 2 and 3, the structures of the proposed architectures are similar. They consist of a 
first dense embedding, realized by employing a Kernel PCA for each omic input. After this 
first step, a multi-modal neural network is used to learn in parallel three representations, 
one for each dense embedding, and then integrate them to perform the downstream task. 
In the case of Fig. 2, we call this architecture Deep Multiple kernel learning, i.e. Deep 
MKL, to highlight that it is a Multiple kernel learning method that employs deep learn-
ing to combine the different kernels information. From a neural network perspective, the 
architecture is composed of three fully connected layers for each input, followed by an inte-
gration step that can be performed through a concatenation, sum, or weighted sum with 
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learnable parameters of the three representations. Finally, another two fully connected lay-
ers are employed for the final classification step.

In the context of multi-modal architectures, cross-connections between modalities can 
improve the model’s performance, allowing the flow of information between modalities 
at different learning process levels before the fusion step [40, 41]. In our context, this flow 
should inform each omic layer with each other, potentially improving the performances. 
We call the version of Deep MKL employing cross-connections Cross-modal Deep 
MKL in Fig. 3. The architecture’s structure is similar to the Deep MKL one, except that 
each cross-connection is, in practice, an additional layer followed by a concatenation step, 
which means that the Cross-modal Deep MKL architecture, w.r.t. Deep MKL’s one, has an 
additional layer before the integration and classification steps. For both methods, each fully 
connected layer is followed by a Leaky Relu activation function, a Dropout, and batch nor-
malization. Additional details on the architectures and their specific hyperparameters are 
discussed in “Hyperparameters tuning” section.

Interpretability

Using a dense embedding such as Kernel PCA as a step of a neural network makes the Deep 
MKL models even more challenging to interpret than classical deep learning ones. In this 
framework, the principal components can be considered the input features of the neural 
network. Using an interpretability method such as SHAP in Lundberg and Lee [42] or Inte-
grated Gradients [43] to rank the features would be insufficient because, as highlighted in 
“Multiple kernel learning” section, after a kernel transformation, the link between the origi-
nal features, the genes, and the principal components is lost.

In this case, we propose a novel mitigation strategy for biomarkers discovery based on 
a two-step approach. First, we compute the rank of the input features, namely the kernel 
principal components, using Integrated Gradients [43] implemented in the library Narine 
et al. [44]. Then, we employ the recently published method proposed in Briscik et al. [34] to 
recover the most relevant input variables for the selected principal components. As already 
introduced in “Multiple kernel learning” section, KPCA-IG in Briscik et al. [34] allows to 
obtain a data-driven feature ranking based on the selected kPCs, and it is available in the R 
package kpcaIG Briscik et al. [45]. To the best of our knowledge KPCA-IG has never been 
used in combination with a supervised approach such as our proposed DeepMKL, used 
to select the most important kernel principal components in terms of prediction accuracy. 
Combining an unsupervised feature selection approach with a supervised learning method 
like DeepMKL offers a promising strategy for discovering novel biological and medical 
biomarkers. This hybrid pipeline may provide deeper insights than traditional methods 
focused solely on prediction performance, such as those that sequentially remove features 
to rank their importance based on the impact on prediction accuracy, as in Wang et al. [12] 
and Gong et al. [13]. We will demonstrate the application of this approach for biomarker 
identification in “Results”  section, highlighting its relevance from a biomedical point of 
view.
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Performance evaluation

Experimental setup

To evaluate the classification performance of the MKL-SVM algorithms and Deep MKL, 
we implemented the same evaluation pipeline already used by MOGONET in Wang 
et  al. [12] and by MOADLN in Gong et  al. [13]. It consists of evaluating the model’s 
performance on 5 random train/test partitions of the dataset. To maintain the balance of 
class distributions among the partitions, a stratified version of the split is adopted, keep-
ing the ratio of 30/70 % for the train/test splits.

For final evaluation, we present the mean and standard deviation of different perfor-
mance metrics among the 5 randomly generated training/test splits, with a seed set of 
[0, 1, 2, 3, 4] for reproducibility purposes.

