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Abstract. In this paper we consider the following problem: −div (a(x, u,Du) = H(x, u,Du) +
a0(x)

|u|θ + χ{u6=0} f(x) in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded set of RN , 1 < p < N , −div(a(x, u,Du)) is a Leray-
Lions operator defined on W 1,p

0 (Ω), a0 ∈ LN/p(Ω), a0 > 0, 0 < θ ≤ 1, χ{u 6=0} is a

characteristic function, f ∈ LN/p(Ω) and H(x, s, ξ) is a Carathéodory function which
satisfies:
−c0 a(x, s, ξ)ξ ≤ H(x, s, ξ) sign(s) ≤ γ a(x, s, ξ)ξ a.e. x ∈ Ω,∀s ∈ R ,∀ξ ∈ RN .
For ‖a0‖N/p and ‖f‖N/p sufficiently small, we prove the existence of at least one
solution u of this problem which is moreover such that the function exp(δ|u|) − 1
belongs to W 1,p

0 (Ω) for some δ ≥ γ. This solution satisfies some a priori estimates in
W 1,p

0 (Ω).

Keywords: Nonlinear problems, existence, singularity.

AMS Subject Classification: 35J60; 35J75.

1 Introduction

In this paper, we consider the quasilinear problem u ∈W 1,p
0 (Ω),

−div (a(x, u,Du)) = H(x, u,Du) +
a0(x)

|u|θ + χ{u6=0} f(x) in D′(Ω),
(1.1)

�
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2 B. Hamour

where Ω is an open bounded subset of RN , 1 < p < N , −div (a(x, u,Du)) is a
Leray-Lions operator defined on W 1,p

0 (Ω) and H(x, u,Du) is a Carathéodory
function with natural growth in |Du|p, and more precisely satisfies:

|H(x, s, ξ)| ≤ c|ξ|p. (1.2)

for some positive constant c.
We assume that a0 ∈ LN/p(Ω), a0 > 0, 0 < θ ≤ 1 , χ{u6=0} is a characteristic

function and f ∈ LN/p(Ω).
When a0 and f are sufficiently small, that is they satisfy the smallness

condition (2.11), we prove in the present paper the existence of at least one
solution u of (1.1) which is moreover such that the function

(eµ|u| − 1) ∈W 1,p
0 (Ω),

with ∥∥∥µ−1(eµ|u| − 1)
∥∥∥
W 1,p

0 (Ω)
≤ Zδ, (1.3)

where µ is in an interval (0, µ0), which depends on the norms of a0 and f , the
bound of H and the coercivity of a, and the nonnegative constant Zδ is given
in (3.25).

A similar result has been proved in [19] in the quasilinear case p = 2 and
where the function a(x, s, ξ) is assumed to have the form a(x, s, ξ) = A(x)ξ,
with being A(x) a matrix bounded entries and coercive. In that setting the
change of unknown function w = µ−1(eµ|u| − 1) sign(u) transforms equation
(2.1) in a quasilinear equation with a quadratic term which satisfies a “sign
condition”.

The proof used in the present paper follows along the lines of the proof
in [12], [13], [18] and [19] and can be obtained as follows.

We first consider a sequence of problems which approximate (2.1), obtained
by truncation of the functions H(x, s, ξ), a0(x) and f(x) at level n, with n ∈ N?,
thanks to Leray-Lions theorem (see [20], [21]), this approximation guarantees
the existence of solution un of (3.19).

Once the solution of the approximate problem has been obtained, we per-
form the change of unknown function wn = µ−1(eµ|un| − 1) sign(un) , we then
obtain equation (3.8) which is equivalent to (3.4). Thanks to the smallness
condition, we obtain the a priori estimate of wn which does not depend on
n, and we extract a subsequence denoted wn such that wn weakly converges
in W 1,p

0 (Ω) to some w, and we prove that wn strongly converges in W 1,p
0 (Ω).

By equivalent Theorem 2, we obtain the strong convergence of un. Another
difficulty is the passage to the limit of the singular term, for that we use the
method introduced in [16], and more precisely we treat a control of strong∫
{|un|≤ν}

an(x)

(|un|+ 1
n )θ

ϕdx when ν is small.

Compared to the results obtained in the latest papers, we prove in the
present paper, as said above, the existence at least one solution of (2.1) in the
case (2.7) (i.e. a0 ≥ 0) when a0 and f satisfy the smallness condition (2.11),
but our result is obtained in the general case of a nonlinearity H(x, s, ξ) which
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satisfies only (2.5) with f ∈ LN/p(Ω) and with a0 to LN/p(Ω).

Let us begin some review of the literature, the problem (2.1) has been exten-
sively studied by many authors in the case a(x, u,Du) = A(x)Du, H(x, u,Du) =
0, f(x) = 0 and a0(x) is smooth (see, for instance, [1], [2], [3], [4], [6], [7], [8],
[9], [10], [11], [22], [23] and [25]).
In [14], the authors studied a singular elliptic problem whose model is −∆u =

|∇u|2

|u|θ
+ f(x) in Ω,

u = 0 on ∂Ω,

where θ ∈ (0, 1) and the datum f has no constant sign and belongs to Lm(Ω),
with m ≥ N

2 , and prove the existence of a solution.
In [25], the author considered the following two classes of singular boundary
value problems  −∆u∓ λ

|∇u|2

|u|θ
= f(x)u−α

u > 0 in Ω, u = 0 on ∂Ω,

where λ > 0, θ > 0, α > −1 and the datum f satisies some property.
In [16] and [17], the authors proved the existence of at least one nonnegative
solution and a stability result for the following problem{

−div (A(x)Du) = f(x)g(u) + l(x) in Ω,
u = 0 on ∂Ω,

where A(x) ∈ L∞(Ω)N×N is a coercive matrix, g : [0,+∞) → [0,+∞) is
continuous and 0 ≤ g(s) ≤ 1

sθ
+ 1, ∀s > 0, 0 < θ ≤ 1; and f, l ∈ Lr(Ω) where

r satisfies some conditions. In [7], the authors proved the existence, regularity
and nonexistence results for problems whose model is

−∆u =
f(x)

uθ
in Ω,

with u = 0 on ∂Ω, Ω is bounded open of RN , θ > 0 and f is nonegative function
on Ω and belongs to some Lebesgue spaces. For this, they have introduced
an approximate problem by treating the singular term 1

uθ
and construct an

increasing sequence (un)n∈N of solutions to nonsingular problem −div (A(x)Dun) =
fn(x)(
un + 1

n

)θ in Ω,

un = 0 on ∂Ω,

where fn = min(f(x), n). This sequence satisfies, for any ω ⊂⊂ Ω, and

un ≥ un−1 ≥ · · · ≥ u1 ≥ Cω, ∀x ∈ ω.

