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Abstract

The complex behavior of inelastic woven composites stems primarily from

their inherent heterogeneity. Achieving accurate predictions of their linear

and nonlinear responses, while considering their microstructures, appears fea-

sible through the application of multi-scale modeling approaches. However,

effectively incorporating these methodologies into real-scale applications, par-

ticularly within FE2 analyses, remains challenging due to the significant com-

putational requirements they entail. To overcome this issue, while consid-

ering the scale effects, this study introduces an alternative approach based

on Artificial Neural Networks (ANNs) to perform a macroscopic surrogate

model of composites. This model, referred to as Multiscale Thermodynamics

Informed Neural Networks (MuTINN), is founded on thermodynamic prin-

ciples and introduces specific quantities of interest that serve as internal
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state variables at the macroscopic level. This captures efficiently the state

and evolution laws governing the history-dependent behavior of these com-

posites while retaining the thermodynamic admissibility and the physical

interpretability of their overall responses. Moreover, to facilitate its numer-

ical implementation within a FE code, a Meta-UMat has been developed,

streamlining the application of multiscale FE-MuTINN approach for com-

posite structure computations. The prediction capabilities of the proposed

approach is demonstrated across the material scales, exemplified through di-

verse instances of woven composite structures. Theses applications account

for anisotropic yarn damage and an elastoplastic polymer matrix behavior.

The numerical results and the related comparison with experimental find-

ings and FE computations demonstrate remarkable consistency across a wide

range of non-proportional loading paths. This promises a potential solution

to alleviate the computational challenges associated with multiscale simula-

tions of large composite structures.

Keywords: Artificial Neural Networks, Thermodynamics, Multi-scale

modeling, Woven composite structures, History-dependent behavior, Yarn

damage, Random loading path.
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1. Introduction

In recent years, there has been a significant and pronounced increase in

the attention directed towards the realm of Artificial Intelligence (AI) (Glik-

son and Woolley, 2020). This surge is primarily attributed to three pivotal

technological drivers: the accessibility of vast datasets, the rapid and continu-

ous evolution of AI algorithms, and the exponential growth in computational

capabilities (King and Roberts, 2018). Within the domain of engineering sci-

ence, a growing acknowledgment is taking place among both researchers and

industries regarding the vast potential of AI in tackling numerous challenges

and driving significant advancements across an extensive spectrum of en-

gineering fields (Salehi and Burgueño, 2018; Xu et al., 2021; Chinesta and

Cueto, 2022). Moreover, traditionally, materials science has been based on

three fundamental paradigms: the first centered on empirical and experimen-

tal testing, the second revolved around the application of physics and thermo-

dynamics principles to create constitutive models, and the third concentrated

on the realm of computer simulations. More recently, a fourth paradigm has

emerged, characterized by data-driven scientific methodologies and the in-

tegration of Machine Learning (ML) techniques (Agrawal and Choudhary,

2016; Kirchdoerfer and Ortiz, 2016; Ibanez et al., 2018; Wei et al., 2019).

Among these paradigms, the fourth one holds significant promise, particu-

larly given the ongoing advancements in data mining technology and artifi-

cial intelligence. It has the potential to integrate the other three paradigms,

enabling a more seamless alignment in terms of experimental exploration,

theoretical comprehension, and computational simulation. In this context,

AI techniques have garnered considerable attention as valuable tools for ex-
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pediting the exploration and design of novel materials with precisely tailored

properties, discovering material constitutive models, accelerating computa-

tional simulation, improving manufacturing characterization, and facilitating

the optimization of design processes (Frank et al., 2020; Morgan and Jacobs,

2020).

Although composite materials find extensive utility across diverse engi-

neering and industrial domains, their widespread incorporation is frequently

hindered by challenges, notably the accurate prediction of their overall me-

chanical response taking into account the characteristics of their microstruc-

ture. Over the preceding years, a multitude of multiscale techniques including

analytical, semi-analytical, and numerical methods have been developed (Es-

helby, 1956; Moulinec and Suquet, 1998; Castaneda and Suquet, 1997; Cas-

taneda, 2002; Chatzigeorgiou et al., 2022). These methods aim at providing

a thorough understanding of the mechanisms and phenomena taking place

across various scales, spanning from the micro to the macro level. Never-

theless, even with the ongoing progress in computing capabilities, multiscale

numerical simulation of large-scale composite structures (e.g. FE2 (Feyel and

Chaboche, 2000; Tikarrouchine et al., 2018, 2021)) remains an arduous task.

Confronting this challenge head-on, composite materials have gained promi-

nence in two key domains: Model Order Reduction (MOR) techniques—such

as Transformation Field Analysis (TFA) (Dvorak and Benveniste, 1992; Dvo-

rak et al., 1994b,a; Chatzigeorgiou and Meraghni, 2019; Barral et al., 2020),

Self-Clustering Analysis (SCA) (Liu et al., 2016, 2018), and Proper General-

ized Decomposition (PGD) (Chinesta et al., 2010, 2011; Metoui et al., 2018;

El Fallaki Idrissi et al., 2022)— and AI techniques, including machine learn-



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

ing and deep learning (Ghavamian and Simone, 2019; Wu et al., 2020; Liu

et al., 2021; Jiang et al., 2023). Through the integration of these methodolo-

gies, it becomes possible to perform a concurrent two-scale framework with-

out the necessity for a complete FE2 implementation. Nevertheless, dealing

with materials exhibiting history- or time-dependent behaviors, where the

stress prediction depends not only on the current stress and strain states,

but also on the entire loading history, it can indeed present a challenging

task. In this given context, significant efforts are currently being directed

towards the development of specialized machine learning and deep learning

tools (Wu et al., 2023; Liu et al., 2019). These tools are meticulously designed

to address the complex multiscale nature along with the inelastic behaviors

that are inherently present within these materials. In a more recent devel-

opment, a technique known as Deep Material Networks (DMN) has emerged

for multiscale material modeling (Liu et al., 2019; Gajek et al., 2021, 2022).

This approach builds upon the concept of material networks, employing a

collection of interconnected basic elements specifically chosen for their sim-

plicity and analytical homogenization. Although it demonstrates proficiency

in describing diverse microstructure responses within the realms of both elas-

tic and plastic behavior, it faces significant hurdles when confronted with

highly intricate microstructures, such as woven-reinforcement composites.

Alternative methodologies have been developed, leveraging Recurrent Neu-

ral Networks (RNNs) and incorporating well-established components such

as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)

(Ghavamian and Simone, 2019; Wu et al., 2020; Chen et al., 2021; Ghane

et al., 2023; El Said, 2023). These algorithmic frameworks act as mecha-
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nisms that convert input sequences into desired output sequences, specifically

in our context, corresponding to strain and stress tensors. Although numer-

ous studies have showcased the effectiveness of RNN-based models in pre-

dicting history-dependent behaviors using only stress-strain sequences with-

out requiring knowledge of Internal State Variables (ISVs), their widespread

adoption in multiscale modeling encounters several challenges. These stem

primarily from the significant amount of data required to effectively train

their complex architecture. Additionally, they face limitations in making ac-

curate predictions beyond the training dataset, and they often suffer from

a lack of physical meaning and interpretability. This lack of interpretability

is a common issue with ANNs, as they are often perceived as black boxes,

leading to uncertainty about their inner workings and, consequently, their

predictive capabilities in the field of material science. This opacity could

potentially pose significant risks when applied to constitutive modeling for

investigating extreme events, especially when dealing with complex unseen

loading paths. That is why, significant endeavors have been undertaken to

reduce instances of inconsistent results by introducing constraints derived

from the principles of physics (Karniadakis et al., 2021; Cueto and Chinesta,

2023; Eghbalian et al., 2023), like the well-established Physics-Informed Neu-

ral Networks (PINN). This, in turn, enhances the stability and accuracy of

the models during implementation and reduces the imperative for extensive

training datasets. Based on the PINN concept, a novel form of artificial

neural networks known as TANN (Thermodynamics-based Artificial Neural

Networks) has been devised in (Masi et al., 2021). This model integrates

thermodynamic principles into ANNs, allowing for the generation of predic-
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tions that are thermodynamically consistent not only for the training dataset

(seen loading paths) but also for the test dataset (unseen loading paths) (Masi

et al., 2021). TANN receive inputs including current stress, strain and ISVs,

as well as strain increments. In turn, the model produces outputs such as free

energy, dissipation rate, and updated ISVs and stress. Consequently, during

the training process of TANN, it is imperative to provide data for all the

aforementioned fields. This model has been recently employed to perform

two-scale simulations of inelastic lattice microstructures (Masi and Stefanou,

2022). It successfully identifies the ISVs that describe the inelastic defor-

mation within the intricate microstructural fields using an Encoder-Decoder

model.

