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What Is a Good Imputation Under MAR Missingness?∗

Jeffrey Näf, Julie Josse
Inria, PreMeDICaL Team, University of Montpellier

Abstract

Missing values pose a persistent challenge in modern data science. Consequently, there is
an ever-growing number of publications introducing new imputation methods in various fields.
The present paper attempts to take a step back and provide a more systematic analysis: Start-
ing from an in-depth discussion of the Missing at Random (MAR) condition for nonparametric
imputation, we first develop an identification result, showing that the widely used Multiple
Imputation by Chained Equations (MICE) approach indeed identifies the right conditional dis-
tributions. This result, together with two illuminating examples, allows us to propose four
essential properties a successful MICE imputation method should meet, thus enabling a more
principled evaluation of existing methods and more targeted development of new methods. In
particular, we introduce a new method that meets 3 out of the 4 criteria. We then discuss and
refine ways to rank imputation methods, even in the challenging setting when the true under-
lying values are not available. The result is a powerful, easy-to-use scoring algorithm to rank
missing value imputations under MAR missingness.

Keywords: imputation, missing at random, distributional prediction, proper scores

1 Introduction

In this paper, we study general-purpose (multiple) imputation of missing data sets. That is, instead
of imputing for a specific estimation goal or target, we focus on imputations that can be used
in a second step for a wide variety of analyses. Developing such imputation methods is still an
area of active research, as is benchmarking imputations. To categorize the wealth of imputation
methods, one usually differentiates between joint modeling methods that impute the data using one
(implicit or explicit) model and the fully conditional specification (FCS) where a different model
for each dimension is trained (van Buuren, 2007, 2018). Examples of joint modeling include using
parametric distributions (Schafer, 1997), and more recently, Generative Adversarial Network (GAN)-
based (Yoon et al. (2018); Deng et al. (2022); Fang and Bao (2023)) and Variational Autoencoder
(VAE)-based methods (Mattei and Frellsen (2019); Nazábal et al. (2020); Qiu et al. (2020); Yuan
et al. (2021)). Another set of examples are methods that use a sequential approach to joint modeling,
whereby, for a certain ordering of variables, the joint distribution is specified through a sequence
of conditional distributions, see e.g., Ibrahim et al. (1999); Lee and Mitra (2016); Xu et al. (2016);
Murray (2018) among others. The most prominent example of FCS is the Multiple Imputation
by Chained Equations (MICE) methodology (van Buuren and Groothuis-Oudshoorn, 2011). While
there has been recent progress providing results for MAR imputation in the case of GAN-based
methods (Deng et al. (2022); Fang and Bao (2023)), such results appear to lack for the FCS approach.
Indeed, while some papers claim that imputation is possible under MAR using a methodology such
as MICE, without providing a source, Fang and Bao (2023) claims MICE can only be used to impute
MCAR data.

∗We thank Giulia Marchello for providing the code for GAIN and MIWAE.
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This paper provides new insights into this research by, among other things, proving that the
FCS approach identifies the right distributions under MAR in a population setting and providing
a list of desirable properties a successful regression method should meet for FCS. We address three
questions: First, is imputation under MAR possible with the FCS approach? Formally, we study
whether the conditional distribution needed to impute a missing value is identifiable from the data.
Since we do not specify a parametrization and in particular, do not assume that the parameters of
the missingness mechanism and the distribution of the data are distinct, this is not clear in general as
we will demonstrate using the so-called pattern-mixture model (PMM) representation of missingness
(Little (1993)). We then show that it is nonetheless the case that the imputation distribution is
identifiable, allowing for nonparametric imputations in MAR settings using the FCS approach. Our
identification result, though simple, appears to be stronger than what exists already. It shows that
imputation with the FCS approach is feasible in principle. In particular, we compare the MAR
condition we use to stronger conditions used in the context of GAN-based imputation methods in
Deng et al. (2022) and Fang and Bao (2023). Second, what properties should the ideal imputation
method have? We first illustrate that, despite this identification result, MAR imputation can be
extremely challenging. For instance, we consider a simple two-dimensional MAR example with two
patterns with widely varying distributions of the observed variable. Based on these insights we
develop four properties a successful imputation method should meet in a FCS/MICE framework. In
short, a successful imputation method under MAR needs to be a distributional regression method
that is able to deal with covariate shifts. We discuss existing methods that meet some of these
criteria and introduce a new method, denoted “mice-DRF”. Third, given MAR missingness how
can one generally find the best imputation for a given data set? This question is independent of
whether the FCS or generative approach has been used and has not been addressed at all until
very recently. The first important contribution towards solving this problem was made in Näf
et al. (2023) who define the concept of Imputation Scores (I-Scores) to rank imputations. These
scores are called “proper” if their population versions rank the imputation methods highest that
imputes from the correct conditional distributions. We follow their argument in this paper that
imputation is a distributional prediction task and needs to be evaluated as such. In particular, when
comparing imputation methods, even under purely academic scenarios where the true underlying
values are available, one should refrain from using measures such as the Root Mean Squared Error
(RMSE), as already pointed out previously (van Buuren, 2018; Hong and Lynn, 2020; Näf et al.,
2023). Measures like RMSE favor methods that impute conditional means instead of draws from
the conditional distribution. This artificially strengthens the dependence between variables and
leads to severe biases in parameter estimates and uncertainty quantification. Instead, an imputation
method should draw from the conditional distribution of missing given observed, which might include
values in the tail of the distribution. Currently, imputation methods are largely benchmarked and
evaluated based on measuring the RMSE between the imputed and the underlying true values, see
e.g., Waljee et al. (2013); Anil Jadhav and Ramanathan (2019); Bertsimas et al. (2018); Stekhoven
and Bühlmann (2011); Nazábal et al. (2020); Qiu et al. (2020); Jäger et al. (2021); Yoon et al. (2018);
Dong et al. (2021) and many others.

Instead, we advocate to use a distributional metric or score (Gneiting and Raftery, 2007) between
actual and imputed data sets when the true values are available. For instance, we propose to evaluate
imputation methods by calculating the energy distance (Székely, 2003) between real and imputed
datasets. In the more realistic scenario when true values are not available, we advocate using proper
I-Scores, as in Näf et al. (2023). However, we show that the score developed in Näf et al. (2023) is
only proper under a condition much stronger than MAR and instead define a score that is indeed
proper under MAR while also more computationally efficient and easier to implement.

The remainder of the article is organized as follows. The remainder of this section introduces
notation and related work. In Section 2, we discuss the MAR condition and imputation in more detail
with two illuminating examples and present our identification result. We then use these insights to
present recommendations for imputation methods, including four properties the ideal imputation
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method should meet in Section 3. Section 4 then turns to the question of how to evaluate imputation
methods and presents a new proper I-Score. Finally, we illustrate the main points of this paper in a
three empirical examples in Section 5. Code to replicate the experiments and to use the new scoring
methodology can be found in https://github.com/JeffNaef/MARimputation.

1.1 Notation

We assume an underlying probability space (Ω,A,P) on which all random elements are defined.
Throughout, we take P to be a collection of probability measures on Rd, dominated by some σ-
finite measure µ. We denote the (unobserved) complete data distribution by P ∗ ∈ P and by P the
actually observed distribution with missing values. We assume that P (P ∗) has a density p (p∗).
We take X (X∗) to be the random vector with distribution P (P ∗) and let xi (x∗

i ), i = 1, . . . , n,
be realizations of an i.i.d. copy of the random vector X (X∗). Similarly, M is the random vector
in {0, 1}d, encoding the missingness pattern of X, with realization m, whereby for j = 1, . . . , d,
mj = 0 means that variable j is observed, while mj = 1 means it is missing. For instance, the
observation (NA, x2, x3) corresponds to the pattern (1, 0, 0). We denote the support of X as X ⊂ Rd

M as M ⊂ {0, 1}d.
To denote assumptions on the missingness mechanism, we use a notation along the lines of Seaman

et al. (2013). For each realization m of the missingness random vector M we define with o(X,m) :=
(Xj)j∈{1,...,d}:mj=0 the observed part of X according to m and with oc(X,m) := (Xj)j∈{1,...,d}:mj=1

the corresponding missing part. Note that this operation only filters the corresponding elements
of X according to m, regardless of whether or not these elements are actually missing or not. For
instance, we might consider the unobserved part oc(X,m) according to m for the fully observed X,
that is X ∼ P |M = 0, where 0 denotes the vector of zeros of length d.

As in Näf et al. (2023), we define HP ⊂ P to be the set of imputation distributions compatible
with P , that is

HP := {H ∈ P : H admits density h and h(o(x,m)|M = m) = p(o(x,m)|M = m)

for all m ∈ M}, (1.1)

where as above for a pattern m, o(x,m) = (xj)j∈{1,...,d}:mj=0 subsets the observed elements of
x according to m, while oc(x,m) = (xj)j∈{1,...,d}:mj=1, subsets the missing elements1. Clearly,
P ∗ ∈ HP , so that the true distribution P ∗ can be seen as an imputation.