The authors discussed in [2] the solution of the elliptic problem, with a gradient
term and a singular nonlinearity −∆u = |∇u|q +

f

g(u)
in Ω,

u > 0 in Ω and u = 0 on ∂Ω,

Math. Model. Anal., xx(x):1–19, 20xx.



4 B. Hamour

where Ω ⊂ RN is a bounded regular domain, g : R+ → R is a continu-
ous increasing function with additional hypotheses given, 1 < q ≤ 2 and f is
a measurable nonnegative function and obtained optimal conditions on g, q
which allow to get the existence positive solution for the largest possible class
of datum f .

2 Existence result and comments

As said in this introduction we study in this paper the existence of the solutions
to the following singular nonlinear problem u ∈W 1,p

0 (Ω),

−div a(x, u,Du) = H(x, u,Du) +
a0(x)

|u|θ
+ χ{u 6=0} f(x) in D′(Ω),

(2.1)

where
Ω is a bounded open subset of RN and 1 < p < N. (2.2)

The function a : Ω × R × R → RN is a Carathéodory function which also
satisfies, for a.e. x ∈ Ω, any s ∈ R and any ξ, ξ′ ∈ RN , with ξ 6= ξ′:

(
a(x, s, ξ)− a(x, s, ξ′)

)
(ξ − ξ′) > 0,

a(x, s, ξ)ξ ≥ α|ξ|p,
|a(x, s, ξ)| ≤ β

(
b(x) + |s|p−1 + |ξ|p−1

)
,

(2.3)

for a given constant α > 0, some constant β > 0, some nonnegative function
b ∈ LN/(p−1)(Ω), and which is moreover satisfies that

a(x,−s,−ξ) = −a(x, s, ξ) a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN , (2.4)

the nonlinearity H(x, s, ξ) is a Carathéodory function with a natural growth in
ξ, and more precisely satisfies −c0 a(x, s, ξ)ξ ≤ H(x, s, ξ) sign(s) ≤ γ a(x, s, ξ)ξ,

a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN ,
where γ > 0 and c0 ≥ 0,

(2.5)

the function sign being defined by

sign(s) =

 +1 if s > 0,
0 if s = 0,
−1 if s < 0,

(2.6)

the coefficient a0 satisfies

a0 ∈ LN/p(Ω), a0 ≥ 0, a0 6≡ 0, (2.7)

the exponent θ satisfies
0 < θ ≤ 1, (2.8)
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and finally

f ∈ LN/p(Ω). (2.9)

Since N > p, let p? be the Sobolev’s exponent defined by
1

p?
=

1

p
− 1

N
,

and let CN,p be the Sobolev’s constant defined as the best constant such that

‖ϕ‖p? ≤ CN,p‖Dϕ‖p, ∀ϕ ∈W 1,p
0 (Ω). (2.10)

Since Ω is a bounded, we equip the space of W 1,p
0 (Ω) with the norm

||u||W 1,p
0 (Ω) = ||Du||(Lp(Ω))N

Finally, we assume that ‖a0‖N/p and ‖f‖W−1,p′ (Ω) are sufficiently small (see

Remark 2, below), and more precisely that

Cλ(θ) ||a0||N/p + ||f ||N/p ≤
(
p− 1

γ

)p−1
α

CpN,p
, (2.11)

where Cλ(θ) is defined by

Cλ(θ) =

(
λ

ln(1 + λ)

)θ
, where λ =

γ

p− 1
.

Our main result is the following.

Theorem 1. Assume that (2.2), (2.3), (2.5), (2.7), (2.8) and (2.9) hold true.
Assume moreover that (2.11) holds true,

Then there exists at least one solution of (2.1), which further satisfies that:

(eδ|u| − 1) ∈W 1,p
0 (Ω), ∀δ ≥ γ such that

Cµ(θ) ||a0||N/p + ||f ||N/p ≤
α

µp−1CpN,p
, (2.12)

where Cµ(θ) is the constant defined by

Cµ(θ) =

(
µ

ln(1 + µ)

)θ
. (2.13)

Remark 1. In the case where the function H(x, s, ξ) = H(x, ξ) does not depend
on s, assumption (2.5) is satisfied if and only if

|H(x, ξ)| ≤ c a(x, s, ξ)ξ,

for some c > 0.
When γ = 0 in (2.5), the nonlinearity function H(x, ξ) satisfies a sign

condition and existence result can be proved for every f ∈W−1,p′(Ω).

Remark 2. In this Remark, we consider that the open set Ω, the functions a
and H are fixed and the functions a0 and f as parameters.

Math. Model. Anal., xx(x):1–19, 20xx.
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Our set of assumptions on these parameters is made of the smallness con-
dition (2.11).

Indeed, if, for example, a0 is sufficiently small such that it satisfies

‖a0‖N/p ≤
α

µp−1 Cλ(θ)CpN,p
(Cλ(θ) ≥ 1),

then the smallness condition (2.11) is satisfied if ||f ||N/p is sufficiently small.
Similary, if, for example, f is sufficiently small that it satisfies

‖f‖N/2 ≤
α

γC2
N

,

then, the smallness condition (2.11) is satisfied if ‖a0‖N/p is sufficiently small.

Remark 3. The smallness condition (2.11) shows that δ as parameter is bounded
and satisfies

0 < γ ≤ δ ≤ (p− 1)α
1
p−1

C
p
p−1
N,p ‖a0‖

1
p−1

N/p

.

