
HAL Id: hal-04521756
https://hal.science/hal-04521756v1

Submitted on 26 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heuristic Methods for the Antenna-Constrained Beam
Layout Optimization on Multibeam Broadcasting

Mission
Camille Lescuyer, Christian Artigues, Jean-Thomas Camino, Cédric Pralet

To cite this version:
Camille Lescuyer, Christian Artigues, Jean-Thomas Camino, Cédric Pralet. Heuristic Methods for the
Antenna-Constrained Beam Layout Optimization on Multibeam Broadcasting Mission. 13th Interna-
tional Conference on Operations Research and Enterprise Systems, Feb 2024, Rome, Italy. pp.294-301,
�10.5220/0012380200003639�. �hal-04521756�

https://hal.science/hal-04521756v1
https://hal.archives-ouvertes.fr

Heuristic methods for the antenna-constrained
beam layout optimization on multi-beam

broadcasting mission

Camille Lescuyer1,2,3 Christian Artigues2

Jean-Thomas Camino1 Cédric Pralet3

1 Airbus Defence and Space, Space Systems, Telecommunication System Department, 31 Rue
des Cosmonautes, 31402, Toulouse, France

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

3 ONERA, DTIS, 2 Avenue Edouard Belin, 31 400, Toulouse, France

Abstract

Nowadays, telecommunication satellites are becoming more and more com-
plex to increase the quantity and quality of the services provided by the operators.
This makes the design phase of these satellites very challenging and in practice the
manufacturers must face highly combinatorial problems to reach the performance
required. In this paper, we consider one of these combinatorial problems. The
latter involves a satellite that must provide television services to distinct regions,
that each come with specific television channels requirements is a complex one for
the telecommunication system engineers in charge of defining the most appropri-
ate satellite payload. Indeed, it cumulates the difficulties of standard broadcasting
missions where the same content must be transmitted to large regions with a stable
quality of service, and of broadband missions where several beams have to coexist
on the coverage with the risk that they mutually degrade their telecommunication
performance while also being hard to accomodate mechanically on the spacecraft.
We propose here two methods to solve this problem, that is to determine a set
of non-conflicting beams that cover all the polygons and optimize a performance
metric related to the sizes of the beams used. The first method is a matheuristic
exploiting iterative resolutions of an ILP model. The second method, called the
merge-and-split heuristic, is inspired by Iterated Local Search and reuses a fast
graph coloring algorithm to analyze conflicts among selected beams. These two
methods are evaluated on realistic instances, the largest one involving more than
one hundred polygons to cover.

Keywords:Telecommunication Satellite, Television broadcasting, Linguistic Beam,
Heuristic, Graph Coloring

1 INTRODUCTION
Nowadays, telecommunication satellites are major assets used by telecommunication
operators to cover large zones on the Earth’s surface and remote areas, with a cost

1

that is low compared to the installation of a terrestrial network. However, given the
increasing demand in terms of quantity and quality of telecommunication services,
these satellites have to be more and more efficient concerning the usage of their on-
board resources. As a direct result, telecommunication satellite manufacturers need
the support of optimization techniques to help them find payload design solutions that
reach the mission’s requirements while complying with the full set of operational and
design constraints.

On this point, a classical design solution is to increase the capacity of the telecom-
munication satellites by using multiple beams instead of a single one, where a beam
refers to a signal emitted by a satellite to cover a limited geographical area (see Fig. 1).
Basically, such a multi-beam configuration allows the same frequency band to be used
by several beams and is a direct and efficient way to increase the total bandwidth trans-
mitted to the users, without enlarging the frequency spectrum of the satellite.

Moreover, using multiple beams requires using dedicated antenna technologies
such as the one we focus on here, called Single-Feed-Per-Beam (SFPB), where each
beam is created by a so-called feed horn (or feed, see Fig. 1), whose size and shape
can be computed beforehand given the region to be served. The SFPB technology is
relatively cost-efficient and has proven to behave well in terms of radio-frequency per-
formance, but it comes with constraints that impact the possible configurations of the
beams. Indeed, the feeds that generate beams exploiting a common frequency band
are arranged into a feed cluster, and all the feeds composing a cluster must emit their
beams towards a reflector. The latter is a parabolic antenna available onboard the satel-
lite (typically three or four reflectors per satellite). As shown in Fig. 2, one issue is that
the position of the target region of a beam allocated to a given reflector induces hard
positioning constraints for the feed that generates this beam, and it can turn out that
the positions required for two feeds are not compatible with each other for geometrical
reasons. Said differently, if two beams share the same reflector and serve two regions
that are close on the Earth’s surface, then the beam layout might be unfeasible geo-
metrically speaking. Additionally, reducing the nominal feed sizes is not acceptable
performance-wise.

To optimize the design of telecommunication satellites while satisfying such beam
layout constraints, several approaches are studied in the literature. In (Kyrgiazos et al.,
2013), the authors consider both a non-uniform bandwidth allocation among beams and
non-uniform beam sizes, and search for a beam-to-reflector allocation that maximizes
the inter-beam distance. In (Camino et al., 2014), a layout of non-uniform beams is
built using a randomized multi-start greedy algorithm enhanced with local search and
simulated annealing. In this work, the beam compatibility constraints are represented
by a graph and graph coloring techniques are used to handle the allocation of beams
to reflectors. Such an idea is reused in some of the approaches described in the next
sections. In (Camino et al., 2016), the possible positions of the centers of the beams
and their radius are discretized, so that the possible beam layouts belong to a finite set
of solutions. The authors solve an ILP formulation of the problem taking into account
antenna constraints. In the works mentioned above, only sets of points are considered
in the constraints and the objective of the optimization problem solved, marking a clear
difference with the need to cover polygons that we propose to investigate further in this
paper. Next, an existing patent ((Hammill and Dishaw, 2004)) presents a method to
generate a set of non-uniform beams covering a specific polygon of interest. The sizes
and frequency spectrum of each beam are chosen according to the population density
of its covering area. Our problem is also close to the work described in (Contardo and
Hertz, 2021), where the authors propose an exact algorithm to cover a set of polygons

2

Figure 1: Beams of different sizes and
their associated feeds

Figure 2: A conflict between two
feeds

with a finite set of disks. But they do not consider the beam-to-reflector allocation
problem.

