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Quasilinear problems involving
a perturbation with quadratic growth in the gradient

and a non coercive zeroth order term

Boussad Hamour 1 & François Murat 2

Abstract

In this paper we consider the problem
u ∈ H1

0 (Ω),

−div (A(x)Du) = H(x, u,Du) + f(x) + a0(x)u in D′(Ω),

where Ω is an open bounded set of RN , N ≥ 3, A(x) is a coercive matrix with coefficients in
L∞(Ω), H(x, s, ξ) is a Carathéodory function which satisfies

−c0A(x) ξξ ≤ H(x, s, ξ) sign(s) ≤ γ A(x) ξξ, a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN ,

f ∈ LN/2(Ω), and a0 ∈ Lq(Ω), q > N/2, a0 ≥ 0. For f and a0 sufficiently small, we
prove the existence of at least one solution u of this problem which is moreover such that
eδ0|u| − 1 ∈ H1

0 (Ω) for some δ0 ≥ γ.

Résumé

Dans cet article nous étudions le problème
u ∈ H1

0 (Ω),

−div (A(x)Du) = H(x, u,Du) + f(x) + a0(x)u dans D′(Ω),

où Ω est un ouvert borné de RN , N ≥ 3, A(x) est une matrice coercive à coefficients L∞(Ω),
H(x, s, ξ) est une fonction de Carathédory qui satisfait

−c0A(x) ξξ ≤ H(x, s, ξ) sign(s) ≤ γ A(x) ξξ, p.p. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN ,

f ∈ LN/2(Ω), et a0 ∈ Lq(Ω), q > N/2, a0 ≥ 0. Pour f et a0 suffisamment petits, nous
démontrons qu’il existe au moins une solution u de ce problème qui est de plus telle que
eδ0|u| − 1 ∈ H1

0 (Ω) pour un certain δ0 ≥ γ.
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1 Introduction
In this paper, we consider the quasilinear problem u ∈ H1

0 (Ω),

−div (A(x)Du) = H(x, u,Du) + f(x) + a0(x)u in D′(Ω),
(1.1)

where Ω is a bounded open set of RN, N ≥ 3, where A is a coercive matrix with bounded measurable
coefficients, where H(x, s, ξ) is a Carathéodory function wich has quadratic growth in ξ, and more
precisely which satisfies for some γ > 0 and c0 ≥ 0

−c0A(x) ξξ ≤ H(x, s, ξ) sign(s) ≤ γ A(x) ξξ, a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN , (1.2)

where f ∈ LN/2(Ω), and where a0 ∈ Lq(Ω), q > N
2 , with

a0 ≥ 0, with a0 6= 0. (1.3)

When f and a0 are sufficiently small (and more precisely when f and a0 satisfy the two smallness
conditions (2.14) and (2.15)), we prove in the present paper that problem (1.1) has a least one
solution, which is moreover such that

eδ0|u| − 1 ∈ H1
0 (Ω), (1.4)

with ∥∥∥∥eδ0|u| − 1

δ0

∥∥∥∥
H1

0 (Ω)

≤ Zδ0 , (1.5)

where δ0 ≥ γ and Zδ0 are two constants which depend only on the data of the problem (see (6.15),
(6.16), (6.17)) for the definitions of δ0 and Zδ0).

The main originality of our result is the fact that we assume that a0 satisfies (1.3), namely that
a0 is a non negative function.

Let us begin with some review of the literature.
Problem (1.1) has been studied in many papers in the case where a0 ≤ 0. Among these papers

is a series of papers [8], [9], [10] and [11] by L. Boccardo, F. Murat and J.-P. Puel (see also the
paper [23] by J.-M. Rokotoson), which are concerned with the case where

a0(x) ≤ −α0 < 0. (1.6)

In these papers (which also consider nonlinear monotone operators and not only the linear operator
−divA((x)Du)), the authors prove that when a0 satisfies (1.6) and when f belongs to Lq(Ω), q > N

2 ,
then there exists at least one solution of (1.1) which moreover belongs to L∞(Ω) and which satisfies
some a priori estimates. The uniqueness of such a solution has been proved, under some further
structure assumptions, by G. Barles and F. Murat in [4], by G. Barles, A.-P. Blanc, C. Georgelin
and M. Kobylanski in [3] and by G. Barles and A. Porretta in [5].