Taking inspiration from the PINN and TANN models, this paper intro-

duces a novel approach referred to as Multiscale Thermodynamics-Informed

Neural Networks (MuTINN). Within this model, two consecutive neural net-

works are employed to formulate macroscopic constitutive relationships for

inelastic heterogeneous materials, while integrating fundamental thermody-

namics background. The first network captures the evolution law, while the

second delineates the state law. The incorporation of thermodynamic prin-

ciples into ANNs not only enhances their performance but also significantly

reduces the need for extensive training data, as it eliminates the necessity

to capture the underlying patterns of thermodynamic laws. Moreover, to

preserve the physical characteristics of the input and output variables, we

introduce specific quantities of interest act as ISVs at the macroscale. These

quantities are computed by averaging specific ISVs defined at the microscale,

corresponding to the scale of the unit cell. Consequently, MuTINN eliminates
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the necessity for neural networks with memory functions, such as RNNs, by

separately tracking these quantities of interest throughout any given loading

path.

The efficiency and the predictability of MuTINN approach has been veri-

fied by applying it to woven composites with history-dependent behavior in-

volving an elastoplastic polymer with an anistropic damage within the yarns.

Notably, our approach consistently delivers exceptional performance under

various in-plane loading conditions, validating its robustness, precision, and

adherence to thermodynamic principles. Additionally, a Meta-UMat has

been developed to simplify the integration of MuTINN based ANN models

into commercial finite element software. Subsequently, multiscale simula-

tions are conducted, employing finite element analysis at the macroscale and

MuTINN at the microscale, to examine different woven composite structures.

These examples demonstrate significant gains in accuracy and computational

time savings without sacrificing thermodynamic consistency of the results.

The manuscript is organized as follows: In Section 2, we provide a brief

introduction to the composite materials under investigation, including mi-

crostructure geometry and the local constitutive models of both yarns and

matrix. We also discuss the theoretical framework of periodic homogeniza-

tion, which serves as the basis for performing high-fidelity simulations used

to train the proposed model. Section 3 is dedicated to the presentation of

the quantities of interest, as well as the MuTINN model architecture, a sig-

nificant contribution in our research. Section 4 covers the discussion of the

training, validation, and testing processes of the MuTINN model, includ-

ing data generation and optimization. In the same section, we showcase
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the MuTINN model’s predictive capabilities under unseen random loading

conditions. Section 5, presents the integration of MuTINN into a FE code

towards structure computations. Then, the FE-MuTINN is used to perform

load-unload tests at the unit-cell scale and the obtained results are compared

with FE-based periodic homogenization and experimental data for different

laminate orientations, including ±[0◦]s, ±[30◦]s, and ±[45◦]s laminates. In

the same section, FE-MuTINN is applied to a large-scale composite struc-

ture (Open-Hole structure) with different fabric orientations and the results

are also compared with experimental data. Lastly, in Section 6, we conclude

the manuscript by summarizing the essential findings of our research and

outlining potential future directions.

2. Woven composite: Microstructure, local thermodynamic mod-

els and periodic homogenization

2.1. Woven composite architecture

The framework established within this study can be used effectively across

an extensive spectrum of inelastic composite materials. This spectrum en-

compasses diverse forms of reinforcement, including long and short fibers, as

well as both woven and non-woven fabrics. To underscore its adaptability and

versatility, our primary focus will be directed towards an in-depth exploration

of thermoplastic-based woven composites. In particular, we will place special

emphasis on those consisting of Polyamide 6-6 (PA66) as the matrix material

and employing a 2-2 twill weave architecture for reinforcement. These com-

posites are widely used in various commercial and industrial applications

due to their numerous attractive properties such as stability, smoothness,
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and drape (Strong, 2008). Notably, these characteristics contribute to an

improved formability, enabling them to conform to complex surface geome-

tries and curvatures. In addition, they demonstrate remarkable effectiveness

in enhancing structural integrity across multiple orientations within a single

layer when compared to unidirectional (UD) composites (Aliabadi, 2015).

Figure 1: Woven Thermoplastic Composite Unit Cell (B) with 2-2 Twill Fabric Reinforce-

ment: Key Parameters - Weft and Warp Width (a), Yarn Gap (c), Fabric Thickness (h).

In the context of homogenization, we take into account the periodic nature

of the woven composite microstructure by defining the microscopic problem

using a Unit Cell (UC). This unit cell serves as a fundamental representation

of the smallest repeating element within the microstructure. We refer to

this element as B, which includes distinct phases, as illustrated in Figure

1. Specifically, it comprises the matrix phase, identified as sub-domain B0,

along with the weft and warp yarn phases, referred to as sub-domains B1

and B2, respectively. Figure 1 also illustrates the geometry of the UC, which

is defined by a specific set of parameters. These parameters include the

yarn width, represented as a, the fabric thickness denoted as h, and the gap

between adjacent yarns labeled as c. The specific numerical values for these

parameters of the analyzed microstructure can be found in Table 1. It is

noteworthy that the same woven composite material has been employed in

prior research efforts, as referenced in (Tikarrouchine et al., 2021; Praud,
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2018).

Table 1: Geometric parameter values for the 2-2 twill weave composite.

Parameter Description Value Unit

a Yarn width 3.46 mm

h Fabric thickness 0.45 mm

c Gap between two adjacent yarns 0.29 mm

2.2. Local constitutive behaviors

The investigated woven composite material exhibits an inelastic and path-

dependent behavior, which incorporates distinct local constitutive models

for both yarns and matrix materials. These models, as presented in (Praud

et al., 2017a,b), primarily focus on exploring the complex and time-dependent

characteristics of the matrix, which involves a viscoelastic-viscoplastic model

coupled with a ductile damage. In this study, for the sake of simplicity,

we model its behavior using a conventional elasto-plastic constitutive model

with isotropic hardening, as described in previous works (Chaboche, 1989,

2008). Consequently, the state laws governing the matrix material are based

on the following form of the Helmholtz free energy density:

Ψ(ε, εp, p) =
1

2
(ε− εp) : Ce : (ε− εp) +

∫ p

0

R(ξ) dξ, (1)

where Ce represents fourth-order stiffness tensors traditionally established

for bulk isotropic materials using the Young’s modulus E and the Poisson’s

ratio ν. On the other hand, R(ξ) represents the hardening function, which

is expressed here as an exponential linear function:

R(p) = Q1

(
1− exp(−bp)

)
+Q2p, (2)
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Table 2: Parameters of the elasto-plastic model identified for thermoplastic matrix (PA66).

Feature Parameter Value Unit

Young’s modulus E 2 074 MPa

Poisson’s ratio (standard value) ν 0.3 -

Yield threshold σy 14 MPa

Hardening parameters Q1 30 MPa

b 160 -

Q2 260 MPa

where Q1, Q2 and b are the hardening parameters.

As depicted in Table 2, it is imperative to underscore that the parameters

for the elasto-plastic matrix model have been determined based on the results

of a monotonically loaded test. This test data is sourced from prior research

on unfilled PA66, as documented in (Praud et al., 2017a).

Referring to Table 3, it can be observed that the total strain, denoted as ε,

serves as an external state variable, while the plastic strain εp and the equiv-

alent plastic strain p function as internal state variables. The mathematical

expressions describing these state variables and their associated counterparts,

along with their corresponding evolution laws (ε̇p and ṗ), as well as the yield

criterion function f , can be summarized in Table 3:
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Table 3: Summary of the constitutive equations for the matrix sub-domain B0.