In this paper, we introduce two heuristic methods to help designing the beam layout
for a SFPB antenna while meeting the telecommunication mission requirements. Our
main objective is to provide the service on as many requested regions as possible. Addi-
tionally, we want to provide a good quality of service. In practice, this quality of service
can only be accurately assessed once the design of the full payload has converged, after
several important design steps subsequent to the beam layout optimization discussed
here (frequency allocation, definition of all payload routes, TV channels assignment,
frequency conversion hardware definition, amplifiers sizing, power distribution, etc.).
In this decomposed optimization scheme where the beam layout is the first step, we
actually incorporate constraints whose only purpose is to prepare for the best the fol-
lowing optimizations that are out of the scope of this paper. To that purpose, we aim
at creating beams that have a small size. The reason for this is that, for a given power
capacity available on-board, it allows the signals to have higher power spectral densi-
ties, which for the signal receivers on the ground leads to a service of higher quality.
In the end, our goal is to select beams covering as many regions as possible and having
minimum sizes, while ensuring that two beams that are too close to each other cannot
be assigned to the same reflector to avoid conflicts on the positions of their respective
feeds.

The rest of the paper is organized as follows. Section 2 formalizes the problem
using Integer Linear Programming (ILP). Section 3 introduces a matheuristic method
where a set of candidate beams is iteratively enlarged. Section 4 presents an heuris-
tic called the merge-and-split algorithm. Section 5 provides experimental results on
several instances. Last, Section 6 concludes and gives some perspectives.

3

2 Problem definition

2.1 Telecommunication mission
The telecommunication mission is defined by a set of polygons on the Earth’s surface.
Each of these polygons is defined by the set of successive vertices placed on its bound-
ary and has its own demand expressed in terms of number of television channels. The
segmentation of the market in geographical areas can be made for linguistic reasons
or because of the economical context. Figures 3a to 3d provide four examples of in-
stances involving an increasing number of polygons to be covered (from 22 polygons
for the “France” instance to 103 polygons for the “Central Europe” instance). These
four instances are those used in our experiments. In the following, the set of polygons
to cover is referred to as P.

(a) Italy (b) France

(c) Western Europe (d) Central Europe

Figure 3: Instances considered

2.2 Beams
General beams In the literature, we can find several definitions of what a beam is,
according to different contexts and perspectives. In this paper, a beam is represented as
a disk that covers a specific area on the Earth’s surface served by the satellite commu-
nication system. More formally, a beam is a pair b = (cb,rb) where cb is the center of
the beam (defined by a longitude and a latitude) and rb is the radius of the disk associ-
ated with the beam. From the features of a beam, it is also possible to compute the set
Pb ⊆ P that contains all the polygons covered by beam b. For signal quality reasons, the
radius of all the beams considered must not be greater than a maximum value referred
to as MaxRadius.

4

Smallest covering beams In the following, we consider specific kinds of beams that
are directly defined by the set of polygons they cover. For this, given a subset of
polygons P′ ⊆ P to be covered, we can compute the smallest beam b = (cb,rb) that
covers all the polygons in P′. Such a computation can be done in polynomial time using
Welzl algorithm (Welzl, 2005). The latter returns in time O(n) the smallest enclosing
circle of a set of n points in the Euclidian space. In our case, the relevant points are the
vertices of the polygons in P′, and the smallest enclosing circle for these points directly
provides the features of the smallest beam covering the polygons. In the following, the
Smallest Covering Beam for a set of polygons P′ ⊆ P is referred to as SCB(P′).

We can therefore identify one of the combinatorial issues of our problem: if a beam
can be defined from any subset of polygons P′ ⊆ P and if the radius of each small-
est covering beam obtained does not exceed MaxRadius, then there are 2|P| candidate
beams.

Conflicts between beams As mentioned in the introduction, the antenna we consider
is Single-Feed-Per-Beam (SFPB). This antenna technology is mature for this type of
telecommunication mission and has the advantage of being among the less expensive
solutions. In this case, the antenna is characterized by a set of reflectors and each
reflector is composed of a set of feeds and a dish. Each feed is the hardware equipment
associated with a single beam, and the dish focuses the signal and reflects the beam on
the Earth’s surface. A common order of magnitude for the number of reflectors in such
systems is three or four.