The case where
a0 = 0 (1.7)
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Quasilinear problems with a noncoercive zeroth order term

was considered, among others, by A. Alvino, P.-L. Lions and G. Trombetti in [1], by C. Maderna,
C. Pagani and S. Salsa in [21], by V. Ferone and M.-R. Posteraro in [16], and by N. Grenon-Isselkou
and J. Mossino in [17]. In these papers (which also consider nonlinear monotone operators), the
authors prove that when a0 satisfies (1.7) and when f belongs to Lq(Ω), q > N

2 , with ‖f‖Lq(Ω)

sufficiently small, then there exists at least one solution of (1.1) which moreover belongs to L∞(Ω)
and which satisfies some a priori estimates.

The case where a0 satisfies (1.7) but where f only belongs to LN/2(Ω) for N ≥ 3 (and no
more to Lq(Ω) with q > N

2 ) was considered by V. Ferone and F. Murat in [13] (and in [14] in
the nonlinear monotone case). These authors proved that when ‖f‖LN/2(Ω) is sufficiently small,
there exists at least one solution of (1.1) which is moreover such that eδ|u| − 1 ∈ H1

0 (Ω) for some
δ > γ and which satisfies some a priori estimates. Similar results were obtained in the case where
f ∈ LN/2(Ω) by A. Dall’Aglio, D. Giachetti and J.-P. Puel in [12] when a0 satisfies (1.6) and in
the recent paper [15] by V. Ferone and F. Murat when a0 satisfies a0 ≤ 0.

To finish with the case where a0 satisfies a0 ≤ 0, let us quote the paper [22] by A. Porretta,
where the author studies the asymptotic behaviour of the solution u of (1.1) when a0 is a strictly
positive constant which tends to zero, and proves that an ergodic constant appears at the limit
a0 = 0. Let us also mention the case where the nonlinearity H(x, s, ξ) has the “good sign property”,
namely satisfies

−H(x, s, ξ) sign (s) ≥ 0. (1.8)

In this case, when a0 ≤ 0 and when f just belongs to H−1(Ω), L. Boccardo, F. Murat and
J.-P. Puel in [7] and A. Bensoussan, L. Boccardo and F. Murat in [6] proved the existence of least
one solution of (1.1) which belongs to H1

0 (Ω).

In contrast with the cases (1.6) and (1.7), the present paper is concerned with the case (1.3)
where a0 ≥ 0.

In this setting we are only aware of three papers. In [20], L. Jeanjean and B. Sirakov proved
the existence of at least two solutions of (1.1) (which moreover belong to L∞(Ω)) when A(x) = Id,
H(x, s, ξ) = µ|ξ|2, µ > 0, f ∈ Lq(Ω), q > N

2 , f ≥ 0, and a0 ∈ Lq(Ω), a0 ≥ 0, with ‖f‖Lq(Ω) and
‖a0‖Lq(Ω) sufficiently small. In the recent preprint [2], D. Arcoya, C. De Coster, L. Jeanjean and
K. Tanaka proved the existence of a continuum (u, λ) of solutions (with u which moreover belong
to L∞(Ω)) when A(x) = Id, H(x, s, ξ) = µ(x) |ξ|2, with µ ∈ L∞(Ω) , µ(x) ≥ µ > 0, f ∈ Lq(Ω),
q > N

2 , f ≥ 0, f 6= 0 and a0(x) = λa?0(x) with a?0 ∈ Lq(Ω), a?0 ≥ 0 and a?0 6= 0; moreover, under
some further conditions on f , these authors proved that this continuum is defined for λ ∈]−∞ , λ0]
with λ0 > 0 and that there are at least two non negative solutions of (1.1) when λ > 0 is sufficiently
small. Finally, in the recent preprint [19], L. Jeanjean and H. Ramos Quoirin proved the existence
of two positive solutions (which moreover belong to L∞(Ω)) when A(x) = Id, H(x, s, ξ) = µ|ξ|2,
µ > 0, f ∈ Lq(Ω), q > N

