N
N

N

HAL

open science

Robust Deep Reinforcement Learning Through
Adversarial Attacks and Training: A Survey
Lucas Schott, Josephine Delas, Hatem Hajri, Elies Gherbi, Reda Yaich, Nora

Boulahia-Cuppens, Frederic Cuppens, Sylvain Lamprier

» To cite this version:

Lucas Schott, Josephine Delas, Hatem Hajri, Elies Gherbi, Reda Yaich, et al.. Robust Deep Rein-
forcement Learning Through Adversarial Attacks and Training: A Survey. 2024. hal-04521876

HAL Id: hal-04521876
https://hal.science/hal-04521876

Preprint submitted on 26 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04521876
https://hal.archives-ouvertes.fr

2403.00420v1 [cs.LG] 1 Mar 2024

arXiv

Robust Deep Reinforcement Learning Through
Adversarial Attacks and Training : A Survey

Lucas Schott"?, Joséphine Delas'?t, Hatem Hajri%*,
Elies Gherbi!, Reda Yaich!, Nora Boulahia-Cuppens?,
Frederic Cuppens®, Sylvain Lamprier?®

RT SystemX, Palaiseau, 91120, France.
2MLIA, ISIR, Sorbonne Université, Paris, 75005, France.
3Polytechnique Montréal, Montréal, 6079, Québec, Canada.
4Safran Tech, Chateaufort, 78117, France.
SLERIA, Université d’Angers, Angers, 49000, France.

TThese authors contributed equally to this work.

Abstract

Deep Reinforcement Learning (DRL) is an approach for training autonomous
agents across various complex environments. Despite its significant performance
in well known environments, it remains susceptible to minor conditions variations,
raising concerns about its reliability in real-world applications. To improve usabil-
ity, DRL must demonstrate trustworthiness and robustness. A way to improve
robustness of DRL to unknown changes in the conditions is through Adver-
sarial Training, by training the agent against well suited adversarial attacks
on the dynamics of the environment. Addressing this critical issue, our work
presents an in-depth analysis of contemporary adversarial attack methodologies,
systematically categorizing them and comparing their objectives and operational
mechanisms. This classification offers a detailed insight into how adversarial
attacks effectively act for evaluating the resilience of DRL agents, thereby paving
the way for enhancing their robustness.

Keywords: Deep Reinforcement Learning, Robustness, Adversarial Attacks,
Adversarial Training



1 Introduction

The advent of Deep Reinforcement Learning (DRL) has marked a significant shift in
various fields, including games [1-3], autonomous robotics [4], autonomous driving [5],
and energy management [6]. By integrating Reinforcement Learning (RL) with Deep
Neural Networks (DNN), DRL can leverages high dimensional continuous observa-
tions and rewards to train neural policies, without the need for supervised example
trajectories.

While DRL achieves remarkable performances in well known controlled environ-
ments, it also encounter challenges in ensuring robust performance amid diverse
condition changes and real-world perturbations. It particularly struggle to bridge the
reality gap [7, 8], often DRL agents are trained in simulation that remains an imita-
tion of the real-world, resulting in a gap between the performance of a trained agent
in the simulation and its performance once transferred to the real-world application.
Even without trying to bridge the reality gap, agents can be trained in the first place
in some conditions, and be deployed later and the conditions may have changed since.
This pose the problem of robustness, which refers to the agent’s ability to maintain
performance in deployment despite slight conditions changes in the environment or
minor perturbations.

Moreover the emergence of adversarial attacks that generate perturbation in the
inputs and disturbances in the dynamics of the environment, which are deliberately
designed to mislead neural network decisions, poses unique challenges in RL [9, 10] and
can be a key to resolve the robustness problem in RL, necessitating further exploration
and understanding.

This survey aims to address these critical areas of concern. It focuses on key issues
by presenting a comprehensive framework for understanding the concept of robustness
of DRL agent. It covers both robustness to perturbed inputs as well as robustness to
perturbed dynamics of the environment. Additionally, it introduces a new classification
system that organizes every type of perturbation affecting robustness into a unified
model. It also offers a review of the existing literature on adversarial methods for
robust DRL agents and classify the existing methods in the proposed taxonomy. The
goal is to provide a deeper understanding of various adversarial techniques, including
their strengths, limitations, and the impact they have on the performance, robustness
and generalization capabilities of DRL agents.

Historically, the primary focus on adversarial examples has been in the realm of
supervised learning [11]. Attempts to extend this scope to RL have been made, but
these have primarily concentrated on adversarial evasion methods and robustness-
oriented classification [9, 12]. To bridge this gap, our work introduces a robustness-
centric study of adversarial methods in DRL.

The key contributions of this work include:

Formalizing the concept of Robustness in DRL.

Developing a taxonomy and classification for adversarial attack in DRL.
Reviewing existing adversarial attack, characterized using our proposed taxonomy.
Reviewing how adversarial attacks can be used to improve robustness of DRL agents.



The structure of the survey is organized as follows: Section 2 provides an intro-
duction to RL and the security implications of DNNs, as well as the mathematical
prerequisites for analyzing RL Robustness. Section 3 introduces a formalization of the
notion of Robustness in DRL. Section 4 presents a taxonomy for categorizing adver-
sarial attack methods as shown in Figure 1. Sections 5.1 and 5.2 explore observation
and dynamic alterations attacks, respectively. Finally section 6 focuses on strategies
for applying adversarial attacks and adversarial training.
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Fig. 1: Categorization of the adversarial attacks of the literature as described in
Sectiond with the taxonomy introduced Section 4 of this survey.

2 Background

2.1 Reinforcement Learning

RL focuses on decision-making in dynamic environments [13]. RL agents learn by
interacting with an environment: they take actions and receive feedback in terms of
numerical rewards. The objective of a RL agent is to learn a policy, a mapping from
states to actions, which maximizes the expected cumulative reward over time.



2.1.1 Partially Observable Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework for modeling
decision-making problems where an agent interacts with an environment over discrete
time steps. In most real-world applications, the agent may not have access to the envi-
ronment’s complete states and instead receives partial observations. This scenario is
known as a Partially Observable Markov Decision Process (POMDP), which is a gen-
eralization of the MDP framework, represented by the tuple Q = (S, A, T, R, X, O),
where:

® S is the set of states in the environment,

A is the set of actions available to the agent,

T:5%xSxA—[0,1] is the stochastic transition function, with T'(s4|s, a) denoting
the probability of transitioning to state s; given state s and action a,

R:Sx AxS — Ris the reward function. R(s,a,sy) is received by the agent for
taking action a in state s and moving to state s,

X is the set of observations as perceived by the agent,

O : S x X —[0,1] is the observation function, with O(z|s) denoting the probability
of observing x given state s.

A step in the environment represented by the POMDP () is represented by the tran-
sition (s, @4, at, St4+1), where s; stands for the sate, z; the observation of this state, a;
the action applied by the agent, s;11 the next state after transition. In this paper, we
will use the POMDP framework as a general model, even though some environments
could be described as MDPs.

2.1.2 Fundamentals of Reinforcement Learning

In RL, the goal is to learn a policy m : A x S — [0, 1], 7(a|s) denoting the probability
of selecting the action a given state s. The optimal policy, denoted as 7*, therefore
maximizes the expected cumulative discounted reward :

7" =argmaxE,  o[R(T)]

with "
R(r) = thR(shah St+1)
t=0
where 7 = (so, a0, 51, ..., 5|r|) is sampled from the distribution 7% of trajectories

obtained by executing policy 7 in environment 2. The discount factor ~, ranging from
0 to 1, weights the importance of future rewards.

An important criterion for defining optimality is the state value function, denoted
as V™ : S — R. For a state s, the value V™ (s) represents the expected cumulative
discounted reward starting from s and following the policy 7 thereafter. This can be

formally expressed as:
V7™(s) = E,re[R(T)|s0 = $] (1)



It can be expressed recursively with the Bellman equation :
V7(s) =
Z m(als) Z T(s+|s,a) (R(s, a,s+) + ’yV”(s.,.))
a Sy
Finally, the state-action value function Q™ : S x A — R is used in many algorithms as

an alternative to V™. The Q-value function of a state s and action a is the expected
cumulative discounted reward, starting from s, taking a, and following m:

Q" (5,0) = ErralR(7) |50 = 5,00 = d] (2)

It can be expressed recursively with the equation :

Qﬂ(sa CL) =
> T(silsa) (Rs.a,0) +9 Y wlasls) [Q7(s4,04)])

In the POMDP setting, since states are not directly observable by agents, the
practice is to base policies and value functions on the history of observations
(i.e., o at step ) in place of the true state of the system (i.e., s;). For the ease of
notations, we consider in the following policies and value functions defined with only
the last observation as input (i.e., x;), while every approach presented below can be
extended to methods leveraging full histories of observations. More specifically, we
consider in the following policies defined as 7 : A x X — [0; 1] and action-value func-
tions as @ : A x X — R. Figure 2 shows the flowchart of an agent with a policy
function 7 interacting with a POMDP environment.

> AgentrrPollcy 2

action
ar~ 1("|xy)
reward
4 Iy = r(SgapSte1)
observation !
x¢~ O("|sy) | Environment
D T S VRN ¢ o VO

LS~ T(Ispa)

Fig. 2: Flowchart of an agent with a policy function 7 interacting with a POMDP
environment



2.2 Neural Networks and Deep Reinforcement Learning

To solve the complex task of RL problems in a large input space and enable
generalization, RL methods are combined with DNNs.

2.2.1 Deep Neural Networks (DNNs)

A neural network is a system of interconnected nodes (neurons) that process and
transmit signals. DNNs are models utilizing multiple layers of neurons, featuring
varying degrees of architecture complexity, to analyze intricate data patterns. Train-
ing involves adjusting inter-neuron weights parameters to reduce errors (called loss
function) between the network’s predictions and actual outcomes, often employing
Stochastic Gradient Descent (SGD) inspired algorithms. This training refines the net-
work’s ability to recognize and respond to input data accurately. The update rule of
the parameters 6 of the model fy in this context, given inputs x, labels y, learning
rate « and loss function £, is expressed as:

0=0—a- -VoL(fo(x),y)

2.2.2 Deep Reinforcement Learning (DRL)

DRL combines the principles of RL with the capabilities of DNNs. The central concept
in DRL is to construct a policy 7 using a DNN. This can be achieved either by
approximating the Q-function (as in Equation (2)), the V-function (as in Equation
(1)), or by directly inferring the policy from experiences. There are several popular
DRL algorithms, each with their specific strengths and weaknesses, some are better
suited for specific context like discrete or continuous action space, or depending on
possibility to train the DNNs on- or off-policy. The fundamental DRL algorithms are
PG [14], DQN [15] and DDPG [16], but the most effective contemporary algorithms
are Rainbow [17], PPO [18], SAC [19] or TQC [20] depending on the context.

2.3 Security challenges in DNNs

DNNs are a powerful tool now used in numerous real-world applications. However,
their complex and highly non-linear structure make them hard to control, raising
growing concerns about their reliabilities. Adv ML recently emerged to exhibit vulner-
abilities of DNNs by processing attacks on their inputs that modify outcomes. NIST’s
National Cybersecurity Center of Excellence (NCCE) [21] and its European counter-
part, ETSI Standards [22], provide terminologies and ontologies to frame the study of
these adversarial methods.

2.3.1 Adversarial Machine Learning

Adversarial attacks are initially designed to exploit vulnerabilities in DNNs, threaten-
ing their privacy, availability, or integrity [23]. If the term adversarial attack suggests
a malicious intention, it is to be noted that these methods may also be used by a
model’s owner to improve its performances and assess its vulnerability. Indeed, adver-
sarial ML aims to analyze the capabilities of potential attackers, comprehend the



impact of their attacks and develop ML algorithms able to withstand these security
threats. An adversary may act during the learning phase by poisoning the training
data, or the inference phase modifying the inputs to evade decision. In this paper we
consider robustness of already trained models, as well as leveraging adversarial exam-
ples as a defense method during the training phase in order to improve robustness at
the inference phase, therefore we focuses on discussing model robustness to evasion
methods.