In contrast, the yarns demonstrate a linear elastic response when sub-

jected to forces along their longitudinal axis until they eventually experience

brittle failure. Conversely, when forces are applied in the transverse direction,

their behavior deviates from linearity, displaying inelastic properties. This

inelastic response stems from the gradual emergence of damage, primarily

induced by the diffuse growth of micro-cracks originating at the interfaces

between the fibers and the matrix due to debonding. Subsequently, these

micro-cracks propagate through a coalescence process. This behavior can

be described using the hybrid micromechanical-phenomenological constitu-

tive model developed in (Praud et al., 2017b) and schematically illustrated

in Figure 2. Yarns are conceptualized as unidirectional long fibers packed

densely within a matrix. Their behavior is characterized using a Represen-

tative Volume Element (RVE) that incorporates a micro-crack density γc.

This density is employed to define an anisotropic damage fourth-order ten-
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sor denoted as D(γc), which effectively diminishes the initially transversely

isotropic stiffness tensor C0. Consequently, due to the non-closure effect

of these micro-cracks, damage often leads to observable permanent deforma-

tions. These deformations are phenomenologically represented by an inelastic

strain tensor, denoted as εs. Hence, the state laws governing yarns are based

on the specific form of the Helmholtz free energy density as follows:

Ψ(ε, εs, γc) =
1

2
(ε− εs) :

[
C0 − D(γc)

]
: (ε− εs), (3)

Figure 2: Schematic illustration of micromechanical description of yarn damage: a Rep-

resentative Volume Element (RVE) of yarn incorporating micro-crack density γc and its

role in defining an anisotropic fourth-order damage tensor D(γc) to reduce the initially

transversely isotropic stiffness tensor C0.

More detailed information regarding the behavior of yarns can be located

in Table 4, where the principal constitutive equations governing their behav-

ior are outlined. Therefore, readers can refer to the following citations for

further information (Tikarrouchine et al., 2021; Praud et al., 2021; Praud,

2018).
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Table 4: Summary of the constitutive equations for the yarns sub-domains weft yarns B1

and warp yarns B2.
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2.3. Non-linear periodic homogenization

Generating a dataset for training and evaluating MuTINN necessitates

employing high-fidelity simulations that can yield remarkable accuracy and

consistency in trained ANNs predictions. Therefore, given the periodic na-

ture of the microstructure, employing periodic homogenization-based multi-

scale approaches (Figure 3) seems to be an optimal framework for this task.

This methodology typically involves establishing a robust link between the

microscopic and macroscopic scales, ensuring the reliable representation of

the system’s behavior across different levels of detail. This is usually done

Figure 3: Multiscale Modeling (Periodic Homogenization): Transition from Woven Com-

posite Material (Left) to an Equivalent Homogenized Medium (Middle) with a detailed

Unit Cell (Right).

by averaging the microscopic stress, strain and Helmholtz free energy over

the whole unit cell domain B as follow:

σ(t) =
1

V

∫

B

σ(x, t) dV, (4a)

ε(t) =
1

V

∫

B

ε(x, t) dV, (4b)

and

Ψ(t) =
1

V

∫

B

Ψ(x, t) dV, (4c)
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where V represents the volume of the UC domain B.

As previously examined in existing literature (Suquet, 1987), the concept

of Periodic Homogenization hinges on the underlying assumption of period-

icity, which dictates the form of the displacement field u within the unit cell

as follows:

u(x, t) = ε(t) · x+ ũ(x, t) + u0(t), ∀x ∈ B. (5)

This equation consists of three key components: firstly, an affine part repre-

sented as ε · x; secondly, a periodic fluctuation denoted as ũ; and lastly, a

possible contribution from rigid body motion, denoted as u0. It is worth not-

ing that the periodic nature of ũ leads to the definition of Periodic Boundary

Conditions (PBCs) as follows:

u(x+, t)− u(x−, t) = ε(t) · (x+ − x−), ∀x+,x− ∈ ∂B. (6)

where x+ and x− denote points situated at opposite and symmetrical posi-

tions along the borders of the unit cell, denoted as ∂B

Therefore, it becomes feasible to acquire the macroscopic stress-strain be-

havior along a specified loading path by solving local equilibrium using peri-

odic boundary conditions, all while considering the relationships involved in

transitioning between scales. In this work, for the interest of simplification,

and without sacrificing generality, we exclusively focus on in-plane macro-

scopic stress conditions. This implies that the values of σ33, σ13, and σ23 are

assumed to be zero, while only the remaining components come into play.
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3. MuTINN approach and variables

3.1. The quantities of interest v

MuTINN model aims at developing a phenomenological framework to ac-

curately describe the inelastic behavior of RVEs. Unlike relying on memory-

based Artificial Neural Networks such as RNN (Danoun et al., 2022; El Said,

2023), MuTINN eliminates this requirement but necessitates the inclusion

of additional variables to effectively capture the history-dependent nature of

nonlinear material behavior. In the context of homogenization theories, such

as variables are originally defined at the microscale as ISVs and are associ-

ated with individual microscopic behaviors. However, the inclusion of such

ISVs can impose a substantial computational burden during model train-

ing, mainly due to the increased number of input dimensions. To address

this challenge, our methodology introduces specialized variables known as

“quantities of interest (v)”. These quantities are defined at a macroscopic

level and play a crucial role in the formulation of the MuTINN model. They

are derived by averaging specific ISVs within the domains of the matrix B0,

weft yarns B1, and warp yarns B2. They offer a valuable physical interpre-

tation by tracking metrics such as damage density and accumulated plastic

strain.

For the matrix phase analysis, we define four crucial quantities of interest,

denoted as v1, v2, v3, and v4. These variables represent the averages of

the accumulated plastic strain (p) within the matrix domain, as well as the

averages of the in-plane plastic strain components, namely εp11 , εp22 , and

2εp12 , respectively. Their mathematical expressions are detailed as follows:
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∀x ∈ B0





v1(t) =
1

V0

∫

B0

p(x, t) dV,

v2(t) =
1

V0

∫

B0

εp11(x, t) dV,

v3(t) =
1

V0

∫

B0

εp22(x, t) dV,

v4(t) =
1

V0

∫

B0

2εp12(x, t) dV,

(7)

where V0 represents the volume occupied by matrix phase.

Although the same internal state variables, such as γc, εs22 , and others,

are defined for both warp and weft yarns, their evolution during the load-

ing process may differ between warp and weft yarns, due to the anisotropic

nature of the yarn damage. In fact, it depends on whether the load is in

the transversal or longitudinal direction. However, in the transition from a

high-dimensional representation (microscale ISVs) to a low-dimensional one

(macroscale quantities of interest) while minimizing information loss, two

sets of quantities of interest have been defined for yarns. Specifically, we

have (v5, v6, and v7) for weft yarns and (v8, v9, and v10) for warp yarns.

Their respective mathematical expressions are presented as follows:

∀x ∈ B1





v5(t) =
1

V1

∫

B1

γc(x, t) dV,

v6(t) =
1

V1

∫

B1

εs22(x, t) dV,

v7(t) =
1

V1

∫

B1

2εs12(x, t) dV,

(8)
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∀x ∈ B2





v8(t) =
1

V2

∫

B2

γc(x, t) dV,

v9(t) =
1

V2

∫

B2

εs22(x, t) dV,

v10(t) =
1

V2

∫

B2

2εs12(x, t) dV,

(9)

where V1 and V2 represent the volumes of the weft and warp yarns, respec-

tively.

As indicated by the equations 8 and 9, only the εs22 and 2εs12 components

of the anelastic strain tensor are taken into account, as these components are

active and evolve with the microcrack density during in-plane loading. In

fact, microcracks are forced to propagate in a plane parallel to the fiber

direction x⃗1, as shown in Figure 2, which illustrates the micromechanical

description of yarn damage.