1.2 Contributions

Inspired by the discussion in Molenberghs et al. (2008); Näf et al. (2023), we study the MAR condition
under the framework of pattern-mixture models (PMMs) introduced in Little (1993), which we argue
is more natural for imputation. Overall, we present four main contributions: First, we thoroughly
analyse different MAR conditions through the lens of imputation. Crucially, we do not follow the
traditional assumption that the distribution of X is parametrized by a vector θ and the distribution
of M | X by a distinct vector ϕ. This removes the question of parameters of interest and allows
to study general-purpose nonparametric imputation. Second, we provide an identification result for
the FCS approach under the weakest MAR assumption. As the result concerns the identification
of conditional distributions in a MAR setting, it can also be applied to the sequential approach of
joint modeling as we show in a corollary. Third, based on the previous two contributions we discuss
four essential properties a successful imputation method needs to meet in the FCS/MICE framework
under MAR. We moreover discuss methods that approximately meet most of these criteria, including
a new methodology which we refer to as mice-DRF. As an added benefit, this new methodology is

1Note that while h and p are densities on Rd, notation is slightly abused by using expressions such as h(o(x,m)|M =

m) and p(o(x,m)|M = m), which are densities on R|{j:mj=0}|.
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able to impute a block of several variables at once, potentially reducing the heavy computational
burden of MICE in high dimensions. We provide an implementation of this imputation method,
based on the mice package, as part of our freely available code. Fourth, we discuss the evaluation
of imputation methods and show that the Imputation Score developed in Näf et al. (2023) is not
proper under MAR and build a new easy-to-use score with propriety under MAR. The new score
is simple to implement and remarkably accurate, even in challenging examples, as we demonstrate
empirically in Section 5. Though the score needs a set of fully observed variables to be provably
proper, we also discuss an alternative version of the score that empirically works well even when
all variables have missing values. Throughout, we provide a discussion of imputation under MAR
that connects several threads of literature and also make the connection to classical ignorability in
a likelihood framework.

1.3 Related Work

Though the literature on missingness is vast, the results and discussions presented in this paper are
new to the best of our knowledge. Most papers discussing MAR add the additional assumption that
the distribution of X and M | X are parametrized by two distinct sets of parameters as mentioned
above, leading to the classical ignorability result of Rubin (1976). This simplifies the analysis and
generally avoids the issues we discuss here. For instance, while the FCS and, in particular, the
MICE approach has been studied theoretically (Little and Rubin, 1986; Liu et al., 2014; Zhu and
Raghunathan, 2015) under this ignorability, the problems of identification in this general setting
appear to not have been discussed before. Instead, these papers generally focus on the challenging
problem of potential incompatibility of the conditional models and analyze the convergence and
asymptotic properties of the FCS iterations. Our aim is in a sense much simpler, as we want to
answer the question of whether the right conditional distributions are identifiable under MAR when
no assumption on the parametrization is placed.

As the paper views missingness through the lens of pattern-mixture models of Little (1993), the
conceptually closest papers to ours are those based on the Generative Adversarial Network (GAN)
approach: Both Deng et al. (2022); Fang and Bao (2023) make use of the PMM view in their proofs,
without explicitly mentioning this, as does the original GAIN paper of Yoon et al. (2018). We
essentially provide a similar identification result for the FCS or sequential approach under MAR as
Deng et al. (2022) provide for their GAN-based approach. Despite the simplicity of our identification
result, it appears to be stronger than what exists in the literature. For instance, the identification
results in Deng et al. (2022); Fang and Bao (2023) for GAN-based methods rely on stronger MAR
conditions, as shown below. Similarly, Tian (2017) claims the full distribution is recoverable under
MAR, but uses a conditional independence condition that is much stronger than the MAR condition
we consider. Indeed, graph-based papers concerned with recoverability usually assume variables that
are always observed and formulate MAR as conditional independence statements, see e.g Doretti
et al. (2018). This is much stronger than the traditional MAR condition of Rubin (1976). To the
best of our knowledge, we are also the first to propose a list of properties an imputation method
in the FCS framework should have, based on a thorough analysis of the MAR condition. This
list complements existing guidelines on general imputation methods with a different focus, see e.g.,
Murray (2018, Section 4). Finally, when considering the evaluation of imputation methods, we build
upon the arguments in Näf et al. (2023) but heavily improve their score to develop a score that is
truly proper under MAR, in the sense that it provably ranks the best imputation method highest
in a population setting.

2 Sequential Imputation under MAR

In the following, we first define MAR properly, following Rubin (1976); Seaman et al. (2013); Mealli
and Rubin (2015), and analyze several different MAR conditions relevant to our discussion. The
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Selection Model: P(M = m | x)p∗(x) Pattern Mixture Model: p∗(x | M = m)P(M = m)

P(M = m|x) = P(M = m|x̃) for all m ∈ M p∗(oc(x,m) | o(x,m),M = m) = p∗(oc(x,m) | o(x,m))
and x, x̃ such that o(x,m) = o(x̃,m) (SM-MAR) for all m ∈ M, x ∈ X (PMM-MAR)

P(M = m|x) = P(M = m|o(x,m))
for all m ∈ M, x ∈ X (SM-MAR II)

p∗(oc(x,m) | o(x,m),M = m′) = p∗(oc(x,m) | o(x,m))
for m′ = m or m′ = 0 and all x ∈ X (EMAR)
p∗(oc(x,m) | o(x,m),M = m′) = p∗(oc(x,m) | o(x,m))
for all m ∈ M,m′ ∈ M, x ∈ X (CIMAR)

P(M = m|x) = P(M = m) p∗(x | M = m) = p∗(x | M = m′) = p∗(x)
for all m ∈ M, x ∈ X (SM-MCAR) for all m ∈ M,m′ ∈ M, x ∈ X (PMM-MCAR)

Table 1: Summary of the different MAR conditions discussed in this paper, when available both in the
selection model and the pattern-mixture model. The conditions are ordered from weakest (top) to strongest
(bottom). Conditions on the same level are equivalent.

different definitions considered here are summarized in Table 1. Crucially, we do not assume any-
thing about parametrization and instead purely focus on statements about conditional distributions.
Using two examples illustrating these definitions, we show that this “nonparametric” view on MAR
leads to nontrivial identification problems due to potential distribution shifts. We then present our
identification result showing that identification is nonetheless possible in a population setting if one
learns the conditional distribution using all available patterns. Finally, we return to the parametrized
distribution case and contrast our findings with classical ignorability results in a likelihood frame-
work.

2.1 MAR Definitions

We first properly define what we mean by MAR in the framework of the so-called selection model
(SM, Little (1993)). In this framework, the joint distribution of X and M is factored as,

p∗(x,M = m) = P(M = m | x)p∗(x).

Through this view MAR is defined as:

Definition 2.1. The missingness mechanism is missing at random (MAR) if

P(M = m|x) = P(M = m|x̃) for all m ∈ M
and x, x̃ such that o(x,m) = o(x̃,m). (SM-MAR)

This is sometimes referred to as “Always Missing at Random”, see e.g., Mealli and Rubin (2015);
Deng et al. (2022). One can also weaken this requirement to be true only for the data and patterns
that are actually observed, which is usually referred to as Realized MAR (RMAR). The arguments
in this paper go through with slight modification, also in the case of RMAR, thus we focus on
(SM-MAR) for simplicity. An alternative way to define MAR is

Definition 2.2. The missingness mechanism is missing at random (MAR) if

P(M = m|x) = P(M = m|o(x,m)) for all m ∈ M, x ∈ X . (SM-MAR II)

This is the definition used for instance in Molenberghs et al. (2008). Note that o(x,m) is dif-
ferent for each m, and thus neither (SM-MAR) nor (SM-MAR II) are statements about conditional
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Figure 1: Illustration: X∗ is the assumed underlying full data, M is the vector of missing indicators and
X arises when M is applied to X∗. Thus each row of X/X∗ is an observation under a different pattern.
Under condition (CIMAR), the distribution of X1, X2 | X3 is not allowed to change when moving from one
pattern to another, though the marginal distribution of X3 is allowed to change. In contrast, under MCAR
(PMM-MCAR), no change is allowed. Under MAR (PMM-MAR) the only constraint is that the distribution
of X1, X2 | X3 in the third pattern is the same as the unconditional one.

independence as remarked in Mealli and Rubin (2015). Nonetheless, (SM-MAR II) is very intuitive:
For any value of m, we assume that the probability of this value occurring only depends on the
observed part of x. We show below that both definitions are indeed equivalent.

Considering instead the pattern-mixture model (PMM) framework (Little, 1993), we observe

p∗(x,M = m) = p∗(x | M = m)P(M = m).

This view emphasizes that the data we observe in X are masked data from a vector X∗ | M and
in particular, when learning quantities from one pattern, we have to be careful when changing to
another, as distributions can change from pattern to pattern. A typical example is the Gaussian
pattern-mixture model, whereby

X∗ | M = m ∼ N(µm | Σm),

so that the distribution in each pattern might follow a different Gaussian distribution. It is well-
known (Little, 1993), that the parameters of a pattern-mixture model are generally not identifiable
without restrictions on how the distributions are allowed to change. Thus an immediate question
becomes how the MAR condition constrains these distributions. This was answered in Molenberghs
et al. (2008). We first give a new definition for better readability:

Definition 2.3. The missingness mechanism is missing at random (MAR) if

p∗(oc(x,m) | o(x,m),M = m) = p∗(oc(x,m) | o(x,m))

for all m ∈ M, x ∈ X . (PMM-MAR)

Proposition 2.1 (Molenberghs et al. (2008)). Condition (SM-MAR II) is equivalent to (PMM-MAR).

Corollary 2.1. Condition (SM-MAR) is equivalent to (SM-MAR II) and both are equivalent to
(PMM-MAR).

Remark. The proof starting from (SM-MAR) is taken from Näf et al. (2023), though they wrongly
thought to have proven equivalence to the stronger condition (CIMAR) below.