Remark 4. The definition of the constant Zδ which appears in (1.3) and (3.25)
is given in (the technical) Appendix (see Lemma 1). This definition is based on
the properties of the family of functions Φδ (see (4.1)) which look like convex
parabolas (see Figure 1): Zδ is the unique value which satisfies Φδ(Zδ) = 0.

3 Proof of Theorem 1

The proof will be made in seven steps.
Step 1: Approximation and change of unknown function.
For n ∈ N? we set Tn(s) = min{n,max{s,−n}} and Gn(s) = s − Tn(s), we
consider two sequences an and fn such that

an(x) = Tn(a0(x)), (3.1)

and
fn(x) = Tn(f(x)). (3.2)

For n ∈ N?, the function Hn(x, s, ξ) is defined by

Hn(x, s, ξ) =
H(x, s, ξ)

1 + 1
n |H(x, s, ξ)|

. (3.3)

Observe that Hn(x, s, ξ) satisfies |Hn(x, s, ξ)| ≤ H(x, s, ξ) as well as (2.5).

Since an(x), fn(x) and Hn(x, s, ξ) are bounded in L∞(Ω), a classical result
of J. Leray and J.-L. Lions [20] and [21] asserts that the following approximate
problem (3.4) has at least one solution.

un ∈ H1
0 (Ω),

−div(a(x, un, Dun)) = Hn(x, un, Dun) +
an(x)

(|un|+ 1
n

)θ
+ χ{un 6=0}fn(x)

(3.4)
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Observe that un belongs to L∞(Ω) for each n given since an(x) ∈ L∞(Ω),
fn(x) ∈ L∞(Ω), and Hn(x, un, Dun) ∈ L∞(Ω).

Let δ > 0 be fixed satisfies

γ ≤ δ such that

Cµ(θ) ||a0||N/p + ||f ||N/p ≤
α

µp−1CpN,p
, where µ =

δ

p− 1
(3.5)

If we formally define the function wn by

wn = ϕ(un), (3.6)

where

ϕ(s) = µ−1(eµ|s| − 1) sign(s), where µ =
δ

p− 1
, (3.7)

we have at least formally

wn ∈W 1,p
0 (Ω) ∩ L∞(Ω),

eµun = 1 + µ|wn|, un =
1

µ
ln(1 + µ|wn|), Dwn = eµ|un|Dun,

and

−eδ|un| div(a(x, un, Dun)) =

−div(eδ|un|a(x, un, Dun)) + δ eδ|un| sign(un)(a(x, un, Dun))Dun

where −eδ|un| div(a(x, un, Dun)) is the distribution defined by

D′(Ω)

〈
−eδ|un| div(a(x, un, Dun)), ϕ

〉
C∞0 (Ω)

=

∫
Ω

a(x, un, Dun)D(eδ|un|ϕ)

for any ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

Since eµ|un| = 1 + µ|wn|, we deduce that wn is, at least formally, a solution (see
Theorem 2) of the following problem

−div(â(x,wn, Dwn) = Kδ(x,wn, Dwn) sign(wn)

+(1 + µ|wn|)p−1χ{wn 6=0} fn +
(1 + µ|wn|)p−1

(µ−1 ln(1 + µ|wn|) + 1
n

)θ
an,

wn = 0 on ∂Ω,

(3.8)

where the function â : Ω × R× RN → RN is a Carathéodory function defined by

â(x, s, ξ) = (1 + µ|s|)p−1 a

(
x,

1

µ
ln(1 + µ|s|) sign(s),

ξ

1 + µ|s|

)
. (3.9)

(Note that the function â satisfies Leray-Lions conditions (2.3)),
and where the function Kδ : Ω×R×RN → R is defined by the following formulas

Kδ(x, s, ξ) = (1 + µ|s|)p−1
(
Hn
(
x, 1

µ
ln(1 + µ|s|) sign(s), ξ

1+µ|s|

)
sign(s)

−δa
(
x, 1

µ
ln(1 + µ|s|) sign(s), ξ

1+µ|s|

)
ξ

1+µ|s|

)
.

(3.10)

Math. Model. Anal., xx(x):1–19, 20xx.



8 B. Hamour

Note also that the functions Kδ(x,w,Dw) and Kδ(x,w,Dw) sign(w) are correctly
defined and are measurable functions when w ∈W 1,p(Ω) (see Remark 3.2 in [18]).
When γ ≤ δ, this computation in particular implies that

Kδ(x, s, ξ) ≤ 0 a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN . (3.11)

From (2.3) and (2.5) one has

|Kδ(x, s, ξ)| ≤

(c0 + δ)(1 + µ|s|)p−1a

(
x, 1

µ
ln(1 + µ|s|)sign(s),

ξ

1 + µ|s|

)
ξ

1 + µ|s| ,

a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN .

(3.12)

Step 2:A priori estimate
Since that the right hand side of (3.8) belongs to L1(Ω), we would like to use wn as
a test function in (3.8) and Kδ(x, s, ξ) ≤ 0 (see (3.11)), we have∫

Ω

â(x,wn, Dwn)Dwn dx

≤
∫
Ω

(1 + µ|wn|)p−1wn χ{wn 6=0} fn(x) dx

+

∫
Ω

(1 + µ|wn|)p−1wn(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) dx.

(3.13)

By the coercivity condition on â and |χ{wn 6=0}| ≤ 1, we get

α||Dwn||pp ≤
∫
Ω

(1 + µ|wn|)p−1|wn| |fn(x)| dx

+

∫
Ω

(1 + µ|wn|)p−1wn(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) dx.
(3.14)

Using Hölder’s and Sobolev’s inequalities (2.10) this implies that∫
Ω

(1 + µ|wn|)p−1wn fn(x) dx ≤ ||f ||N/p||wn||p? ||(1 + µ|wn|)||p−1
p? . (3.15)

Now we split Ω into Ω = {|wn| ≤ 1} ∪ {|wn| > 1} and writing the last term of the
right-hand side of (3.13) as∫

Ω

(1 + µ|wn|)p−1wn(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) dx =∫
{|wn|≤1}

(1 + µ|wn|)p−1wn(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) dx

+

∫
{|wn|>1}

(1 + µ|wn|)p−1wn(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) dx,

(3.16)

we need ||an||N/p ≤ ||a0||N/p and ||fn||N/p ≤ ||f ||N/p and since the function F (x) =
x

ln(1 + x)
is increasing on R?+, we get

∫
{|wn|≤1}

(1 + µ|wn|)p−1wn(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) dx

≤ Cµ(θ)|Ω|
θ
p? ||a0||N/p ||wn||1−θp? ||(1 + µ|wn|)||p−1

p? ,

(3.17)
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where Cµ(θ) is the positive constant defined in (2.13) and∫
{|wn|>1}

(1 + µ|wn|)p−1wn(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) dx

≤ Cµ(θ) ||a0||N/p ||wn||p? ||(1 + µ|wn|)||p−1
p? .