The seeds used in MOGONET and Dynamics are not publicly available, meaning that 
the results are not completely reproducible. For this reason, we recomputed all the met-
rics using their publicly available code and the same seeds of our experiments in order 
to have a fair comparison. On the contrary, we have not recomputed the metrics for 
MOADLN as the code is not publicly available.

Hyperparameters tuning

In the context of MKL-SVM, a Grid Search 5-folds cross-validation has been computed 
on the training sets employing a Gaussian radial basis kernel.

Cross-validation has been used to tune the following parameters:

• C parameter: the cost of constraints violation, the so-called C-constant of the reg-
ularization term in the Lagrange formulation of the support vector machine algo-
rithm.

• The sigma parameter: the inverse kernel width for the radial basis kernel function.

For the experiments, the C parameter has been set in the range [1, 25], while the sigma 
in the range of [0.005, 0.00005] for both datasets.

In the context of our deep learning methods, we employed a Random Search 5-folds 
cross-validation for the hyperparameters tuning. Also, in this case, all the experiments 
were carried out using a Gaussian radial basis kernel for the Kernel PCA step. For all 
the DeepMKL models, we fixed the number of layers and the number of neurons as in 
MOGONET, i.e. [200, 200, 100] for ROSMAP and [400, 400, 200] for BRCA, LGG, and 
KIPAN. For all the Cross-modal Deep MKL architectures, as described in the “Deep 
multiple kernel learning” section, we implemented cross-connections between modali-
ties, which, in practice, are additional layers. For this reason, we fixed the number of lay-
ers and neurons for each dataset as [200, 200, 100, 100] for ROSMAP and [400, 400, 200, 
200] for BRCA, LGG, and KIPAN.

In order to have a training process as stable as possible, i.e., a smooth training loss 
curve, we added a dropout and a batch normalization after each feedforward layer. 
Additionally, we fixed small values for the learning rate, such as 5× 10−5 for ROSMAP 
and KIPAN, 10−4 for BRCA, and 10−5 for LGG. Regarding the dropout, the intensity 
is 0.5 for ROSMAP and 0.3 for all the other datasets. Adam classifier [46] and a batch 
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size of 32 are adopted for all the datasets. Regarding the choice of sigma value for the 
Kernel PCA and the number of principal components to keep, we defined different 
search spaces for each dataset since the choice of these hyperparameters depends on 
the topological structure of the data, which varies from dataset to dataset, similar to 
the k parameters used in MOGONET. In the case of ROSMAP, the sigma value for the 
Kernel PCA is chosen in the set of {0.0005, 0.0007, 0.001} . Meanwhile, for BRCA, the 
set is {0.00005, 0.0005, 0.005} . For LGG and KIPAN, the set is [0.0005,0.005]. Regard-
ing the number of principal components in ROSMAP, we fixed it to 120. While in 
BRCA, we defined a search space in the [2, 20] range to choose the optimal combina-
tion with the sigma parameter. We adapted the same strategy for LGG and KIPAN 
using a range of [50, 200].

Since the variability among the different folds made the results unreliable for an 
early stopping strategy, we chose the number of epochs by defining a range from 100 
to 200 with an interval of 10, letting the hyperparameter tuning optimization select 
the best value in combination with all the other parameters.

For reproducing MOGONET’s results, we used the optimized parameter k, as sug-
gested by the authors, namely equal to 2 for ROSMAP and 10 for all the other data-
sets. This parameter controls the average number of edges per node of the Adjacency 
matrix used for training the graph convolutional neural networks.

Finally, for the DIABLO framework we used the 5-fold cross validation procedure 
to optimize the number of components (ncomp) for both block PLSDA and block 
sPLSDA, and the number of retained variables (keepX) for the sparse version. For 
the design matrix, the value of 0.1 has been used to prioritize the discriminative abil-
ity of the model, as suggested by the authors. In Table 2, we provide a summary and 
description of all the tested methods with all the tuned hyperparameters.