To understand this condition, and how weak it in fact is, it makes sense to first consider a
stronger, but more intuitive condition:

Definition 2.4. The missingness mechanism is conditionally independent MAR (CIMAR) if

p∗(oc(x,m) | o(x,m),M = m′) = p∗(oc(x,m) | o(x,m))

for all m ∈ M,m′ ∈ M, x ∈ X . (CIMAR)
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This is a conditional independence statement, namely that oc(X,M) | o(X,M) is independent
of M ′. That is, no matter what pattern m′ is considered, the distribution of oc(X,M) | o(X,M)
remains the same. As such, (CIMAR) allows to learn the distribution of oc(X,m) | o(X,m) from
any pattern m′. It in turn is still weaker than MCAR however, which requires that

Definition 2.5. The missingness mechanism is missing completely at random (MCAR), if

p∗(x | M = m) = p∗(x | M = m′) = p∗(x) for all m ∈ M,m′ ∈ M, x ∈ X . (PMM-MCAR)

Figure 1 illustrates these different conditions in a small example.
Under (CIMAR), the observed variables can widely change their distribution from pattern to

pattern, as shown in the following example:

Example 1. Consider the following Gaussian mixture model for two patterns m1 = (0, 0) and
m2 = (1, 0):

(X1, X2) | M = m1 ∼ N

((
0
0

)
,

(
2 1
1 1

))
(X1, X2) | M = m2 ∼ N

((
5
5

)
,

(
2 1
1 1

))
.

For both patterns, the conditional distribution of X1 given X2 is given as

p(x1 | x2,M = m1) = p(x1 | x2,M = m2) = N(x2, 1)(x1),

where N(x2, 1)(x1) is the univariate Gaussian density with mean x2 and variance 1 evaluated at x1.
We first verify that the condition in (CIMAR) holds:

p∗(x1 | x2) =
P (M = m1)p

∗(x1, x2 | M = m1) + P (M = m2)p
∗(x1, x2 | M = m2)

P (M = m1)p∗(x2 | M = m1) + P (M = m2)p∗(x2 | M = m2)

=
(P (M = m1)p

∗(x2 | M = m1) + P (M = m2)p
∗(x2 | M = m2)) p

∗(x1 | x2,M = m2)

P (M = m1)p∗(x2 | M = m1) + P (M = m2)p∗(x2 | M = m2)

= p∗(x1 | x2,M = m2)

= p∗(x1 | x2,M = m1).

However, the distribution of X2 in pattern m1 (N(0, 1)) is heavily shifted compared to pattern m2

(N(5, 1)). Section 3 demonstrates how different imputation methods struggle to deal with this shift
in distribution on simulated data.

In the above example, we only have 2 patterns and thus (PMM-MAR) and (CIMAR) turn out
to be equivalent and both hold in this example. However, an example with 3 patterns shows that
(PMM-MAR) is strictly weaker than (CIMAR):

Example 2. Consider

X =

x1,1 x1,2 x1,3

x2,1 NA x2,3

NA x3,2 x3,3

 ,M =

0 0 0
0 1 0
1 0 0

 =

m1

m2

m3

 . (2.1)

whereby (X1, X2, X3) are independently uniformly distributed on [0, 1]. We further specify that

P(M = m1 | x) = P(M = m1 | x1) = x1/3

P(M = m2 | x) = P(M = m2 | x1) = 2/3− x1/3

P(M = m3 | x) = P(M = m3) = 1/3.
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Figure 2: Illustration of Example 2. Left: Distribution we would like to impute X1 | M = m3. Middle:
Distribution of X1 in the fully observed pattern (X1 | M = m1). Right: Distribution of all patterns for which
X1 is observed (Mixture of the distribution of X1 in patterns m1 and m2).

It can be checked that these are valid distributions, as in particular,
∑

m P(M = m) = 1 and∑
m P(M = m | xj) = 1 for j = 1, . . . , 3. Moreover, P(M = m | x) = P(M = m | o(x,m)) and thus

the MAR condition (SM-MAR) holds. In particular, for variable x1 in pattern m3, it holds that

p∗(x1 | x2, x3,M = m3) = p∗(x1 | x2, x3).

However, if we consider x1 given (x2, x3) in the first pattern, we have:

p∗(x1 | x2, x3,M = m1) =
P(M = m1 | x1, x2, x3)

P(M = m1 | x2, x3)
p∗(x1 | x2, x3)

= x1p
∗(x1 | x2, x3),

showing that (CIMAR) does not hold. Figure 2 illustrates this behavior: It shows the distribution
of X1 in different patterns. As the distribution of (X2, X3) in the different patterns is always the
same, this directly illustrates the change in the conditional distribution of X1 | X2, X3 when changing
from pattern m1 to pattern m3. The key is thus that (PMM-MAR) still allows for a change in the
conditional distributions over different patterns. That is the distribution X1 | X2, X3 in pattern m1

is different in the above example from the distribution X1 | X2, X3 in pattern m3. All that is required
is that the distribution X1 | X2, X3 in pattern m3 corresponds to the unconditional one.

Thus we have just shown that

Proposition 2.2. MCAR (PMM-MCAR) is strictly stronger than (CIMAR) which is strictly
stronger than (PMM-MAR).

Another important MAR condition is the extended MAR condition:

Definition 2.6. The missingness mechanism is extended missing at random (EMAR), if

p∗(oc(x,m) | o(x,m),M = m′) = p∗(oc(x,m) | o(x,m))

for m′ = m or m′ = 0, for all x ∈ X . (EMAR)

This is clearly stronger than (PMM-MAR) and weaker than (CIMAR). Moreover, it is a useful
condition as it allows to learn any conditional distribution of missing given observed from the fully
observed pattern.
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2.2 FCS in MAR

The previous discussion illustrates that from (PMM-MAR) alone, it is not clear whether learning
a distribution in one pattern allows to impute values in the other pattern. However, in Example 2
while P (M = m1 | x1) depends on x1, P (M = m1 | x1) + P (M = m2 | x1) does not. This is the
key property in the proof of identification under MAR as it implies that p∗(x1 | x2, x3) needed for
imputation can be identified if all patterns for which x1 are observed are considered. We detail this
now.

The goal of the FCS in general and the MICE approach in particular is to impute by iteratively
drawing for all j ∈ {1, . . . , d} and t ≥ 1,

x
(t+1)
j ∼ p∗(xj | x(t)

−j),

whereby x
(t)
−j = {x(t)

l }l ̸=j are the imputed and observed values of all other variables except j at
the tth iteration. Doing this repeatedly leads to a Gibbs sampler that converges under quite mild
conditions (Little and Rubin (1986, Chapter 10.2.4.)). Naturally, if one does not have access to the
true distribution p∗ and estimates the conditional model nonparametrically, this is a very complicated
problem to analyze theoretically. Here we focus on a very simple question: If x−j has already been
imputed by the correct distribution, that is we have access to the true underlying (d − 1)−variate
distribution p∗(x−j), can we successfully impute xj by only looking at the patterns where xj is
observed? This view connects to Example 2 and avoids any question of convergence of the Gibbs
sampler to focus purely on identification.

Let in the following,

Lj = {m ∈ M : xj ∈ o(x,m)}, (2.2)

be the set of patterns in which xj is observed. The best action one can do in this case is to draw
from the distribution,

h∗(xj | x−j)

=
∑

m∈Lj

P(M = m)∑
m∈Lj

p∗(x−j | M = m)P(M = m)
p∗(x | M = m), (2.3)

which is the conditional distribution of Xj | X−j learned from all patterns in which xj is observed.
Owing to the above example, the question is whether under MAR, h∗(xj | x−j) is indeed the same
as p∗(xj | x−j);

Proposition 2.3. Assume MAR in (PMM-MAR) holds. Then for h∗(xj | x−j) as in (2.3),

h∗(xj | x−j) = p∗(xj | x−j), (2.4)

for all x−j with p∗(x−j) > 0.

This shows that the desired distribution is indeed recoverable in principle from all available
patterns. Intuitively at Xj , one can reduce the |M| patterns to two, one where Xj is missing, and
one where it is observed. Though these two aggregated patterns are mixtures of several patterns
m ∈ M, it can be shown that the MAR condition implies that both aggregated patterns have the
same conditional distribution Xj | X−j , thus allowing to identify the right conditional distribution
in the pattern where Xj is observed.

Even with perfect estimation, conditioning on X−j would require iteration over several imputa-
tions, as mentioned above. To make the result more tangible, we can study the following simplified
procedure that avoids iteration entirely: Assume in the following that one variable is fully observed.
That is the possible pattern in M all share one zero, or

O = {l : ml = 0 for all m ∈ M}, (2.5)
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is not empty. Without loss of generality, we assume that this fully observed variable is the pth one.
Then for j ∈ {1, . . . , p− 1}, let Lj be defined as in (2.2). We then impute by drawing observations
from

h∗(xj | xj+1, . . . , xp)

=
∑

m∈Lj

P(M = m)∑
m∈Lj

p∗(xj+1, . . . , xp | M = m)P(M = m)
p∗(xj , xj+1, . . . , xp | M = m),

which is the conditional distribution Xj | Xj+1, . . . , Xp learned from all patterns ml, l ∈ Lj . This
in fact corresponds to the sequential approach to joint modeling, see e.g., Murray (2018) and the
references therein. We denote the resulting distribution of the fully imputed data as H∗ with density
h∗. For this simplified imputation approach it holds that:

Corollary 2.2. Assume MAR in (PMM-MAR) holds and that O in (2.5) is not empty. Then
H∗ ∈ HP has

h∗(x) = p∗(x), for all x. (2.6)

Proposition 2.3 and Corollary 2.2 show that sequential imputation with an algorithm that can
perfectly learn the distribution under MAR is indeed identified, in the sense that we are able to learn
the true conditional distribution needed to impute a missing value. The key for the proof is that (1)
all available patterns are used to learn a distribution of xj | xj+1, . . . , xp, (2) use of (SM-MAR II),
which is equivalent to (PMM-MAR), and (3) that the conditional distributions P (M = m | x) still
need to sum to 1 over all values of m.