Two beams whose disks are close on the Earth’s surface and that are allocated to the
same reflector can create a conflict on their associated feeds. To avoid any conflict, we
impose a minimum separation distance between two beams associated with the same
reflector. More formally, two beams b1 = (cb1 ,rb1) and b2 = (cb2 ,rb2) cannot belong
to the same reflector if and only if the CONFLICT(., .) predicate defined below returns
value true for beams b1,b2:

CONFLICT(b1,b2) : dist(cb1 ,cb2)< κ(rb1 + rb2) (1)

where dist(c,c′) denotes the Euclidian distance between two points c,c′ in the longitude-
latitude plane and κ > 1 is a fixed parameter defined by the satellite manufacturer.
Equation 1 expresses that there is a conflict between b1 and b2 if the distance between
the centers of these beams is less than κ times the sum of the two beam radii. For this
article, we consider κ =

√
3 as it has been assessed to be representative of what has

been observed recently on related activities on the satellite manufacturer side.
From an operations research perspective, the beam separation constraints can be

represented using a graph coloring problem. Indeed, let Bs denote the set of beams
selected. We can build a graph G(Bs) called the feed conflict graph, containing one
node per beam in Bs and one edge between two nodes associated with beams b1,b2
such that CONFLICT(b1,b2) takes value true. Then, we consider as many colors as the
number of reflectors available, and our goal is to color graph G(Bs) so that two adjacent
nodes do not have the same color. In other words, a set of beams is mechanically
implementable if the chromatic number of G(Bs), referred to as γ(G(Bs)), is less than
or equal to the number of reflectors, so that the beams can be distributed among the
different reflectors.

2.3 Input data
For a particular beam layout problem, we consider the following input data:

5

• P = {p1, p2, . . . , pNP}: set of polygons to cover;

• R = {1,2, . . . ,NR}: set of reflector indices;

• B = {b1,b2, . . . ,bNB}: set of candidate beams; the radius of all these candidate
beams is assumed to be consistent with parameter MaxRadius;

• I ⊂ B×B: pairs of beams (b1,b2) such that b1 and b2 cannot be assigned to the
same reflector (I for incompatible beams);

• Bp ⊆ B (for p ∈ P): subset containing all the beams covering polygon p, that
is the beams b ∈ B such that p ∈ Pb; set Bp can be directly computed from the
features of the beams in B and the features of polygon p, hence it can actually be
omitted from the input data.

2.4 ILP definition
Defining a solution of the beam layout problem means (1) selecting a subset of the can-
didate beams so as to cover polygons, and (2) associating a reflector with each selected
beam so that the reflector-to-beam allocation is feasible. Among the candidate solu-
tions, our main objective is to cover as many polygons as possible, and our secondary
objective is to minimize the size of the beams used, so as to optimize the quality of the
signal received on the ground.

Such a problem can be formalized as an Integer Linear Program by introducing the
following variables:

• zp ∈ {0,1}, p ∈ P : binary variable taking value 1 if and only if the polygon p is
covered by a selected beam;

• xb,r ∈ {0,1},b ∈ B,r ∈ R : binary variable taking value 1 if and only if beam b is
allocated to reflector r.

Then, the ILP model proposed is given in Equations 2 to 5. The objective function
given in Equation 2 tries to both maximize the number of polygons covered (term
∑p∈P zp) and minimize the size of the beams used (term −∑r∈R r2

b xb,r). To express
that the main goal is to maximize the coverage of the polygons, a large constant M =

∑b∈B r2
b + 1 is used to weight the first term, which leads to a lexicographic objective

function. Constraint 3 ensures that if a polygon is covered, then at least one of its
covering beams is selected. Constraint 4 ensures that if a polygon p is not covered,
then none of the beams covering p is selected. As zp is a binary variable, it also states
that a beam is associated with at most one reflector. Last, Constraint 5 expresses that
two conflicting beams cannot use the same reflector.

maximize M · ∑
p∈P

zp− ∑
b∈B,r∈R

r2
b xb,r (2)

subject to ∀p ∈ P, ∑
b,r∈Bp×R

xb,r ≥ zp (3)

∀p ∈ P,∀b ∈ Bp, ∑
r∈R

xb,r ≤ zp (4)

∀r ∈ R,∀(b1,b2) ∈ I, xb1,r + xb2,r ≤ 1 (5)

6

2.5 Complexity
Proving the NP-hardness of the beam layout problem considered is in our perspectives,
but we can mention close problems from the literature whose NP-hardness is already
known. Notably, we can find similarities with several NP-complete covering and pack-
ing problems (Fowler et al., 1981). For instance, given a set of points to cover, the
3-colorable unit disk covering problem consists in finding a set of unit disks and a color
for each disk, so that the union of the disks cover all the points and overlapping disks
have distinct colors. This problem is proven NP-hard in (Biedl et al., 2021). In another
direction, the beam layout problem tackled in (Camino, 2017) considers a set of points
to be covered by beams, where each point has a traffic demand. In this context, the
problem of searching for a beam layout (including the beam-to-reflector assignment)
that maximizes the total traffic is proven NP-hard, based on a polynomial reduction of
the Circle-Covering problem. One key difference with our problem however is that we
want to maximize the number of polygons covered by beams of small sizes, instead of
maximizing the total traffic associated with a set of covered points.

3 Matheuristic method
Ideally, the set of candidate beams B considered in the ILP model should contain the
smallest covering beam associated with each possible subset of the polygons in P.
However, as mentioned before, this leads to a number of beams that is exponential in
the number of polygons, hence enumerating all these beams is not practicable. For
example, for an instance involving only 20 polygons, there are more than 1048576
possible subsets of polygons and as many potential beams. This is why we propose a
matheuristic method that solves the ILP several times, on a restricted pool of candidate
beams B that evolves during the iterations. Iterations are performed until a solution
covering all the polygons is found or until a maximum CPU time is reached.