2 , f ≥ 0, f 6= 0, and a0 ∈ C(Ω) which can change sign with a+
0 6= 0 and

which satisfies the so called “thick zero set condition”, and when the first eigenvalue of the operator
−∆− (a0 + µf) in H1

0 (Ω) is positive.
With respect to the results obtained in the three latest papers, we prove in the present paper,

as said above, the existence of (only) one solution of (1.1) in the case (1.3) (a0 ≥ 0) when a0 and
f satisfy the two smallness conditions (2.14) and (2.15), but our result is obtained in the general
case of a nonlinearity H(x, s, ξ) which satisfies only (1.2), for f ∈ LN/2(Ω) and for a0 ∈ Lq(Ω),
q > N

2 . Moreover, the method which allows us to prove this result continues mutatis mutandis to
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work in the nonlinear monotone case where the linear operator −div ((A(x)Du)) is replaced by a
Leray-Lions operator −div (a(x, u,Du)) working in W 1,p

0 (Ω), for some 1 < p < N , and where the
quasilinear term H(x, u,Du) has p-growth in |Du|.

Let us now describe the contents of the present paper.
The precise statement of our result is given in Section 2 (Theorem 2.1), as well as the precise

assumptions under which we are able to prove it. These conditions include the two smallness
conditions (2.14) and (2.15).

Our method for proving Theorem 2.1 is based on an equivalence result (see Theorem 3.5) that
we state in Section 3 once we have introduced the functions Kδ(x, s, ζ) and gδ(s) (see (3.6) and
(3.7)) and made some technical remarks on them. This result is very close to the equivalence result
given in the paper [14] by V. Ferone and F. Murat.

This equivalence result implies that in order to prove the existence of a solution u of (1.1) which
satisfies (1.4) and (1.5), it is equivalent to prove (see Theorem 3.8) the existence of a function w
with (see (3.31))

w =
1

δ0
(eδ0|u| − 1)sign(u) (1.9)

which satisfies (see (3.33))
w ∈ H1

0 (Ω),

−div(A(x)Dw) +Kδ0(x,w,Dw) sign(w) =

= (1 + δ0|w|) f(x) + a0(x) w + a0(x)gδ0(w) sign(w) in D′(Ω),

(1.10)

and the estimate (see (3.34))
‖w‖H1

0 (Ω) ≤ Zδ0 , (1.11)

which is nothing but (1.5).
Our goal thus becomes to prove Theorem 3.8, namely to prove the existence of a solution w

which satisfies (1.10) and (1.11).
Problem (1.10) is very similar to problem (1.1), since it involves a term −Kδ0(x,w,Dw) sign(w)

which has quadratic growth in Dw, as well as a zeroth orther term δ0 |w|f(x) +
+a0(x)w + a0(x)gδ0(w)sign(w). But this problem is also very different from (1.1), since the term
−Kδ0(x,w,Dw) sign(w) with quadratic growth has now the “good sign property” (see (1.8)), since
Kδ0(x, s, ξ) satisfies

Kδ0(x, s, ξ) ≥ 0,

while the zeroth order term is now no more a linear one but a semilinear term with |s|1+θ growth
(see (6.19)) due to presence of the term a0(x)gδ0(w) sign(w).

We will prove Theorem 3.8 essentially by applying Schauder’s fixed point theorem. But there
are some difficulties to do it directly, since the term with quadratic growth Kδ0(x,w,Dw) sign(w)
only belongs to L1(Ω) in general. We therefore begin by defining an approximate problem (see
(4.1)) where Kδ(x,w,Dw) is remplaced by its truncation at height k, namely Tk(Kδ(x,w,Dw)),
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and we prove (see Theorem 4.1) that if f and a0 satisfy the two smallness conditions (2.14) and
(2.15), this approximate problem has at least one solution wk which satisfies the a priori estimate

‖wk‖H1
0 (Ω) ≤ Zδ0 . (1.12)

This result, which is proved in Section 4, is obtained by applying Schauder’s fixed point theorem
in a classical way.