Remark. In particular, Proposition 2.3 and Corollary 2.2 show that the FCS approach can identify
the right conditional distributions under a weaker condition than GAN-based approaches. Deng et al.
(2022) show that their GAN architecture is able to impute missingness under EMAR, (EMAR). This
condition allows to learn a distribution from the fully observed pattern and is thus strictly stronger
than (PMM-MAR). Similarly, Fang and Bao (2023) show that their GAN-based method can identify
the conditional distribution of missing given observed data. However, while they claim this shows
identification under MAR, the condition they present in Section 3.2. is actually stronger and more
akin to (CIMAR).

From the above, it can be seen that we can in general not just simply learn the conditional
distributions from the fully observed data and then impute the missing variables. Instead, we need
to consider all patterns wherein a variable xj is observed to be able to impute it. We now want to
highlight why this discussion of distribution shifts under MAR may not be relevant for Maximum
Likelihood Estimation (MLE).

2.3 Ignorability in Maximum Likelihood Estimation

In the context of MLE, it has long been established (Rubin, 1976) that the missing mechanism
is ignorable under MAR and an additional condition. This additional condition is critical for our
discussion. To formalize this assume p∗ is parametrized by a vector θ. Moreover, assume the
conditional distribution of M | x is parametrized by ϕ. Then we can rewrite the MAR definition in
(SM-MAR) slightly, as in Rubin (1976); Mealli and Rubin (2015):

Pϕ(M = m|x) = Pϕ(M = m|x̃) for all m ∈ M
and x, x̃ such that o(x,m) = o(x̃,m). (2.7)

As so far, ϕ and θ are not restricted to be finite-dimensional, this could in principle be assumed
without loss of generality, such that (2.7) is indeed the same as condition (SM-MAR). In the

10



following, we will assume for simplicity that θ is finite-dimensional. Let Ωθ be the space of θ, Ωϕ

the space of possible ϕ and Ωθ,ϕ the joint space of the parameters. The crucial additional condition
is that:

Ωθ,ϕ = Ωθ × Ωϕ. (2.8)

This just means that ϕ is distinct from θ, so that Pϕ(M = m|x) does not depend on θ (Rubin, 1976;
Seaman et al., 2013; Mealli and Rubin, 2015). In this case, we can rederive the classical ignorability
result for MAR in a likelihood context: Consider the likelihood for a pattern m,

L(θ; o(x,m)) = p∗θ,ϕ(o(x,m),M = m) =

∫
p∗θ,ϕ(x,M = m)doc(x,m).

That is, L(θ; o(x,m)) is the joint density of the observed values with respect to pattern m, and
M = m, seen as a function of θ. Under (2.7) it can be checked that∫

p∗θ,ϕ(x,M = m)doc(x,m) = Pϕ(M = m | o(x,m))p∗θ(o(x,m))

= c(o(x,m))p∗θ(o(x,m)),

with c(o(x,m)) not depending on θ. Consequently, it is possible to ignore the missingness mechanism
(and potential distribution shifts) in a likelihood setting due to (a) the assumption of distinct
parameters θ, ϕ (2.8) and (b) the nature of maximum likelihood. In particular, even though the
distribution p∗θ,ϕ(o(x,m),M = m) is not the same as the p∗θ(o(x,m)), it is essentially the same from
an MLE perspective: We can therefore simply maximize p∗θ(o(x,m)) over θ to get the MLE. Whether
this ignorability holds under MAR is a question of parametrization, as we illustrate in Example 2:

Example 3 (Example 2 Continued). Consider again the setting of Example 2, that is:

X =

x1,1 x1,2 x1,3

x2,1 NA x2,3

NA x3,2 x3,3

 ,M =

0 0 0
0 1 0
1 0 0

 =

m1

m2

m3

 .

whereby (X1, X2, X3) are uniformly distributed on [0, 1] and

P(M = m1 | x) = P(M = m1 | x1) = x1/3

P(M = m2 | x) = P(M = m2 | x1) = 2/3− x1/3

P(M = m3 | x) = P(M = m3) = 1/3.

Now assume that the parameter of interest is the upper boundary of x1, such that X1 is uniform on
[0, θ]. As P(M = mi | x) does not change, it follows that:

p∗θ,ϕ(x1, x2, x3,M = m1) = P(M = m1 | x1)pθ(x1, x2, x3) =
x1

3
p∗θ(x1, x2, x3). (2.9)

Thus for optimization purposes, maximizing p∗θ,ϕ(x1, x2, x3,M = m1) over θ is equivalent to maxi-
mizing p∗θ(x1, x2, x3) over θ. In particular, being able to identify θ allows to identify p∗θ(x1 | x2, x3)
and thus to impute x1. This, despite the fact that

p∗θ(x1, x2, x3,M = m1) =
x1

3
p∗θ(x1, x2, x3) ̸= p∗θ(x1, x2, x3).

Having obtained θ, it is then possible to impute X1 in the third patterns by drawing from p∗θ(x1 |
x2, x3). However, notice that this is not the same as saying that θ can be recovered from only looking
at the first pattern m1. Indeed in this case:

p∗θ,ϕ(x1, x2, x3 | M = m1) =
P(M = m1 | x1)

P(M = m1)
pθ(x1, x2, x3) =

x1

θ
pθ(x1, x2, x3), (2.10)

as P (M = m1) = θ/3. Thus maximizing p∗θ,ϕ(x1, x2, x3 | M = m1) is not equivalent to maximizing
p∗θ(x1, x2, x3). On the flipside, if one changes P(M = m1 | x1) to x1/3θ, violating (2.8), maximizing
pθ,ϕ(x1, x2, x3,M = m1) will not recover θ.
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3 Requirements for Imputation Methods

We have seen that both conditional as well as marginal distribution shifts can occur for different pat-
terns under MAR. However, conditional shifts can be disregarded when using a sequential approach
(i.e. MICE), as, for a variable Xj , considering all patterns m in which Xj is missing identifies the
right conditional distribution. Nonetheless, marginal distribution shifts, such as in Example 1, can
still occur. In particular, a successful imputation method needs to be able to deal with distributional
shifts in the observed variables. Moreover, in practice, an estimation method in the FCS framework
should be able to estimate the potentially complex distribution of Xj | X−j as accurately as possible.

The above considerations thus suggest desirable properties an imputation method should meet
in an FCS framework: It should

(1) be a distributional regression method,

(2) be able to capture nonlinearities and interactions in the data,

(3) be fast to fit,

(4) be able to deal with distributional shifts in the observed variables.

Moreover, a helpful property to allow to use the FCS approach in high dimensions is if

(5) the method is able to deal with multivariate responses.

missForest which was shown to be extremely successful in terms of RMSE in various benchmark-
ing analyses, only meets (2) and (3). In particular, random forest imputation such as missForest
was deemed more successful than GAN-based methods in Jäger et al. (2021). However, a more
appropriate scoring will very likely reverse these insights, ranking GAIN and similar methods higher
than missForest.2 On the other hand, Wang et al. (2022) which provides a careful benchmarking of
imputation methods more in line with this paper, finds that mice-cart and mice-RF (Burgette and
Reiter, 2010; Doove et al., 2014) are more successful than GAIN. These methods use one or several
trees respectively, but sample from the leaves to obtain the imputation, approximating draws from
the conditional distribution to approximate (1). Similarly, Näf et al. (2023) find mice-cart/RF to
be extremely successful imputation methods. As such, they could be combining the best of both
worlds; inheriting the accuracy of missForest, while providing draws from the conditional distri-
bution. However, they are ultimately not designed for the task of distributional regression. Thus
a forest-based distributional method such as DRF of Ćevid et al. (2022) might even attain better
results and indeed meets (1)–(3). Moreover, DRF is designed to handle multivariate outputs and
thus also meets (5). This makes the method accessible to high-dimensional datasets, as MICE can
be used in blocks as described in van Buuren (2018, Chapter 4.7). We implemented this option in
our new mice-DRF R function. Thus if d = 1000, one might define blocks of size 100 and in each
pass, train DRF by regression a 100 variables on the remaining 900. This would reduce the number
of passes in each iteration from 1000 to 10. We thus implement the following routine in mice: For
each j, fit a DRF regressing the observed xi,j onto xi,−j to obtain an estimate of the conditional
distribution, given by forest-induced weights. For each unobserved xi,j , we predict the weights based
on xi,−j and draw from the observed set according to those weights. This is essentially the mice-RF
implementation described in Doove et al. (2014), with the traditional Random Forest exchanged by
the Distributional Random Forest.

However, as a forest-based method, DRF still generalizes poorly outside of the training set, i.e.
Requirement (4) is not met. Figure 3 illustrates the behavior of different imputation strategies for
Example 1. First, the Gaussian imputation simply fits a regression in pattern m1 and then draws
from a conditional Gaussian distribution given the estimated parameters. As such it is the ideal

2Though our experiments in Appendix B suggest otherwise.
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Figure 3: The true distribution against a draw from different imputation procedures for imputing X1 in
Example 1.

method in this setting and serves as an illustration that the data can be correctly imputed. For the
nonparametric methods, DRF, as a distributional method, performs better than mice-RF. However,
it still fails to deal with the covariate shift, centering around 2, when it should center around 5.

Thus, while previous analysis indicates that forest-based methods such as mice-cart, mice-RF,
and likely also mice-DRF might be some of the most successful methods currently available, and in
particular will likely beat GAN-based methods such as GAIN, finding an imputation method that
(approximately) meets (1)–(5) is still an open problem.

Finally, the above list overlaps with and complements the three points mentioned in Murray
(2018, Section 4) for general imputation methods:

(1’) Imputations should reflect uncertainty about missing values and about the imputation model.

(2’) Imputation models should generally include as many variables as possible.

(3’) Imputation models should be as flexible as possible.