3.2. MuTINN architecture

The Multiscale Thermodynamics-Informed Neural Network (MuTINN) is

an ANN-based model built upon the principles of thermodynamics. It has

been designed for the analysis of inelastic woven composites, with the po-

tential for application to various inelastic microstructures. As illustrated in

Figure 4, MuTINN’s architecture consists of two distinct ANNs, each with

its unique purpose. The first ANN is specifically designed to describe the

evolution law, taking as inputs the current macroscopic strain components

(εn = [εn11, ε
n
22, 2ε

n
12]

T), the current quantities of interest (vn = [vn1 , . . . , v
n
10]

T),

and the macroscopic strain increment (∆εn+1). Subsequently, it calculates

the corresponding increment (∆vn+1). Conversely, the second ANN, known

as the state law model, takes inputs consisting of the updated macroscopic
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strain (εn+1) and the updated quantities of interest (vn+1), and predicts the

Helmholtz free energy (Ψ
n+1

) as its output. Then, an automatic differenti-

ation is used to partially differentiate the predicted Helmholtz free energy

with respect to the inputs. This process is performed to determine both the

macroscopic stress components (σn+1 = [σn+1
11 , σn+1

22 , σn+1
12 ]T) and the dissipa-

tion (Φ̇
n+1

). Within the MuTINN framework, the dissipation is calculated

solely for ensuring consistent thermodynamic predictions. To this end, a

penalty function has been incorporated to promote solutions with positive

dissipation preserving hence the thermodynamics admissibility. It is worth

noting that in this particular context, as the behavior being examined is

time-independent, the dissipation is computed using a fixed time increment

of 1 (∆t = 1).

Evolution law
State law

+

+

Figure 4: Multiscale Thermodynamics-Informed Neural Networks (MuTINN) architecture.

To train the MuTINN model, we define a loss function denoted as L,

which consists of the sum of three individual loss functions (Lv, LΨ, Lσ),

accompanied by a penalty function P
Φ̇
, as expressed in the following equation:

L = λvLv + λΨLΨ + λσLσ + λ
Φ̇
P
Φ̇

(10)

Here, the terms λv, λΨ, λσ, and λ
Φ̇
represent the weights assigned to each
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component within the loss or penalty function. While the terms in L are

specified as follows: 



Lv = |v − vANN|,

LΨ = |Ψ−Ψ
ANN|,

Lσ = |σ − ∂Ψ
ANN

∂ε
|.

(11)

where v, Ψ, and σ represent the reference values for the quantities of inter-

est, the Helmholtz free energy, and the macroscopic stress, respectively. On

the other hand, vANN and Ψ
ANN

correspond to the predicted values. The

concept of a penalty function P
Φ̇
is defined in Equation 12. This function

is designed to be null when dissipation is positive and to take the absolute

value of dissipation when it is negative. Its purpose is to contribute to the

loss function L in situations where the dissipation assumes non-physical val-

ues, thereby enforcing the MuTINN predictions to be thermodynamically

consistent. Mathematically, this penalty function is expressed as follows:

P
Φ̇
=





0 if − ∂Ψ
ANN

∂vANN
· ∆vANN

∆t
≥ 0,

∣∣∣∣−
∂Ψ

ANN

∂vANN
· ∆vANN

∆t

∣∣∣∣ otherwise

(12)

4. Data Generation, Results and Discussion at RVE scale

4.1. Data Generation (Sampling)

The local constitutive models outlined in Section 2 are employed to cre-

ate a dataset for training, evaluating and testing the MuTINN model. This

dataset is generated by simulating the unit cell’s response under random in-

plane loading conditions using finite element computations. It is important
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to note that these constitutive models are initially calibrated for tensile load-

ing and may not be perfectly suited for compression loading scenarios. To

comprehensively exclude potential compression effects, we conducted simula-

tions using a stress control approach. Within this framework, we controlled

both longitudinal and transverse stress levels, keeping them within the range

of 0 to 400 MPa (see Figures 5a and 5d), while allowing shear stress to fluc-

tuate between -50 and 50 MPa (see Figure 5b). These specific stress ranges

are thoughtfully chosen to align with our study’s requirements.

In each finite element simulation, we computed the quantities of interest

denoted as vk, with k ranging from 1 to 10. These values are determined

by averaging specific ISVs defined at the microscale, within three distinct

domains: the matrix domain B0, the weft yarns domain B1, and the warp

yarns domain B2, as described in Equations 7, 8, and 9. Additionally, we

calculated the Helmholtz free energy Ψ over the whole domain using the

Equation 4c and the macroscopic strain components εn+1 using the Equation

4b and as seen in Figure 6. These computed quantities are then stored as

input variables (∆εn+1, εn, vn) and output variables (∆vn+1, Ψ
n+1

, σn+1)

for further analysis and utilization in the MuTINN model.

In this study, we employed a dataset comprising 1200 loading paths in-

cluding training, validation, and test subsets. Each of these loading paths

consisted of 10 discrete steps. These steps involved the application of random

stress increments in the longitudinal, transverse, and shear directions, as de-

picted in Figure 5, which illustrates all the loading paths used for training.

Initially, these steps exhibited a narrow range of stress increments, but as

the number of steps progressed, this range gradually expanded, highlighting
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the apparent reduction in stiffness due to damage and an increase in inelastic

strain at the macroscopic scale. To achieve finer granularity, we subdivided

each of these steps into 20 increments. Consequently, each loading test gener-

ated 200 data points, resulting in a total of 240,000 data points for the entire

dataset. This dataset is subsequently divided into three distinct subsets: a

training set (60%), a validation set (20%), and a test set (20%). However, in

our effort to enhance the model’s performance, particularly in Online phase,

we introduced random uni-axial loading paths into our sampling approach,

exemplified by loading paths 3 and 4, which are visually represented in Fig-

ure 5 for applied stress components and Figure 6 for the resulting strain

components. In the specific case of loading path 3, it is noteworthy that

the transverse and shear stress (σ22 and σ12) exhibited changes, while the

longitudinal stress σ11 remained at 0 MPa. Conversely, in loading path 4,

only the longitudinal stress (σ11) exhibited variation, while the other stress

components maintaining a value of zero.
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(a) Macroscopic longitudinal stress σ11(t) (b) Macroscopic shear stress σ12(t)

(c) Macroscopic stress (σ11, σ22, σ12) (d) Macroscopic transverse stress σ22(t)

Figure 5: Random loading paths used for training: Macroscopic Stress (σ11, σ22, and σ12).
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(a) Macroscopic longitudinal strain ε11(t) (b) Macroscopic shear strain 2ε12(t)

(c) Macroscopic strains (ε11, ε22, 2ε12) (d) Macroscopic transverse strain ε22(t)

Figure 6: Random loading paths used for training: Macroscopic Strain (ε11, ε22, and 2ε12).
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4.2. Offline Training and Validation

Before processing for training stage, the dataset, including both input and

output sets, underwent normalization to a range of -1 to 1. Subsequently,

the MuTINN model was constructed using the open-source neural network

computing framework TensorFlow, employing two interconnected artificial

neural networks (ANNevolution and ANNstate). As summarized in Table 5,

each of these neural networks features two hidden layers, with 64 neurons

in each layer. The initial network employs the Leaky Rectified Linear Unit

activation function (Leaky ReLU) within its hidden layers, while the second

network utilizes the Exponential Linear Unit (ELU) as its activation function.

Table 5: MuTINN hyperparameters: The number of layers, number of neurons and the

activation function types.