2.3.2 Adversarial Examples [21]

The large number of dimensions of a DNNs input space inevitably leads to blind spots
and high sensitivity to small perturbations. In the restrained domain of classification,
Adversarial examples are slightly altered data instances, carefully crafted to trick
the model into misclassification while staying undetected. Computation techniques
range from costly hand-made modifications [24] to perturbations generated by complex
algorithms, yet the fundamental objective of adversarial example generation remains
simple and can be summarized in Equation (3): given the original instance z, find the
closest example z’ relative to the chosen metric ||.|| that leads a model’s function fy
to change its output.

minlle — o/|| st folw) £ fole) (3)

A variety of perturbation methods exist for the supervised classification problem,
depending on the adversary’s objective and the model’s constraints. A extensive
overview of these methods can be found together with defense strategies in [11].

2.4 Security challenges in DRL

DRL enables agents to learn complex behaviors by interacting with their environment.
However, this interaction introduces unique security challenges not fully encountered
in traditional deep learning contexts. The dynamic nature of DRL, combined with the
necessity for long-term strategic decision-making, exposes DRL systems to a range of
security threats that can compromise their learning process, decision-making integrity,
and overall effectiveness. These challenges are further exacerbated by the adversarial
landscape, where attackers can manipulate the environment or the agent’s perception
to induce faulty learning or decision-making. Addressing these challenges is crucial for
deploying DRL in security-sensitive applications.

2.4.1 Safe RL Control

Formulating the challenge of safe control in RL [25] merges insights from the realms of
control theory and reinforcement learning, aiming to optimize a solution that balances
task achievement with stringent safety standards. At the heart of this approach lies
three critical elements: the dynamic system behavior encapsulated within a model
of the agent, the objectives or targets of the control task expressed through a cost
function, and a set of safety constraints that the solution must adhere to. The goal
is to develop a policy or controller that is capable of producing the necessary actions



to navigate the system towards its objectives, all while strictly complying with the
predefined safety protocols.

2.4.2 Reality Gap, Real World Perturbations and Generalization

The Reality Gap [7, 8] refers to the divergence between the simulated training envi-
ronments of DRL agents and the complex, unpredictable conditions they encounter
in real-world applications. This discrepancy challenges not only the agent’s ability to
generalize across different contexts but also presents a profound security vulnerabil-
ity. Real-world perturbations—unexpected changes in the environment—can lead to
degraded performance or entirely erroneous actions by the DRL agent, particularly
when these agents are confronted with scenarios slightly different from their training
conditions. Such perturbations may arise naturally, from unmodeled aspects of the
environment, or be adversarially crafted, with the intent to exploit these generaliza-
tion weaknesses and induce failures. Addressing the Reality Gap, thereby enhancing
the agents’ ability to generalize effectively and securing them against both natural
and adversarial perturbations, is crucial for the safe and reliable deployment of DRL
systems in environments demanding high levels of security and robust decision-making.

2.4.3 Robust RL Control

Robust RL control introduces an advanced framework for RL by incorporating ele-
ments of uncertainty, such as parametric variations and external disturbances, into the
system dynamics [26]. This approach shifts the optimization focus towards minimizing
the maximum possible loss, essentially preparing the system to handle the worst-case
scenario efficiently. It does so through a min-max optimization strategy, where the
goal is to find a control policy that minimizes the maximum expected cost.

min max J(m, )
T JEA

Where J(m,d) represents the expected cost (or loss) of policy m when subjected
to perturbations § introduced by the adversary. The set A defines the allowable
perturbations or disturbances.

This methodology ensures that the control system remains effective and reliable
even when faced with unpredictable changes or adverse conditions, thereby enhancing
its robustness and resilience in uncertain environments. This framework for enhancing
robust control in RL, can participate for generalization of the policies across conditions
changes thus helping to bridge the reality gap and overcome real world perturbations.

2.4.4 Adversarial Attacks of DRL

If adversarial attacks were historically developed for supervised image classification
models, they were proven equally effective for DRL agents. [27] first established the
vulnerability of DQNs to adversarial perturbations, their statement soon supported by
further studies [23]. Moreover, the RL framework offers more adversarial possibilities
than the simple adaptation of supervised methods. Indeed, various components of the
POMDP can be found vulnerable (like observation or transition function) through



various elements which could be critic entry points (observations, states, actions), while
the long-term dependencies inherent to DRL raise complex security challenges. On the
other hand, this higher level of adversarial latitude enables new defense strategies for
improving the agents robustness. This survey explores how adversarial attacks in RL
can be used to generate perturbations that result in the worst-case scenarios crucial
for Robust RL Control.

3 Formalization and Scope

The existence of adversarial examples poses a significant threat for DRL agents, par-
ticularly in applications where incorrect predictions can have serious consequences,
such as autonomous driving or medical diagnosis. Developing robust DRL algorithms
that can defend against adversarial attacks and bridge the reality gap is an important
and active research area in the field.

This survey aims to identify and assess how using adversarial examples during
policy training can improve agent robustness. More specifically, we discuss the abil-
ity of various types of adversarial generation strategies to help anticipate the reality
gap, which refers to a discrepancy between the training environment (e.g., a simula-
tor) and the deployment one (which can include perturbations, whether they can be
adversarially generated or not).

3.1 The problem of Robustness in RL

Generally speaking, we are interested in the following optimization problem:
" = arg max Eq~a@)m)Eraro ) [R(T)]

where ® corresponds to the distribution of environments to which the agent is likely
to be confronted when deployed (whether it adversarially considers 7w or not at test
time), 7'¥(7) is the distribution of trajectories using the policy 7 and the dynamics
from Q, and R(7) is the cumulative reward collected in 7. While this formulation
suggests meta-reinforcement learning, in our setting ®(Q|x) is unknown at train time.
The training setup is composed of a unique MDP on which the policy can be learned,
which is usually the case for many applications.

Given a unique training POMDP €, the problem of robustness we are interested
in can be reformulated by means of an alteration distribution ®(¢|m):

7T* = arg mjmx E¢~<1>(¢|W)IET~7r¢>9(T) [R(T)]

where 7% is the distribution of trajectories using policy 7 on ¢(f2), standing as the
MDP Q altered by ¢. Generally speaking, we can set ¢ as a function that can alter
any component of 2 as ¢(Q) = (¢S(SQ)’ (bA(AQ)? ¢T(TQ>7 ¢R(RQ)7 ¢X (XQ)7 ¢O(OQ))
As discussed below and also in [28], while ¢ can simultaneously affect any of these
components, we particularly focus on two crucial components for robustness:



® Observation alterations: ¢o denotes alterations of the observation function of .
In the corresponding altered environment Q = (S, A% T? R? X $5(0%)), the
observation obtained from a state s € S could differ from that in €. This can result
from an adversarial attacker, that perturb signals from sensors to induce failures,
observation abilities from real world that might be different than in simulation, or
even unexpected failures of some sensors. These perturbations only induce percep-
tion alterations for m, without any effect on the true internal state of the system
in the environment. Occurring at a specific step ¢ of a trajectory 7, such alteration
thus only impacts the future of 7 if it induces changes in the policy decision at t.

® Dynamics alterations: ¢ denotes alterations of the transition function of Q. In the
corresponding altered environment Q = (S, A ¢7(T), R®, X 0%), dynamics
are modified, such that actions have not the exactly same effect as in Q. This can
result from an adversarial attacker, that modifies components of the environment
to induce failures, from real world physics, that might be different than those from
the training simulator, or from external events, that can incur unexpected situa-
tions. Dynamics alterations act on trajectories by modifying the resulting state s;41
emitted by the transition function 7" at any step t. Even when localized at a single
specific step t of a trajectory, they thus impact its whole future.

In this work, we do not explicitly address variation of other components
(S, A, R and X), as they usually pertain to different problem areas. ¢g (resp. ¢4)
denotes alterations of the state (resp. action) set, where states (resp. actions) can be
removed or introduced in S (resp. A%). ¢x denotes alterations of the observation
support X, While some perturbations of dynamics ¢ or observations ¢o can lead
the agent to reach new states or observations never considered during training (which
corresponds to implicit ¢g or ¢x perturbations), ¢s, ¢4, and ¢x all correspond to
support shifts, related to static Out-Of-Domain issues, which we do not specifically
focus on in this work. ¢z denotes alterations of the reward function, which does not
pose problem of robustness in usage, since the reward function is only used during
training.

3.2 Adversarial Attacks for Robust RL

Following distributionally robust optimization (DRO) principles [29], unknown distri-
bution shifts can be anticipated by considering worst-case settings in some uncertainty
sets R. In our robust RL setting, this comes down to the following max-min
optimization problem:

™ =argmaxminE, E, re.0m | R(T 4
g min By g g1 Brers ) [R(T) (@

where R is a set of perturbation distributions. As well-known in DRO literature for
supervised regression problems, the shape of R has a strong impact on the corre-
sponding optimal decision system. In our RL setting, increasing the level of disparities
allowed by the set R constrains the resulting policy 7 to have to perform simultane-
ously over a broader spectrum of environmental conditions. While this enables better
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generalization for environmental shifts, it also implies to deal with various highly unre-
alistic scenarios if the set R is not restricted on reasonable levels of perturbations.
With extremely large sets R, the policy 7 is expected to be equally effective for any
possible environment, eventually converging to a trivial uniform policy, that allocates
equal probability to every action for any state from S*. The shape of R has thus to
be controlled to find an accurate trade-off between generalization and effectiveness.
This is done in the following by setting restricted supports of perturbation.

In our setting, dealing with worst-case distributions of perturbations defined over
full supports of 2 is highly intractable in most realistic applications. In this survey, we
rather focus on adversarial training that leverage the simultaneous optimization of an
attacker agent &, that produces perturbations for situations reached by the protagonist
m, by acting on adversarial actions A? that the environment 2 permits:

7" =argmax K, e 0 [R(T)]

s.t. &= argmfinA”’Q(g)

where A™9(¢) stands as the optimization objective of the adversarial agent given
7 and the training environment {2, which ranges from adverse reward functions to
divergence metrics (c.f., section 4.3), and 7&%(7) corresponds to the probability of
a trajectory following policy 7 in a POMDP dynamically modified by an adversar-
ial agent £, given a set of actions A? = (A?’X,AQA,A?’S,A?’T,A?’SQ. The action
a§ = (af’X, af’A7 af’s, a§’T af’s+) of adversary £ can target any element of any transi-
tion 174 = (8¢, T, at, Se+1) of trajectories in 2. While any perturbation of x; induce an
alteration of the observation function O, any perturbation of s;, a; or s;1 induce an
alteration of the transition function T (either directly, through its internal dynamics,
or indirectly via the modification of its inputs or outputs).

In this setting, any trajectory is composed as a sequence of adversary-augmented
transitions 7 = (st,mt,at,af,xg,ag,gt,ft,gtﬂ,ftﬂ,stH), where the elements z}
(resp. a}) stands for the perturbed observation (resp. action) produced by the appli-
cation of the adversary action at’X (resp. af’A) at step t. Sy (resp. Si41) stands for
the intermediary state produced by the application of the adversary action af’s (resp.
a5 at step t before (resp. during) the transition function, and #, (resp. Zi41) is the
observation of this state. Finally s;1; stands for the final next state produced by the
application of the adversary action at’SJr after the transition function, its observation
is x411. The support and scope of adversarial actions define the level of perturbations
allowed in the corresponding uncertainty set R from (4), with impacts on the gen-
eralization/accuracy trade-off of the resulting policy 7. While the protagonist agent
7 acts from x; with a; ~ 7(:|z;), in the following, we consider the general case of
adversaries ¢ that act from s;, 2; and a, that is &€ : S© x X% x A® x A? — [0;1]
where af ~ &(|8¢, ¢, ar). By doing this we consider adversaries £ that have full knowl-
edge of the environment, observation and action, while this could be easily limited to
adversarial policies ¢ that act only from partial information.

b
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4 Taxonomy of Adversarial Attacks of DRL

We conduct a systematic analysis of adversarial attacks for RL agents, with a focus
on their purposes and applications. To better grasp the variety of methods available
and their specificities, we propose a taxonomy of adversarial attacks for DRL. This
taxonomy is used to categorize the adversarial attack as previously shown in Figure
1 and later described in Table 1. This section discusses the different components of
adversarial approaches for robust RL, before developing main approaches in the next
section.