We then pass to the limit as k tends to infinity and we prove in Section 5 that (for a subsequence
of k) wk tend to some w? strongly in H1

0 (Ω) (see Lemma 5.2) and that this w? is a solution of
(1.10) which satisfies (1.11) (see End of the proof of Theorem 3.8).

This completes the proof of Theorem 3.8, and therefore proves Theorem 2.1, as announced.

This proof follows along the lines of the proof used by V. Ferone and F. Murat in [13] in
the case where a0 = 0. As mentionned above, this method can be applied mutatis mutandis to
the nonlinear case where the linear operator −div(A(x)Du) is replaced by a Leray-Lions opera-
tor −div(a(x, u,Du)) working in W 1

0 (Ω) for some 1 < p < N , and where the quasilinear term
H(x, u,Du) has p-growth in |Du|, as it was done in [14] by V. Ferone and F. Murat in this non
linear case when a0 = 0. This will be the goal of our next paper [18].

2 Main result

In this paper we consider the following quasilinear problem u ∈ H1
0 (Ω),

−div (A(x)Du) = H(x, u,Du) + a0(x)u+ f(x) in D′(Ω),
(2.1)

where the set Ω satisfies (note that no regularity is assumed on the boundary of Ω)

Ω is a bounded open subset of RN , N ≥ 3, (2.2)

where the matrix A is a coercive matrix with bounded measurable coefficients, i.e. A ∈ (L∞(Ω))N×N ,

∃α > 0, A(x)ξξ ≥ α|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ RN ,
(2.3)

where the function H(x, s, ξ) is a Carathéodory function with quadratic growth in ξ, and more
precisely satisfies

H : Ω× R× RN → R is a Carathéodory function

−c0A(x) ξξ ≤ H(x, s, ξ) sign(s) ≤ γ A(x) ξξ, a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN ,

where γ > 0 and c0 ≥ 0,

(2.4)
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where sign : R→ R denotes the function defined by

sign(s) =

 +1 if s > 0,
0 if s = 0,
−1 if s < 0,

(2.5)

where the coefficient a0 satisfies

a0 ∈ Lq(Ω) for some q >
N

2
, a0 ≥ 0, a0 6= 0, (2.6)

as well as the technical assumption (which can be made without loss generality with respect to

(2.6), since
N

2
<

2N

6−N
when 3 ≤ N ≤ 6)

N

2
< q <

2N

6−N
when 3 ≤ N ≤ 6, (2.7)

and finally where
f ∈ LN/2(Ω), f 6= 0, (2.8)

(note that LN/2(Ω) ⊂ H−1(Ω) since N ≥ 3 and since Ω is bounded; note also that if f = 0, then
u = 0 is a solution of (2.1) so that the results of the present paper become trivial).

Let 2∗ be the Sobolev’s exponent defined by

1

2∗
=

1

2
− 1

N
,

and let CN be the Sobolev’s constant defined as the best constant such that

‖ϕ‖2∗ ≤ CN‖Dϕ‖2, ∀ϕ ∈ H1
0 (Ω). (2.9)

We claim that one has
0 <

2∗

q′
− 2 < 1, (2.10)

where q′ the Hölder’s conjugate of the exponent q which appears in (2.6), (2.7), i.e.

1

q′
+

1

q
= 1;

indeed easy computations show that

0 <
2∗

q′
− 2 ⇐⇒ q >

N

2
,

2∗

q′
− 2 < 1 ⇐⇒ 1

q
>

6−N
2N

;

the latest inequality is satisfied when N ≥ 6 and is equivalent to q <
2N

6−N
when N ≤ 6.