MuTINN Hyperparameters

Inputs Layer Hidden Layer 1 Hidden Layer 2 Output Layer

ANNevolution Number of Neurons 16 64 64 10

Activation function - leaky ReLU leaky ReLU Linear

ANNstate Number of Neurons 13 64 64 1

Activation function - ELU ELU Linear

The model was trained using the Adam algorithm (Kingma and Ba, 2014)

with a batch size of 32 and a learning rate set at 10−4 -a hyperparameter that

governs the rate at which the model’s parameters are updated. This learning

rate was thoughtfully selected to maintain a delicate equilibrium, preventing

convergence issues caused by excessively large values while avoiding extended

iteration times associated with excessively small values. Furthermore, Mean
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Absolute Error (MAE) is employed to assess the accuracy of predictions made

by each ANN. Figure 7 illustrates the progression of MAE across 1500 epochs

for both the training and validation datasets for the loss functions Lv, LΨ,

and Lσ. Investigating the results, one can notice that the error rates for both

the training and validation sets closely align, indicating that the model was

successfully trained, while the issues related to both underfitting and over-

fitting were restricted. It is worth emphasizing that achieving high accuracy

in the predicted quantities of interest is paramount, as these serve as inputs

to ANNstate for the current increment and ANNevolution for the subsequent

increment. Ensuring precision in v is critical to prevent the accumulation

of errors that might potentially affect the accuracy of free energy and stress

predictions.
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Figure 7: Training and validation of MuTINN model: Variation of loss functions (Lv, LΨ

and Lσ) with respect to number of epochs.
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4.3. Online Testing on unseen loading paths

Once the MuTINN model has completed its training, it is employed in

a recall mode (Online phase) to generate predictions for loading paths that

are randomly generated and absolutely not included in the training dataset.

In the following section, we will illustrate two specific instances of loading

scenarios in Figures 8 and 9. These examples aim at providing a concise

overview of MuTINN’s performance in predicting the macroscopic response

of woven composites under complex loading conditions. Each of these Figures

is composed of seven subfigures. In the top row, three subfigures depict the

randomly applied in-plane macroscopic strains (ε11, ε22, 2ε12). Moving to the

center, a subfigure visually presents the predicted macroscopic Helmholtz free

energy (Ψ) by MuTINN, along with a comparative analysis against finite ele-

ment (FE) results. Finally, in the bottom, three subfigures provide a detailed

comparison between MuTINN’s predictions and the FE simulations based on

periodic homogenization, specifically for the macroscopic stresses (σ11, σ22,

σ12). As shown in the provided Figures, it is evident that the MuTINN

model consistently demonstrates exceptional performance, highlighting its

remarkable ability to provide highly accurate predictions for both macro-

scopic Helmholtz free energy and stresses. However, it is worth pointing out

that the strain increment values can affect the overall results particularly for

the macroscopic shear response. To limit this effect when applying MuTINN

model, in recall mode for a new loading path, it is recommended to employ

strain increments within the designated training ranges. Alternatively, these

ranges can be expanded during the training phase to increase the overall

robustness of the MuTINN model.
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(a) ε11(t) (b) ε22(t) (c) 2ε12(t)

(d) Ψ(t)

(e) σ11(t) (f) σ22(t) (g) σ12(t)

Figure 8: Comparison of FE-based periodic homogenization and MuTINN approaches for

an unseen random loading path N◦ 1 (Loading path not included in training dataset):

(a), (b) and (c) the applied macroscopic strain components ε11, ε22, and 2ε12 respectively.

(d) the macroscopic Helmholtz free energy (Ψ). (e), (f), and (g) the macroscopic stress

components σ11, σ22, and σ12, respectively.
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(a) ε11(t) (b) ε22(t) (c) 2ε12(t)

(d) Ψ(t)

(e) σ11(t) (f) σ22(t) (g) σ12(t)

Figure 9: Comparison of FE-based periodic homogenization and MuTINN approaches for

an unseen random loading path N◦ 2 (Loading path not included in training dataset):

(a), (b) and (c) the applied macroscopic strain components ε11, ε22, and 2ε12 respectively.

(d) the macroscopic Helmholtz free energy (Ψ). (e), (f), and (g) the macroscopic stress

components σ11, σ22, and σ12, respectively.
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5. Integration of MuTINN into a FE Code towards Structure Com-

putation

5.1. Numerical Implementation

To seamlessly integrate the MuTINN model into a finite element (FE)

code, a Meta-UMAT has been developed using the Fortran programming

language. This Meta-UMAT serves as a bridge between the FE commercial

software and the MuTINN model as illustrated schematically in Figure 10.

In this context, with each incremental step, the Meta-UMAT conducts calcu-

lations employing the MuTINN model to ascertain the updated macroscopic

stress, denoted as σn+1, and the corresponding macroscopic tangent modu-

lus, represented as Cn+1

t , based on the provided macroscopic strain increment

∆εn+1. However, in order to utilize the trained MuTINN model effectively,

the Meta-UMAT necessitates the importation of various essential parameters

of the MuTINN model. These parameters include the architecture specifica-

tions such as the number of layers, the number of neurons per layer, activation

functions, as well as the weights and biases. These critical parameters are

retrieved from a previously saved INP file named “Properties.inp”.

evolution
state

Figure 10: Schematic Implementation of MuTINN into a FE commercial software towards

performing structural computations.
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As illustrated in Algorithm 1 and Figure 4, MuTINN comprises three

distinct functions: ANNevolution, ANNstate, and Gradient ANNs. The initial

component, ANNevolution, serves as a feedforward neural network dedicated

to describe the evolution law. Its primary purpose is to calculate the up-

dated quantities of interest, represented as vn+1, for a given strain incre-

ment. The second component, ANNstate, corresponds to the state law within

the MuTINN framework. This component plays a crucial role in determining

the Helmholtz free energy, which is a key factor in the overall behavior of

the system. The third and final component of MuTINN is devoted to the

computation of the macroscopic stress. This achieves by utilizing automatic

differentiation techniques applied to the ANNstate. This integrated approach

ensures the accurate calculation of macroscopic stress values within the sys-

tem.

Algorithm 1 vn+1, Ψ
n+1

, σn+1=MuTINN( ∆εn+1, εn, vn)

Require: ∆εn+1, εn, vn

∆vn+1=ANNevolution( ∆εn+1, εn, vn) ▷ Feed forward Neural Networks

vn+1=vn +∆vn+1, εn+1=εn +∆εn+1

Ψ
n+1

=ANNstate(ε
n+1, vn+1) ▷ Feed forward Neural Networks

σn+1=Gradient ANNs(Ψ
n+1

, εn+1) ▷ Automatic Differentiation

return vn+1, Ψ
n+1

, σn+1.

The global finite element solver requires the incorporation of the tangent

operator Ct, alongside with stress computation. This modulus quantifies the

current rate of stress change relative to the total strain variation. For nonlin-

ear behaviors, especially when dealing with a macroscopic problem through
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Algorithm 2 Cn+1

t =Pertb MuTINN( δε, ∆εn+1, εn, vn)

Require: δε, ∆εn+1, εn, vn

σn+1=MuTINN( ∆εn+1, εn, vn)

for k=1 to 3 do

∆εn+1
(k) =∆εn+1+ δε [δ1k, δ2k, δ3k]

T, δij =





1 if i = j,

0 else.

σn+1
(k) =MuTINN(∆εn+1

(k) , εn, vn)

∆σn+1
(k) =σn+1

(k) -σn+1

Cn+1

t · [δ1k, δ2k, δ3k]T= ∆σn+1
(k) /δε

end for

return Cn+1

t

an implicit resolution approach, it becomes essential to calculate the imme-

diate macroscopic tangent operator for each macroscopic increment and at

each macroscopic integration point. This particular step plays a critical role

in ensuring a fast convergence of the solution within a specified time incre-

ment, thereby reducing the number of iterations required to achieve global

convergence. For this reason, a perturbation function called Pertb MuTINN

has been developed. As demonstrated in Algorithm 2, this function takes as

inputs the current macroscopic strain denoted as εn, the current quantities

of interest represented as vn, the macroscopic strain increment ∆εn+1, and

a constant δε set to the value of 10−4. It subsequently yields the updated

macroscopic tangent modulus Cn+1

t as its output. The latter is calculated

using the perturbation technique, employing three elementary loading cases:
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(a) σxx(t) vs. εxx(t) (b) W ε(t), Ψ(t) and Φ(t)

Figure 11: Comparative analysis of load-unload testing on woven composite orientations

±[0◦]s: Experiment (Praud et al., 2021) vs. FE-Based Periodic Homogenization vs.

MuTINN for stress-strain curve. FE-Based Periodic Homogenization vs. MuTINN for

Energies.