Table 2 Summary and description of all the tested methods with all the tuned hyperparameters

Methods Integration Optimized Parameters Description

block PLSDA Mixed ncomp DIABLO

block sPLSDA Mixed ncomp, keepX DIABLO

SVM concat Early C, σ Direct concatenation

SVM naive Mixed C, σ Sum of the kernel

SimpleMKL‑SVM Mixed C, σ Weighted sum of kernels

SEMKL‑SVM Mixed C, σ Weighted sum of kernels

STATIS‑UMKL + SVM Mixed C, σ Weighted sum of kernels

Deep MKL Mixed σ , epochs, principal components, drop‑
out value

Deep Learning kernel fusion

Cross‑Modal Deep MKL Mixed σ , epochs, principal components, drop‑
out value

Deep Learning kernel fusion

NN_VCDN Late NA Feedforward neural network

Dynamics Late NA Dynamical Multimodal Fusion

MOGONET Late Optimized k Graph convolutional network
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Metrics

In order to have a fair comparison, we employed the same metrics of the state-of-
the-art methods. For binary classification, we used accuracy (ACC), F1 score (F1) and 
area under the curve (AUC):

with TP = True Positive, TN = True Negative, FP = False Positive and FN = False 
Negative.

where Precision = TP
TP+FP and Recall = TP

TP+FN.
In the context of binary classification, the F1 score reflects the harmonic mean 

between Precision and Recall, meaning that it measures how balanced these other 
two metrics are for one classifier. The Precision score represents how accurate the 
positive predictions are. Meanwhile, the Recall metric measures how many True Posi-
tives are predicted out of the total number of positive observations.

The AUC score, or area under the ROC curve, represents the classifier’s ability 
to distinguish positive from negative with regard to the classification thresholds. It 
measures the classifier’s performance and its independence from the threshold.

For the multi-class classification task, we employed the accuracy (ACC), the macro-
averaged F1 score (F1-macro) and the F1 score weighted by its support i.e. the num-
ber of instances in that class (F1-weighted).

In multi-class classification, the F1 score is calculated for each class in a one-vs-all 
manner. In the case of F1-macro, the F1 scores are then averaged, considering each 
class equally, regardless of the imbalance of the class distribution in the data.

C is the number of classes and F1i is the F1 score for the class i.
The F1-weighted, instead, takes into account the imbalance of the class distribution 

in the data, and it is calculated by a weighted average where the weights are the per-
centage of the instances in one class.

where supporti is the number of instances of class i and total support is the total number 
of instances in the data.

(2)ACC =
TP+ TN

TP+ TN+ FP+ FN

(3)F1 =
2 · Precision · Recall

Precision+ Recall

(4)F1-macro =
1

C

C
∑

i=1

F1i

(5)F1-weighted =
1

C

C
∑

i=1

(

supporti
total support

)

· F1i



Page 17 of 25Briscik et al. BioData Mining           (2024) 17:53  

Results
We compared the classification performance of different MKL algorithms with differ-
ent state-of-the-art methods such as MOGONET and Dynamics, as MOADLN’s code 
is not publicly available. As anticipated, the MOGONET and Dynamics code seeds 
are unavailable; therefore, we could not replicate the results exactly. Thus, we pro-
ceeded with the computation of the metrics for these methods based on the publicly 
available code and using the same environment and seed selection of our experiments.

Regarding Deep MKL models, we reported the results for only one integration mode, 
namely weighted sum. However, the detailed comparison between different integration 
modes is provided in the Supplementary Information file.

For BRCA in Table 3, all the MKL algorithms achieved the highest performances for 
all the metrics. Regarding KIPAN, as shown in Table 6, the MKL algorithms obtained the 
best results comparable with Dynamics. Also for LGG, the MKL approaches show the 
best accuracy, where the optimized SVM-concat achieved the best results. On the other 
hand, for ROSMAP in Table 4, a similar trend can be seen for SVM-based approaches 
that show comparable accuracy with MOGONET, NN_VCDN and Dynamics, while 
Deep MKL algorithms perform worse than all the other methods.

Thus, it can be seen that, kernel-based methods are consistently comparable and even 
outperformed state-of-the-art methods on all four datasets for all the computed perfor-
mance metrics, Tables 3, 4, 5 and 6.