(3.18)

From (3.15), (3.16), (3.17) and (3.18), we have

α||Dwn||pp ≤ Cµ(θ)|Ω|
θ
p? ||a0||N/p ||wn||1−θp? ||(1 + µ|wn|)||p−1

p?

+
(
Cµ(θ) ||a0||N/p + ||f ||N/p

)
||wn||p? ||(1 + µ|wn|)||p−1

p? .
(3.19)

Using that

||(1 + µ|wn|)||p? ≤ |Ω|
1
p? + µ||wn||p? ≤ |Ω|

1
p? + µCN,p||Dwn||p, (3.20)

from (3.19) and (3.20), we have

α||Dwn||pp ≤
C1−θ
N,p Cµ(θ)|Ω|

θ
p? ||a0||N/p ||Dwn||1−θp (|Ω|

1
p? + µCN,p||Dwn||p)p−1

+CN,p
(
Cµ(θ) ||a0||N/p + ||f ||N/p

)
||Dwn||p (|Ω|

1
p? + µCN,p||Dwn||p)p−1.

(3.21)

To treat the a priori estimation, we have two cases to study
Case 1: 1 < p ≤ 2
Observe that 0 < α = p− 1 ≤ 1 and for every a, b > 0, one has

(a+ b)α ≤ aα + bα. (3.22)

From (3.21), (3.22) and dividing by ||Dwn||1−θp (note that the result remains true in
the case when ||Dwn||p = 0), we have(

α− µp−1CpN,p(Cµ(θ)||a0||N
p

+ ||f ||N
p

)
)
||Dwn||p−1+θ

p ≤

µp−1Cp−θN,p Cµ(θ)|Ω|
θ
p? ||a0||N/p ||Dwn||p−1

p

+CN,p|Ω|
p−1
p?

(
Cµ(θ)||a0||N

p
+ ||f ||N

p

)
||Dwn||θp

+C1−θ
N,p Cµ(θ)|Ω|

p−1+θ
p? ||a0||N/p.

(3.23)

Case 2: p > 2

From (3.21) and dividing by ||Dwn||
1−θ
p−1
p , we have

(
α

1
p−1 − µC

p
p−1

N,p (Cµ(θ)||a0||N/P + ||f ||N/p)
1
p−1

)
||Dwn||

p−1+θ
p−1

p ≤

µC
p−θ
p−1

N,p C
1
p−1
µ (θ) |Ω|

θ
(p−1)p? ||a0||

1
p−1

N/p ||Dwn||p

+C
1
p−1

N,p |Ω|
1
p?
(
Cµ(θ) ||a0||N/p + ||f ||N/p

) 1
p−1 ||Dwn||

θ
p−1
p

+C
1−θ
p−1

N,p C
1
p−1
µ (θ) |Ω|

p−1+θ
p? ||a0||

1
p−1

N/p .

(3.24)

Given the definition of (4.1) below of the function Φδ (see also Figure 1), we have
proved if wn is any solution of (3.8), one has

Φδ(||Dwn||p) ≤ 0, if γ ≤ δ,
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this implies that

||Dwn||p ≤ Zδ, (does not depend to n), for γ ≤ δ, (3.25)

where the constant Zδ > 0 satisfies

Φδ(Zδ) = 0. (3.26)

Since un = µ−1(ln(1 + µ|wn|)) sign(wn), (3.25) implies that

un is bounded in H1
0 (Ω). (3.27)

Step 3:Proof of regularity result of (2.12)
Extracting a subsequence, still denoted by un, we have, for some u ∈ H1

0 (Ω) and
w ∈ H1

0 (Ω)
un ⇀ u weakly in H1

0 (Ω), a.e. in Ω,
wn ⇀ w weakly in H1

0 (Ω), a.e. in Ω,
(3.28)

where
w = ϕ(u) = µ−1(eµ|u| − 1) sign(u).

Observe that u and w do not belong to L∞(Ω) in general.
Let us consider another δ, say δ′, which also satisfies

γ ≤ δ′ such that Cµ′(θ) ||a0||N/p + ||f ||N/p ≤
α

µ′p−1CpN,p
, (3.29)

where µ′ =
δ′

p− 1
.

The above a priori estimate (3.25) again shows that w′n defined by

w′n = µ′−1(eµ
′|un| − 1) sign(un),

is bounded in W 1,p
0 (Ω), this proves that u is such that

(eµ
′|u| − 1) sign(u) ∈W 1,p

0 (Ω), ∀δ′ such that γ ≤ δ′ satisfies (3.29),

that is (2.12).

Step 4:An estimate for

∫
|wn|>k

|Dwn|p

Since Gk(wn) ∈W 1,p
0 (Ω)∩L∞(Ω), the use of Gk(wn) as test function in (3.8) is licit.

This gives

∫
Ω

â(x,wn, Dwn)DGk(wn) dx−
∫
Ω

Kδ(x,wn, Dwn) sign(wn)Gk(wn) dx

=

∫
Ω

(1 + µ|wn|)p−1Gk(wn)

(µ−1 ln(1 + µ|wn|) + 1
n

)θ
an(x) dx

+

∫
Ω

(1 + µ|wn|)p−1Gk(wn)χ{wn 6=0} fn(x) dx.