We now define the number θ by

θ =
2∗

q′
− 2. (2.11)
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In view of (2.10) we have
0 < θ < 1. (2.12)

Since Ω is bounded, we equip the space H1
0 (Ω) with the norm

‖u‖H1
0 (Ω) = ‖Du‖L2(Ω). (2.13)

We finally assume that f and a0 are sufficiently small (see Remark 2.2), and more precisely
that

α− C2
N‖a0‖N/2 − γC2

N‖f‖N/2 > 0, (2.14)

‖f‖H−1(Ω) ≤
θ

1 + θ

(α− C2
N‖a0‖N/2 − γC2

N‖f‖N/2)(1+θ)/θ

((1 + θ)GC2+θ
N ‖a0‖q)1/θ

, (2.15)

where the constant G is defined by (6.13). Observe that in place of (2.14) we could as well have
assumed that

α− C2
N‖a0‖N/2 − γC2

N‖f‖N/2 ≥ 0,

but that when equality takes places in the latest inequality, inequality (2.15) implies that f = 0,
and then u = 0 is a solution of (2.1), so that the result of Theorem 2.1 be comes trivial.

Our main result is the following Theorem.

Theorem 2.1 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that (2.14) and (2.15) hold true.

Then there exist a constant δ0 with δ0 ≥ γ, and a constant Zδ0 , which are defined in
Lemma 6.2 (see (6.15), (6.16)) and (6.17)), such that there exists at least one solution u of (2.1)
which further satisfies

(eδ0|u| − 1) ∈ H1
0 (Ω), (2.16)

with

‖eδ0|u|Du‖L2(Ω) =

∥∥∥∥eδ0|u| − 1

δ0

∥∥∥∥
H1

0 (Ω)

≤ Zδ0 . (2.17)

Our proof of Theorem 2.1 is based on an equivalence result (Theorem 3.5) which will be stated
and proved in Section 3. This equivalence Theorem will allows us replace proving Theorem 2.1 by
proving Theorem 3.8 which is equivalent to Theorem 2.1.

Remark 2.2 In this Remark, we consider that the open set Ω, the matrix A and the function
H are fixed (and therefore in particular that the constants α > 0 and γ > 0 are fixed), and we
consider the functions a0 and f as parameters.

Our first assumption on these parameters (see assumptions (2.6) and (2.7)) is that a0 be-
longs to Lq(Ω) with q > N

2 and q < 2N
N−6 when N ≥ 6; this is essential to ensure (see (2.10)) that
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the exponent θ defined by (2.11) satisfies 0 < θ < 1 (see (2.12)). We also assume a0 ≥ 0 and a0 6= 0.

Our second set of assumptions on these parameters are the two smallness assumptions (2.14)
and (2.15).

Indeed, if, for example, a0 is sufficiently small and satisfies

α− C2
N‖a0‖N/2 > 0,

then (2.14) and (2.15) are satisfied if ‖f‖N/2 (and therefore ‖f‖H−1(Ω), since LN/2(Ω) ⊂ H−1(Ω))
is sufficiently small.

Similarly, if, for example, f is sufficiently small and satisfies

α− γC2
N‖f‖N/2 > 0,

then (2.14) and (2.15) are satisfied if ‖a0‖q (and therefore ‖a0‖N/2, since Lq(Ω) ⊂ L(N/2(Ω)) is
sufficiently small, since ‖a0‖q appears in the denominator of the right-hand side of (2.15). �

Remark 2.3 The definitions of the two constants δ0 and Zδ0 which appear in Theorem 2.1 are
given in (the technical) Appendix 6 (see Lemma 6.2): these definitions are based on the properties
of the function Φδ (see (6.12)) which looks like a parabola (see Figure 2): the constant δ0 is the
value of the parameter δ such that the function Φδ0 has a double zero, and Zδ0 is the value of
this double zero. The two smallness conditions (2.14) and (2.15) ensure that δ0 satisfies δ0 ≤ γ, a
condition which is essential in our proof.