These results again show the kernel framework’s advantages in genomics data mining, 
where even the results obtained with an SVM trained on the direct concatenation of the 
input datasets, SVM-concat, exhibits a relatively good performance, especially on ROS-
MAP and LGG, the smallest datasets. In Wang et  al. [12], the performances obtained 
with SVM-concat are lower, suggesting that even a simple procedure such as early inte-
gration followed by proper parameter tuning and an appropriate kernel choice of the 
SVM may already give a good model alternative for certain datasets. Methods such as 
SEMKL and STATIS-UMKL, which aim to optimize the input kernel matrices’ convex 
linear combination, showed high performances in most of the different metrics. It should 
be noted that the MKL with equal weights in SVM-naive showed the best performance 

Table 3 Metrics average and standard deviation over 5 random test splits for the performance 
evaluation on BRCA dataset

BRCA 

 Algorithm ACC F1_weighted F1_macro

block PLSDA 0.670± 0.016 0.726± 0.009 0.702± 0.011

block sPLSDA 0.668± 0.021 0.725± 0.012 0.708± 0.009

SVM concat 0.793± 0.018 0.800± 0.016 0.776± 0.017

SVM naive 0.838± 0.008 0.849± 0.008 0.828± 0.011

STATIS‑UMKL + SVM 0.846± 0.011 0.858± 0.010 0.837± 0.018

Deep MKL (weighted sum) 0.827± 0.014 0.803± 0.015 0.831± 0.013

Cross‑Modal Deep MKL (weighted sum) 0.829± 0.017 0.802± 0.022 0.834± 0.015

NN_VCDN 0.700± 0.018 0.692± 0.019 0.609± 0.014

Dynamics 0.826± 0.010 0.829± 0.010 0.793± 0.020

MOGONET 0.736± 0.038 0.726± 0.041 0.650± 0.053
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in the ROSMAP dataset, indicating that the datasets are probably similarly informative 
in this context. For this dataset, the second best was STATIS-UMKL + SVM, where the 
mean over 5 runs of the 3 weights of the convex linear combination of kernel matrices of 
0.361, 0.308, 0.331 suggests that the 3 omics are equally important.

As expected, the two wrapper methods optimized for supervised multiple kernel 
learningn namely, SimpleMKL and SEMKL seem to have similar performance as already 
shown in Wilson et al. [15]. On the other DIABLO linear approaches showed lower per-
formances, proving the need of nonlinear based approaches in the context of complex 
omics datasets. The Deep MKL approach to integrating multiple kernels shows results 
comparable with the STATIS-UMKL + SVM method for the BRCA, LGG, and KIPAN 
datasets. In the case of the ROSMAP dataset, it performs worse than all the methods 

Table 4 Metrics average and standard deviation over 5 random test splits for the performance 
evaluation on ROSMAP dataset

ROSMAP

 Algorithm ACC AUC F1

block PLSDA 0.666± 0.025 0.689± 0.034 0.658± 0.031

block sPLSDA 0.671± 0.027 0.705± 0.033 0.665± 0.017

SVM concat 0.765± 0.019 0.863± 0.044 0.763± 0.015

SVM naive 0.790± 0.006 0.881± 0.010 0.778± 0.018

SimpleMKL‑SVM 0.758± 0.019 0.860± 0.021 0.748± 0.012

SEMKL‑SVM 0.775± 0.039 0.869± 0.035 0.763± 0.037

STATIS‑UMKL + SVM 0.784± 0.038 0.878± 0.019 0.772± 0.039

Deep MKL (weighted sum) 0.715± 0.028 0.800± 0.021 0.721± 0.027

Cross‑Modal Deep MKL (weighted sum) 0.730± 0.025 0.802± 0.020 0.746± 0.039

NN_VCDN 0.794± 0.030 0.874± 0.024 0.807± 0.036

Dynamics 0.764± 0.026 0.870± 0.011 0.771± 0.031

MOGONET 0.787± 0.027 0.878± 0.021 0.791± 0.045

Table 5 Metrics average and standard deviation over 5 random test splits for the performance 
evaluation on LGG dataset