3.1 Detailed description
The matheuristic is provided in Algorithm 1. Initially, the set of candidate beams B
only contains all the smallest beams covering a single polygon in P and all the smallest
beams covering two polygons in P. Based on these candidate beams, it is possible
to compute the set I containing the pairs of incompatible beams and to solve the ILP
model given before for input data P, R, B, I. In Algorithm 1, this is achieved through a
call to function solveILP, that returns the set of beams Bs selected in the solution of the
ILP presented in Section 2.4. More formally, if y denotes the value of a variable y after
optimization, then Bs← solveILP(P,R,B, I) is equivalent to Bs← {b ∈ B | ∑r∈R xb,r =
1}. Altogether, the beams in Bs cover a set of polygons Ps = ∪b∈BsPb.

Then, as long as a polygon in P is not covered and there is some computation
time left, the algorithm tries to improve the current solution. To do this, it generates
a set of new beams Bg, to enlarge set B, and updates the set of beam incompatibilities
to take into account these new beams. After that, the enlarged ILP model is solved
again, which may update the beam selection strategy. Finally, the last beam selection
found is returned by the algorithm. In case there is a maximum CPU time for each call
to solveILP, it is also possible to return the best solution found along the iterations,
according to the objective function provided in Equation 2. Note that in Algorithm 1,
cpuTime() is a function returning the current computation time and TimeLim stands for

7

the global CPU time limit.

Input: P: set of polygons to cover; R: set of reflector indices
B← initBeams(P);
I← initIncomp(B);
Bs← solveILP(P,R,B, I) ;
Ps←∪b∈BsPb;
while Ps ̸= P and cpuTime()≤ TimeLim do

Bg← generateNewBeams(Bs,P);
Ig← generateNewIncomp(Bg,B);
(B, I)← (B∪Bg, I∪ Ig);
Bs← solveILP(P,R,B, I) ;
Ps←∪b∈Bs Pb

end
return Bs

Algorithm 1: Pseudocode of the matheuristic

3.2 Beam generation heuristic
In the matheuristic proposed, the key challenge is to define a good beam generation
strategy, that is to find beams that should be added to the current pool of beams to
help converge towards a solution covering as many polygons as possible. Several op-
tions have been tested in our experiments. In this paragraph, we detail two methods
to augment the pool with new beams if the current pool is not sufficient to cover all
polygons.

Beam Generation Method 1 (BGM1) The first method proposed adds beams cov-
ering subsets of polygons of increasing cardinality throughout the iterations. For this,
we define a parameter NbPolyLimit that is increased by one at each iteration. Initially,
we set NbPolyLimit = 2 so as to generate all beams covering one and two polygons.
Then, at each iteration, solving the ILP leads to a solution selecting a set of beams Bs.
If the set Bs does not cover all polygons, then we increase NbPolyLimit by one unit
and generate all beams b obtained by merging two beams of the solution and such that
b covers at most NbPolyLimit polygons. Formally, we compute

Bg = {b = SCB(Pb1 ∪Pb2) | (6)
(b1,b2 ∈ Bs)∧ (rb ≤MaxRadius)

∧(|Pb| ≤ NbPolyLimit)}

Beam Generation Method 2 (BGM2) The second method proposed consists in us-
ing the set of beams Bs selected in the solution produced for the ILP, and adding a single
polygon to each of these beams. More precisely, let us consider a beam bs ∈ Bs and a
polygon p ∈ P that is not covered by bs. If the smallest beam covering p (SCB({p}))
is in conflict with bs, then we generate the smallest enclosing beam b that covers p
and the polygons in Pb, the underlying idea being to try and cover p thanks to beam b.

8

Formally, the set of beams generated after each iteration is:

Bg = {b = SCB(Pbs ∪{p}) | (7)
(bs ∈ Bs)∧ (p ∈ P\Pbs)∧ (rb ≤MaxRadius)

∧CONFLICT(bs,SCB({p}))}

4 Merge-and-split heuristic
The ILP manipulated in the previous sections has limitations on instances containing
more than 100 polygons. To overcome this limitation, we define a specific heuristic
that is independent of the ILP formalization, called the merge-and-split heuristic.

4.1 Global description
The merge-and-split heuristic proposed is described in Figure 4. It starts from a set of
beams B containing the smallest covering beam associated with each polygon in P, i.e.
B = {SCB({p}) | p ∈ P}. By definition, this set of beams covers all the polygons in
P. If the feed conflict graph G(B) can be colored using a number of colors that does
not exceed the number of reflectors available (NR) then, even if this is not explicit in
Figure 4, the initial set of beams B is directly returned as the solution found, as it only
uses beams of minimum sizes.1

Otherwise, there are conflicts between the beams selected so far. In this case, the
algorithm tries to iteratively merge pairs of beams used in the current solution. Again,
merging two beams b1 and b2 means building the smallest beam covering all the poly-
gons covered by b1 and b2. The idea here is that by merging two beams, we hope to get
a new conflict graph that is easier to color than the current graph. If the chromatic num-
ber of the new feed conflict graph obtained after a merging operation is still too high,
another beam merging operation is performed, and so on until reaching a colorable
graph or until a maximum number of merging operations is reached.

At that point, the algorithm splits some of the beams contained in the current so-
lution, where splitting a beam b covering a set of polygons Pb means replacing b by
the set of individual beams {SCB({p}) | p ∈ Pb} covering each polygon served by b.
After that, the merging phase is performed again, and doing so other regions of the
search space can be explored since the decisions made at the level of the merging mod-
ule involve some randomness. Moreover, as soon as a new solution is obtained by the
merging process, we update the best solution found so far. Note that if the current
solution is not feasible (not colorable using NR colors), we can still extract a feasible
solution by keeping only the subset of beams that are consistently colored by the graph
coloring method. Last, we fix a total time limit, and we return the best solution found
at the end of the process.