The first part of (1’) corresponds to (1) of our list; instead of providing the best value for impu-
tation, one should draw from the right conditional distribution to impute, such that the underlying
distribution is replicated. To reiterate this, Figure 4 shows a small example. However, as we note
in Section 6, the second part, that the uncertainty of the imputation model should be considered as
well, is not met by the imputation methods we present here and is an open problem for nonpara-
metric imputation. While this gets less consequential in large samples, this additional uncertainty
is needed for reliable uncertainty quantification with multiple imputation. Point (2’) is not relevant
to our discussion, while (3’) coincides with (2) above.

4 Assessing Imputation Methods

We now turn to the question of how to find the best out of several imputations. First, the above
discussion suggests that in academic scenarios, where the true underlying values are available, distri-
butional distances or scores should be used to evaluate imputation methods. We will in the following
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Figure 4: 5000 observations of a bivariate Gaussian Example with around 50% MCAR missing values in
X1. Left: Imputation by fitting a regression model and imputing the prediction, Right: Imputation by fitting
a regression model and imputing by drawing from a conditional Gaussian distribution. Parameters calculated
with the regression imputation tend to have a large bias, more so than if only complete-case analysis is used.

use the (negative) energy distance between imputed and real data:

d(H,P ∗) = 2E[∥X − Y ∥Rd ]− E[∥X −X ′∥Rd ]− E[∥Y − Y ′∥Rd ],

where ∥ · ∥Rd is the Euclidean metric on Rd, X ∼ H, Y ∼ P ∗ and X ′, Y ′ are independent copies of
X and Y . The energy distance is directly related to the energy score (Gneiting and Raftery, 2007;
Gneiting et al., 2008):

es(H, y) =
1

2
E[∥X −X ′∥Rd ]− E[∥X − y∥Rd ], (4.1)

where X ∼ H and X ′ ∼ H is an independent copy. Let S(H,P ∗) = E[es(H,Y )], where the
expectation is taken over Y ∼ P ∗. Gneiting and Raftery (2007) showed that

S(H,P ∗) ≤ S(P ∗, P ∗), (4.2)

i.e. S is proper in the traditional sense. That is, if we predict the distribution P ∗, and the “test
data” y are indeed drawn from P ∗, taking the average over a “large” number of y will lead to the
maximal value. We will make use of the energy score to create a reliable ranking method when the
underlying data are not available. To this end, we consider the I-Scores framework of Näf et al.
(2023):

Definition 4.1 (Definition 4.1 in Näf et al. (2023)). A real-valued function SNA(H,P ) is a proper
I-Score iff

SNA(H,P ) ≤ SNA(P
∗, P ),

for any imputation distribution H ∈ HP . It is strictly proper iff the inequality is strict for H ̸= P ∗.
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The key is that we would like to score P ∗, when only samples from P are available.
Näf et al. (2023) developed a first I-Score using Density Ratios and random projections A ⊂

{1, . . . , d}. The score was shown to be proper under (CIMAR). In Appendix C.1 we show that it
is however not proper under MAR. Following the arguments in this paper, we now develop a score
that is not only easier to use but also proper under MAR, without any projections. However, it
necessitates that there is at least one variable that is always observed, or that O defined in (2.5)
is not empty. Adapting the proof of Proposition 2.3, the perfect imputation method learns the
distribution,

h∗(xj | xO)

=
∑

m∈Lj

P(M = m)∑
m∈Lj

p∗(xO | M = m)P(M = m)
p∗(xj , xO | M = m),

which is simply the conditional distribution of xj | xO learned from all patterns in which xj is not
missing. Consequently, E[es(HXj |xO

, Y )], with the integration taken over Y ∼ H∗
Xj |xO

, is maximal

when h(xj | xO) = h∗(xj | xO) by propriety of the energy score. We then define the score of variable
j as

Sj
NA(H,P ) = E[E[es(HXj |XO

, Y )]], (4.3)

where the outer expectation is taken over XO ∼ P ∗
O, the distribution of all fully observed variables.

Usually, in the scoring literature, one only considers the inner expectation, even though in practice
“scores are reported as averages over comparable sets of probabilistic forecasts” (Gneiting et al.,
2008, page 222). We thus also consider the outer expectation to model the different test points.
Finally, the full score is given as

Ses
NA(H,P ) =

1

|Oc|
∑
j∈Oc

Sj
NA(H,P ),

whereby Oc is the complement of O, i.e. the set of all variables with at least one missing element.
Since by Proposition 2.3, h∗(xj | x−j) = p∗(xj | x−j), for all x−j with p∗−j(x−j) > 0, we obtain:

Proposition 4.1. Assume MAR in (PMM-MAR) holds and that O is not empty. Then Ses
NA(H,P )

is a proper I-Score.

In practice, we propose the following two approximations to this approach: Consider a dimension
j /∈ O and recall that Lj collects all patterns m, such that mj = 0. For each observed (xi,j)mi∈Lj

,

we assume to have a sample of N points, say (X̃
(i)
l ), l = 1, . . . , N , approximately generated from

HXj |xi,O
. This can be used to estimate Sj

NA(H,P ), as

Ŝj
NA(H,P ) =

1

|i : mi ∈ Lj |
∑

i:mi∈Lj

(
1

2N2

N∑
l=1

N∑
ℓ=1

∥X̃(i)
l − X̃

(i)
ℓ ∥R − 1

N

N∑
l=1

∥X̃(i)
l − xi,j∥R

)
, (4.4)

as in Gneiting et al. (2008, Equation (7)). Thus the observed points of Xj act as the “test points”
for the predicted distribution HXj |XO

. The final score is then given as

Ŝes
NA(H,P ) =

1

|Oc|
∑
j∈Oc

Ŝj
NA(H,P ). (4.5)
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Figure 5: Conceptual illustration of the score approximation.

Remark. Formally, always observed observations are needed to ensure the test points xi,j are truly
sampled from h∗(xj | xO), which in turn is equal to p∗(xj | xO). While these points are observed,
their marginal distribution is fixed to p∗(xj), but since x−j is imputed and thus drawn from H−j,
relative to the imputed point xi,−j, the test point xi,j might not be sampled from the right distribution
p∗(xj | x−j). Appendix A presents an informal argument, indicating that in general, the score might
not be proper if all variables xi,−j instead of xi,O are used. Nonetheless, another version of the score
is presented there, based on X−j instead of XO. Though it remains an open problem under which
conditions this score can be proven to be proper, it works remarkably well empirically.

We now detail how we obtain (X̃
(i)
l ), l = 1, . . . , N . Given an imputed data set and the imputation

function itself, we subset and concatenate the imputed points and observed points xi,j of j and the
fully observed points xi,O, i = 1, . . . , n. In this new data set, we keep the imputed points, that is all
Xi,j with mi ∈ Lc

j are still drawn from H, while we set the observed observations of Xj to missing,
i.e. Xi,j = NA for i with mi ∈ Lj : (

NA (xi,O)mi∈Lj

(xi,j)mi∈Lc
j

(xi,O)mi∈Lc
j

)
(4.6)

Then we approximate the sampling from HXj |xi,O
in two ways:

(1) Regress (xi,j)mi∈Lc
j
onto (xi,O)mi∈Lc

j
in (4.6) using DRF. Then for each test point xi,O, mi ∈

Lj , sample N times from the estimated conditional distribution obtained from DRF.

(2) Impute the NA values in (4.6) with H, N times.

We refer to the first approach as drf-I-Score, and to the second as m-I-Score. The idea in both
cases is to use XO and the imputation of Xj to generate a sample from the distribution HXj |XO

for
points that are already observed. Note that while the drf-I-Score does this by utilizing the sampling
of DRF, the m-I-Score uses the ability of the imputation method itself to generate samples. Thus,
while the drf-I-Score can be averaged over several imputations to score multiple imputations, the
m-I-Score scores multiple imputation naturally.

As a downside, the m-I-Score can be computationally demanding, as N should be chosen high,
say at least 50 to give an accurate score. This would be infeasible for realistic dimensions if the
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full data set had to be imputed. However note that in step (2), by construction only one variable
has missing values, while all the others are observed. This means that only one pass is needed to
impute, which essentially corresponds to fitting the chosen model (e.g., RF) once.

5 Empirical Study

The goal of this section is to illustrate the concepts discussed in this paper on both simulated and
real data, including the performance of the new score. We employ the FCS methods discussed
above, namely mice-cart and the new mice-DRF, missForest, as well as regression and Gaussian
imputations used in the previous section. Both fit a regression to the observed data to obtain
the regression parameters. The regression imputation then simply imputes by predicting from the
linear regression model, while Gaussian imputation uses the prediction as the mean of a Gaussian
distribution from which it draws imputed values. However, in the following, we will follow the
naming guideline of the R-package mice (van Buuren and Groothuis-Oudshoorn, 2011) and refer to
the regression imputation as mice-norm.predict and to the Gaussian imputation as mice-norm.nob.
If a method requires the specification of parameters, we use the default values. To evaluate the
imputation methods we calculate the (negative) energy distance between the true and imputed data
sets, using the energy R-package (Rizzo and Szekely, 2022). As this “score” is able to access the
true underlying values, we will refer to it as the full information score. We compare the orderings
of the full information score with the drf- and m-I-Score, which do not have access to the values
underlying the missing values. The only hyperparameter to choose in this case is the number of
samples N , which we will set to N = 100. Finally, though we focus on FCS imputation methods
here, we also add a comparison to GAIN (Yoon et al., 2018) and MIWAE (Mattei and Frellsen,
2019), in terms of the full information score in the Appendix B.

The three examples considered in this section, as well as the analysis in Appendices A, B and
further tests that are not shown here, indicate that:

(I) For the methods and data sets considered here mice-DRF and mice-cart are the most promising
methods. This aligns with the findings in Wang et al. (2022); Näf et al. (2023). In particular,
they tend to perform stronger than missForest, GAIN, and MIWAE.