(3.30)

Using the coercivity (2.3) of the function â, sign(s)Gk(s) ≥ 0 and Kδ(x, s, ξ) ≤ 0, we
have

α lim
n

∫
Ω

|DGk(un)|pdx

≤
∫
Ω

(1 + µ|w|)p−1Gk(w)

(µ−1 ln(1 + µ|wn|)θ
a0 dx+

∫
Ω

(1 + µ|w|)p−1Gk(w)χ{w 6=0} f dx,

from which we deduce that

lim sup
n

∫
Ω

|DGk(un)|p dx → 0 as k → +∞ (3.31)
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Step 5: Strong convergence of DTk(wn) in (Lp(Ω))N

In this step, we will fix k > 0 and prove that

DTk(wn)→ DTk(w) strongly in (Lp(Ω))N , as n→ +∞. (3.32)

In order to prove this result we use a technique which goes to Bensoussan et al. [5],
let k be fixed, we define

zn = Tk(wn)− Tk(w), (3.33)

and we choose an increasing, C1 function ψ : R → R such that

ψ(0) = 0, ψ′(s)− (c0 + δ)|ψ(s)| ≥ 1/2, ∀s ∈ R, (3.34)

where c0 is the constant which appears in the left-hand side of assumption (2.5) on

H and we get for example ψ(s) = seλs
2

with λ = (c0 + δ)2/4.

Since zn ∈ W 1,p
0 (Ω) ∩ L∞(Ω), and since ψ(0) = 0, the function ψ(zn) belongs to

W 1,p
0 (Ω) ∩ L∞(Ω). The use of ψ(zn) as test function in (3.8) is licit. This gives

∫
Ω

â(x,wn, Dwn)Dznψ
′(zn)dx−

∫
Ω

Kδ(x,wn, Dwn) sign(wn)ψ(zn)dx

=

∫
Ω

(1 + µ|wn|)p−1 ψ(zn)(
1
n

+ µ−1 ln(1 + µ|wn|)
)θ an(x) dx

+

∫
Ω

(1 + µ|wn|)p−1ψ(zn)χ{wn 6=0} fn(x) dx.

(3.35)

Since

Dwn = DTk(wn) +DGk(wn) = Dzn +DTk(w) +DGk(wn). (3.36)

Splitting Ω into Ω = {|wn| ≤ k} ∪ {|wn| > k}, the first term of the left-hand side of
(3.35) reads as

∫
Ω

â(x,wn, Dwn)Dznψ
′(zn) dx

=

∫
{|wn|≤k}

(â(x, Tkwn, DTk(wn))− â(x, Tkwn, DTk(w)))Dznψ
′(zn) dx

+

∫
{|wn|≤k}

â(x, Tkwn, DTk(w)))Dznψ
′(zn) dx

+

∫
{|wn|>k}

â(x,wn, Dwn)Dznψ
′(zn) dx.

(3.37)

On the other hand the second term of the left-hand side of (3.35) reads as

∫
Ω

Kδ(x,wn, Dwn) sign(wn)ψ(zn) dx =∫
{|wn|>k}

Kδ(x,wn, Dwn) sign(wn)ψ(zn) dx

+

∫
{|wn|≤k}

Kδ(x,wn, Dwn) sign(wn)ψ(zn) dx,

(3.38)

the first term of the right-hand side of (3.38), we claim that∫
{|wn|>k}

Kδ(x,wn, Dwn) sign(wn)ψ(zn) dx ≤ 0, (3.39)

Math. Model. Anal., xx(x):1–19, 20xx.
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indeed in {|wn| > k}, the integrand is negative since on the first hand the function
Kδ(x,wn, Dwn) ≤ 0 in view of (3.11) and δ ≥ γ, and since on the other hand one has

sign(wn)ψ(zn) ≥ 0 in {|wn| > k}, (3.40)

indeed in {|wn| > k}, one has zn = Tk(wn) − Tk(w) = k sign(wn) − Tk(w), and
therefore sign(zn) = sign(wn); this implies

sign(wn)ψ(zn) = sign(zn)ψ(zn) = |ψ(zn)| in {|wn| > k}, (3.41)

which proves (3.39).

The second term of the right-hand side of (3.38), in view of (Remark ??), (3.9) and
δ ≥ γ, we obtain

|Kδ(x,wn, Dwn) sign(wn)ψ(zn)| ≤ (c0 + δ) |ψ(zn)| â(x,wn, Dwn)Dwn. (3.42)

Since in view of (3.36) one has

Dwn = Dzn +DTk(w) in {|wn| ≤ k},

and implies that

∫
{|wk|≤k}

Kδ(x,wn, Dwn) sign(wn)ψ(zn) dx

≤
∫
{|wn|≤k}

(c0 + δ)|ψ(zn)| (â(x, Tkwn, DTk(wn))− â(x, Tkwn, DTk(w)))Dzn dx

+

∫
{|wn|≤k}

(c0 + δ)|ψ(zn)| â(x, Tkwn, DTk(wn))DTk(w) dx

+

∫
{|wn|≤k}

(c0 + δ)|ψ(zn)| â(x, Tkwn, DTk(w))Dzn dx.

(3.43)
From (3.34), (3.35), (3.37), (3.38) and (3.43), we deduce that

1

2

∫
{|wn|≤k}

(â(x, Tkwn, DTk(wn))− â(x, Tkwn, DTk(w)))Dzn dx

≤ −
∫
|wn|≤k

â(x, Tkwn, DTk(w)))Dznψ
′(zn) dx.

−
∫
|wn|≥k

â(x,wn, Dw)Dznψ
′(zn) dx

+

∫
{|wn|≤k}

(c0 + δ)|ψ(zn)| â(x, Tkwn, DTk(wn))DTk(w) dx

+

∫
{|wn|≤k}

(c0 + δ)|ψ(zn)| â(x, Tkwn, DTk(w))Dzn dx

+

∫
{|wn|>k}

Kδ(x,wn, Dwn) sign(wn)ψ(zn) dx

+

∫
Ω

(1 + µ|wn|)p−1 an(x)(
1
n

+ µ−1 ln(1 + µ|wn|)
)θ ψ(zn) dx

+

∫
Ω

(1 + µ|wn|)p−1χ{wn 6=0} fn(x)ψ(zn) dx.