Globally, the merge-and-split heuristic is inspired from Iterated Local Search (Lourenço
et al., 2003), which alternates between optimization phases where local moves are per-
formed to try and improve the current solution (beam merging moves in our case), and
a perturbation phase where the features of the current solution are randomly updated
(split operations in our case). In the following, we detail the three main components of
the algorithm, that is the coloring, merging, and split procedures.

1Technically speaking, it can be shown that in this case, the set of beams in B corresponds to a solution
that is leximin-optimal if the evaluation of a solution is provided by the vector containing the radii of all the
beams used.

9

Figure 4: Merge-and-split algorithm

4.2 Coloring method
Each time the current set of beams B is updated, we try to color the corresponding feed
conflict graph. This function is called many times during the algorithm and needs to
be fast, even if determining whether a graph can be colored using a restricted number
of colors is NP-complete. To quickly evaluate the colorability of a graph, we reuse
DSATUR (Brélaz, 1979), a greedy algorithm that runs in polynomial time. Basically,
DSATUR colors the nodes of highest degree first (the nodes that have the highest num-
ber of neighbors). The algorithm is allowed to use any number of colors, but to limit
the number of colors used, each node n is colored at each step using a color that has
a minimum index and that is feasible given the neighbors of n that are already col-
ored. Coming back to the feed conflict graph, if DSATUR manages to color G(B)
using no more than NR colors, then there exists a consistent beam-to-reflector alloca-
tion. Otherwise, when DSATUR fails to find a solution using at most NR colors, the
feed conflict graph might have a consistent coloring (since DSATUR is incomplete),
but this is ignored by the merge-and-split algorithm whose goal is to quickly find good
quality solutions. In the following, we denote by γ̂(G(B)) the number of colors used
by DSATUR to color G(B), and this number of colors is an upper bound on the actual

10

chromatic number γ(G(B)).

4.3 Merging mechanisms
The pseudocode of the merging process is sketched in Algorithm 2. As expressed
in the condition of the while loop, merging operations are performed while the chro-
matic number of current feed conflict graph exceeds NR and there is some computation
time left and the number of merge operations does not exceed a limit referred to as
NbMergeMax. As we only merge beams two by two, the highest number of merg-
ing operations is always |P|−1 (if this number is reached, then we have produced the
unique beam covering all the polygons), hence we always have NbMergeMax≤ |P|−1.
In practice, we consider a smaller value for NbMergeMax in order to favor the explo-
ration of solutions containing a larger number of beams. Parameter NbMergeMax can
also be updated during search if needed.

During the merging phase, the algorithm maintains the set of beam pairs that are
candidates for being merged (set Cand is the pseudocode). Initially, this set contains
all pairs (b1,b2) such that b1 and b2 are two distinct beams used in the current solution
(and we use an ordering ≺ over beams to avoid considering equivalent pairs (b1,b2)
and (b2,b1)). At each step, the merging loop selects a candidate pair of beams (b1,b2)
in Cand, according to a merging method randomly chosen (more details later on this
point). If merging b1 and b2 is feasible according to parameter MaxRadius, then we
consider the new set of beams B′ ← (B \ {b1,b2})∪ {b3} where b3 is obtained by
merging b1 and b2. As illustrated in Figure 5, this leads to a new feed conflict graph
G(B′) that is likely to contain fewer edges and that may be easier to color. However, in
some cases, the chromatic number of G(B′) can be greater than the chromatic number
of G(B) since merging two beams can also create new edges in the feed conflict graph.
The reason for this is that beam b3 can cover regions that are covered neither by b1
nor by b2, hence there may exist another beam that is sufficiently separated from b1
and b2 but that is in conflict with b3. This occurs in Figure 5 where beam 10 created
by merging beams 3 and 4 has a conflict with beam 9 that was not in conflict with the
two beams merged. As a result, the chromatic number of G(B′) may be higher than the
chromatic number of G(B). On this point, to avoid making moves leading to a conflict
graph that is harder to color, the merging procedure accepts B′ as the new set of beams
only if for DSATUR, the estimated chromatic number of G(B′) is not greater than the
estimated chromatic number of G(B) (i.e., γ̂(G(B′)) ≤ γ̂(G(B))). If set B′ is accepted
as the new set of beams, the algorithm updates the set of candidate beam pairs to take
into account the presence of b3 and increments the number of merging operations done
so far.

In the following, we define three heuristics to select the two beams b1,b2 to merge
at each step.

Merging method 1 (M1) The first merging heuristic favors the selection of two
beams b1,b2 such that merging b1 and b2 leads to a beam that is small. The underlying
idea is not only to try and keep small beams, but also to merge beams that are the less
likely to create new edges in the feed conflict graph. Therefore, for all pairs of distinct
beams b1,b2 ∈ B, we compute the smallest covering beam b3 obtained after merging b1
and b2. To diversify the search process, we do not systematically select a pair (b1,b2)
leading to the smallest beam b3. Instead, merging method M1 randomly selects a pair
(b1,b2) leading to a merged beam b3 that is among the ⌈|B|2×RatioSelectedBeams⌉

11

Input: B: set of beams in the current solution
NbMerge← 0
Cand←{(b1,b2) |b1,b2 ∈ B,b1 ≺ b2}
while γ̂(G(B))> NR and

Cand ̸= /0 and
cpuTime()≤ TimeLim and
NbMerge≤ NbMergeMax do

m← select merging method(ProbMerge)
(b1,b2)← select a pair in Cand given m
Cand← Cand \{(b1,b2)}
b3← SCB(Pb1 ∪Pb2)
if rb3 ≤MaxRadius then

B′← B∪{b3}\{b1,b2}
if γ̂(G(B′))≤ γ̂(G(B)) then

B← B′

Cand←Cand∪{(b3,b)|b ∈ B′\{b3}}
NbMerge← NbMerge+1

end
end

end
Algorithm 2: Merging loop

(a) Before merging (b) After merging

Figure 5: Impact of beam merging on the feed conflict graph

smallest ones. Here, RatioSelectedBeams∈]0,1] is a parameter that allows us to control
the number of candidate pairs considered at each step, that is the degree of diversifica-
tion.