4.1 Perturbed Element

An adversarial attacks is a method that use an adversarial action af € A? emitted by
the adversary agent & at step ¢, to produce a perturbation in the simulation during
the trajectory of an agent. Given the type of attack, an action af can directly perturb
different elements :

The observations x;
Via a perturbation function O¢ : X x X% x A?,X — [0;1], where 2} ~ O%(-|zy, ad™).

The actions a;
Via a perturbation function A® : A% x A% x A?.,A — [0;1] where a ~ AS(-|ag, a5™).

The current state s; (before transition)

Via an additional transition functions ng_ 0 9% x 89 x A?,S — [0;1] where

Sp o~ Tgﬂ_ (| s¢,a$) is applied after the decision a; of the agent is taken and before the

main transition function of the environment is applied.

The transition function T
Via an adversarially augmented transition functions TEQ S x S x A% x A?T — [0;1]

where ;41 ~ Tg(~|st, as,as’") is applied as substitute of the main transition function
of the environment T

The next state s;y1 (after transition)

Via an additional transition functions Téﬂ_ : 89 x 89 x A?,s + — [0;1] where

Sprq ~ Tgi(~|st+1, a5") is applied after the main transition function of the environ-

ment and before the next decision a;y1 of the agent is taken.

The perturbations on the two first types of elements (observation and action)
require just to modify a vector which will be fed as input of another function, so they
are easy to implement in any environment. The perturbations on the three last types
of elements (state, transition function and next state) are more complex and require
to modify the environment itself, either by being able to modify the state with an
additional transition function, or being able to modify the main transition function
itself by incorporating the effect of the adversary action.

12



Here and in the following, we use the term perturb to denote direct modification
of an element by an adversarial action af. For example, direct perturbation of an
observation x;, perturbation of a state sy, perturbations of an action a;. We do not use
the term perturbations for indirect modifications, for example by directly perturbing
an observation x;, the action a; chosen by the agent could be modifies, this new action
cannot be seen as a perturbed action but results from the application of the policy 7
of the agent given a perturbed observation zj.

In the following we use the term disturb to denote any perturbation of one of the
following elements : action, state, transition function or next state. More generally
the term disturb is used to denote perturbations that modifies the dynamics of the
environment.

4.2 Altered POMDP Component

Following the two main types of alterations ¢ that are discussed in previous section,
the main axis of the taxonomy of approaches concerns the impact on the POMDP
of actions that are emitted by adversary agents during training of 7. Given adver-
sarial elements defined in the previous section, we specify each possible perturbation
independently to discuss each specific adversarial impact on the POMDP.

Here and in the following, we use the term alter to denote the modification of
a component of the POMDP from the POV of the agent. For example, adding an
adversarial attack that perturb the observations is an alteration of the observation
function O of the POMDP from the POV of the agent. Alternatively, adding an
adversarial attack that perturb the action, the state, the transition function or the
next state, is an alteration of the transition function 7% of the POMDP (dynamics of
the environment) from the POV of the agent.

4.2.1 Alteration of the Observations Function O

The first type of component alteration is the alteration of the observation function
0% of the POMDP. Directly inspired from adversarial attacks in supervised machine
learning, many methods are designed to modify the inputs that are perceived by the
protagonist agent 7. The principle is to modify the input vector of an agent, which
can correspond for instance to the outputs of a sensor of a physical agent, like an
autonomous vehicle. The observation is perturbed before the agent take any decision,
so the agent get the perturbed observation and can be fooled.

More formally, in the setting of an observation attack, the adversary & acts to
produce a perturbed observation z; before it is fed as input to m, by perturbing the
observation ; via the specific perturbation function Of(z}|z,a$) introduced in
Section 4.1.

In that case, £ can be regarded as an adversary agent that acts by emitting
adversarial actions a®* ~ £(-|sy,z;) with a5 € AP, given 7 in a POMDP
defined as Q™ = (S%, Agx, T2 R2, X2 09), where sampling 5,11 ~ T™(-|s;, a5™)
is performed in four steps, as shown in Algorithm 1.
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Algorithm 1 5,41 ~ T™2(-|s;, a5)

t

Ll > A o

Input sy, af’X > state and adversary action
sample x; ~ O%(-|s;) > observation
sample 2} ~ O (-|zy, a5™) > perturbed observation

sample a; ~ m(-|z}) > agent action

sample sy41 ~ T(:|s¢, ar) > next state after transition
return s;4;

Reversely, agent 7 acts on an altered POMDP Q¢ = (59, A?, T, R? X% 0%%)

where the input observation x} ~ O%%(|s;) is performed in three steps, as shown in

Algorithm 2.

Algorithm 2 ) ~ O%%(.|s;)

Input s, > state
sample z; ~ O%(-|s;) > observation
sample a4 ~ £(:|sg, x4) > adversary action
sample z}, ~ O%(-|zy, a5 > perturbed observation
return x}

Figure 3 presents a flowchart illustrating how the observation perturbation

integrates into the POMDP.
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Fig. 3: Flowchart of the perturbation of the observation

Following this, the probability of an adversary-augmented transition
7:t =

IS A~ ~ : ~ .. .
(St7 Ly Aty Af s Ty Apy Sty Lty St41, Ti+1, 5t+1) given past To:t—1, 18 given by
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72 (rils1) = O%(wi|s)&(af ™ |0, w0) O (wf |y, ap ™ )w(ay|}) b, (a)

85, (36) O (T4 [30) T (5141134, @) O (Tys1]St41) 05,4, (St41)
where ¢, stands for a Dirac distribution centered on x.

4.2.2 Alteration of the Transition Function T (Environment
Dynamics)

The other type of component alteration is the alteration of the transition function 7
of the POMDP (altering the dynamics of the environment). The principle is to modify
effects of actions of the protagonist in the environment. For example, this can include
moving or modifying the behavior of some physical objects in the environment, like
modifying the positions or speed of some vehicles in autonomous driving simulator,
or modifying the way the protagonist’s actions are affecting the environment (e.g. by
amplifying or reversing actions).

This is done by emitting adversarial actions Ag’, that are allowed by the environ-
ment Q through a specific adversary function A¢, Tg, T£Q or Tg, creating an altered
transition function T¢% for the protagonist actions. In that setting, four types of
adversaries can be considered:

Transition Perturbation

In this setting, the process begins with the agent in an initial state. The agent then
chooses an action, which is applied to the environment. This should leads to a tran-
sition to a new state, according to the environment’s transition function. However,
this transition function is perturbed, effectively altering the dynamics of the environ-
ment. Resulting in a different new subsequent state than if the transition had not been
perturbed.

For instance, in the context of an autonomous vehicle, the vehicle might decide
to change lanes (action) based on the existing traffic setup (state). As this action
leads to a transition, the behavior of surrounding vehicles is unpredictably modified
(perturbed transition). Consequently, the vehicle emerges in a new traffic configuration
(next state) that is different from what would typically result from the chosen action.

This process introduces variability into the environment’s dynamics by directly
changing the environment’s inherent transition function.

More formally, the adversary £ acts to induce an altered next state s;,; by modi-
fying the transition function itself, replacing it with the perturbed transition function

Tg(st+1|(st,at),af’T) introduced in Section 4.1. In that case, £ can be regarded as

an agent that acts by emitting adversarial actions af’T ~ &(:|st,zt,at), given

in a POMDP defined as: Q7 = ((SQ,AQ),AgT,T”’Q,R?,XQ7OQ), where sampling

(St41, ars1) ~ T™2(|(s¢, ar), s’ ") is performed in three steps, as shown in Algorithm
3.
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Algorithm 3 (sy11,at11) ~ T”’Q(~|(st,at),af’T)

Input sy, ay, af’T > state, agent action and adversary action
1: sample s¢41 ~ Tg(~|st, at, af’T) > next state after perturbed transition
2. sample ;11 ~ O%(-[s111) > next observation

3: sample apy1 ~ 7(-|r41) > next agent action
return S;y1, ai41

Figure 4 presents a flowchart illustrating how the transition perturbation integrates
into the POMDP.
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Fig. 4: Flowchart of the perturbation of the transition function

Current State Perturbation

In this setting, the process begins with the agent in an initial state. The agent then
chooses an action to be applied within the environment. However, before this action
is applied, the current state is subjected to a perturbation. This perturbation alters
the initial state, leading to a modified state in which the chosen action is applied. The
application of the action in this perturbed state results in a transition, resulting in a
new subsequent state according to the environment’s transition function.

For example, consider an autonomous vehicle deciding to change lanes (action)
based on the prevailing traffic configuration (state). Prior to executing this maneuver,
the traffic configuration is altered (perturbed state), such as by adjusting the positions
of nearby vehicles. Consequently, when the vehicle executes its lane change, it does so
in this adjusted traffic scenario, leading to a different traffic configuration (next state)
than if the original state had not been modified.

This process introduces variability into the environment’s dynamics without
necessitating a direct modification of the environment’s transition function.
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More formally, the adversary & acts to induce an altered next state s;,; by
perturbing the state before the transition function via the prior transition func-
tion Tfﬂ_ (S¢ls¢,a5®) introduced in Section 4.1. In that case, & can be regarded as

an agent that acts by emitting adversarial actions at’s ~ &(-|st,xt,at), given w

in a POMDP defined as: Q™ = ((SQ,AQ),AgS,T”’Q,Rg,XQ,OQ), where sampling
£,S

(8415 a401) ~ T2+ (54, a¢), a5 is performed in four steps, as shown in Algorithm 4.

Algorithm 4 (siy1, ai1) ~ T (sg, ap), a5)

Input s¢,ay, af’s > state, agent action and adversary action
1: sample $; ~ Tgﬂ_(-|st, as%) > perturbed state
2. sample s, 1 ~ T(-[5¢, az) > next state after transition
3: sample 24,1 ~ O%(-[s111) > next observation
4: sample a1 ~ 7(:|x441) > next agent action

return Syy1, a¢y1

Figure 5 presents a flowchart illustrating how the current state perturbation
integrates into the POMDP.
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Fig. 5: Flowchart of the perturbation of the current state

Next State Perturbation

In this setting, the process begins with the agent in an initial state. The agent chooses
an action which is then applied in the environment. This leads to transition to a new
subsequent state, according to the environment’s transition function. However, before
the agent can choose its next action, this new state is perturbed.

For instance, in the case of an autonomous vehicle, the vehicle might choose to
change lanes (action) based on the current traffic configuration (state). After the action
is executed, the vehicle finds itself in a new traffic configuration (next state). Before
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choosing the next action, this new state is perturbed, for example, by altering the
positions of surrounding vehicles. This means the vehicle now faces a modified traffic
configuration (perturbed next state) from which it must decide its next move.

This process introduces variability into the environment’s dynamics without
necessitating a direct modification of the environment’s transition function.

The key difference between perturbing the current state and perturbing the next
state lies in the agent’s awareness of its situation. In current state perturbation, the
agent lacks true knowledge of its precise state when choosing the action because this
state is modified just before the action is applied. However, in next state perturbation,
the agent has full awareness of its current state when choosing the action.

More formally, the adversary & acts to produce an altered next state s; ; by
perturbing the state after the transition function via the posterior transition func-
tion Tgﬂ_ (Se41]8¢41,a5° ") introduced in Section 4.1. In that case, & can be regarded

as an agent that acts by emitting adversarial actions af’s+ ~ &(-|st,x¢), given
7 in a POMDP defined as: Q" = (SQ,A?5+,T”’Q,R?,XQ,OQ), where sampling

£,S+
t

spp1 ~ T™2( sy, a3° ") is performed in three steps, as shown in Algorithm 5.