LGG

 Algorithm ACC AUC F1

block PLSDA 0.651± 0.024 0.713± 0.034 0.677± 0.029

block sPLSDA 0.637± 0.030 0.771± 0.039 0.692± 0.027

SVM concat 0.723± 0.030 0.781± 0.024 0.741± 0.032

SVM naive 0.709± 0.011 0.774± 0.024 0.724± 0.022

SimpleMKL‑SVM 0.684± 0.011 0.759± 0.024 0.710± 0.020

SEMKL‑SVM 0.691± 0.011 0.762± 0.028 0.719± 0.017

STATIS‑UMKL + SVM 0.709± 0.009 0.774± 0.023 0.728± 0.015

Deep MKL (weighted sum) 0.687± 0.011 0.765± 0.025 0.684± 0.031

Cross‑Modal Deep MKL (weighted sum) 0.700± 0.020 0.768± 0.026 0.695± 0.032

NN_VCDN 0.703± 0.036 0.754± 0.030 0.715± 0.028

Dynamics 0.707± 0.029 0.769± 0.027 0.714± 0.023

MOGONET 0.669± 0.026 0.711± 0.026 0.69± 0.032



Page 19 of 25Briscik et al. BioData Mining           (2024) 17:53  

based on SVM. The difference in performance can be largely attributed to the dataset 
sizes. This phenomenon is consistent with established understanding that deep learning 
models tend to underperform in scenarios involving smaller datasets [47].

Cross-connections, which were expected to improve the predictions as they ensure 
more layers of integration between different omics, show no consistent improvement 
w.r.t. the simpler Deep MKL architecture.

Biomarker discovery

We previously introduced the approach for biomarkers discovery employing a hybrid 
2-step approach for the Deep MKL algorithm. First, the most relevant features, i.e., ker-
nel principal components, are selected using Integrated Gradients [43] and subsequently 
KPCA-IG as in Briscik et al. [34] is applied, obtaining a data-driven feature importance 
based on the kernel PCA representation of the data. The optimal tuned σ parameters 
adopted in the Deep MKL model are also used to run the KPCA-IG method. The most 
important biomarkers can be found in Tables 7 and 8.

For BRCA dataset the most important components are [1, 2, 3], [2, 1, 3] and [2, 1, 4] 
for mRNA, meth and miRNA respectively. As the mRNA influence on the final pre-
diction appeared to be more prominent, we included the first 15 most relevant genes, 

Table 6 Metrics average and standard deviation over 5 random test splits for the performance 
evaluation on KIPAN dataset

KIPAN

 Algorithm ACC F1_weighted F1_macro

block PLSDA 0.882± 0.013 0.884± 0.013 0.871± 0.016

block sPLSDA 0.896± 0.012 0.898± 0.011 0.891± 0.017

SVM concat 0.953± 0.010 0.954± 0.009 0.949± 0.020

SVM naive 0.958± 0.010 0.959± 0.009 0.953± 0.018

STATIS‑UMKL + SVM 0.959± 0.010 0.960± 0.010 0.955± 0.017

Deep MKL (weighted sum) 0.958± 0.011 0.954± 0.018 0.958± 0.011

Cross‑Modal Deep MKL (weighted sum) 0.958± 0.009 0.952± 0.014 0.958± 0.009

NN_VCDN 0.957± 0.006 0.957± 0.006 0.952± 0.015

Dynamics 0.960± 0.011 0.960± 0.010 0.951± 0.022

MOGONET 0.940± 0.023 0.932± 0.032 0.941± 0.023

Table 7 Important biomarkers identified by DeepMKL + KPCA‑IG in the BRCA dataset

Omics data type Biomarkers

mRNA expression (15) GABRP, SOX10, TFF1, KRT6B, AGR3,

KLK7, SERPINB5, DSC3, KLK6, AGR2,

MIA, TRIM29, SLC6A14, KRT16, KLK8

DNA methylation (10) IGFBP4, RARA, NHLRC4, CA12, DNALI1,

MIR26B, GPR37L1, RSAD1, RARG, NR2F6

miRNA expression (10) hsa‑mir‑224, hsa‑mir‑452, hsa‑mir‑505, 
hsa‑mir‑675, hsa‑mir‑577,

hsa‑mir‑375, hsa‑mir‑18a, hsa‑mir‑
196b, hsa‑mir‑511‑2, hsa‑mir‑145
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while we showed the first 10 for the DNA methylation and miRNA datasets. Same 
procedure is applied to the ROSMAP dataset where the most relevant components 
are [1, 2, 21], [1, 2, 3] and [1, 4, 9] for the three datasets respectively. For the mRNA 
expression genes and those inferred from high-ranking DNA methylation features, we 
conducted gene set functional enrichment analysis using the ToppGene Suite [48] to 
assess the biological significance of genes identified by Deep MKL, highlighting bio-
logical annotations such as Gene Ontology (GO) terms that are significantly enriched 
in a specific set of genes. To correct for multiple comparisons and control the false 
discovery rate (FDR), the Benjamini-Hochberg procedure is employed, reporting the 
adjusted p-values.