Merging method 2 (M2) The second merging heuristic favors the selection two
beams b1,b2 that have the highest number of common neighbors in graph G(B). As
illustrated in Figure 5b, the underlying idea is to make the coloring of these common
neighbors easier. In Figure 5, beams 3 and 4 have four common neighbors, the merging
of this pair of beams deletes 10 edges and creates 7 ones, reducing the total number of
edges in the graph.

12

As a result, in merging method M2, the quality of a beam obtained by merging
two beams b1 and b2 is the number of common neighbors of b1 and b2 in the feed
conflict graph. To diversify the search process, we do not systematically select the
merged beam that has the highest quality. Instead, merging method M2 randomly
selects a pair of beams (b1,b2) leading to a beam b3 that is beam among the ⌈|B|2×
RatioSelectedBeams⌉ highest quality ones. Again, parameter RatioSelectedBeams ∈
]0,1] allows us to control the degree of diversification of the method.

Merging method 3 (M3) This third method first selects a beam b for which the
index of the color assigned by DSATUR is strictly greater than the number of reflectors
available. This beam is then merged with a beam b′ that is selected following either
a rule inspired from method M1, or a rule inspired from method M2, or a rule that
merges b with its closest neighbor.

Formally, DSATUR associates a color index colorb ∈ N∗ with each beam b, and
the set of beams whose color is not consistent with NR is

HighColorBeams = {b ∈ B |colorb > NR}.

Then, to preferentially select small beams, we associate a selection probability

pb =

1
radius(b)

∑
b∈HighColorsBeams

1
radius(b)

with each beam b∈HighColorBeams, and we randomly select a beam b in HighColorBeams
according to these probabilities.

To select the second beam b′, we have three different methods:

• in the first method, we select a beam b′ such that the beam created by merging b
and b′ has the smallest radius;

• in the second method, we select a beam b′ that has the highest number of com-
mon neighbors with b;

• in the third method, we select a beam b′ whose center is as close as possible to
the center of b.

The method for selecting the second beam is chosen randomly among these three meth-
ods. In the end, the pair (b1,b2) selected is (b,b′) if b≺ b′ and (b′,b) otherwise.

4.4 Splitting mechanisms
The pseudocode of the splitting procedure is given in Algorithm 3. The main idea is to
split some of the largest beams in order to remove the contribution of these beams to
the objective function in terms of squared radius. The method does not split a unique
beam. Instead, given the current solution that contains a set of beams B, it splits a
certain proportion of these beams β. More precisely, it selects ⌈β× |B|⌉ beams in B.
The value of parameter β depends on the current set of beams B and can take two
possible values, referred to as βm and βM . The former is used when the current set
of beams B provided by the merging operations done before corresponds to a feasible
solution (i.e., DSATUR manages to color the current set of beams using no more than
NR colors). Typically, parameter βm is low enough to try and improve the current

13

solution and not restart all over again, but not too low to favor the exploration of other
parts of the search space. On the contrary, parameter βM should be higher in order to
try and remove inconsistencies in the current solution.

Then, as expressed in Algorithm 3, the beam to be split at each step is selected
according to a probability distribution that is proportional to the beam size. Doing so,
splitting the largest beams is the preferred options, but there is some randomness in the
process to promote diversification.

Input: B: current set of beams
if γ̂(G(B))≤ NR then β← βm ;
else β← βM ;
NbSplit← ⌈β×|B|⌉
Cand← B ;
for i = 1 to NbSplit do

bs← select a beam b ∈Cand following a selection probability
pb = r2

b/(∑b∈B r2
b)

Cand←Cand \{bs}
B← (B\{bs})∪{SCB({p}) | p ∈ Pbs}

end
Algorithm 3: Splitting loop

4.5 Parameters
In the end, the merge-and-split heuristic uses several parameters. The latter are sum-
marized below and may be adjusted according to the instance.

• TimeLim: maximum duration time of the search process;

• NbMergeMax: maximum number of merging operations performed before split-
ting some beams;

• ProbMerg = [pM1, pM2, pM3]: selection probability for each merging method;

• RatioSelectedBeams: ratio used to define the proportion of beam pairs among
which the beam merging method selects a good alternative;

• βm: ratio of beams split when the current solution is feasible (colorable using no
more than NR colors);

• βM: ratio of beams split when the current solution is not feasible.

5 Experiments
Experimental setup The matheuristic and merge-and-split method have been im-
plemented in Python. The ILP problems have been solved using CPLEX 12.10. The
runs were made on a server with 96 cores of an Intel(R) Xeon(R) Gold 5318Y CPU
@2.10GHz processor and 62GB of RAM. CPLEX exploits the 96 cores while the
merge-and-split heuristic runs on a unique core. This difference must be considered
in the analysis of the experimental results, but for the heuristic our goal is to build a

14

fast method anyway. We consider a telecommunication satellite having NR = 4 reflec-
tors, and the instances tackled are those presented in Figures 3a, 3b, 3c, and 3d. If we
covered each of the polygons of the four instances with one unique beam, we would ob-
tain a feed conflict graph whose chromatic number computed with DSATUR algorithm
would be respectively 10,8, 9 and 12. To evaluate the efficiency of each algorithm,
we analyze the number of polygons covered by the solution found and the number of
beams selected in this solution. We also analyze the Mean Squared Radius Sum given
by

MSRS =

∑
b∈Bs

r2
b

|Bs|
where Bs stands for the set of beams selected in the final solution. For the merge-and-
split heuristic, we use the settings given in Table 1.