Algorithm 5 5,1 ~ T™%(-|sy, a5 ™)

Input sy, af’SJr > state, adversary action
1: sample $; ~ Tgi(~|st, a5s ) > perturbed state
2. sample 7y ~ O%(-[5;) > observation
3. sample a; ~ 7(-|x¢) > agent action
4: sample s;41 ~ T(-|34, ay) > next state after transition

return s;4

Figure 6 presents a flowchart illustrating how the next state perturbation integrates
into the POMDP.
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Fig. 6: Flowchart of the perturbation of the next state
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Action Perturbation

In this setting, the process starts with the agent in an initial state. The agent chooses
an action, which is intended to be applied in the environment. However, before this
action can be applied, it undergoes a perturbation, resulting in a perturbed action.
This perturbed action is then applied, leading to transition to a new state according
to the environment’s transition function.

For instance, consider an autonomous vehicle that decides to steer at an angle
of a (action) based on the current traffic configuration (state). Before the steering
action is executed, it is perturbed, so the actual steering angle applied to the vehicle
becomes o+ ¢ (perturbed action). As a result, the vehicle transitions into a new traffic
configuration (next state) that reflects the outcome of the perturbed steering action.

This process introduces variability into the environment’s dynamics without neces-
sitating a direct modification of the environment’s transition function or modification
of the state of the environment. However, this approach to modifying dynamics, while
introducing variability, is confined to the scope of action perturbation, limiting the
diversity of potential dynamics alterations.

More formally, the adversary { acts to induce an altered next state s}, by per-
turbing the action decided by the agent a; ~ m(-|x¢) via the specific perturbation
function A% (a}|as, at*) introduced in Section 4.1.

In that case & can be regarded as an agent that acts by emit-

ting adversarial actions a%? ~  €(|sy,1z4,04), given m in a POMDP
defined as: Q7 = ((SQ,AQ),AEA,T”’Q,R?,XQ,OQ), where sampling

(041, ar1) ~ T™2(:|(s¢,ar), a8™?) is performed in four steps, as shown in Algorithm
6.

Algorithm 6 (si41,a;11) ~ T™%(-|(ss, ar), a5™)

Input s¢,ay, af’A > state, agent action and adversary action
1: sample a} ~ AS(-|ag, at*) > perturbed agent action
2. sample sy 1 ~ T%(-|s¢,a}) > next state after transition
3. sample 2411 ~ O?([s141) > next observation
4: sample az11 ~ 7(-|Ts41) > next agent action

return S;41, a¢41

Figure 7 presents a flowchart illustrating how the action perturbation integrates
into the POMDP.
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Fig. 7: Flowchart of the perturbation of the action

Reversely, we can gather the point of view of the protagonist agent m in
a single example combining all four possible attacks just described by denoting
the adversaries 4, £s—, & and Egy. The agent m acts on an altered POMDP
Of = (S92, A%, 799 R2 X 0O%), where 5411 ~ T%(-|s¢,a;) is performed in eleven

steps, as shown in Algorithm 7.

Algorithm 7 s,y ~ T5?(:|s4, at)

Input s, a

> state and agent action

1: sample z; ~ O (+|s;) > observation
2: sample af’A ~ Ea(:]st, e, ap) > adversary action A
3. sample a$® ~ Er_(-|se, e, ar) > adversary action S
4: sample a, ~ AS(-|ay, ad?) > perturbed action
5: sample $; ~ Tg’_(-\st, as%) > perturbed state
6: sample T; ~ O%(-[5;) > observation of the perturbed state
7. sample af'" ~ &7 (|5, 3¢, a}) > adversary action T
8: sample Sp1q ~ TEQ(~|§75, a;, asT) > next state after perturbed transition
9: sample Ty 11 ~ O%(-[5;11) > observation of the next state
10: sample af’SJr ~ &y (*|St41, Trg1) > adversary action S+
11: sample sp11 ~ Tg+(-|'§t+1, a5o ) > perturbed next state
return s; ;1
Following this, the probability of an adversary-augmented transition

T = (st,mt,at,af,xg,ag,gt,ft,§t+1,§t+1,st+1) given past 7g.;_1, is given by:
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782 (F]s) = O (we|se) 0, (w7 (arlx))Ea(as s, 2e, ar) AS (af|ar, ap )

€5 (a7 |se, we, a0)TE (Bl e, 0 *) O (F[50)&r (af T (5, T, af) TE (Sesa |51, af, af ™)

O &r11[5e41)Es4 (af T [Sep1, Tra) )T (5141 (5041, 0% )

In all settings, the reward functions R® and R? are defined on environment
transitions (s, at, S¢41)-

4.3 Adversarial Objective

Adversarial attacks in RL are strategically designed to compromise specific aspects of
agent behavior or environment dynamics. In general, they aim to prevent the agent
from acting optimally, but the attacks vary in their objectives and methodologies.
Even if the general goal of any adversarial attack is to reduce the performances of
the agent, methods to achieve this can primarily have different objective function, for
specific performance reductions.

4.3.1 Deviate Policy

The primary goal is to deviate the agent from its initial, typically optimal, policy.
We can deviate the policy to make it diverge from the original policy : in that case
the adversary £ is designed to maximize the agent’s expected loss over the pairs of
policy given perturbed observation z’ and original observation x, this is often referred
as untargeted attacks. Or, we can also deviate the policy to make it converge to a
target policy: in that case the adversary € is designed to minimize the agent’s expected
loss over the pairs of policy given perturbed observation ' and another policy g given
original observation x, this is often referred as targeted attacks.

For adversarial attacks that alter the observation function, assuming the following
shorthand notations: E, = Eywx; Eo = Egene(2); Ev = Eprooe(a,a8),||2/—a||<e» the
objective function for untargeted attacks (policy divergence) is :

& =arg mfaxEmEaIEI/ [L( m(2'), m(x)) ]
The objective function for targeted attacks (policy convergence) is :
¢ = argminE,E, By | £(r(2), o(x) ) |

These formulations seek for the optimal adversarial strategy £* that maximizes (resp.
minimizes) the expected loss £, computed over a distribution of original observations
x, actions a¢ according to the adversary policy, and perturbed observations 2’ result-
ing from the altered observation function O%, constrained by the condition that the
perturbation in observation is less than . The loss £ measures the difference between
the policy’s output over the perturbed observations 7(z’) and the policy’s output
over the original observations m(x) (resp. the target policy’s output over the original
observations g(z)).
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For adversarial attacks that alter the dynamics of the environment, assum-
ing the following shorthand notations: Es, = E(sa)~(s,4); Ex = Epooos)
Eoe = BEacng(lo); Esern = Eoppinro(isa) Bepn = Ert+1"jo(‘|.5t+l); E?ﬁﬂ
Bz, ~Te2( s,0), | Fepr—sisill<es Ban = Ez,~0([54.), the objective function for
untargeted attacks (policy divergence) is :

¢ = argmaxE, oEEosEa,  Ba, B By [L(w('ft+1), w(2e41)) }
The objective function for targeted attacks (policy convergence) is :
6" = argmin B oBoEycEu, B B By {c(n(fm), 9(ze11)) ]

Here, ¢* is the optimal adversarial strategy that maximizes (resp. minimizes) the
expected loss, considering the altered state dynamics and resulting observations, with
the constraint that the perturbation in the state is less than €. The expectations are
over the distribution of original states s and their observations x, adversarial actions
af, perturbed states 5;,; from the modified transition function 7%, and observations
Z¢y1 from the perturbed states. The loss £ measures the difference between the policy’s
output over the observations of perturbed next states 7(Z;+1) and the policy’s output
over the observations of original non perturbed next states m(x¢41) (resp. the target
policy’s output over the observations of original non perturbed next states g(x¢11)).
Even if the goal of applying these attacks can be to reduce the performances of
the agent, the attacks themselves are designed to maximize the divergence (resp. con-
vergence) of the policy, effectively causing the policy to produce significantly different
actions or decisions based on the manipulated environment dynamics and observations.

4.3.2 Reward Minimization

In contrast, some adversarial attacks focus on leading the agent to less favorable states
or decisions, thereby minimizing the total expected reward the agent accrues. These
attacks are often targeted and seek for reduction of the efficacy or efficiency of the
agent’s behavior by altering its reward acquisition.

The objective function optimized in such attacks, subject to the relevant pertur-
bation constraints, is:

6* = argmgnE;N,rg,n(;) {R(T)}?subject to ||SC/ — SC|| < E€or ||§t+1 — 5t+1|| <é€

Here, £* represents the adversarial strategy aimed at minimizing the agent’s total
expected reward. The expectation is taken over the trajectories 7 sampled according
to a policy 7 perturbed by the adversary in the environment Q. The function R(7)
calculates the discounted sum of rewards for each trajectory, with the goal of the
adversary being to minimize this quantity through interventions, while adhering to
the specified constraints on the perturbations. For attacks altering the observation,
the difference between the perturbed observation x’ and the original observation x is
constrained such that ||z’ — z|| < e. Similarly, for attacks that alter the dynamics of
the environment, the perturbation in the state is constrained with ||S;11 — si11]| < €.
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In practice, it is hard to verify |[S;4+1 — st+1|| < € since once the transition function
applied an the next state get, in most of the simulation environment available, it is
not possible to redo the transition with some other inputs to get the alternative next
state, to be able to compare them. Therefore often, the actually verified constraint is
||la$|] < e, this makes it hard to compare different Dynamic Attacks that do not alter
the same element s;, a;, T2 or St41-

4.3.3 Others

Some methods have other objectives, for example to lead the agent to a specific target
state. The objective is then to minimize the distance between the current state and
the target state. Some other specific objectives can exist.

4.4 Knowledge Requirement

In the realm of adversarial attacks against DRL agents, the extent and nature of the
attacker’s knowledge about the agent significantly influence the strategy and effective-
ness of the attack. Broadly, these can be categorized into White Box and Black Box
approaches, each with its own set of strategies, challenges, and considerations.

4.4.1 White Box

In this scenario, the adversary has complete knowledge of the agent’s architecture,
parameters, and training data. This scenario represents the most informed type of
attacks, where the adversary has access to all the inner workings of the agent, includ-
ing its policy, value function, and possibly even the environment model.

— Policy and Model Access: The adversary knows the exact policy and decision-making
process of the agent. This includes access to the policy’s parameters, algorithm type,
and architecture. In model-based RL, the attacker might also know the transition
dynamics and reward function.

— Optimization and Perturbation: With complete knowledge, the attacker can craft
precise and potent perturbations to the agent’s inputs or environment to maximize the
deviation from desired behaviors or minimize rewards. They can calculate the exact
gradients or other relevant information needed to optimize their attack strategy.

— Challenges and Implications: While white box attacks represent an idealized sce-
nario with maximal knowledge, they provide a comprehensive framework for testing
the agent’s robustness. By simulating the most extreme conditions an agent could face,
developers can identify and reinforce potential vulnerabilities, leading to policies that
are not only effective but also resilient to a wide range of scenarios, including unex-
pected environmental changes. This approach is particularly valuable in safety-critical
applications where ensuring reliability against all possible disturbances is crucial.

4.4.2 Black Box

In this scenario, the adversary has limited or no knowledge of the internal workings
of the agent. They may not know the specific policy, parameters, or architecture of
the RL agent. Instead, they must rely on observable behaviors or outputs to infer
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information and craft their attacks.
— Observational Inference: The attacker observes the agent’s actions and possibly some
aspects of the state transitions to infer patterns, weaknesses, or predict future actions.
This process often involves probing the agent with different inputs and analyzing the
outputs.
— Surrogate Models and Transferability: Attackers might train a surrogate model to
approximate the agent’s behavior or policy. If an attack is successful on the surrogate,
it might also be effective on the target agent due to transferability, especially if both
are trained in similar environments or tasks.
— Challenges and Implications: The use of black box methods in enhancing robustness
is not directly about realism of adversarial intent but rather about preparing for a
variety of uncertain conditions and environmental changes. These methods encourage
the development of general defense mechanisms that improve the agent’s adaptability
and resilience. While the adversarial mindset might not reflect the typical operational
challenges, the diversity and unpredictability of black box approaches help ensure that
RL systems are robust not only against potential adversaries but also against a wide
array of non-adversarial issues that could arise in dynamic and uncertain environments.
Both white and black box attacks paradigms play crucial roles in the study and
development of adversarial strategies in RL. They help researchers and practitioners
understand the spectrum of threats and devise more robust algorithms and defenses.
By considering these different knowledge scenarios, one can better prepare RL agents
to withstand or recover from adversarial attacks in various real-world applications.