(3.44)

We claim that each term of the right-hand side of (3.44) tends to zero as n tends to
infinity.
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Since ψ′(zn)− (c0 + δ) |ψ(zn)| ≥ 1/2 by (3.34), and since the function â is monotone
and coercive (see (2.3)), this will imply that

zn →
n

0 in H1
0 (Ω) strongly,

or in the other terms (see the definition (3.33) of zn) that

Tk(wn) →
n

Tk(w) in W 1,p
0 (Ω) strongly,

In order to prove the claim let us recall that in view of (3.28) and of the definition
(3.33) of zn one has

zn ⇀
n

0 in W 1,p
0 (Ω) weakly, L∞(Ω) weakly star and a.e. in Ω.

Since ψ(0) = 0, this implies that ψ(zn) tends to zero almost everywhere in Ω and
in L∞(Ω) weakly star as n tends to infinity, which in turn implies that

Dzn ψ
′(zn) = Dψ(zn) ⇀ 0 in (Lp(Ω))N weakly as n→ +∞.

This implies that the first term of the right-hand side of (3.44) tends to zero as k
tends to infinity.
Indeed zn (and thus ψ′(zn) is bounded in L∞(Ω) and

Dzn = DTk(wn)−DTk(w) tends to zero weakly in (Lp(Ω))N ,

and using Vitali’s theorem, we have χ{|wn|≤k}â(x, Tkwn, DTk(w))ψ′(zn) tends strongly

to χ{|w|≤k}â(x, Tkw,DTk(w))ψ′(0) in (Lp
′
(Ω))N .

For the second term of the right-hand side of (3.44), we observe that

χ{|wn|>k}Dzn = −χ{|wn|>k}DTk(w)→ 0 strongly in (Lp(Ω))N ,

as ψ′(zn) is bounded in L∞(Ω) and from (2.3) the fact â(x,wn, Dw)ψ′(zn) is bounded

in (Lp
′
(Ω))N .

This implies that the second term of the right-hand side of (3.44) tends to zero.
For the third term of the right-hand side of (3.44) tends to zero, sinceDTk(w)ψ(zn)

converges strongly to DTk(w)ψ(0) = 0 in (Lp(Ω))N , while â(x, Tk(wn), DTk(wn)) is

bounded in (Lp
′
(Ω))N .

For the fourth term of the right-hand side of (3.44) tends to zero, since Dzn =
DTk(wn)−DTk(w) converges to zero weakly in (Lp(Ω))N , while by Vitali’s theorem
and ψ(0) = 0, χ{|wn|≤k}â(x, Tk(wn), DTk(w))|ψ(zn)| converges strongly to zero in

(Lp
′
(Ω))N .
Together with condition (3.39), this implies that the fifth term of the right-hand

side of (3.44) is negative.
For the sixth term of the right-hand side of (3.44), we consider for almost every x

in the set {w = 0} the assertions wn and ψ(zn) = ψ(Tk(wn)) converge to zero almost
everywhere in Ω and observe that |Tk(wn)| ≤ |wn|, thus there exists n0 ∈ N, such
that for all n ≥ n0 implies that |wn| ≤ 1, and

(1 + µ|wn|)p−1 ψ(zn)(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) ≤ (1 + µ)p−1Cµ(θ)eλ a0(x).

By Lebesque’s theorem, this implies that

(1 + µ|wn|)p−1 ψ(zn)(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) converges to zero in L1({w = 0}). (3.45)
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On the other hand, we consider for almost every x in the set {w 6= 0} ∩ {|w| ≤ 1},
since zn converges almost everywhere to zero, then there exists n1 ∈ N, such that for
all n ≥ n1 implies that

|zn| = |Tk(wn)− Tk(w)| ≤ |w|
2

and |wn| ≥
|w|
2

and
(1 + µ|wn|)p−1 ψ(zn)(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) ≤ (1 + µ)p−1Cµ(θ)eλ a0(x).

By Lebesque’s theorem, this implies that

(1 + µ|wn|)p−1 ψ(zn)(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) →
n

0 in L1({w 6= 0} ∩ {|w| ≤ 1}). (3.46)

Finally, we consider for almost every x in the set {|w| > 1}, since zn converges almost
everywhere to zero and ψ(0) = 0 and by Vitali’s theorem, then

(1 + µ|wn|)p−1 ψ(zn)(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) →
n

0 in L1({|wn| > 1}). (3.47)

Collecting the results on (3.45), (3.46) and (3.47) implies that for k fixed:

(1 + µ|wn|)p−1 ψ(zn)(
µ−1 ln(1 + µ|wn|) + 1

n

)θ an(x) →
n

0 in L1(Ω).

For the seventh term of the right-hand side of (3.44) tends to zero, indeed by
Vitali’s theorem, the strong convergence (3.2) in LN/p(Ω) of fn, the Lp

?

(Ω) bound
on wn and ψ(0) = 0 imply that

(1 + µ|wn|)p−1χ{wn 6=0} fn(x)ψ(zn) →
n

0 strongly in L1(Ω).

Passing to the limit in (3.44), we get∫
{|wn|≤k}

(â(x, Tkwn, DTk(wn))− â(x, Tkwn, DTk(w)))Dzn dx →
n

0. (3.48)

By the growth condition of (2.3) on a (thus on â), and by Vitali’s theorem, we have∫
{|wn|>k}

(â(x, Tkwn, DTk(wn))− â(x, Tkwn, DTk(w)))Dzn →
n

0 (3.49)

Combining (3.39) and (3.49), we have∫
Ω

(â(x, Tkwn, DTk(wn))− â(x, Tkwn, DTk(w)))Dzn dx →
n

0. (3.50)

Thanks to the assumption (2.3) and by a result of Browder, we deduce

zn = Tk(wn)− Tk(w) → 0 strongly in W 1,p
0 (Ω). (3.51)
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Step 6: Strong convergence of un in W 1,p
0 (Ω)

Taking into account
Dwn −Dw = (DTk(wn)−DTk(w)) + (DGk(wn)−DGk(w)),

from (3.31) and (3.51), we have
Dwn → Dw strongly in (Lp(Ω))N ,

since we have
un = µ−1 ln(1 + µ|wn|),

it follows that
un → u strongly in W 1,p

0 (Ω).