(a) σxx(t) vs. εxx(t) (b) W ε(t), Ψ(t) and Φ(t)

Figure 12: Comparative analysis of load-unload testing on woven composite orientations

±[30◦]s: Experiment (Praud et al., 2021) vs. FE-Based Periodic Homogenization vs.

MuTINN for stress-strain curve. FE-Based Periodic Homogenization vs. MuTINN for

Energies.
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[δε, 0, 0]T, [0, δε, 0]T, and [0, 0, δε]T. It is important to note that this modulus

may not necessarily exhibit major symmetry.

To validate the framework developed herein, we initiate the process by

performing computations at a single macroscopic point, representing one el-

ement, which is equivalent to the computations conducted at the Unit Cell

scale. To this end, three configurations of woven composite laminates have

been selected: ±[0◦]s, ±[30◦]s, and ±[45◦]s. Each of these laminates has un-

dergone load-unload tests, with loading carried out under strain control and

unloading under free stress control. Subsequently, we compare the results

obtained from experimental tests with those acquired through Finite Ele-

ment periodic homogenization at the unit cell scale and FE-MuTINN analy-

sis for a single macroscopic point, yielding the following findings. It is worth

noting that the response of a multilayered composite is usually simulated

(a) σxx(t) vs. εxx(t) (b) W ε(t), Ψ(t) and Φ(t)

Figure 13: Comparative analysis of load-unload testing on woven composite orientations

±[45◦]s: Experiment (Praud et al., 2021) vs. FE-Based Periodic Homogenization vs.

MuTINN for stress-strain curve. FE-Based Periodic Homogenization vs. MuTINN for

Energies.
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through the classical laminate theory, detailed in several books among them:

(Öchsner, 2021; Chatzigeorgiou et al., 2022). More straightforwardly, in the

case of a symmetric and balanced laminate (±[θ◦]s), the uni-axial response

can be directly simulated by considering only one single layer oriented at θ,

i.e., one single macroscopic material point, retaining vanishing in-plane shear

strain in the laminate coordinate system, as explained in (Praud, 2018). This

methodology will be employed in the current study for conducting FE-based

periodic homogenization on the unit cell and MuTINN predictions on a single

element (a macroscopic material point).

Figures 11a, 12a, and 13a depict a comparative analysis of stress-strain

curves for a symmetrical and balanced woven composite laminate subjected

to a load-unload test. This comparison involves examining experimental

data previously obtained in (Praud et al., 2021) and comparing it with

the outcomes generated through the FE-based periodic homogenization and

MuTINN approaches for laminate woven composites oriented at angles of

±[0◦]s, ±[30◦]s, and ±[45◦]s, respectively. Upon careful examination of these

Figures, it becomes evident that there is a high degree of agreement between

the predictions of stress-strain curves made by the FE and MuTINN meth-

ods across the various orientations studied, as well as when compared to the

experimental results. Furthermore, the MuTINN model effectively captures

the reduction in stiffness due to the presence of damage mechanisms asso-

ciated with the initiation, growth, and coalescence of micro-cracks within

the yarns. This phenomenon is particularly noticeable during the unloading

stage, especially for the laminate orientation of ±[45◦]s.

Figures 11b, 12b, and 13b present a comprehensive analysis of various
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energy metrics in the context of a load-unload test applied to a symmetrical

and balanced woven composite laminate. These metrics include strain energy

(W ε as defined in Equation 13), Helmholtz free energy (Ψ), and dissipation

energy (Φ as defined in Equation 14). This comparative examination employs

two distinct methodologies: Finite Element (FE)-based periodic homogeniza-

tion and MuTINN. The focus of this analysis centers on laminate composites

denoted as ±[0◦]s, ±[30◦]s, and ±[45◦]s orientations. These Figures reveal

a strong correlation between the energy values predicted by the MuTINN

model and the reference values obtained through full-field periodic homoge-

nization for the different orientations. Consequently, these findings provide

compelling evidence for the thermodynamic consistency of the predictions

generated by the MuTINN model.

W ε =

∫

ε

σ · dε =

∫

ε

∂Ψ

∂ε
· dε, (13)

Φ =

∫

v

−∂Ψ

∂v
· dv. (14)

After conducting the calculations, we have observed a significant reduc-

tion in computational time when employing the FE-MuTINN, as outlined in

Table 6. It is evident that the use of FE-MuTINN results in computations

taking only few seconds, whereas traditional FE-based periodic homogeniza-

tion typically demands several minutes for the same time intervals. This

feature renders the FE-MuTINN approach a suitable choice for handling

large-scale composite structures.
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Table 6: Comparative analysis of CPU time: FE-Based Periodic Homogenization at the

UC scale vs. FE-MuTINN at a macroscopic point for load-unload testing of three different

orientations.

Orientation

Approach [±0◦]s [±30◦]s [±45◦]s

CPU time FE (Periodic homogenization) 9min 31s 27min 53 s 35min 35s

FE-MuTINN 3s 21s 32s
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5.2. Application of FE-MuTINN for composite structure analysis

After establishing a robust framework that integrates MuTINN with a

commercial finite element computation software and successfully training the

MuTINN model, the next crucial phase involves harnessing its capabilities in

practical applications within the field of composite engineering structures. As

shown in Figure 14, in contrast to FE2, which utilized FE analysis at both the

structural and unit cell scales, FE-MuTINN, as its name suggests, allows for

the utilization of FE at the structural scale while deploying MuTINN at each

integration point. This innovative approach represents a significant departure

from previous methodologies, offering distinct advantages and novel insights

into composite engineering.

Figure 14: Schematic representation of FE2 and FE-MuTINN approaches.

In this research, the Open Hole specimen is employed to conduct the

composite structure analysis. This selection is based on the availability of

experimental data from prior research (Tikarrouchine et al., 2021), which

closely matches the exact structural dimensions and employs the same re-
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inforcement and matrix materials as those used in our investigation. The

examined structure has specific measurements, with a length of 120.0 mm,

a width of 60.0 mm, and a thickness of 1.0 mm. Notably, it includes a cen-

0°

30°

45°

Figure 15: Displacement control tension on Open-Hole woven composite structure: Di-

mension, Loading and Boundary Conditions (u⃗ = (1.0, 0) mm for 0◦, u⃗ = (2.5, 0) mm for

30◦ and u⃗ = (3.5, 0) mm for 45◦).
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trally located hole with a 10.0 mm radius, as illustrated in Figure 15. Ideally,

to be in line with scale separation assumption, the characteristic size of the

structure should be sufficiently higher than the unit cell characteristic dimen-

sions. However, in the current structure, it appears that the characteristic

size of the structure is approximately four times larger than the unit cell size,

specifically 15×15 mm2. Even though this ratio does not totally guarantee

the scale separation, the comparison between the experimental results and

FE predictions demonstrate that this ratio could be sufficient for this type of

structure. Furthermore, due to the experimental setup limitations in terms

of load-cell capacity and tension grips size, it is not easy to perform tests for

large scale structure that totally ensure the scale separation.

As illustrated in the Figure 15, this structure is subject to specific bound-

ary conditions and loading. Consequently, the lower face of the structure is

firmly clamped within the plane. Conversely, on the upper face, we impose

constraints such that displacements along the x-axis remain at zero, while

a non-zero displacement along the y-axis is applied, denoted as u⃗ = (uxx =

0, uyy ̸= 0). Moreover, in this analysis, we have investigated the composite

structure through three distinct configurations, each defined by a single layer

reinforced with woven fabric and orientated at angles 0◦, 30◦, and 45◦ with

respect to the principal axes (x⃗, y⃗, z⃗). For each orientation, we apply distinct

displacements: uyy = 1.0 mm for the 0◦ configuration, uyy = 2.5 mm for the

30◦ configuration, and uyy = 3.5 mm for the 45◦ configuration. Furthermore,

the structure is discretized using a total of 514 plane stress elements, compris-

ing both three-node plane stress elements (CPS3) and four-node plane stress

elements (CPS4). It is imperative to emphasize that we choose to evaluate
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the feasibility and the predictions capabilities of MuTINN on thin composite

structure computations assuming the plane stress assumption. Nevertheless,

the MuTINN model can also be extended to 3D problems in a straightforward

manner. However, achieving this would necessitate much more information

to train MuTINN, specifically all the macroscopic stress and strain compo-

nents (σ11, σ22, σ33, σ12, σ13, σ23) and (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23), and

possibly more internal quantities to properly described the macroscopic state

under 3D loading paths.