4.5 Category of Approach

This section delineates the various methodologies utilized in crafting adversarial
attacks, each with distinct strategies and theoretical underpinnings. It primarily
divides into direct optimization-based and adversarial policy learning approaches.

4.5.1 Direct Optimization Based Approaches

They focus on directly manipulating the input or parameters of a model to induce mis-
behavior. These methods are subdivided into first-order and zeroth-order techniques,
depending on the availability and usage of gradient information.

First Order Optimization approaches (White Box) : Gradient Attacks

They utilize the gradient information of the model to craft adversarial examples,
efficiently targeting the model’s weaknesses. Common in white-box scenarios, gradient
attacks are powerful when model internals are accessible.

Zeroth Order Optimization approaches (Black Box)

Or derivative-free methods, optimize the adversarial objective without requiring gra-
dient information, making them suitable for black-box scenarios. Techniques include
simulated annealing, genetic algorithms, and random search.
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4.5.2 Adversarial Policy Learning Based Approaches

These approaches involve training a separate model or policy to generate adversarial
attacks. The adversarial model learns an optimal attack strategy through interaction
with the target system, often using RL techniques. To train an Adversarial Policy
(AP), optimization methods are used and could also be classified as First and Zeroth
Order methods, but on the contrary to direct optimization methods, the optimization
is used to train the adversary, not to directly craft the perturbation. Adversarial Policy
Learning Based Approaches can be divided into two categories :

Classical Adversarial Policies

Learned via RL or any other method, only need a black box access to the model of
the agent since they are policies sufficient in themselves.

Augmented Adversarial Policies

Learned via RL or any other approach, are augmented either with a white Box access to
the agent’s model during training or inference phase, or with some Direct Optimization
method are added besides the Adversarial Policy to improve its performances.

In the following sections, we will use this taxonomy as a framework to examine
recent research on adversarial examples for DRL. Section 5.1 focuses on input-space
perturbations, and Section 5.2 on environment-space perturbations.

5 Adversarial Attacks

In this section, we conduct a comprehensive review of contemporary adversarial attacks
as documented in current literature, presented in a hierarchical, tree-like structure
(refer to Figure 1). The review categorizes these attacks first based on the type of alter-
ation induced in the POMDP: either Observation Alteration or Dynamic Alteration.
Next, the categorization considers the underlying objective driving these attacks,
which could be either to Deviate Policy or Minimize Reward. Lastly, the classification
focuses on the computational approach employed: Direct Optimization (First or Zeroth
Order) or Adversarial Policy Learning. For each method in this classification tree,
we will provide a detailed description, ensuring to consistently include the following
critical information: the nature of the perturbation support (whether it’s an obser-
vation, state, action, or transition function), the level of knowledge about the model
required to execute the attack (white-box or black-box), and any specific constraints
or potential limitations associated with the method.

5.1 Observation Alteration Attacks

This section delves into the analysis of Observation Alteration Attacks targeting RL
agents. These attacks specifically modify the observation function in the POMDP
framework. Such methods are instrumental in simulating sensor errors in an agent,
creating discrepancies between the agent’s perceived observations and the actual
underlying state. These techniques can be particularly beneficial during an agent’s
training phase, enhancing its resilience to potential observation discrepancies that
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might be encountered in real-world deployment scenarios. Observation Alteration
Attacks generate a perturbation a&% for a given observation z, resulting in a per-
turbed observation ' = z + a®¥. The perturbation a$¥ is constrained within an
e-ball of a specified norm p € Ly, Lo, ..., Lo. This constraint can be achieved from

€
any arbitrary perturbation a** by computing a$X = m .
as% ||,

in the context of a Ly e-ball, a®X is defined by assigning the top-e¢ values of a®% as
1 and setting all other values to 0.

atX . Alternatively,

5.1.1 Deviate Policy

In the field of adversarial attacks on observations, most methods developed primarily
focus on optimizing the deviation of the policy. These methods function by crafting a
perturbed observation z’ that replaces the original observation z. Consequently, the
policy m generates a different output w(2’) # m(z). In the untargeted scenario, the
goal is to maximize divergence from the original policy; this is achieved by maximizing
a specific loss function between the policy output on the altered observation and the
original observation, formulated as argmax, L(w(a’),7(x)). Conversely, in targeted
attacks, the objective is to guide the policy towards a particular behavior. This is done
by minimizing a defined loss between the policy output on the altered observation and
a target policy g on the original observation, expressed as argmin, L(w(z'), g(z)).
While the primary focus of these optimization functions is the deviation of the policy,
this often results in a corresponding reduction in the reward garnered by the agent.
Although Adversarial Policy Learning Based Methods could theoretically be employed
to create observation attacks intended to deviate policy, the prevailing methods in
practice are predominantly Direct Optimization Methods.

Direct Optimization Methods refer to techniques that directly compute an adver-
sarial perturbation directly with optimization approaches. These approaches include
gradient descent, evolutionary methods, stochastic optimization, among others. They
are particularly effective for generating perturbations in observations with the aim of
altering the policy’s behavior. A key advantage of these methods is their ability to
be applied directly to a given agent model, without the necessity for extensive prior
knowledge or preliminary computations. However, it is important to note that some of
these methods might entail significant computational resources for each perturbation
calculation.

First Order Optimization Methods: Gradient Attacks (White Box)

They are methods initially introduced in the context of supervised classification. They
utilize the gradient of the attacked model to compute a perturbation a®¥ for a given
input z, thereby crafting a perturbed input 2’. Consequently, these methods require
white-box access to the model being attacked. In the realm of supervised classification,
they are typically defined using the general formula:

' =z+a"" with o&% =ex...V,L(f(2),y)...
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Here, ¢ represents the magnitude of the perturbation, f(z) is the model output, y
denotes the ground truth label for untargeted attacks or the target class for targeted
attacks, and L is a loss function (often the same one used in training, but not exclu-
sively). The term VL signifies the gradient of the loss function L with respect to
the input z, and the “...” indicates that additional operations can be applied to this
core equation to tailor the update function to the specific optimization problem at
hand. When adapted to RL, the formula essentially remains unchanged, except f(x) is
replaced by 7(x), the output of the agent’s policy function. In this context, y no longer
represents the ground truth but rather the current action a for untargeted attacks,
or a targeted action for targeted attacks. Numerous gradient attack methods exist,
with the most notable being FGSM and its extensions (BIM, PGD, C&W, DeepFool,
..), as well as JSMA and its extensions (XSMA, VFGA, ...). All these methods,
initially designed for supervised classification, are applicable in RL. Their primary
objective is to deviate the agent’s policy by creating adversarial observations. As they
are designed to generate minimal perturbations around a given observation, they are
generally suited for agents and environments with continuous observation spaces, such
as images, feature vectors, and signals. These attacks employ first-order optimization
methods as they utilize the direction directly provided by the model’s gradient, thus
categorizing them as white-box methods, which necessitate complete knowledge of the
agent model’s architecture to obtain the gradient. These methods can be employed
either in an untargeted manner, by maximizing the loss between the chosen action
and itself, or in a targeted manner, by minimizing the loss between the chosen action
and a specific target action.
— FGSM [31] is a fast computing method for crafting effective perturbed observa-
tions with 2’ = z 4+ & - a®% with a** =sign(V,L(f(2),y)). In some case a variant is
preferred with a&% = VmL(f(x), y)
— BIM [31] and PGD [32] are iterative versions of FGSM, BIM simply applies FGSM
multiple times with small steps, while PGD is more refined and projects the adversar-
ial example back into a feasible set after each iteration. They are more computation
needing, since they are iterative methods that computes the gradient several times to
craft more precise adversarial observations.
— DeepFool [33] is an iterative method. In each iteration, it linearizes the classifier’s
decision boundary around the current input and then computes the perturbation to
cross this linearized boundary.
— C&W [34] is a method that seeks to minimize the perturbation while ensuring that
the perturbed input is classified as a specific target class.
These methods can be used on any agent having whether their type of action space
(discrete or continuous).
— JSMA [35] is another gradient attack. It is more computationally expensive than
FGSM, since it is an iterative method that craft perturbation with several iteration
of computation of a Jacobian matrix for each output. It applies perturbation pixel by
pixel, this make it particularly suitable for Ly bounded perturbations.
— XSMA [36], VFGA [37], are methods based on JSMA, improving its effectiveness.
Theses methods have been applied to RL in untargeted way [23, 27] in various type
of environments, and in targeted way [38§].
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A representation of the integration and application of Gradient Attacks in crafting
observation perturbations within an RL framework is shown in Figure 8.
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Fig. 8: Gradient Observation Attacks : The adversarial attack intercept the
observation x;, computes a perturbation at’X by back-propagating the gradient of a
loss in the neural network of a copy of the agent 7, this perturbation is used to craft

a perturbed observation z}, which is sent to the agent

Zeroth Order Optimization Methods (Black Box)

They represent an alternative category of direct adversarial attacks on observations.
Unlike methods that rely on gradient computation, these attacks use optimization
techniques that do not depend on gradient information to generate perturbations.
Their primary objective is to alter the agent’s policy by producing a perturbed
observation.

These methods employ various search techniques, such as random search, meta-
heuristic optimization, or methods for estimating the gradient without direct compu-
tation. They operate in a black box setting, where the attacker has access only to the
inputs and outputs of the model, without any internal knowledge of the agent.

Square Attack [39] is one such method that performs a random search within an
e-ball to discover adversarial examples. Although computationally demanding due to
the number of iterations required for effective perturbation discovery, this method is
applicable to any continuous observation space, including feature vectors, images, and
signals, and to both discrete and continuous action spaces.

Finite Difference [28, 40] offers a technique for Gradient Estimation through
querying the agent’s model, bypassing the need for white-box access. This estimated
gradient is then utilized to craft a perturbed observation. This approach necessitates
querying the neural network 2 x NN times for an input of size N.
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A representation of the integration and application of Zeroth Order Optimization
Methods in crafting observation perturbations within an RL framework is shown in
Figure 9.
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Fig. 9: Zeroth Order Optimization Observation Attacks : The adversarial attack
intercept the observation x;, computes a perturbation af’X by querying the neural
network of the agent 7 through an interface and applying a zeroth order
optimization algorithm to maximize a loss, this perturbation is used to craft a
perturbed observation z}, which is sent to the agent.

5.1.2 Minimize Reward

Several methods have been developed with the specific aim of producing perturbations
in observations that directly minimize the reward obtained by an agent. These methods
generate an adversarial action a® that induces perturbations a®* on the observation
z', thereby replacing the original observation z. As a result, the policy 7 yields a
different output 7 (2’) # 7(z), leading to undesirable situations characterized by lower
rewards.

Most of these methods fall under the category of Adversarial Policy Learning Based
Methods. As pointed out by [41], learning an optimal adversary to perturb observations
is equivalent to learning a optimal policy in a new POMDP from its point of view as
described in 4.2.1. The effectiveness of these approaches is largely due to their ability
to leverage the sequential nature of the environment and the anticipation of future
rewards, which aids in the development of effective Adversarial Policies. In contrast,
Direct Optimization Methods are generally not used for this purpose, as they often
struggle to capture the sequential dynamics of the environment and the implications
for future rewards.