For BRCA PAM50 subtype classification datasets, several of the 15 selected 
genes from the mRNA expression dataset were included in GO terms linked with 
breast cancer such as β-alanine transmembrane transporter activity (GO:0001761, 
p = 2.324E − 2 ), carnitine transmembrane transporter activity (GO:0015226, 
p = 4.953E − 2 ) and dystroglycan binding (GO:0002162, p = 3.759E − 3 ). For 
instance, β-alanine has been targeted for its several anti-tumor effects and as a 
co-therapeutic agent in the treatment of breast tumors [49]. Moreover, the gene 
SLC6A14 involved in the β-alanine and carnitine transmembrane transporter activi-
ties has already been addressed to have a pivotal role in the cancer stage [50], where 
its deletion has been linked to a reduction of cancer growth and metastatic spread 
[51], thus being selected as potential direct drug target for cancer therapy [52]. Also, 
the dystroglycan binding has been linked with breast cancer as the expression of this 
adhesion molecule is frequently reduced in human breast and colon cancers and is 
associated with tumor progression [53]. Within this GO, the two enriched genes 
that we found are AGR3 and AGR2. For instance, AGR3 had already been charac-
terized as a novel potential biomarker both for breast cancer prognosis and early 
breast cancer detection [54], while AGR2 expression has been correlated with poor 
outcomes of patients with ER-positive breast cancer [55]. Among others, SERPINB5, 
DSC3, and GABRP have also been linked with malignant neoplasms of the breast. 
SERPINB5 has been indicated to inhibit tumor progression [56], DSC3 downregula-
tion has been linked with several cancer types [57] and GABRP over-expression has 
been linked with poor prognosis, metastatic cancer, basal-like breast cancer [58–60]. 
For genes related to the identified DNA methylation features, several interesting GO 

Table 8 Important biomarkers identified by DeepMKL + KPCA‑IG in the ROSMAP dataset

Omics data type Biomarkers

mRNA expression (15) PREX1, CSRP1, MID1IP1, PLXNB1, MINDY1,

SLC44A1, ANLN, CAVIN1, SLC6A9, DOCK5,

ITPKB, SASH1, YES1, CLMN, CARHSP1

DNA methylation (10) R3HDML, MYOD1, HYAL2, ALDH3B1, OTOP3,

CHST14, GPR152, LAG3, ENG, MYO1C

miRNA expression (10) hsa‑miR‑423‑3p, hsa‑mir‑374b, hsa‑miR‑487b, hsa‑miR‑361‑5p,

hsa‑miR‑30b, hsa‑miR‑885‑5p, hsa‑miR‑376a, hsa‑miR‑216a,

hsa‑miR‑548b‑3p, hsa‑miR‑26a
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were enriched, including prosaposin receptor activity (GO:0036505, p = 1.607E − 2 ) 
and insulin-like growth factor II binding (IGF-2) (GO:0031995, p = 4.011E − 2 ). Sev-
eral studies have shown that prosaposin, a regulator of estrogen receptor alpha, pro-
motes breast cancer growth [61, 62] and that IGFs play an important role in cancer 
development [63] and specifically and increased IGF-2 production has been linked 
with cancer development and progression in many conditions [64–67]. Moreover, the 
highly-ranked miRNAs selected by our method have also exhibited an association 
with cancer. Zhang et al. [68] found over-expression of hsa-miR-224 in breast cancer 
cell lines and in TNBC primary cancer samples. Another example is hsa-mir-675 as in 
Vennin et al. [69] it has been shown that over-expression of this miRNA enhances the 
aggressive phenotype of breast cancer cells, including increased cell proliferation and 
migration in vitro and increased tumor growth and metastasis in vivo.