Building upon the previous section’s discussion regarding the implemen-

tation of MuTINN into the FE code, our implementation of FE-MuTINN

has yielded notable success in carrying out simulations for diverse structural

configurations within mere minutes of CPU time. This is vividly exemplified

in the data presented in Table 7. This stands in stark contrast to the signif-

icantly higher computational costs that would have been incurred if we had

opted for FE2 analysis, which would have demanded several hours to even

days of computation. The outcomes produced through FE-MuTINN com-

putations have been graphically represented as force-displacement curves in

Figure 16. These findings align closely with the experimental data detailed in

(Tikarrouchine et al., 2021). In the experimental setup, the Open-Hole speci-

mens underwent a conditioning process within a controlled climatic chamber.

Throughout this procedure, the specimens are conditioned at an atmosphere

characterized by a relative humidity of 50% at a temperature of 65◦C. This

conditioning process is maintained until the water concentration within the

specimens reached a relatively uniform level of 2.8%. Subsequently, two

distinct sets of tests are conducted. The first set involved the specimen
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reinforced with woven fabric composite oriented at 0◦, subjected to mono-

tonic tensile tests at two distinct displacement rates: 0.024 and 0.24 mm.s−1.

These tests continued until the point of macroscopic fracture is reached. In

contrast, the second set of tests focused on the specimen reinforced with 45

degrees woven fabric, employing displacement rates of 0.033 and 0.33 mm.s−1

and continuing until macroscopic fracture is observed. In general, the global

behavior of the composite structures exhibits a non-linear response. This

response can be attributed to either the rheology of the PA66 matrix and/or

the degradation in the yarns caused by the presence of micro-cracks, as elab-

orated in the forthcoming Figures.

Table 7: Computational Efficiency: CPU Time for woven composite structure analysis

using FE-MuTINN method.

Number of Elements Orientation

CPS3 and CPS4 0◦ 30◦ 45◦

CPU time Open-hole structure 514 1min 44s 1min 46s 1min 46s

It is imperative to emphasize that the thermoplastic matrix typically

displays time-dependent behavior. However, the existing constitutive model

utilized to train our current model is time-independent. Consequently, it fails

to account for the influence of displacement or strain rate on the composite’s

overall response, thus elucidating the slight disparity between experimental

and numerical results. This prompts us to focus our upcoming research

primarily on the integration of viscoelastic and viscoplastic characteristics

into our model.

To provide a more thorough insight into the results, we have illustrated
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the spatial distribution of three key parameters of interest: v1, v5, and v8,

along with the macroscopic strain fields ε11, ε22, and 2ε12. These variables

were examined across three different fabric orientations as shown in the Fig-

ures 17, 18, and 19 for (v1, v5, and v8) and in Figures 20, 21, and 22 for (ε11,

ε22, and 2ε12). These configurations effectively showcase all the fields at vari-

ous displacements: specifically, 1 mm for 0 degrees, 2 mm for 30 degrees, and

3 mm for 45 degrees. As previously discussed, it is important to note that

P1

P2
P3

Figure 16: Comparative analysis of Force-Displacement curves for Open-Hole woven com-

posite structures: FE-MuTINN simulations with variable woven fabric orientations (0◦,

30◦, and 45◦) under displacement control along the x⃗ axis, and their correlation with ex-

perimental data from (Tikarrouchine et al., 2021) at different displacement rates: u̇yy=0.24

mm.s−1 and u̇yy=0.024 mm.s−1 for 0◦. u̇yy=0.33 mm.s−1 and u̇yy=0.033 mm.s−1 for 45◦.
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quantities of interest (v1, v5, and v8) are directly linked to critical aspects of

the material’s behavior, representing the average accumulated plastic strain

in the matrix, the average micro-crack density in the weft, and the warp

yarns, respectively.

(Avg: 75%)

-3.731e-04
+5.341e-04
+1.441e-03
+2.348e-03
+3.255e-03
+4.163e-03
+5.070e-03
+5.977e-03
+6.884e-03
+7.791e-03
+8.698e-03
+9.605e-03
+1.051e-02

0° P1

(a) v1 at uyy=1.00 mm for 0◦.

(Avg: 75%)

+1.656e-04
+6.833e-04
+1.201e-03
+1.719e-03
+2.236e-03
+2.754e-03
+3.272e-03
+3.789e-03
+4.307e-03
+4.825e-03
+5.343e-03
+5.860e-03
+6.378e-03

0° P1

(b) v5 at uyy=1.00 mm for 0◦.

(Avg: 75%)

-1.878e-04
+3.588e-04
+9.054e-04
+1.452e-03
+1.999e-03
+2.545e-03
+3.092e-03
+3.638e-03
+4.185e-03
+4.731e-03
+5.278e-03
+5.825e-03
+6.371e-03

0° P1

(c) v8 at uyy=1.00 mm for 0◦.

Figure 17: FE-MuTINN results for an Open-Hole structure reinforced with a 0◦ oriented

woven composite subjected to a displacement of uyy=1.00 mm. (a) v1: Average accumu-

lated plastic strain in the matrix. (b) v5: Average micro-crack density in the weft yarns.

(c) v8: Average micro-crack density in the warp yarns.

Figures 17, 18, and 19 offer a detailed local perspective of the area sur-

rounding the hole, providing a comprehensive insight into the primary phe-

nomena observed in the tested specimens. Furthermore, the Figures 20, 21,

and 22 provide qualitative observations of macroscopic strain fields, vali-

dating the DIC strain localization maps obtained in (Tikarrouchine et al.,

2021). These results stem from the localized plastic deformation within the

matrix and micro-damage within the yarns, such as localized de-bonding or
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micro-cracking, which ultimately leads to fiber breakage. In general, when

considering the composite structure with a 45◦ woven orientation, the simu-

lation demonstrates a distinctive pattern. It unveils an inhomogeneous and

symmetric distribution of v1, v5, and v8. This distribution gives rise to

banded regions that align at a 45◦ angle relative to the applied load direc-

tion. Conversely, when examining the composite structure with a 30◦ woven

orientation, a different scenario emerges. The simulation reveals an inho-

mogeneous and asymmetric distribution of the same variables, v1, v5, and

v8. These variables form banded regions that are now aligned at a 30◦ angle

relative to the applied load direction.

It is worth noting that the appearance of low negative values in the color-

(Avg: 75%)

-8.486e-05
+4.030e-03
+8.144e-03
+1.226e-02
+1.637e-02
+2.049e-02
+2.460e-02
+2.872e-02
+3.283e-02
+3.695e-02
+4.106e-02
+4.518e-02
+4.929e-02

30° P2

(a) v1 at uyy=2.00 mm for 30◦.

(Avg: 75%)

+9.120e-04
+2.455e-03
+3.997e-03
+5.540e-03
+7.083e-03
+8.625e-03
+1.017e-02
+1.171e-02
+1.325e-02
+1.480e-02
+1.634e-02
+1.788e-02
+1.942e-02

30° P2

(b) v5 at uyy=2.00 mm for 30◦.

(Avg: 75%)

+8.032e-04
+2.372e-03
+3.941e-03
+5.510e-03
+7.079e-03
+8.647e-03
+1.022e-02
+1.178e-02
+1.335e-02
+1.492e-02
+1.649e-02
+1.806e-02
+1.963e-02

30° P2

(c) v8 at uyy=2.00 mm for 30◦.

Figure 18: FE-MuTINN results for an Open-Hole structure reinforced with a 30◦ oriented

woven composite subjected to a displacement of uyy=2.00 mm. (a) v1: Average accumu-

lated plastic strain in the matrix. (b) v5: Average micro-crack density in the weft yarns.