(II) However, none of the methods is able to reliably deal with distributional shifts and nonlinearity,
showing once again that better imputation methods need to be found.

(III) Contrary to our speculation in Section 3, Appendix B indicates that GAIN and MIWAE do
not beat missForest, even in terms of negative energy distance. However, it remains to be seen
whether this changes for higher dimensional data sets.

(IV) The ordering of the m-I-Score is quite sensible and similar to the one of the full information
score, even in the first challenging distributional shift example in Section 5.2. If differences
arise, it is often because the m-I-Score penalizes methods that cannot produce multiple impu-
tations. Given the discussion in this paper, this might be desirable. An exception is the third
example in Section 5.3 where none of the methods perform well. Here the scores disagree quite
heavily.

(V) Remarkably, the score using the full data X−j in Appendix A appears to work as well as the
one using XO.

5.1 Air Quality Data

We start with the air quality data set obtained from https://github.com/lorismichel/drf/tree/

master/applications/air_data/data/datasets/air_data_benchmark2.Rdata. This is a prepro-
cessed version of the data set that was originally obtained from the website of the Environmental

17

https://github.com/lorismichel/drf/tree/master/applications/air_data/data/datasets/air_data_benchmark2.Rdata
https://github.com/lorismichel/drf/tree/master/applications/air_data/data/datasets/air_data_benchmark2.Rdata


Figure 6: Scores for the air quality data example. Top: DRF-Score over 10 iterations. Bottom: m-I-Score
over 10 iterations.

Protection Agency website (https://aqs.epa.gov/aqsweb/airdata/download_files.html). For
a detailed description of the data set, we refer to Ćevid et al. (2022, Appendix C.1). The data set
contains a total of 50’000 observations with 11 dimensions.

The goal of this example is to consider a real dataset with MAR missing values generated with
an established procedure. We use the “ampute” function of the mice package (van Buuren and
Groothuis-Oudshoorn, 2011) to introduce MAR missingness into the first four numerical variables.
The ampute function presents a flexible way of introducing missingness according to a desired
mechanism, based on Rianne Margaretha Schouten and Vink (2018). We specify the 4 patterns

m1 = (1, 0, 0, 0, . . . , 0)

m2 = (0, 1, 0, 0, . . . , 0)

m3 = (0, 0, 1, 0, . . . , 0)

m4 = (0, 0, 0, 1, . . . , 0),

and the ampute function to generate missingness according to these patterns.
The wealth of data allows us to redraw a data set of 2’000 observations B = 10 times to get an

idea of the variation of our scores. That is, we redraw the data randomly B times and generate the
missingness mechanism using the ampute function. Figure 6 shows the drf- and m-I-Scores (obtained
without using the true underlying values), while Figure 7 shows the negative energy distance between
imputed and true data set. The ordering of the scores is remarkably similar, showing mice-cart and
mice-DRF first and mice-norm.predict last. This makes sense as mice-norm.predict neither draws
from the conditional distribution nor is it able to deal with the apparent nonlinearities in the data.
In contrast, missForest scores higher, though interestingly the scores are not in complete agreement.
While both the full information score and drf-I-Score put it in third place, the m-I-Score puts it just
above mice-norm.predict. This might be due to the fact that missForest, while predicting instead of
drawing from a conditional distribution, still models the nonlinearities in the data relatively well, a
feat the Gaussian-based norm.nob cannot achieve. However, the m-I-Score punishes the inability of
missForest to draw samples more severely and thus puts it lower than the other two scores. Given
the discussion in this paper, one might argue that the low ordering of missForest of the m-I-Score
is more accurate in this example.
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Figure 7: Negative Energy Distance for the air quality data example, calculated with full data.

Figure 8: Scores for the Gaussian mixture model with distribution shift. Top: DRF-Score over 10 iterations.
Bottom: m-I-Score over 10 iterations.
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Figure 9: Negative Energy Distance for the Gaussian mixture model with distribution shift, calculated with
full data.

5.2 Gaussian Mixture Model

We next turn to a Gaussian Mixture model to be able to put more emphasis on distribution shifts
under MAR. In particular, we will simulate the distribution shift of Example 1 in a larger setting.
We take d = 6 and 3 patterns,

m1 = (1, 0, 0, 0, 0, 0)

m2 = (0, 1, 0, 0, 0, 0)

m3 = (0, 0, 1, 0, 0, 0)

The last three columns of fully observed variables are all drawn from three-dimensional Gaus-
sians with randomly generated mean and covariance. For instance, for the first pattern, the mean
(rounded) is given as (3, 3, 4), while for the second it is given as (−4,−3,−5). Thus each pattern can
have quite different parameters. To preserve MAR, the (potentially unobserved) first three columns
are built as

XOc = BXO +

ε1
ε2
ε3

 ,

where B is a 3 × 3 matrix of coefficients, (ε1, ε2, ε3) are independent standard Gaussian random
errors and O = {4, 5, 6} is again the index of fully observed values. This is a somewhat different
example than the one before. Now the data is Gaussian with linear relationships, but there is
a strong distribution shift between the different patterns. However, this distributional shift only
stems from the observed variables, leaving the conditional distributions of missing given observed
unchanged, as in Example 1. Consequently, it can be shown that the missingness mechanism meets
(CIMAR) and is thus MAR.

In this example, the ability to generalize is important, while the ability to model nonlinear rela-
tionships is not. Indeed, we note that P ∗ corresponds to the Gaussian imputation (mice-norm.nob)
with the (unknown) true parameters. As such, a proper score should rank mice-norm.nob highest.
In contrast, the forest-based scores should have the worst performance here, as they are not able
to deal with the distribution shift. On the other hand, they might still be deemed better than
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mice-norm.predict, which only imputes the regression prediction. Results for the drf- and m-I-Score
are given in Figure 8, while Figure 9 shows the full information score. While the full information
and m-I-Score behave as expected, with mice-norm.nob and mice-norm.predict in first and second
place, and the forest-based methods last, the inability of DRF to meaningfully extrapolate beyond
the sample points severely biases the drf-I-Score. Thus, it wrongly scores the forest-based methods
highest. In contrast, despite the challenging setting, the m-I-Score still provides a very sensible or-
dering. An interesting difference between the m-I-Score and the full information score is that DRF
and missForest are reversed in the two. However, this again makes sense as missForest gets more
severely punished when it creates N imputations with very limited variation. In fact, in this sense,
the score, without having access to the true data, might actually give a more accurate picture of the
correct ordering.

5.3 Mixture Model with Nonlinear Relationships

We now turn to a more complex version of the model in Section 5.2 to add nonlinear relationships to
the distributional shifts. This final example should indicate that the search for successful imputation
methods is by no means completed.

Using the same missingness pattern, and Gaussian variables XO we use a nonlinear function f
for the conditional distribution:

XOc = Bf(XO) +

ε1
ε2
ε3

 ,

with
f(x1, x2, x3) = (x3 sin(x1x2), x2 · 1{x2 > 0}, arctan(x1) arctan(x2)).

This introduces highly nonlinear relationships between the elements of XOc and XO, though the
conditional distribution of XOc | XO is still Gaussian and the missingness mechanism is CIMAR.
In this example, the ability to generalize is important, and so is the ability to model nonlinear
relationships. Accordingly, this is a very difficult example and the ordering of the scores is quite
different. In particular, they do not agree on the best two methods, though they all rank mice-DRF
high. This serves to illustrate, that while at least the m-I-Score should be able to identify the “ideal”
imputation, there is no guarantee for what happens when all imputations are bad. The disagreement
of the scores should thus be seen as more of a testament that none of the methods perform well than
a sign that the scores themselves are flawed.

6 Discussion

This paper attempted to give a more systematic discussion of MAR imputation. We analyse the
MAR condition in detail for imputation and, based on this analysis, propose four essential properties
an ideal imputation method should meet, as well as a principled way of ranking imputation methods.

An important message of the paper is that RMSE is not a sensible way of evaluating imputations.
Dropping RMSE as an evaluation method likely has important implications. For instance, the
recommendation of papers to use single imputation methods such as k-NN imputation (Anil Jadhav
and Ramanathan, 2019) or missForest (Waljee et al., 2013; Tang and Ishwaran, 2017) appears to
rest entirely on the use of RMSE. Even well-designed paper benchmarking imputation methods such
as Jäger et al. (2021) use RMSE. Nonetheless, there appear to be only a handful of recent papers
that at least consider different evaluation methods, for instance, Muzellec et al. (2020); Hong and
Lynn (2020); Wang et al. (2022). Indeed, the problems of RMSE and its recommendations appear
to be being rediscovered in different fields. For instance, recently Hong and Lynn (2020) again
demonstrated empirically that, while missForest achieves the smallest RMSE, parameters attained
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Figure 10: Scores for the nonlinear mixture model with distribution shift. Top: DRF-Score over 10 itera-
tions. Bottom: m-I-Score over 10 iterations.

Figure 11: Negative Energy Distance for the nonlinear mixture model with distribution shift, calculated
with full data.
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from linear regression are severely biased. Similarly, Wang et al. (2022) discusses some problems
with using RMSE in the machine learning literature. In contrast, GAN-based approaches recognize
the objective of drawing imputations from the respective conditional distributions and naturally use
the pattern-mixture modeling approach. However, despite having the right objective, these papers
again use RMSE to compare the imputation quality of their method to competitors.