Step 7: Control of strong

∫
{|un|≤ν}

an(x)

(|un|+ 1
n )θ

ϕdx when ν is small

In this step, we claim that

lim
n

∫
Ω

an(x)

(|un|+ 1
n

)θ
ϕdx =

∫
Ω

a0(x)

|u|θ ϕdx, ∀ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

First we observe that∫
Ω

an(x)

(|un|+ 1
n

)θ
ϕdx =

∫
Ω

a(x, un, Dun)Dϕdx

−
∫
Ω

Hn(x, un, Dun)ϕdx−
∫
Ω

(χ{|un|6=0} fn)(x)ϕdx.
(3.52)

Taking into account the growth conditions (2.3) and Hölder’s inequality, we get∫
Ω

an(x)

(|un|+ 1
n

)θ
ϕdx ≤

β ||b||N/(p−1)|Ω|
N−p+1
N ||ϕ||∞ + β ||ϕ||p

(
|un||p−1

p + ||Dun||p−1
p

)
+ (c0 + δ)||ϕ||∞||Dun||pp + β ||ϕ||∞||fn||N/p|Ω|

N−p
p

(3.53)

From now on, we consider a nonnegative ϕ ∈W 1,p
0 (Ω)∩L∞(Ω), applying Fatou’s

Lemma to the left-hand side of (3.53), we have.∫
Ω

a0(x)

|u|θ ϕdx ≤ Cϕ, (3.54)

where Cϕ is a positive constant and does not depend to n. Hence 0 ≤ a0(x)

|u|θ ϕ ∈

L1(Ω), for any nonnegative ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

As consequence,
1

|s|θ is unbounded as s tends to 0, we deduce that

{u = 0} ⊂ {a0 = 0},

up to set of zero Lebesgue measure.

From now on, we consider a nonnegative function ϕ ∈W 1,p
0 (Ω)∩L∞(Ω), and choising

it was test function in the weak formulation, we have∫
Ω

a(x, un, Dun)Dϕdx =

∫
Ω

Hn(x, un, Dun)ϕdx

+

∫
Ω

an(x)

(|un|+ 1
n

)θ
, ϕdx+

∫
Ω

(χ{un 6=0} fn)(x)ϕdx,
(3.55)
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we want to pass to the limit in the second right-hand side of (3.55) as n tends to
infinity.
For ν > 0 fixed, we consider the second right-hand side of (3.55)∫

Ω

an(x)

(|un|+ 1
n

)θ
ϕdx =

∫
|un|≤ν

an(x)

(|un|+ 1
n

)θ
ϕdx+

∫
|un|>ν

an(x)

(|un|+ 1
n

)θ
ϕdx (3.56)

Applying Lemma 1.1 of [24], we have that for ν > 0 , Vν(un) belongs to W 1,p
0 (Ω),

where Vν : ]−∞,+∞[→ [0,+∞[ is defined by

Vν(s) =



0 s < −2ν

2 +
s

ν
−2ν ≤ s < −ν

1 −ν ≤ s ≤ ν
2− s

ν
ν < s < 2ν

0 s ≥ 2ν.

Since Vν(un) ∈ W 1,p
0 (Ω), the use of (Vν(un)ϕ) as test function in (3.4) is licit. This

gives ∫
|un|≤ν

an(x)

(|un|+ 1
n

)θ
ϕdx ≤

∫
Ω

a(x, un, Dun)D(Vν(un)ϕ)dx

−
∫
Ω

Hn(x, un, Dun)Vν(un) ϕdx−
∫
Ω

(χ{un 6=0} fn)(x)Vν(un) ϕdx
(3.57)

The first term of the right-hand side of (3.57) can be written∫
Ω

a(x, un, Dun)D(Vν(un)ϕ) dx =

∫
Ω

a(x, un, Dun)DϕVν(un) dx. (3.58)

Indeed, splitting Ω into Ω = {|un| ≤ ν} ∪ {|un| > ν} and using (2.4), we get∫
Ω

a(x, un, Dun)Dun V
′
ν(un)ϕdx = 0 (3.59)

Since Vν(un)Dϕ converges to Vν(u)Dϕ strongly in Lp(Ω)N , as n tends to infinity,
while the Carathéodory function a(x, un, Dun) converges to a(x, u,Du) strongly in
Lp(Ω)N , we obtain

lim
n

∫
Ω

a(x, un, Dun)DϕVν(un) dx =

∫
Ω

a(x, u,Du)DϕVν(u) dx. (3.60)

In the second term of the right-hand side of (3.57), we observe that ϕVν(un) is
bounded in L∞(Ω) and

Hn(un, Dun) ϕVν(un) ≤ ‖ϕ‖∞(c0 + γ)|Dun|2,

which implies that the functions Hn(un, Dun) ϕVν(un) are equiintegrable since Dun
strongly converges to Du in Lp(Ω)N , we have

lim
n

∫
Ω

Hn(un, Dun) ϕVν(un) dx =

∫
Ω

H(u,Du)ϕVν(u) dx. (3.61)

In the third term of the right-hand side of (3.57), the functions χ{un 6=0} fnϕVν(un)

are equiintegrable, since fn strongly converges in LN/p(Ω) and Vν(un) converges to
Vν(u) strongly in Lp

?