In Remark 3.9 we try to explain where the two smallness conditions (2.14) and (2.15) come
from.

In Remark 3.10, we explain why we have chosen to state Theorem 3.8 with δ = δ0 rather than
with a fixed δ with γ ≤ δ ≤ δ0. �

3 An equivalence result
The main results of this Section are Theorems 3.5 and 3.8. Remarks 3.1, 3.2 and 3.4 and Lemma
3.3 can be considered as technical results.

Indeed, as said before, the proof of Theorem 2.1 is based on the equivalence result of Theorem
3.5 that we state and prove in this Section. This equivalence Theorem in particular implies that
Theorem 3.8, which we state at the end of this Section, is equivalent to Theorem 2.1. Theorem
3.8 will be proved in Sections 4 and 5. This Section also includes Remark 3.9 in which we try to
explain where the two smallness conditions (2.14) and (2.15) come from, and Remark 3.10 where
we explain why we have chosen to state Theorem 3.8 for δ = δ0.

In this Section we always assume that

δ > 0. (3.1)

Let us first proceed with a formal computation. If u is a solution of −div (A(x)Du) = H(x, u,Du) + f(x) + a0(x)u in Ω,

u = 0 on ∂Ω,
(3.2)
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and if we formally define the function wδ by

wδ =
1

δ

(
eδ|u| − 1

)
sign(u), (3.3)

where the function sign is defined by (2.5), we have, at least formally,
eδ|u| = 1 + δ|wδ|, |u| = 1

δ
log(1 + δ|wδ|), sign(u) = sign(wδ),

Dwδ = eδ|u|Du, ADwδ = eδ|u|ADu,

−div (A(x)Dwδ) = −δeδ|u|A(x)DuDu sign(u)− eδ|u|
(
div (A(x)Du)

)
,

(3.4)

and therefore wδ is, at least formally, a solution of

−div (A(x)Dwδ) =

= −δeδ|u|A(x)DuDu sign(u) + eδ|u|H(x, u,Du) + eδ|u| f(x) + eδ|u|a0(x)u =

= −Kδ(x,wδ, Dwδ) sign(wδ) +

+(1 + δ|wδ|) f(x) + a0(x)wδ + a0(x)gδ (wδ) sign(wδ) in Ω,

wδ = 0 on ∂Ω,

(3.5)

where the functions Kδ : Ω× R× RN → R and gδ : R→ R are defined by the formulas

Kδ(x, s, ζ) =

=
δ

1 + δ|s|
A(x)ζζ − (1 + δ|s|)H(x,

1

δ
log(1 + δ|s|) sign(s),

ζ

1 + δ|s|
) sign(s),

a.e. x ∈ Ω, ∀s ∈ R, ∀ζ ∈ RN ,

(3.6)

and
gδ(s) = −|s|+ 1

δ
(1 + δ|s|) log(1 + δ|s|), ∀s ∈ R, (3.7)

which is nothing but

s+ gδ(s) sign(s) = (1 + δ|s|)1

δ
log(1 + δ|s|) sign(s), ∀s ∈ R. (3.8)

Conversely, if wδ is a solution of (3.5), and if u is formally defined by

u =
1

δ
log(1 + δ|wδ|) sign(wδ), (3.9)

the same formal computation easily shows that u is a solution of (3.2).

The first goal of this Section is to transform this formal equivalence into a mathematical result,
namely Theorem 3.5. We begin with three remarks on the functions Kδ and gδ, namely Remarks
3.1, 3.2 and 3.4.
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Remark 3.1 Observe that, because of inequality (2.4) on the function H, and because of the
coercivity (2.3) of the matrix A, one has



(c0 + δ)A(x)ζζ ≥

c0 + δ

(1 + δ|s|)
A(x)ζζ =

δ

(1 + δ|s|)
A(x)ζζ + (1 + δ|s|) c0

(1 + δ|s|)2
A(x)ζζ ≥

≥ Kδ(x, s, ζ) ≥

≥ δ

(1 + δ|s|)
A(x)ζζ − (1 + δ|s|) γ

(1 + δ|s|)2
A(x)ζζ =

(δ − γ)