Table 1: Parameters of the merge-and-split heuristic

βm 0.2
βM 0.8

ProbMergMethod [0.2,0.7,0.1]
RatioSelectedBeams 0.2

(a) Matheuristic using BGM1 (b) Matheuristic using BGM2
(c) Merge-and-split heuristic,
run 2

Figure 6: Solutions on the France instance

(a) Matheuristic using BGM1 (b) Matheuristic using BGM2 (c) Merge-and-split heuristic

Figure 7: Solutions on the Italy instance

Results of the matheuristic The solutions found by the matheuristic method are il-
lustrated in Figures 6a, 6b, 7a, 7b, 8a, 8b, 9a, 9b. These figures depict the set of beams

15

(a) Matheuristic using BGM1 (b) Matheuristic using BGM2 (c) Merge-and-split heuristic

Figure 8: Solutions on the Western Europe instance

(a) Matheuristic using BGM1 (b) Matheuristic using BGM2 (c) Merge-and-split heuristic

Figure 9: Solutions on the Central Europe instance

obtained in the best solution found, each beam being colored according to the index
of the reflector to which it is assigned. From an operational point of view, the solu-
tions appear to be of good quality for the telecommunication satellite designers. The
detailed results of the matheuristic are given in Table 2, where BGM stands for “Beam
Generation Method” to indicate which method we used to fill in the pool of beams after
each iteration. We recall that BGM1 fills in the pool of beams by merging beams from
the current solution with each other, while BGM2 fills in the pool by merging a beam
belonging to the current solution with a beam covering a unique polygon. In the table,
we also indicate the time limit of the matheuristic methods and the time limit specified
for the call to the ILP solver at each iteration (column ILP time limit). This parame-
ter is set manually following preliminary experiments. The results obtained show that
globally, for the instances considered, BGM1 is less efficient than BGM2. Indeed, both
methods manage to cover all the polygons before the time limit (see column |Ps|), but
BGM2 leads to a higher number of beams and a lower MSRS value (see columns |Bs|
and MSRS). This is true for the four instances except from the Italy instance where the
two methods give the same final solution. It is also worth noting that the matheuristic
method manages to find good solutions on all instances, but can have a long computa-
tional time on the instance containing more than 100 polygons, where the time limit is
increased to 1000 seconds.

Results of the merge-and-split heuristic Examples of solutions found by the merge-
and-split heuristic are given in Figures 6c, 7c, 8c, 9c. The detailed results are given in
Table 4, which shows that the solutions found cover all polygons using a number of
beams that is rather low given the number of polygons to be covered. Moreover, the
merge-and-split heuristic finds several feasible solutions during the process.

Figure 10 shows how the quality of the best solution found evolves for the Western

16

Table 2: Matheuristic results

Instance
name

Time
limit

ILP time
limit

BGM
Nb
it

Best solution
|Ps| |Bs| MSRS Fig.

France 100 10 BGM1 7 22/22 7 0.0624 6a
France 100 20 BGM2 13 22/22 9 0.05137 6b
Italy 10 5 BGM1 3 30/30 12 0.0168 7a
Italy 10 5 BGM2 3 30/30 12 0.0168 7b

West Europe 200 50 BGM1 3 92/92 37 0.0223 8a
West Europe 200 50 BGM2 3 92/92 40 0.0187 8b

Central Europe 1000 300 BGM1 7 103/103 18 0.0692 9a
Central Europe 1000 300 BGM2 3 103/103 20 0.0677 9b

Table 3: Results of the matheuristic and the merge-and-split heuristic

Instance
name

Time
limit

Matheuristic results Merge-and-split results
ILP time

limit
Nb
it.

Best solution
NbMergeMax Nb sol.

Best solution
|Ps| |Bs| MSRS |Ps| |Bs| MSRS

F 100 10 7 22/22 7 0.062 5 8 22/22 7 0.069
I 10 5 3 30/30 12 0.017 5 88 30/30 15 0.027

W 200 50 3 92/92 37 0.022 20 14 92/92 21 0.49
C 1000 300 7 103/103 18 0.069 50 5 103/103 12 0.12
C1 50 10 4 52/52 19 0.037 5 15 52/52 18 0.38
C2 50 10 2 51/51 6 0.13 5 1 51/51 8 0.10

Table 4: Merge-and-split heuristic results

Instance
name

Time
limit

NbMergeMax
Nb

solutions
Best solution

|Ps| |Bs| MSRS Fig.
France 100 5 9 22/22 6 0.0556 /
France 100 5 8 22/22 7 0.0685 6c
Italy 10 5 88 30/30 15 0.02719 7c
Italy 10 5 126 30/30 12 0.01919 /

West Europe 200 15 64 92/92 17 0.0644 /
West Europe 200 20 14 92/92 21 0.488 8c

Central Europe 200 15 3 103/103 10 0.1381 /
Central Europe 1000 50 5 103/103 12 0.120 9c

Europe instance. More precisely, we consider a list of different TimeLimit from 10s to
1000s with a step of 10s. For each run, we report the best values found for the number
of selected beams (Figure 10a) and the mean squared radius sum (Figure 10b). The re-
sults obtained show that the heuristic method manages to globally decrease the squared
radius sum and increase the number of beams, especially during the first iterations. But
the improvement is not significant when increasing the total time limit.