Deep MKL with KPCA-IG also identifies important biomarkers related to Alzheimer’s 
disease. For AD patient classification, for genes identified by mRNA expression features, 
several enriched GO has been linked with the Alzheimer patalogy. For instance inosi-
tol-1,4,5-trisphosphate 3-kinase activity (GO:0008440 , p = 3.912E − 2 ) linked with the 
gene ITPKB, it has been found to increase in human Alzheimer brain and to exacerbates 
mouse Alzheimer pathology [70]. Also the choline transmembrane transporter activ-
ity (GO:0015220, p = 4.110E − 2 ) as been showed to be linked with the disease, as the 
choline transporter was marked to be incremented in cortical brain regions from AD 
patients compared to non-AD control [71], as also the gene involved in the signature, 
namely SLC44A1 has been found to be up-regulated in Alzheimer patients [72]. Moreo-
ver, the first gene in the list, namely PREX1 has been reported to be linked with brain-
related conditions, such as aberrant neuronal polarity and psychosis-related behaviors, 
in case of over-expression [73].

Additionally, the GO transforming growth factor beta binding (GO:0050431, 
p = 2.69E − 2 ) was enriched for genes linked to the selected DNA methylation features 
by our procedure. Dysfunction in TGFβ signaling has been linked to exacerbated neu-
roinflammation promoting microglia’s cytotoxic activation, which may contribute to 
neurodegeneration in AD [74]. Moreover, several genes are significantly annotated in 
aldehyde dehydrogenase (NADP+) activity (GO:0033721, p = 2.911E − 2 ) where alde-
hyde dehydrogenase two activity and aldehydic load has been associated to a contri-
bution in neuroinflammation and Alzheimer’s disease-related pathology [75]. Another 
molecular function is the protein tyrosine kinase inhibitor activity (GO:0030292, 
p = 3.271E − 2 ). It has been shown that tyrosine kinase inhibition can be viewed as a 
potential target for therapeutic intervention for treating Alzheimer’s disease as it repre-
sents a valid mechanism for improving autophagic clearance of neurotoxic protein and 
mitigating mast cell and microglial-mediated inflammation [76]. Other GO potentially 
related to AD are hexosaminidase activity (GO:0015929, p = 4.290E − 2 ) and galactose 
binding (GO:0005534, p = 3.271E − 2 ), where abnormal cortical lysosomal β-hexosa-
minidase and β-galactosidase activity has been linked both to early and the advanced 
stage of Alzheimer’s disease [77]. Regarding the miRNA biomarkers, our methods 
selected, among others, hsa-miR-361-5p, which was found to be abnormally expressed 
in AD patients [78]. Another highly-ranked miRNA, hsa-miR-885-5p, is substantially 
expressed in brain tissues and has been associated with AD [79].
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Conclusion
Multiple kernel learning is a well-established algorithm in the machine learning com-
munity, while its use has yet to be widespread among practitioners for bio-data mining.

This work presents two novel different approaches for Multiple kernel learning in the 
context of multi-omics data integration. One employs unsupervised learning techniques 
along with Support Vector Machines (SVM). The other utilizes deep learning as a sub-
stitute for convex linear optimization to integrate kernels. The proposed methodologies 
are tested and compared with state-of-the-art methods performances. The experimen-
tal results on four publicly available biomedical datasets show that approaches based on 
kernel mixed integration exhibit comparable or even improved performance while being 
considerably simpler. Precisely, we demonstrate that MKL methods show competitive 
results compared to claimed state-of-the-art methods, which failed to improve predic-
tive performance in the context of multi-omics analysis. Also the novel deep learning-
based procedures used to integrate input kernels and for classification demonstrate to 
be a valid alternative to the more classical Multiple kernel learning optimizations in the 
case of datasets with large enough sample size. In addition, we proposed a novel method 
for biomarkers discovery based on our newly proposed Deep MKL method, which 
proved effective for predicting the disease of interest, potentially showing disease mech-
anisms and helping in the development of personalized treatment protocols.

Future work could investigate other types of data kernel embedding and different deep 
architectures to exploit the kernel framework in the context of Deep multiple kernel 
learning. For classical multiple kernel learning, different types of kernel functions can be 
tested, as each omic dataset could benefit from ad-hoc kernel function choices.

MKL showed that despite being under-utilized in multi-omics data analysis, it pro-
vides a fast and reliable solution that can compete with and outperform more com-
plex architectures.
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