Adversarial Policy Learning Based Methods involve training an adversarial agent
that initially learns to generate perturbations and subsequently uses this knowledge
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to produce perturbations during inference. Typically, these methods employ an adver-
sarial policy to generate perturbations a®¥ from observations x, creating a perturbed
observation z’. These methods require a training phase prior to being deployed as an
attack, making them computationally intensive initially. However, once trained, these
policies can be directly applied to generate perturbations with a significantly reduced
computational cost when used in an attack scenario. In scenarios where the agent and
the adversary are trained concurrently, these methods resemble techniques used in
Generative Adversarial Networks (GAN). In this setup, the agent learns to perform
its task while also becoming robust to the perturbations generated by the adversary.
Simultaneously, the adversary refines its ability to create more effective perturba-
tions to hinder the agent’s task performance. This co-learning approach enhances the
adaptability and effectiveness of both the agent and the adversarial policy.

Classical Adversarial Policies (Black Box)

They are methods that employ an adversarial RL agent trained to create perturbations
in observations. These methods function as black-box attacks, particularly during
inference, and do not require comprehensive knowledge of the agent’s model to produce
perturbations. Instead, their only requirement during the training phase is the ability
to query the model for outputs based on various inputs. In the subsequent attack
phase, the already-trained adversarial agent no longer needs additional information
except for its own policy model parameters. To launch an attack, the agent simply
performs a forward pass through its policy, generating a perturbation that results in a
perturbed observation. The methods that follow this principle are Optimal Attack on
Reinforcement Learning Policies OARLP [42, 43] and State Adversarial SA-MDP
[44]. ATLA [45] also use this principle, but it is more focused on how to use it effectively
in adversarial training, this is discussed further in Section 7.1. The adversary can use
the same observation as the agent or augment its input with additional data, such as
the agent’s action based on the original observation. This approach is highly flexible,
allowing application across various observation spaces, including tabular data, feature
vectors, images, and signals, and suitable for both discrete and continuous action
spaces. Being black-box in nature, these methods only require the output of the agent
model for a given input and do not need further information from the agent model.
A representation of the integration and application of Adversarial Policies in crafting
observation perturbations within an RL framework is shown in Figure 10.

Augmented Adversarial Policies (White Box)

Adversarial Policies can also be augmented with specific white-box techniques that
can improve their performances to be more effective.

The Adversarial Transformer Network (ATN) method, as used and studied by
[46, 47] shows that training an adversarial policy can also involve utilizing the gradi-
ents of the agent model. In this approach, the adversary is trained by back-propagating
the agent’s loss through its input, which corresponds to the adversary’s output, and
subsequently updating the adversary’s parameters. This technique effectively trains
the adversary to generate perturbations that counteract the agent’s tendencies. Dur-
ing training, this method is considered white-box as it relies on the agent model’s
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Fig. 10: Classical Adversarial Policy Observation Attacks : The adversarial policy
intercept the observation z;, computes a perturbation a;'* by a forward pass in its
neural network, this perturbation is used to craft a perturbed observation z}, which
is sent to the agent. The opposite reward as the agent is send to the adversarial
policy to be trained.

gradients. However, at inference time, it functions as a black-box method since the
trained policy alone is sufficient for operation. This methods are highly adaptable,
applicable to any type of observation space, including tables, feature vectors, images,
and signals, as well as to both discrete and continuous action spaces.

A representation of the integration and application of the Augmented Adversarial
Policy ATN in crafting observation perturbations within an RL framework is shown
in Figure 11.

Another augmented adversarial policy approach is PA-AD [48], this method craft
an attack in two steps: First an RL based adversary, the Director adversary, is gives the
direction of the perturbation wanted in the policy space, then this direction is given as
target to the Actor adversary which is a direct Optimization method that compute the
perturbation in the observation space to produce in order to make the agent choose the
action wanted by the adversary. The director adversary in trained by RL by getting the
opposite reward as the agent, thus improving its direction given to the actor adversary.
The actor adversary cannot be learn, it only apply a direct optimization algorithm
by optimizing the direction given by the actor. A representation of the integration
and application of the Augmented Adversarial Policy PA-AD in crafting observation
perturbations within an RL framework is shown in Figure 12.

5.2 Dynamic Alteration

This section presents an analysis of Dynamics Alteration Attacks for RL agents, which
are methods that alter the transition function of the POMDP, they are useful to sim-
ulate mismatch between the dynamics of a deployment environment compared to the
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Fig. 11: Adversarial Transformer Network ATN Observation Attacks : The
adversarial policy intercept the observation xz;, computes a perturbation at’X by a
forward pass in its neural network, this perturbation is used to craft a perturbed
observation x}, which is sent to the agent. The opposite reward is sent to the agent,
which back-propagate the loss to its input, then this loss is back-propagated in the
adversarial policy network to be trained.

dynamics of the training environment, and they can be used to apply during the train-
ing of the agent to improve its robustness to unpredictable changes in the dynamics of
the environment. Their goal is to produce an alteration of the transition function by
producing a perturbation a¢ at a certain state t with the current state being s;. This
perturbation a¢ applied to any element of the transition function will have the conse-
quence to lead to an alternative next state s;y1, which is different than the original
next s;4+1 that would have been produced without alteration. To achieve this goal the
attack can either :

— compute a perturbation a® to craft a perturbed state 5; = s; + a&.

— compute a perturbation a®4 to craft a perturbed action a, = a + a%4.

— compute a perturbation a&7 to directly alter the transition function 7 to induce
alternative next state T¢*(5;11]...,a>").

— compute a perturbation a°* to craft a perturbed next state 5,1 = s¢41 + a5,
As previously shown in Figures 5 7 4 6 in Section 4.2.2 All these methods have the
consequence to lead to an alternative next state S;11. Theoretically, the amount of
perturbation produced by such attacks should be measured as a distance between the
original next state that would have been produced without alteration and the alter-
native next state given a norm Ly, ||s;4+1 — Si+1]]p. But since it is often hard to redo
several times the transition function of an environment, in practice often only the dif-
ference to the directly perturbed element is measured : either ||s; — S¢||p, |lar — a}llp,
|aT||p, or ||814+1 — Se+1]|p given the type of attack, thus making hard to compare dis-
turbance magnitude between two different type of attacks that does not perturb the
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Fig. 12: PA-AD Observation Attacks : The adversarial policy intercept the
observation xy, the director adversary computes a direction in the policy space by
forward pass in its neural network, the actor adversary computes a perturbation
af’X by direct optimization, this perturbation is used to craft a perturbed
observation x}, which is sent to the agent. The opposite reward as the agent is send
to the director adversary to be trained.

reward

Environment '«

same element.

Tampering with the transition is a completely different approach than with the obser-
vation. The methods developed in this section assume that the environments simulate
physical, real-life settings : the perturbations are more restricted, ruling out gradient-
based methods, and their effects on the agent is now indirect. In this section we first
discuss methods that are designed to minimize the rewards obtained by the agent
by altering the transition, then we discuss methods that are designed to deviate the
policy of the agent.

5.2.1 Minimize Reward

Certain methods are specifically designed to modify the dynamics of an environment,
aiming to reduce the rewards an agent receives. These methods achieve this by gen-
erating an adversarial action af, which leads to an altered subsequent state 5,1,
diverging from the original next state s;11. As a result, the agent finds itself in an
unfavorable situation S;y1 at the next step, potentially leading to reduced immediate
or future rewards. Most of these methods fall under the category of Adversarial Policy
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Learning Based Methods. This is because they are well-suited to exploit the sequen-
tial nature of the environment and the anticipation of future rewards, which aids in
developing effective Adversarial Policies.

Adversarial Policies involve methods where an adversarial agent is trained to cre-
ate perturbations. Initially, this agent learns how to generate these perturbations,
and once trained, it can efficiently produce them during inference. Typically, these
methods utilize an adversarial policy to create an adversarial action af, aimed at alter-
ing the environment’s transitions. The training of these methods must be completed
before they are deployed for attacks, which makes the initial phase computationally
demanding. However, once the training phase is over, the adversarial policy can be
used directly to generate perturbations at a significantly reduced computational cost
in attack scenarios. In such a setup, the primary agent learns to perform its task while
also becoming resilient to the adversary’s perturbations. Concurrently, the adversarial
agent refines its skills in creating more effective perturbations to hinder the primary
agent’s task performance.

Classical Adversarial Policies (Black Box)

They utilize an adversarial RL agent trained to create adversarial actions that mod-
ify transitions within the environment. Functioning primarily as black-box attacks,
especially during the inference phase, these methods do not necessitate comprehen-
sive understanding of the agent’s model to produce perturbations. Instead, their main
requirement during the training phase is the ability to query the model and obtain
its outputs for various inputs. Once the adversarial agent completes its training, no
additional information is needed beyond the parameters of its own policy model. Dur-
ing the attack phase, generating a perturbation involves simply executing a forward
pass through the adversarial policy to create a perturbed observation. Examples of
methods adhering to this approach include Robust Adversarial Reinforcement Learn-
ing (RARL) [49], along with its advancements such as Risk Averse (RA-RARL)
[50], and Semi-Competitive (SC-RARL) [51]. These methods exemplify the applica-
tion of Adversarial Policies in crafting effective black-box attacks in RL contexts. FSP
[52, 53] also use this approach, but its points is more focused on how to use it effec-
tively in adversarial training, this is discussed further in Section 7.1. These methods
have been introduced as adding an adversarial action to an augmented version of the
transition function TEQ, a representation of the integration and usage of Adversarial
Policies Attacks to add transition perturbations in an RL context is shown in Figure
13. The perturbation is added in the environment as previously shown in Figure 4.
These methods can also be used to generate perturbations on the state s;, the next
state s;y1, and also the action a; as previously shown in Figures 5 6 7 in Section
4.2.2. The Probabilistic Action Robust PR-MDP method [54], follows the same prin-
ciple as the other adversarial policy methods, the goal is to train an adversarial policy
to generate perturbation, but specifically on the action space as previously shown in
Figure 7. These methods are very versatile, they can be applied to any observation
space (table, features vector, images, signals) and action space (discrete or continu-
ous). When adding disturbances in the transition function directly or in the states
there is the constraint of having activatable lever in the environment to be used by
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the adversarial policy add disturbances, this constraint is not prevent when disturb-
ing the action since the action itself is already the lever, but the attacks perturbing
the action may have less means for disturbing the dynamics than methods that per-
turb state or transition. A representation of the integration and usage of Adversarial
Policies Attacks to add transition perturbations in an RL context is shown in Figure
13.
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Fig. 13: Classical Adversarial Policy Dynamic Attack : The agent and the adversary
get an observation z; of the environment. The agent chooses the action a; to apply
and the adversary chooses the perturbation af to apply to alter the dynamics. The

step function of the environment is run incorporating both agent action a; and
adversarial action af. The reward opposite to that of the agent is sent to the
adversarial policy to be trained.

Other works like APDRL [55], A-MCTS [56], APT [57] and ICMCTS-BR
[58] have used the concept of adversarial policy or adversarial agent, but more in
the context of a real two players game, where an agent learns to do a task and an
adversarial agent learns to make the agent fail. The key difference with methods
previously discussed like RARL, is that here the environment itself is a two players
game. The agent and the adversary are always here, contrary to methods previously
discussed like RARL where the original setup is an agent alone learning to do a task
and the adversary comes to challenge the agent and make it improve its performances
for itself. So the methods presented in these works are very similar to RARL with
some more specificities, and even if there were not presented in the context of the
robustness for a single agent they can also be adapted and used in this setup.

Augmented Adversarial Policies (White Box)

Another possibility is to augment the information observed by the adversary with
internal state of the agent like latent spaces or others. This is done by White-Box
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Adversarial Policy WB-AP [59] which is very similar to RARL except that the adver-
sary has white box access to the agent internal data. This enables to improve the
attack effectiveness of the perturbations since the adversary can learn to adapt the
perturbations to the internal states of the agent that is attacked. This method is white
box since it requires access to the internal state of the agent. It can be applied on
any observation, and action spaces. A representation of the integration and usage of
Adversarial Policies Attacks to add transition perturbations in an RL context is shown
in Figure 14
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Fig. 14: White Box Adversarial Policy Dynamic Attack : The agent get an
observation z; of the environment and chooses the action a; to apply. The adversary
get the observation and some white box internal state of the agent and chooses the
perturbation af to apply to alter the dynamics. The step function of the
environment is run incorporating both agent action a; and adversarial action ag. The
reward opposite to that of the agent is sent to the adversarial policy to be trained.