A second important message is that the problem of imputation is by no means solved. Though
there is a set of promising imputation methods with mice-cart, mice-RF, and mice-DRF that will
likely work well in a wide range of settings, there is room for improvement, especially concerning the
ability to deal with covariate shifts. In particular, Section 5.3 shows an example with distribution
shifts and nonlinear relationships for which all methods fail. The m-I-Score developed here can help
to identify the right distribution, though this might not be helpful if all imputations are sufficiently
bad. Appendix B demonstrates that modern joint modeling approaches do not fare better in this
example. In fact, contrary to what we theorized in Section 3, on these low-dimensional data sets
GAIN and MIWAE are outperformed by missForest, even in terms of energy distance.

We believe the paper touches on a few crucial issues that have not been discussed before. However,
it also has several shortcomings. The m-I-Score, while promising, needs a set of fully observed
variables, at least theoretically. In addition, the performance of mice-cart stands out, even when
compared to mice-DRF. It remains an open question why the performance of mice-cart is so strong
and whether a systematic benchmarking of imputation methods over a wider array of data sets
can confirm the empirical findings in this paper. In general, a much more comprehensive empirical
evaluation of both the new score and the forest-based imputation methods is needed. Finally, when
talking about multiple imputation, we note that none of the studied nonparametric methods is able
to include model uncertainty. However this would technically be needed for correct uncertainty
quantification with multiple imputation, see e.g., Murray (2018). Though both mice-rf of Doove
et al. (2014) and the new mice-DRF attempt to account for model uncertainty using several trees,
this is only a heuristic solution. Moreover, the scores developed in this paper are unable to account
for this and will instead likely place methods that include model uncertainty lower than those that
do not, which in turn could explain the success of mice-cart in terms of these scores.

Finally, we discussed some challenging MAR conditions, particularly using the Gaussian Mixture
Model. However, we did not discuss how likely such MAR settings may be. Intuitively, it appears
that distributional shifts under MAR should be quite common. Consider an example with two
variables, X1 being income, and X2 being age. Moreover, assume a missing mechanism for the
income X1, whereby X1 tends to be missing whenever age is “high”. Thus the probability of income
(X1) being missing depends entirely on the value of age (X2), which is always observed. This is a
textbook MAR example with two patterns, one where both variables are fully observed (m1) and
a second (m2), wherein X1 is missing. Despite the simplicity of this example, if we assume that
higher age is related to higher income, there is a clear shift in the distribution of income and age
when moving from one pattern to the other. In pattern m2, where income is missing, values of both
the observed age and the (unobserved) income tend to be higher. It thus appears intuitive that
the combination of distributional shifts and nonlinear relationships is widespread in real data. At
the same time, the success of forest-based methods such as missForest and mice-cart in benchmark
papers suggests that current ways of introducing MAR might not produce enough distribution shifts
in general. For instance, Näf et al. (2023) analyzed a range of data sets using the standard MAR
mechanism of the ampute function implementing the procedure of Rianne Margaretha Schouten and
Vink (2018), as we did in Section 5.1. Though their score is not proper under MAR, as shown in
Appendix C.1, their analysis also showed mice-cart consistently in first place. Thus, tweaking the
approach of Rianne Margaretha Schouten and Vink (2018) to produce MAR data with distribution
shifts, might be an avenue for further research.
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A Score Version without Fully Observed Data

We first informally discuss the problems that arise when instead of the set of fully observed variables,
we use all remaining variables X−j ∼ H−j in the score defined in Section 4. We note that, while the
distribution of the observed test points Xj is fixed to p∗(xj), it holds that

p∗(xj) =

∫
p∗(xj | x−j)p

∗(x−j)dx−j

=

∫
h(xj | x−j)h(x−j)dx−j .

If H−j is different from P ∗
−j , then the two conditional distribution will in general be different as

well. This means with X−j ∼ H−j it is not clear, whether Xj | X−j has the desired distribution
(p∗(xj | x−j)). This problem is numerically evident when the original imputation is used for H−j .
For instance, simply adapting them-I-Score by using X−j instead of XO tends to score the regression
imputation higher than the Gaussian imputation in the example in Section 5.2. To alleviate this, we
instead generate X−j ∼ H−j independently, i.e., we impute the d − 1 dimensional dataset without
Xj and keep the original imputation of Xj . That is, the only difference to the score of Section 4
is that, given an imputed data set and the imputation function itself, we first generate a new draw
X1,−j , . . . , Xn,−j from H−j by imputing all variables except Xj . Then we proceed as before: For Xj

we keep the imputed points, that is all xi,j with mi ∈ Lc
j are still drawn from the original imputation,

while we set the observed observations of Xj to missing, i.e. xi,j = NA for i with mi ∈ Lj . Then we
concatenate (

NA (xi,−j)mi∈Lj

(xi,j)mi∈Lc
j

(xi,−j)mi∈Lc
j
,

)
and approximate the sampling from HXj |xi,−j

in two ways:

(1) Regress (xi,j)mi∈Lc
j
onto (xi,−j)mi∈Lc

j
using DRF. Then for each test point xi,−j , mi ∈ Lj ,

sample N times from the estimated conditional distribution obtained from DRF.

(2) Impute the NA values with H, N times.

The jth score is then given as in (4.4), but now with the N points generated approximately from
HXj |X−j

. The idea in both cases is to use an imputation of X−j and the initial imputation of
Xj to generate a sample from the distribution HXj |X−j

for points that are already observed. This
approximation is clearly not perfect to obtain a sample from HXj |X−j

but repeating the experiments
in Section 5, Figures 12–14 show that the two scores closely follow their counterparts in Section 5.

Remark. We note that compared to the score in Section 4, we now also need to obtain a sample
from H−j. Thus a (d−1)-variate data set has to be imputed for each j, which can be computationally
challenging when d is large. This could be solved by using random or predefined projections A, as in
Näf et al. (2023), thus reducing the dimensionality. This will not hurt propriety but might diminish
the power to detect differences between the methods. In fact, the score in Section 4 might be seen as
an example of this with A = O.

B Comparison of MICE to GAIN and MIWAE

Here we use the negative energy distance advocated in the main text (i.e. the “full information
score”) to compare the performance of the MICE methods used in Section 5 to the joint modeling
methods GAIN and MIWAE. The code for GAIN was taken from the original Github repository
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Figure 12: Scores for the air quality data example. Top: DRF-Score over 10 iterations. Bottom: m-I-Score
over 10 iterations.

Figure 13: Scores for the Gaussian mixture model with distribution shift. Top: DRF-Score over 10 itera-
tions. Bottom: m-I-Score over 10 iterations.

Figure 14: Scores for the nonlinear mixture model with distribution shift. Top: DRF-Score over 10 itera-
tions. Bottom: m-I-Score over 10 iterations.
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Figure 15: Negative Energy Distance for the air quality data example with GAIN and MIWAE, calculated
with full data.

https://github.com/jsyoon0823/GAIN, while the implementation of MIWAE was obtained from
https://github.com/nbip/notMIWAE/blob/master/MIWAE.py. As both were coded in Python, the
R package reticulate (Ushey et al., 2024) was used to embed the code into R.

Figures 15 – 17 show the results. Overall these two methods cannot compete with MICE and
usually are scored last, except in the Gaussian example with distribution shift (Figure 16) where
MIWAE performs about the same as mice-cart and mice-DRF. However, we gave MIWAE a some-
what unfair advantage: We standardized the data in Application 1, as otherwise the implementation
broke down, but did not do this for Applications 2 and 3. In practice, one would likely always stan-
dardize the data, given the numerical problems one faces otherwise, and this would have led to a
lower ranking of MIWAE. Interestingly, this experiment does not confirm our suspicion in Section 3;
GAIN and MIWAE tend to perform worse than missForest, even in terms of the energy distance. To
analyze this further, we additionally consider a larger data set, the spambase data set of Lichman
(2013), with more missing values. Specifically, we consider a simple MCAR mechanism whereby each
variable is missing randomly such that we have around 20% of missingness in total. This dataset
has dimension d = 57 and n = 4601 observations and was used to show that GAIN performs better
than other imputation methods in Yoon et al. (2018). The combination of high frequency of missing
values, and relatively high dimension and number of observations, means imputation with MICE
takes considerably longer than in the two examples before. In particular, on a desktop computer,
imputation times ranged from three minutes for mice-cart up to 29 minutes for missForest obtained
from the missForest R-package (Stekhoven, 2022), mice-DRF needed 9 minutes, a computation
time that can however be halved with around the same accuracy when defining blocks of size 2 and
imputing once per block as described above. The result, shown in Figure 18, remains the same
however, GAIN and MIWAE perform worse than even missForest in terms of energy distance, while
missForest in turn is largely outperformed by mice-DRF and mice-cart.

All in all this small analysis provides a further hint that, at least for data sets of small or moderate
dimensions, modern joint modeling methods such as GAIN and MIWAE cannot compete with FCS.

C Proofs and Additional Results

In this section, we provide additional results and collect the proofs of the results not shown in the
main paper. We start by showing that the score developed in Näf et al. (2023) is not proper under
(PMM-MAR).
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Figure 16: Negative Energy Distance for the Gaussian mixture model with distribution shift with GAIN
and MIWAE, calculated with full data.

Figure 17: Negative Energy Distance for the nonlinear mixture model with distribution shift with GAIN
and MIWAE, calculated with full data.

Figure 18: Negative Energy Distance for the spam data example with GAIN and MIWAE, calculated with
full data.
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C.1 DR-I-Score is not proper under MAR

Here we show that the Density Ratio I-Score of Näf et al. (2023) is not proper under MAR. Define
the Kullback-Leibler divergence (KL divergence) between two distributions P,Q ∈ P on Rd with
densities p, q

DKL(p || q) :=
∫

p(x) log

(
p(x)

q(x)

)
dµ(x).