(Ω). Thus Vitali’s theorem implies that

lim
n

∫
Ω

χ{un 6=0} fn ϕVν(un) dx =

∫
Ω

χ{u6=0} f ϕVν(u) dx. (3.62)
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Together with (3.57), the three limits (3.60), (3.61) and (3.62) imply that
lim
n

∫
|un|≤ν

an(x)(
|un|+ 1

n

)θ ϕdx ≤ ∫
Ω

a(x, u,Du)Dϕ Vν(u) dx

+

∫
Ω

H(u,Du) ϕVν(u) dx+

∫
Ω

χ{u 6=0} fϕVν(u) dx

(3.63)

Since Vν(u) converges to χ{u=0} a.e. in Ω, as ν → 0 and since u ∈W 1,p
0 (Ω), then(

a(x, u,Du)DuDϕ+H(u,Du)ϕ+ χ{u6=0} f ϕ
)
Vν(u) →

ν→0
0 a.e. in Ω. (3.64)

Applying the Lebesgue’s dominated convergence Theorem on the right-hand side of
(3.63), we obtain that

lim
ν→0

lim
n

∫
{|un|≤ν}

an(x)(
|un|+ 1

n

)θ ϕdx = 0. (3.65)

Finally, let us pass to limit in n for ν > 0 fixed in the second term of the right-hand
side of (3.56)∫

{|un|>ν}

an(x)(
|un|+ 1

n

)θ ϕdx =

∫
Ω

an(x)(
|un|+ 1

n

)θ χ{|un|>ν} ϕdx.
Observing that we need to choise ν /∈ {ν : meas{|u(x)| = ν} > 0} which is at most
countable set, we have

an(x)(
|un|+ 1

n

)θ ϕ → a0(x)

|u|θ ϕ a.e. on Ω,

and
an(x)(
|un|+ 1

n

)θ ϕ ≤ a0(x)

|u|θ ϕ ∈ L1(Ω).

By Lebesgue’s theorem, we have

lim
n

∫
{|un|>ν}

an(x)(
|un|+ 1

n

)θ ϕdx =

∫
{|u|>ν}

a0(x)

|u|θ ϕdx, ∀ν /∈ C. (3.66)

Moreover it follows by (3.54) that ∀ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0

lim
ν→0

lim
n

∫
{|un|>ν}

an(x)(
|un|+ 1

n

)θ ϕdx =

∫
{|u|>0}

a0(x)

|u|θ ϕdx. (3.67)

Moreover, decomposing any ϕ = ϕ+ − ϕ− and observing that (3.66) is linear in
ϕ, we deduce that (3.66) holds for every ϕ ∈W 1,p

0 (Ω) ∩ L∞(Ω).
As un → u strongly in W 1,p

0 (Ω), it is then easy to pass to the limit in the approxi-
mate equation (3.4). This proves that u is a solution of (2.1).
The proof of Theorem 1 is then complete.

4 Appendix

4.1 An equivalence result

Theorem 2. [12] Assume that (2.3), (2.5), (2.7), (2.8), (2.9), (3.1), (3.2) and (3.3)
hold true, and let δ > 0 be fixed. Let the function Kδ be defined in (3.10).
If un is any solution of (2.1) then the function wn defined by (3.6) is solution of (3.8).

Conversely, if wn is any solution of (3.8), then the function un is solution of (3.4).

Math. Model. Anal., xx(x):1–19, 20xx.
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4.2 Definition of Zδ

The goal of this Subsection is to define the constant Zδ (with δ = µ(p − 1)) which
appear in Theorem 1. We will prove the following result.

Lemma 1. For δ ≥ 0, let Φδ : R+ → R (see Figure 1) be the function defined by

Φδ(X) =

{
Φ

(1)
δ (X) 1 < p ≤ 2

Φ
(21)
δ (X) p > 2,

(4.1)

where 

Φ
(1)
δ (X) =

(
α− µp−1CpN,p(Cµ(θ)||a0||N

p
+ ||f ||N

p
)
)
Xp−1+θ

−µp−1Cp−θN,p Cµ(θ)|Ω|
θ
p? ||a0||N/pXp−1

−CN,p|Ω|
p−1
p?

(
Cµ(θ)||a0||N

p
+ ||f ||N

p

)
Xθ

−C1−θ
N,p Cµ(θ)|Ω|

p−1+θ
p? ||a0||N/p,

(4.2)

and

Φ
(2)
δ (X) =

(
α

1
p−1 − µC

p
p−1

N,p (Cµ(θ)||a0||N/P + ||f ||N/p)
1
p−1

)
X

p−1+θ
p−1

−µC
p−θ
p−1

N,p C
1
p−1
µ (θ) |Ω|

θ
(p−1)p? ||a0||

1
p−1

N/p X

−C
1
p−1

N,p |Ω|
1
p?
(
Cµ(θ) ||a0||N/p + ||f ||N/p

) 1
p−1 X

θ
p−1

−C
1−θ
p−1

N,p C
1
p−1
µ (θ) |Ω|

p−1+θ
p? ||a0||

1
p−1

N/p ,

(4.3)

where θ satisfies (2.8), namely 0 < θ < 1, Cµ(θ) is the constant satisfies (2.13) and
where CN,p is the best constant in the Sobolev’s inequality (2.10).

Then, for δ ≥ γ, there exists a unique number Zδ such that

Φδ(Zδ) = 0, and ∀X ≤ Zδ : Φδ(X) ≤ 0. (4.4)

Figure 1. The graphs ot the functions Φδ(X) and Φγ(X).
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Proof. Let us now study the family of functions Φδ(X) : R+ → R defined by (4.1),
from the smallness condition relative to δ (see 2.12), implies that

α− µp−1CpN,p(Cµ(θ)||a0||N
p

+ ||f ||N
p

) ≥ 0 for 1 < p ≤ 2,

and

α
1
p−1 − µC

p
p−1

N,p (Cµ(θ)||a0||N/P + ||f ||N/p)
1
p−1 ≥ 0 for p > 2.

Each function Φδ look like the restriction to R+ of a “convex parabola”, when
0 < γ ≤ δ. This “convex parabola” has a unique minimizer in Xδ of the function Φδ,
and the minimum of Φδ, namely Φδ(Xδ) is negative and using the intermediate value
theorem, then there exists Zδ such that Φδ(Zδ) = 0.
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ordre à coefficients discontinus, Ann. Inst. Fourier 15 (1965), 189-258.

[25] Z. Zhang Two classes of nonlinear singular Dirichlet problems with natural
growth: existence and asymptotic behavior, Adv. Nonlinear Stud. 20 (2020), no.
1, 77–93.


	Introduction
	Existence result and comments
	Proof of Theorem 1
	Appendix
	An equivalence result
	Definition of Z

	References