Comparison between the two methods Globally, given the time limit to consider for
each instance, the matheuristic method provides solutions of better quality: the number
of beams selected is higher and the mean squared radius sum is lower. However, the
computation time is higher for the matheuristic. Indeed, the merge-and-split heuris-
tic manages to find several solutions covering all the polygons, while the matheuristic

17

(a) Number of beams (b) Squared radius sum

Figure 10: Impact of the time limit on the performance of the merge-and-split heuristic
(time limit on the x-axis)

takes a few iterations before finding a solution covering all the polygons. The heuristic
method is also capable of directly considering the MSRS minimization objective, while
the matheuristic only minimizes the squared radius sum (SRS). Based on the xb,r vari-
ables used in the ILP model, MSRS can be expressed as ∑b∈B,r∈R r2

b xb,r/∑b∈B,r∈R xb,r,
but such a formulation is not directly linear, hence the ILP model only considers the
SRS objective function. To show the difference between MRSR and SRS, Figure 11
gives the evolution of these two quantities along the iterations of the matheuristic, for
the Central Europe instance. On this figure, we can see that a solution covering all the
polygons is found at the second iteration, and after that decreasing the squared radius
sum of the beams does not improve the mean squared radius sum. On the contrary,
for the merge-and-split heuristic, the criteria optimized can be easily changed. Indeed,
each time a solution is found, we can evaluate its quality according to the selected
criterion.

Figure 11: Evolution of different criteria through iterations with matheuristic method

For both methods, the difficulty of an instance does not entirely rely on the number
of polygons to cover. For example, it is easier to cover the 30 polygons of the Italy
instance than the 22 polygons of the France instance. The reason for this is that the
polygons in Italy are more dispatched, hence it is easier to create small beams while
respecting the beam separation constraints. As an illustration, for the Italy instance,
the heuristic finds 10 times more solutions in 10 times smaller CPU time than for the
France instance. It is also much easier to solve the Western Europe instance than the
Central Europe instance, because the polygons involved are more spread.

6 Conclusion
In this paper, we considered a problem associated with the design of a telecommuni-
cation satellite used for television broadcasting on geographic areas, for which a set
of beams of different sizes must be defined to cover a set of polygons, considering

18

antenna mechanical constraints represented as a graph coloring problem. To face the
combinatorial issues and find solutions that are industrially feasible, we proposed two
different methods. The first one is a matheuristic method that is built upon an ILP for-
mulation and uses an evolving pool of candidate beams until finding a feasible solution.
This matheuristic produces good-quality solutions but can require a long computational
time. The second method, called the merge-and-split heuristic, iteratively constructs
the beam layout by updating a set of beams step-by-step through local merging op-
erations. This second method is faster and robust to large scale instances. Several
perspectives can be listed for this work. For the matheuristic approach, some unused
beams could be deleted from the pool of candidate beams throughout the iterations, to
alleviate the ILP model. We could also design other methods to fill in the pool of beams
with potential relevant ones. Moreover, to handle the mean squared radius sum in the
matheuristic instead of the squared radius sum, we could use Linear-fractional Pro-
gramming. For the merge-and-split heuristic, other merging methods should be looked
for, in particular to better identify the reasons for the non-colorability at each merging
step. A last perspective is to define a hybrid method where the matheuristic and the
merge-and-split heuristic could share solutions or sets of relevant beams.

REFERENCES
Biedl, T., Biniaz, A., and Lubiw, A. (2021). Minimum ply covering of points with disks and

squares. Computational Geometry, 94:101712.
Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of the ACM,

22(4):251–256.
Camino, J.-T. (2017). Co-optimisation charge utile satellite et systeme télécom. PhD thesis,

Toulouse 3.
Camino, J.-T., Artigues, C., Houssin, L., and Mourgues, S. (2016). Mixed-integer linear pro-

gramming for multibeam satellite systems design: Application to the beam layout opti-
mization. In 2016 Annual IEEE Systems Conference (SysCon), pages 1–6.

Camino, J.-T., Mourgues, S., Artigues, C., and Houssin, L. (2014). A greedy approach combined
with graph coloring for non-uniform beam layouts under antenna constraints in multibeam
satellite systems. In 2014 7th Advanced Satellite Multimedia Systems Conference and the
13th Signal Processing for Space Communications Workshop (ASMS/SPSC), pages 374–
381.

Contardo, C. and Hertz, A. (2021). An exact algorithm for a class of geometric set-cover prob-
lems. Discrete Applied Mathematics, 300:25–35.

Fowler, R. J., Paterson, M. S., and Tanimoto, S. L. (1981). Optimal packing and covering in the
plane are np-complete. Information processing letters, 12(3):133–137.

Hammill, C. W. and Dishaw, K. O. (2004). Satellite beam pattern for non-uniform population
distribution. US Patent 6,813,492.

Kyrgiazos, A., Evans, B., and Thompson, P. (2013). Irregular beam sizes and non-uniform
bandwidth allocation in hts multibeam satellite systems. In 31st AIAA International Com-
munications Satellite Systems Conference (ICSSC).

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search. In Handbook of
metaheuristics, pages 320–353. Springer.

Welzl, E. (2005). Smallest enclosing disks (balls and ellipsoids). In New Results and New
Trends in Computer Science: Graz, Austria, June 20–21, 1991 Proceedings, pages 359–
370. Springer.

19