Direct Optimization Methods

They use direct optimization to generate adversarial action a¢ to alter the transition
of the environment. These methods on the contrary to Adversarial Policies does not
require a prior training before usage in attacks. Although, they can be more computa-
tion needing when used in attacks since they have to solve an optimization problem at
each perturbation rather than doing a forward pass in a neural network of an adversary
policy.

First Order Optimization Methods: Gradient Attacks (White Box)

MAS, LAS [60, 61] are methods that alter the action a of the agent with a perturbation
a4 to make a perturbed action a’ = a 4 a®* that is less effective that the original
action a. This method work only on RL agent that works with an actor network that
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produce the action and a Q-critic network that estimate the Q-value of the observation-
action tuple. The method is to apply a gradient attack on the Q-Critic network by
computing the gradient of the Q-value with respect to the action a4 = eV,Q(z¢, a;)
to minimize the Q-value estimated by perturbing the action. LAS is an extension of
the MAS method which computes perturbation to apply over a sequence of future
states to improve the long term impact of the attacks. This requires specific conditions
to be applied such as an environment with repayable sequences, because the agent
must be able to be reset at the specific state after the next pre-computed steps used
to craft the perturbation. The scheme of the integration and usage of MAS attack in
an RL context is shown in Figure 15.
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Fig. 15: MAS Dynamic Attacks on the Action: The agent and the adversarial
attack get the observation z; of the environment. The agent chooses the action a; to
apply, the adversarial attack computes the gradient of a copy of the Q-Critic
Network of the agent with respect to the action a;, this gradient is used as
disturbance af’A to add in the action a} = a; + af"A. The step function of the
environment is ran starting from the perturbed state s;, with the agent action a;.

Environment Attack based on the value-Critic Network EACN [62] is a method
that apply a gradient attack to compute a perturbed observation ' and then use it
to craft a perturbed state 5. The general idea is to use the knowledge of the critic net-
work’s gradient to progressively increase the complexity of the task during training.
At step t with state s and observation z = O(s), EACN computes the gradient of the
input of the Value-Critic Network V' to minimize the output value. The value-Critic
Network evaluates the Value function of the environment given the policy of the agent.
So the method generates a perturbed input 2’ with V(z') < V(z), this perturbed
input is then used to create a perturbed state § with the property ' = O(S). Then
the value estimated by the agent of the state is less than what it would have been
without perturbation V(O(5)) < V(O(s)). This attack can either be applied before or
after the transition function. The method requires a Value-Critic Network as in the
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PPO algorithm, but any other RL approaches can be considered by just adding the
training of a Value-Critic Network on the resulting policy.

The main advantage of EACN is that is avoid training an adversarial policy. But it
is less versatile than an adversarial policy since it needs one-to-one correspondence
between the observations and the disturbances available, since the disturbance are
computed from gradient on the observations. So most of the time EACN is applicable
only on environments where the observation space is a feature space, with modifiable
features. The method works with an agent with any action space (discrete or contin-
uous). A scheme of the integration and usage of EACN Gradient method on dynamic
attacks in an RL context is shown in Figure 16.
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Fig. 16: Environment Attack based on the Critic Network EACN Dynamic Attacks
: The agent and the adversarial attack get the observation z; of the environment.
The agent chooses the action a; to apply and while the adversarial attack computes
the gradient of a loss in a copy of the Value-Critic Network of the agent, this gradient
is used as disturbance at’S to add in the state s; = s + at’s. The step function of the
environment is ran starting from the perturbed state s;, with the agent action ay.

Some other approaches have been proposed like to generate perturbations in grid-
world environments. These methods are WBA [63] which works by analyzing the Q
table, and CDG [64] which works by analyzing the gradient of the Q network on the
grid. But these methods add new obstacles in the grid, then changing the states-set.
But our definition of perturbation of environments relies on dynamic alterations, by
perturbing the transition function which is not the case for these methods.

5.2.2 Deviate Policy

Certain methods are designed to alter the transitions and to produce perturbation
optimized to deviate the policy of the agent. By generating an adversarial action a¢
that will induce an alternative next state s;11 to replace the original next state s¢yi.
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The agent will be placed at the next step in a situation s;1; where it should change
the action that it would initially have chosen.

First Order Optimization Methods: Gradient Attacks (White Box)

Environment Attack based on the Actor Network EAAN [62]. At step ¢ with state
s and observation © = O(s), EAAN is used to compute the gradient of a loss on the
input of the model of the agent to generate a perturbed input z’ with n(2") # 7(z),
this perturbed input is then used to create a perturbed state s with the property
2’ = O(S). Then, the action chosen by the agent at this step is different than what
it would have been without perturbation 7(O(S)) # 7(O(s)). This attack can either
be applied before or after the transition function. EACN, this method is a bit less
versatile than with an adversarial policy, since in addition to have activatable lever in
the environment to be used to add disturbances, these lever need to have one-to-one
correspondence with the observations used as inputs of the agent. So most of the time
EAAN is applicable only on environments where the observation space is a feature
space, with modifiable features. The method works with any action space (discrete or
continuous). The scheme of the integration and usage of EAAN Gradient method on
dynamic attacks in an RL context is shown exactly the same as for EACN which is
shown in Figure 16, the only difference is that for EAAN the gradient is computed on
the actor network 7, rather than on the value-critic network V.

5.2.3 Other Objective
Classical Adversarial Policy Learning Based Methods

Environment-Search Attack ESA : [28] train an adversary to perturb the environment
transition model M with an adversarial reward based on the distance between the
disturbed state and the original state: the goal is to make small changes to M but
to induce a completely different disturbed state. The scheme of the integration and
usage of ESA on dynamic attacks in an RL context is shown exactly the same as for
Adversarial Policy which is shown in Figure 13, the only difference is that in ESA
reward get by the adversary is not the opposite of the reward of the agent, but is a
reward based on the state distance.

6 Strategies of Attacks

Adversarial attack can be used in many different ways and there can be various
approaches to use them. Often adversarial attack are introduced with a specific appli-
cation strategy. In this section we develop about how various strategies are applied to
use adversarial attacks.

6.1 Strategies for using White Box Attacks in Black Box
Scenarios

Some strategies leverage white box attack methods in scenarios where the adversary
has limited knowledge about the target agent (black box scenarios). Techniques in this
category, like imitation learning, often involve understanding or approximating the
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P M 1
Compor{ent Objective Category erturbed ode Method
Alteration Element |Knowledge
FGSM [65]
BIM [31]
PGD [32]
Gradient Attack | observation . DeepFool [33]
cee 5.1.1 i white-box C&W [34]
Deviate
Policy JSMA [35]
Observations XSMA [36]
Alteration VFGA [37]
see 5.1
Zeroth Order X
Optimization Attack obser;:/atlon black-box FD [28, 40]
see 5.1.1 SA [39]
. . lackobox || OARLP [42, 43]
Minimize | Adversarial Policy | observation SA-MDP [44]
Reward see 5.1.2 z
. ATN [46, 47]
white-box
PA-AD [48]
RARL [49]
transition RA-RARL [50]
T SC-RARL [51]
. . tate black-box .
Adversarial Policy sta A-MCTS [56]
Minimize see 5.2.1 or action APT [57]
b ) Reward a ICMCTS-BR [58]
ynamics
| Alteration | \ \ | white-box ||  WB-AP [59] |
‘ see 5.2 ‘ ‘ ‘ action a ‘ black-box ‘ ‘ PR-MDP [54] ‘
\ \ | Gradient Attack | actiona | white-box ||MAS, LAS [60, 61]|
see 5.2.1
‘ ‘ ‘ ‘ state s ‘ white-box ‘ ‘ EACN [62] ‘
Deviate Gradient Attack .
Policy cee 5.2.9 state s white-box EAAN [62]
Other Adversarial Policy
Objective see 5.2.3 state s black-box ESA [28]

Table 1: Characterization and Constraints of Adversarial Attack Methods for
Reinforcement Learning : Summary of the Content of Section 5

internal mechanisms of the target system without complete access to its architecture or
training data. This approach is particularly challenging as it requires the adversary to
make accurate guesses or approximations about the target’s behavior based on limited
observable outputs or effects. The AEPI strategy [66] targets black-box environments
where the attacker has limited knowledge about the victim’s system. It uses Deep Q-
Learning from Demonstration (DQfD) to imitate the victim’s Q-function, to the apply
white box adversarial attacks. The RS strategy [44] is designed to not relying on the
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victim’s Q-function’s accuracy. RS focuses on learning the Q-function of the victim’s
policy and them applying any white box adversarial attacks.

6.2 Strategies for Timing and Stealthiness

Some Strategies are characterized by their focus on the timing of attacks and maintain-
ing stealthiness. These strategies are designed to minimize detection while maximizing
impact, often by carefully choosing when to launch an attack or by subtly altering
agent behavior. This approach is particularly relevant in scenarios where avoiding
detection is crucial, either for the success of the attack or to study the system’s
vulnerabilities without triggering alarms.

K&S [67], and Strategically-Timed Attack STA [68], both concentrate on the

timing of perturbations. [67] found that altering the frequency of FGSM perturbation
injections can maintain effectiveness while reducing computational costs. Similarly,
STA employs a preference metric to determine the optimal moments for launching
perturbations, targeting only 25% of the states.
Weighted Majority Algorithm WMA [69] and Critical Point and Antagonist Attack
CPA and AA [70]. Take the concept further by introducing more sophisticated timing
strategies. WMA uses real-time calculations to select the most sensitive timeframes
for attacks, while CPA and AA focus on identifying critical moments for injections,
predicting the next environment state or using an adversarial agent to decide the
timing.

Static Reward Impact Maps SRIMA [71] and Minimalistic Attack MA [72]
emphasize efficiency and stealth. SRIMA method selects only the most influential fea-
tures for perturbation, reducing the gradient computation cost, and is suitable for
time-constrained environments. MA pushes stealth to the limits by altering only a
small fraction of state features and timeframes, making it hard for the victim to detect
the attack.

The Enchanting Attack EA [68] is a strategy that use a model that predict the
future state depending on the action applied, and then based on the possible future
states, apply an adversarial attack targeting the action that lead to the target state.

6.3 Strategies for Real Time and Resource Constraint
Scenarios

Some strategies are optimized for efficiency and speed, making them suitable for real-
time applications or scenarios with significant resource constraints. Universal attacks,
which create perturbations that are broadly effective across different inputs or states,
are a key part of this category. These techniques are valuable in environments where
the computational power is limited or where decisions need to be made swiftly, such
as in certain gaming or real-time decision-making applications.

Among the input-space adversarial examples, universal methods are particularly
interesting when dealing with time-constrained environments: state-independent per-
turbations are computed offline, thus allowing for online injections with very small
delay. These perturbations are short-term by nature, but may lead to controlling the
victim’s policy and are therefore usually combined with adversarial policies.
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CopyCAT [73] use an additive mask §, is computed offline for each action a,
maximizing the expected 7(a, of + 8,) over a set of pre-collected observations (of) ;.
Once each mask is computed, the chosen perturbation can be applied to the last
observation o; to make the agent follow any target policy. The authors do not focus
on how to compute such policy, but there existing techniques were described earlier in
the survey [74]. Experiments are conducted on Atari games, and CopyCAT provides
better result than the targeted version of FGSM.

Universal Adversarial Perturbations UAP-S, UAP-O [75] inspired from a known
DL-based universal method, UAP [76]. The adversary first gathers a set of observed
states Dyrqin and sanitizes it, keeping only the ones having a critical influence on the
episode. Then, the unique additive mask is computed using the UAP algorithm [76].
In the case of Atari games, where a state s; consists in several consecutive observations
Ot—N+1, ---, Ot, the perturbation can be state-agnostic (UAP-S), i.e. unique for all states
but different for each o; within a state, or observation-agnostic (UAP-0), i.e. unique
for all observations. Experiments show promising results for both methods (with an
advantage for UAP-S) on DQN, PPO and A2C agents in three different Atari games.
Authors show that the SA-MDP method [44] is not sufficient to mitigate these attacks,
and introduce an effective detection technique called AD3.