Näf et al. (2023) developed a proper I-Score using the KL divergence estimated by a classifier in
conjunction with random projections A ⊂ {1, . . . , p}. The projections were done as a way to obtain
more observations of each pattern. They proved that the population version of their score is a proper
I-Score if condition (CIMAR) holds each projection A. Even without considering any projections, i.e.
A = {1, . . . , d}, this is a stronger condition than (PMM-MAR), as was shown above. In particular,
in Example 2, their score will not be proper. Since the score is defined using a pattern-by-pattern
comparison, when H = P ∗ it will compare p∗(x1 | x2, x3)p

∗(x2, x3) (third pattern) to

p∗(x1 | x2, x3,M = m1)p
∗(x2, x3) = x1p

∗(x1 | x2, x3)p
∗(x2, x3),

in the second pattern. Thus, while we would like to score the imputation p∗(x1 | x2, x3) highest,
imputing by h(x1 | x2, x3) = x1p

∗(x1 | x2, x3) will lead to a score value of exactly zero, while

DKL(p
∗ || p∗) =

∫
p∗(x1, x2, x3) log

(
1

x1

)
dµ(x1, x2, x3) > 0.

Thus we have just shown that

Proposition C.1. The I-Score defined in Näf et al. (2023) is not proper if (PMM-MAR) holds,
but not (CIMAR).

C.2 Proofs

Corollary 2.1. Condition (SM-MAR) is equivalent to (SM-MAR II) and both are equivalent to
(PMM-MAR).

Proof. We start by reformulating (SM-MAR), for any x, x̃ such that o(x,m) = o(x̃,m),

P(M = m|x) = P(M = m|x̃) ⇔
p∗(x|M = m)P(M = m)

p∗(x)
=

p∗(x̃|M = m)P(M = m)

p∗(x̃)
⇔

p∗(o(x,m), oc(x,m) | M = m)

p∗(o(x̃,m), oc(x̃,m) | M = m)
=

p∗(o(x,m), oc(x,m))

p∗(o(x̃,m), oc(x̃,m))
⇔

p∗(oc(x,m) | o(x,m),M = m)

p∗(oc(x,m) | o(x,m))
=

p∗(oc(x̃,m) | o(x,m),M = m)

p∗(oc(x̃,m) | o(x,m))
⇔

p∗(oc(x,m) | o(x,m),M = m) =
p∗(oc(x̃,m) | o(x,m),M = m)

p∗(oc(x̃,m) | o(x,m))
p∗(oc(x,m) | o(x,m)) (C.1)

Integrating (C.1) with respect to the missing part of x, oc(x,m), only shows that

p∗(oc(x̃,m) | o(x,m),M = m)

p∗(oc(x̃,m) | o(x,m))
= 1,

and thus also (PMM-MAR). This shows that (SM-MAR) and (PMM-MAR) are equivalent. Molen-
berghs et al. (2008) show that (SM-MAR II) is also equivalent to (PMM-MAR), proving the re-
sult.
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Proposition 2.3. Assume MAR in (PMM-MAR) holds. Then for h∗(xj | x−j) as in (2.3),

h∗(xj | x−j) = p∗(xj | x−j), (2.4)

for all x−j with p∗(x−j) > 0.

Proof. Let in the following Lj be defined as in (2.2). We assume that Lj is not empty. As all previous
variables have been imputed and xj is observed, it is thus possible to identify the full distribution
p∗(x | M = m) for all m ∈ Lj . Thus, we learn the mixture of joint distributions

h∗(xj , x−j) =
1

C

∑
m∈Lj

P(M = m) · p∗(x | M = m)

=
1

C

∑
m∈Lj

P(M = m | x) · p∗(x),

where C is a constant such that h∗(xj , x−j) integrates to 1. Integrating h∗(xj , x−j) over xj , we
obtain similarly

h∗(x−j) =
1

C

∑
m∈Lj

P(M = m | x−j) · p∗(x−j)

Thus in fact:

h∗(xj | x−j) =
h∗(xj , x−j)

h∗(x−j)

=

∑
m∈Lj

P(M = m | x) · p∗(x)∑
m∈Lj

P(M = m | x−j) · p∗(x−j)

= p∗(xj | x−j)

∑
m∈Lj

P(M = m | x)∑
m∈Lj

P(M = m | x−j)
.

It only remains to show that ∑
m∈Lj

P(M = m | x)∑
m∈Lj

P(M = m | x−j)
= 1. (C.2)

Indeed, we note that for any m ∈ Lc
j ,

P(M = m | x) = P(M = m | x−j),

by (SM-MAR). Consequently,

1 =
∑

m∈Lj

P(M = m | x) +
∑

m∈Lc
j

P(M = m | x−j),

so that ∑
m∈Lj

P(M = m | x) = 1−
∑

m∈Lc
j

P(M = m | x−j)

=
∑

m∈Lj

P(M = m | x−j),

and thus (C.2) indeed holds.
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Corollary 2.2. Assume MAR in (PMM-MAR) holds and that O in (2.5) is not empty. Then
H∗ ∈ HP has

h∗(x) = p∗(x), for all x. (2.6)

Proof. By construction, H∗ ∈ HP . Assume that we are at step j ∈ {1, . . . , p} of our imputation.
That is, all variables xi,l, i = 1, . . . , n, l > j have successfully be imputed with a draw from
p∗(xl | xl+1, . . . , xp,M = m). Let in the following Lj be defined as in (2.2). We first note that any
pattern m ∈ Lc

j ( where xj ∈ oc(x,m)) has

p∗(oc(x,m) | o(x,m),M = m) = p∗(oc(x,m) | o(x,m)), (C.3)

by (PMM-MAR). Integrating both sides, this means that for any A ⊂ {x1, . . . , xp},

p∗(A ∩ oc(x,m) | o(x,m),M = m) = p∗(A ∩ oc(x,m) | o(x,m)).

Thus the correct imputation distribution for this pattern m is given by

p∗(xj | xj+1, . . . , xp,M = m)

= p∗(xj | ({xj+1, . . . , xp} ∩ oc(x,m)) ∪ ({xj+1, . . . , xp} ∩ o(x,m)),M = m)

=
p∗({xj , . . . , xp} ∩ oc(x,m) | {xj+1, . . . , xp} ∩ o(x,m),M = m)

p∗({xj+1, . . . , xp} ∩ oc(x,m) | {xj+1, . . . , xp} ∩ o(x,m),M = m)

=
p∗({xj , . . . , xp} ∩ oc(x,m) | {xj+1, . . . , xp} ∩ o(x,m))

p∗({xj+1, . . . , xp} ∩ oc(x,m) | {xj+1, . . . , xp} ∩ o(x,m))

= p∗(xj | xj+1, . . . , xp).

Thus we need to learn p∗(xj | xj+1, . . . , xp) to successfully impute all patterns m where xj is not
observed. We assume that Lj is not empty for any j. As all previous variables have been imputed
and xj is observed, it is thus possible to learn the full distribution p∗(xj , xj+1, . . . , xp | M = m) for
all m ∈ Lj . With the same arguments as in the proof of Proposition 2.3, we then obtain that

h∗(xj | xj+1, . . . , xp) = p∗(xj | xj+1, . . . , xp)

Thus we have shown that the learned (imputation) distribution is indeed the correct one. It then
also holds that

h∗(x) =
∑

m∈M
P(M = m)h∗(oc(x,m) | o(x,m),M = m)h∗(o(x,m) | M = m)

=
∑

m∈M
P(M = m)p∗(oc(x,m) | o(x,m),M = m)p∗(o(x,m) | M = m)

= p∗(x),

whereby h∗(o(x,m) | M = m) = p∗(o(x,m) | M = m) by assumption and h∗(oc(x,m) | o(x,m),M =
m) = p∗(oc(x,m) | o(x,m),M = m) as shown above.

Proposition 4.1. Assume MAR in (PMM-MAR) holds and that O is not empty. Then Ses
NA(H,P )

is a proper I-Score.

Proof. We show that for each j,

Ses
NA(H,P ) ≤ Ses

NA(P
∗, P )
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holds. Indeed, by propriety of the energy score E[es(HXj |xO
, Y )] ≤ E[es(H∗

Xj |xO
, Y )], when Y ∼

H∗
Xj |xO

. Taking expectations on both sides shows that

Ses
NA(H,P ) = E[E[es(HXj |XO

, Y )]] ≤ E[E[es(H∗
Xj |XO

, Y )]]. (C.4)

Moreover, similar to Proposition 2.3, it can be shown that E[es(H∗
Xj |xO

, Y )] = E[es(P ∗
Xj |xO

, Y )]. We

repeat the argument here for completeness: First

h∗(xj | xO) =
h∗(xj , xO)

h∗(xO)

=

∑
m∈Lj

P(M = m | xj , xO) · p∗(xj , xO)∑
m∈Lj

P(M = m | xO) · p∗(xO)

= p∗(xj | xO)

∑
m∈Lj

P(M = m | xj , xO)∑
m∈Lj

P(M = m | xO)
.

It only remains to show that ∑
m∈Lj

P(M = m | xj , xO)∑
m∈Lj

P(M = m | xO)
= 1. (C.5)

Indeed, we note that for any m ∈ Lc
j ,

P(M = m | xj , xO) = P(M = m | xO),

by (SM-MAR). Consequently,

1 =
∑

m∈Lj

P(M = m | xj , xO) +
∑

m∈Lc
j

P(M = m | xO),

so that ∑
m∈Lj

P(M = m | xj , xO) = 1−
∑

m∈Lc
j

P(M = m | xO)

=
∑

m∈Lj

P(M = m | xO).

It follows that,

E[E[es(H∗
Xj |XO

, Y )]] = E[E[es(P ∗
Xj |XO

, Y )]] = Ses
NA(P

∗, P ). (C.6)

Combining (C.4) and (C.6) gives the result.
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