(c) v8: Average micro-crack density in the warp yarns.
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bar label of certain results can be traced back to specific structural elements

undergoing compression loads, especially near the boundary. This disparity

arises due to the fact that the MuTINN model has been trained exclusively

for tensile loading, as mentioned earlier. Therefore, it is imperative to in-

corporate compression loading pathways into the training datasets in our

forthcoming work.

(Avg: 75%)

-7.035e-05
+4.761e-03
+9.593e-03
+1.442e-02
+1.926e-02
+2.409e-02
+2.892e-02
+3.375e-02
+3.858e-02
+4.341e-02
+4.824e-02
+5.308e-02
+5.791e-02

45° P3

(a) v1 at uyy=3.00 mm for 45◦.

(Avg: 75%)

+8.954e-04
+2.851e-03
+4.806e-03
+6.761e-03
+8.716e-03
+1.067e-02
+1.263e-02
+1.458e-02
+1.654e-02
+1.849e-02
+2.045e-02
+2.240e-02
+2.436e-02

45° P3

(b) v5 at uyy=3.00 mm for 45◦.

(Avg: 75%)

+8.729e-04
+2.868e-03
+4.864e-03
+6.859e-03
+8.854e-03
+1.085e-02
+1.285e-02
+1.484e-02
+1.684e-02
+1.883e-02
+2.083e-02
+2.282e-02
+2.482e-02

45° P3

(c) v8 at uyy=3.00 mm for 45◦.

Figure 19: FE-MuTINN results for an Open-Hole structure reinforced with a 45◦ oriented

woven composite subjected to a displacement of uyy=3.00 mm. (a) v1: Average accumu-

lated plastic strain in the matrix. (b) v5: Average micro-crack density in the weft yarns.

(c) v8: Average micro-crack density in the warp yarns.
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(Avg: 75%)

-6.785e-03
-6.166e-03
-5.546e-03
-4.926e-03
-4.306e-03
-3.686e-03
-3.066e-03
-2.446e-03
-1.826e-03
-1.206e-03
-5.863e-04
+3.363e-05
+6.536e-04

0° P1

(a) ε11 at uyy=1 mm for 0◦.

(Avg: 75%)

+2.934e-04
+2.580e-03
+4.867e-03
+7.153e-03
+9.440e-03
+1.173e-02
+1.401e-02
+1.630e-02
+1.859e-02
+2.087e-02
+2.316e-02
+2.545e-02
+2.773e-02

0° P1

(b) ε22 at uyy=1 mm for 0◦.

2

(c) 2ε12 at uyy=1 mm for 0◦.

Figure 20: FE×MuTINN results for an Open-Hole structure reinforced with a 0◦ oriented

woven composite subjected to a displacement of uyy=1.00 mm. (a) ε11: Macroscopic

transverse strain. (b) ε22: Macroscopic longitudinal strain. (c) 2ε12: Macroscopic shear

strain.
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(Avg: 75%)

-3.572e-02
-3.274e-02
-2.977e-02
-2.679e-02
-2.381e-02
-2.083e-02
-1.786e-02
-1.488e-02
-1.190e-02
-8.923e-03
-5.946e-03
-2.968e-03
+9.255e-06

30° P2

(a) ε11 at uyy=2 mm for 30◦.

(Avg: 75%)

+4.158e-03
+9.072e-03
+1.399e-02
+1.890e-02
+2.382e-02
+2.873e-02
+3.364e-02
+3.856e-02
+4.347e-02
+4.839e-02
+5.330e-02
+5.822e-02
+6.313e-02

30° P2

(b) ε22 at uyy=2 mm for 30◦.

2

(c) 2ε12 at uyy=2 mm for 30◦.

Figure 21: FE×MuTINN results for an Open-Hole structure reinforced with a 30◦ oriented

woven composite subjected to a displacement of uyy=2.00 mm. (a) ε11: Macroscopic

transverse strain. (b) ε22: Macroscopic longitudinal strain. (c) 2ε12: Macroscopic shear

strain.
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(Avg: 75%)

-5.828e-02
-5.343e-02
-4.857e-02
-4.371e-02
-3.885e-02
-3.399e-02
-2.913e-02
-2.427e-02
-1.941e-02
-1.455e-02
-9.696e-03
-4.837e-03
+2.147e-05

45° P3

(a) ε11 at uyy=3 mm for 45◦.

(Avg: 75%)

+4.336e-03
+1.080e-02
+1.727e-02
+2.374e-02
+3.020e-02
+3.667e-02
+4.314e-02
+4.960e-02
+5.607e-02
+6.253e-02
+6.900e-02
+7.547e-02
+8.193e-02

45° P3

(b) ε22 at uyy=3 mm for 45◦.

2

(c) 2ε12 at uyy=3 mm for 45◦.

Figure 22: FE×MuTINN results for an Open-Hole structure reinforced with a 45◦ oriented

woven composite subjected to a displacement of uyy=3.00 mm. (a) ε11: Macroscopic

transverse strain. (b) ε22: Macroscopic longitudinal strain. (c) 2ε12: Macroscopic shear

strain.
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6. Conclusions and Perspectives

Due to the complex nature of woven composite microstructures and their

nonlinear behavior, predicting their response using finite element-based mul-

tiscale analysis has proven arduous and time-consuming. To tackle these

challenges, this work presents an innovative approach that harnesses Artifi-

cial Neural Networks (ANNs) alongside fundamental thermodynamic prin-

ciples, guided by crucial physical parameters. This approach serves as an

effective surrogate model, streamlining the process of conducting multiscale

analyses. In essence, our research yields a set of vital insights that can be

concisely summarized as follows:

• MuTINN’s Incorporation of Physical Quantities: MuTINN adeptly

integrates physical parameters as ISVs at the macroscale. This unique

feature allows it to accurately capture the history-dependent behavior

of heterogeneous materials under various loading conditions. Further-

more, these quantities offer a valuable physical interpretation by track-

ing metrics such as damage density and accumulated plastic strain.

• Thermodynamic Consistency for Reliable Predictions: MuTINN’s

adherence to thermodynamic principles significantly enhances the reli-

ability of its predictions, especially when dealing with random loading

paths. This attribute renders it an invaluable tool for a wide array of

engineering applications.

• Reduced Training Data Requirements: The absence of the need

to learn the hidden laws of the thermodynamic principle reduces the

data required for training, making MuTINN exceptionally effective and
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frugal for applications in the field of material science, especially when

generating vast amounts of data is challenging.

• Successful Integration into a Commercial Finite Element Soft-

ware: MuTINN model has been successfully implemented into a com-

mercial finite element software package, ensuring its accessibility and

versatility in practical engineering contexts.

• Accelerating Two-Scale Simulations of Composite Structures:

The integration of MuTINN into a FE code provides the additional

advantage of accelerating two-scale concurrent simulations, replacing

finite element computations at the RVE scale with a MuTINN-based

surrogate model.

When it comes to improving achieved results, especially at the struc-

tural scale, it is beneficial to incorporate compression loading paths into the

training process. This helps prevent the occurrence of non-physical values

for quantities of interest in certain regions of the structure when subjected

to complex loading and boundary conditions. Additionally, it would be in-

triguing to compare a two-scale finite element (FE2) approach with the FE-

MuTINN method in terms of both accuracy and computational time. How-

ever, regarding future work, the developed MuTINN model holds promise for

effectively handling a wide range of heterogeneous materials with intricate

microstructures and complex behaviors, requiring only minor adjustments.

Therefore, the next advances in model implementation should involve the in-

tegration of rate and temperature-dependent behavior of woven composites,

with a particular focus on capturing the viscoelastic-viscoplastic character-
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istics of the matrix material. In the near future, further research efforts

will focus on incorporating a variety of microstructural parameters into the

FE-MuTINN model. The ultimate aim resides in accelerating the robust

structural analysis in relation to the optimization of process-induced mi-

crostructures.
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Highlights:

- Physically informed MuTINN model by thermodynamic quantities as ISVs at the macroscale

- Thermodynamic MuTINN’s foundation enhancing prediction reliability and admissibility.

- MuTINN association with a FE code towards microstructure simulations of structuress.

- Fast and frugal two-scale structural simulations through the FE-MuTINN approach.
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