DAP [74] decoupled adversarial policy attack is also universal, though the paper
is more focused on the adversarial policy aspect. Here each additive mask d4 4 is
specific to the victim’s initial action a as well as the targeted action a'. States are
then classified into the right (a,a’) category using both the victim’s policy and the
decoupled policy, and the designated mask is added to the observation if the switch
policy allows it.

‘ Category ‘ Strategies ‘
White Box Attacks
in Black Box Scenarios AEPI [66]
see 6.1 RS [44]
K&S [67]
STA [68]
WMA [69
Timing and Stealthiness A AA[ }
see 6.2 CPA, [70]
SRIMA [71]
MA [72]
EA [68]

Real Time and Resource CopyCAT [73]

Constraint Scenarios |UAP-S / O [75, 76]
Methods see 6.3 DAP [74]

Table 2: Strategies for Adversarial
Attack : Summary of the Content of
Section 6
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7 Adversarial and Robust Training

7.1 Robustness Strategies with Adversarial Training

Adversarial training in RL is a technique aimed at improving the robustness of
RL agents against adversarial attacks. The general principle of adversarial training
involves repeatedly exposing the agent to adversarial examples or perturbations dur-
ing its training phase. This process is akin to inoculating the agent against potential
attacks it might encounter in the real world or more complex environments. This
method is conceptually akin to the principles of robust control [77], where the focus
is on ensuring that control systems maintain stability and performance despite uncer-
tainties and external disturbances. In RL, adversarial training can take various forms,
but the core idea is consistent: the RL agent is trained not only with normal experi-
ences drawn from its interaction with the environment but also with experiences that
have been modified by adversarial perturbations [10]. These perturbations are typi-
cally generated using methods akin to those used in adversarial attacks — for example,
by altering the agent’s observations or by modifying the dynamics of the environment.
By training in such an adversarially challenging environment, the RL agent learns to
perform its task effectively even when faced with manipulated inputs or altered state
transitions. This makes the agent more robust and less susceptible to potential adver-
sarial manipulations post-deployment. As detailed in 3.2 the training process often
involves a sort of min-max game, where one tries to minimize the maximum possible
loss that an adversary can induce. This approach mirrors robust control’s emphasis
on preparing systems to handle worst-case scenarios and uncertainties, such as vari-
ations in system dynamics or external noise. Adversarial training in RL can also be
related to GANs in supervised learning, where models are trained to be robust against
an adversary that tries to generate examples to fool the model. In the RL context,
this approach helps the agent to not only optimize its policy for the given task but
also to harden it against unexpected changes or adversarial strategies that might be
encountered, thereby enhancing its overall performance and reliability. Any adversar-
ial attack method can be used in adversarial training, certain are better than others
to improve robustness of the agent. And specific strategies fro applying attacks can
be used to better improve robustness.

In the following the describe the different adversarial training strategies that can
be applied :

7.1.1 Initial Adversarial Training

It Consists on training an adversary against an agent until convergence, and then
adversarially train the agent against this agent for it to become robust. This technique
works with adversarial attacks based on adversarial policies as done with the method
RARL [49].
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7.1.2 Continuous Adversarial Training

It consists on training the adversary to converge. And then co-train the adversary and
the agent simultaneously.

— This approach of adversarial training is the one used for attack techniques based
Direct Optimization such agent gradient or zeroth order. Since the attacks are based
on the policy of the agent, the attack automatically re-adapt to the new policy, for
example gradient attacks automatically compute gradient on the new parameters
of the agents policy.

— However, for attack techniques based on adversarial policy this techniques is less
usable since it is hard to maintain the effectiveness of the adversarial policy since
both agent and adversarial policies are learned simultaneously, one agent could
learn faster than the other and the the whole processes can be less effective. So for
adversarial policies the previous approaches of alternate training is more preferable.

7.1.3 Alternate Adversarial Training

It consists on alternately training an adversary against an agent until convergence,
and then train the agent against this adversary until convergence. And repeat the
loop convergence of both agent and adversary. This technique works well with adver-
sarial attacks based on adversarial policies as done with the method ATLA [45].

7.1.4 Fictitious Self Play

FSP [52, 53] is a strategy for applying adversarial policies attacks during the adversar-
ial training to maximize the gain in robustness of the agent. The adversarial training
is done alternatively between the agent and the adversary each until convergence.
The idea is to not always apply fully effective attacks during the training phases of
the agent, but sometimes applying a random or average disturbance. This strategy
enhance RARL [49] to improve its effectiveness for improving generalization of the
policy adversarially trained.

7.2 Other Robustness Strategies

Leveraging adversarial training for more robust and reliable DRL algorithms is the
most used defense against adversarial attacks, the variety of methods available fitting
each specific use case. However, the issue raised by [78] remain: the high amount of
possible adversarial inputs makes the design of a unique and adaptive defense method
unlikely. Combining design-specific adversarial training methods with more classic
defensive measures is therefore an interesting lead to protect DRL models from mali-
cious behaviour, as countermeasures can be implemented at each stage of the models’
construction process.

First, a defendant may focus on the design stage to choose a robust network archi-
tecture for the agent’s policy. [79] works on the impact of network architecture to a
model’s robustness shows that within a same parameters budget, some architectural
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configurations are more robust than others. In addition, the authors show that reduc-
ing the deeper layers capacity also improves robustness. Though their findings focus
on supervised models, they could be extend to DRL. Robust architecture may also be
achieved through defensive distillation [80], i.e. training a smaller student network to
imitate a larger teacher network with class probability outputs, resulting in a lighter
network with more regularization. Distillation was shown to be effective for DRL [81],
and [82] studied the relevance of distillation approaches according to different con-
texts. Observation alterations automatically transform any MDP into a POMDP, since
the observation is not anymore deterministic, it has been shown that for POMDP,
recurrent architecture improve performances of the policies [83], so do defend against
observation alteration recurrent policies can be useful [45].

For improving robustness, the defendant may also improve regularization through
noisy training rewards [84, 85]. Or increase exploration with noisy actions [30].

Worst-Case-Aware Robust Reinforcement Learning WocaR-RL [86] is a method
that improve robustness to observations perturbation without attacking. It only works
for adversarial attacks on the observations, it consist of constructing a e-ball around
the observation and computing the upper and lower bound of the action A of the agent
by convex relaxation of neural network. The the worst-attack action value network
Q (x4, ay) is then learned based on Q(x¢,a:), and then the agent is trained to maximize
the worst-attack action value Q(z, a;)

Some other methods improve robustness defining a distribution of transition func-
tion for training the agent, the method RAMU [87] design a architecture enabling to
learn policies across a distribution of transition function.

Finally, a classic method to add a layer of security during the testing stage is adver-
sarial detection: identifying modified observations for denoising or removal. Detection
may be done through successor representation [88], or using a separately trained model
[89]. Adversarial detection is a widespread technique in supervised learning [90, 91],
but it is limited when it comes to the RL context: indeed, environment-space per-
turbations produce legitimate (though unlikely) observations and are therefore very
difficult to detect. In addition [92] showed that detection methods are usually not very
versatile, and easily subject to small changes in the attack methods.

There is a wide spectrum of defense methods for DRL algorithms, each with their
benefits and limitations. Combining several methods allows to cover different aspects
of the adversarial threat, but the defendant must keep in mind that simply stacking
defense layers does not necessarily improve robustness [93]: each method must be
analyzed and selected with care according to the given context.

8 Discussion

8.1 Current issues

Adversarial methods for reinforcement learning is a recent yet booming research field.
We encountered a few shortcomings in the tools and literature, the resolving of which
would substantially help future usage and research.
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8.1.1 Consistency

New methods to compute RL-based adversarial examples are published regularly, and
the number and variety of existing malicious or defensive techniques is constantly
increasing. Each paper addresses a specific aspect of adversarial RL, however the
positioning of new methods amongst the pre-existing techniques is often unclear, and
a more global vision is usually missing. We aim to address this need of a generic
framework for classification, by introducing a precise and clear taxonomy and mapping
existing methods onto it. Following a similar structure for presenting future work
would highly improve the field’s coherence and clarity. This also applies to the metrics
used in the experiments and to evaluate.

8.1.2 Code availability

A key element for the ongoing research is reproducibility. Indeed, a method’s validity
relies heavily on its comparison with state-of-the-art techniques. Yet as some articles
do not provide the corresponding code to replicate their experiments, reproducing
existing methods becomes a tedious process for researchers, with sometimes unreliable
results. We therefore wish to highlight the importance of publicly available code to
make the best use of published works and progress further into the field.

8.1.3 Common tools and methodology

Comparing the performance of the various existing methods is challenging. The metrics
used in the articles may differ depending on the authors’ objective, threat model,
and chosen RL environments. Even if the metrics are similar, the results are also
dependent on the chosen RL algorithm and its hyperparameters. To properly assess
a methods efficiency, a standard methodology is needed: [94] propose such approach
for RL robustness evaluation, and a few other usage-specific methodologies can be
found [95, 96]. From a broader perspective, authors can follow a simple rule of thumb:
using open source and peer-reviewed toolkits that provide reliable implementations of
RL algorithms (Stable-baselines3 [97], Tianshou [98]), attacks methods (DRL-oriented
[99] or not [100]), and robust training algorithms [101].

8.2 Open challenges

This survey is also an opportunity to highlight the major research directions to be
explored in the future.

8.2.1 Explainability

The question of robustness and vulnerability to adversarial behaviour in RL boils down
to the issue of trustworthy artificial intelligence. Explainable reinforcement learning
(XLR) techniques are developed in order to deeply understand the RL decision-making
process and improve its transparency [102, 103]. Recent works focus on the correla-
tion between explainability and robustness for machine learning in general [104], and
extending these concept to DRL may lead to significant progress in both domains.
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8.2.2 Attack feasability

Another interesting lead for the robustness of DL algorithms, and particularly for
DRL, is the study of the practicality of adversarial examples. It is now acknowledge
that an all-mighty, omniscient adversary can fool about any model: however, RL envi-
ronments often model real-life situations with physical constraints. Recent works on
the compatibility of adversarial examples with such constraint show promising results
in the defense of DL models [105]. A thorough study on RL-based adversarial methods’
feasability could help improve the challenge of universally robust models.

9 Conclusion

This survey has provided an extensive examination of the robustness challenges in
RL and the various adversarial training methods aimed at enhancing this robustness.
Our work highlighted the susceptibility of RL agents to dynamic and observation
alterations with adversarial attacks, underscoring a significant gap in their application
in real-world scenarios where reliability and safety are paramount.

We have presented a novel taxonomy of adversarial attacks, categorizing them
based on their impact on the dynamics and observations within the RL environment.
This classification system not only aids in understanding the nature of these attacks
but also serves as a guide for researchers and practitioners in identifying appropriate
adversarial training strategies tailored to specific types of vulnerabilities.

Our formalization of the robustness problem in RL, drawing from the principles
of distributionally robust optimization for bot observation and dynamic alterations,
provides a foundational framework for future research. By considering the worst-case
scenarios within a controlled uncertainty set, we can develop RL agents that are not
only robust to known adversarial attacks but also equipped to handle unexpected
variations in real-world environments.

The exploration of adversarial training strategies in this survey emphasizes the
importance of simulating realistic adversarial conditions during the training phase. By
doing so, RL agents can be better prepared for the complexities and uncertainties of
real-world operations, leading to more reliable and effective performance.

In conclusion, while our work sheds light on the current state of adversarial methods
in DRL and their role in enhancing agent robustness, it also opens the door for further
exploration. Future research should focus on refining adversarial training techniques,
exploring new forms of attacks, and expanding the taxonomy as the field evolves.
Additionally, there is a need for developing more sophisticated models that can balance
the trade-off between robustness and performance efficiency. As DRL continues to
evolve, the pursuit of robust, reliable, and safe autonomous agents remains a critical
objective, ensuring their applicability and trustworthiness in a wide range of real-world
applications.
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