(1 + δ|s|)
A(x)ζζ ≥

≥ −|δ − γ|A(x)ζζ,

a.e. x ∈ Ω, ∀s ∈ R, ∀ζ ∈ RN , ∀δ > 0,

(3.10)

and therefore in particular, when δ ≥ γ,

(c0 + δ)A(x)ζζ ≥ Kδ(x, s, ζ) ≥ 0 a.e. x ∈ Ω, ∀s ∈ R, ∀ζ ∈ RN if δ ≥ γ. (3.11)

�

Remark 3.2 In this technical Remark we prove that the functions Kδ(x,w,Dw) and
Kδ(x,w,Dw) sign(w) are correctly defined measurable functions when w ∈ H1(Ω), and we prove
their continuity with respect to the almost everywhere convergence of w and Dw (see Lemma 3.3).

Note that the function Kδ(x, s, ζ) defined by (3.6) and the function Kδ(x, s, ζ) sign(s) are not
Carathéodory functions, because their definitions involve the function sign(s), which it is not a
Carathéodory function since is not continuous at s = 0. This lack of continuity in s = 0 is
however the only obstruction for the functionsKδ(x, s, ζ) andKδ(x, s, ζ) sign(s) to be Carathéodory
functions, and


for every w ∈ H1(Ω),

the functions Kδ(x,w,Dw) and Kδ(x,w,Dw) sign(w) are well defined

and are measurable functions,

(3.12)

10
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as it immediately results from the two formulas

Kδ(x, s, ζ) =

=
δ

1 + δ|s|
A(x)ζζ − (1 + δ|s|)H(x,

1

δ
log(1 + δ|s|) sign(s),

ζ

1 + δ|s|
) sign(s) =

=
δ

1 + δ|s|
A(x)ζζ +

+ χ{s<0}(s) (1 + δ|s|)H(x,−1

δ
log(1 + δ|s|), ζ

1 + δ|s|
)− χ{s=0}(s) 0 +

− χ{s>0}(s) (1 + δ|s|)H(x,
1

δ
log(1 + δ|s|), ζ

1 + δ|s|
),

a.e. x ∈ Ω, ∀s ∈ R, ∀ζ ∈ RN ,

(3.13)



Kδ(x, s, ζ) sign(s) =

= sign(s)
δ

1 + δ|s|
A(x)ζζ − (1 + δ|s|)H(x,

1

δ
log(1 + δ|s|) sign(s),

ζ

1 + δ|s|
) =

= − χ{s<0}(s)
δ

1 + δ|s|
A(x)ζζ + χ{s=0}(s) 0 + χ{s>0}(s)

δ

1 + δ|s|
A(x)ζζ +

− χ{s<0}(s) (1 + δ|s|)H(x,−1

δ
log(1 + δ|s|), ζ

1 + δ|s|
)− χ{s=0}(s) 0 +

− χ{s>0}(s) (1 + δ|s|)H(x,
1

δ
log(1 + δ|s|), ζ

1 + δ|s|
),

a.e. x ∈ Ω, ∀s ∈ R, ∀ζ ∈ RN .

(3.14)

Moreover, in view of (3.10) one has

Kδ(x,w,Dw) ∈ L1(Ω), Kδ(x,w,Dw) sign(w) ∈ L1(Ω), ∀w ∈ H1(Ω), ∀δ > 0. (3.15)

One also has the following convergence result.

Lemma 3.3 Consider a sequence wn such that

wn ∈ H1(Ω), w ∈ H1(Ω), wn → w a.e. in Ω, Dwn → Dw a.e. in Ω. (3.16)

Then  Kδ(x,wn, Dwn)→ Kδ(x,w,Dw) a.e. in Ω,

Kδ(x,wn, Dwn) sign(wn)→ Kδ(x,w,Dw) sign(w) a.e. in Ω.
(3.17)

11
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Proof On the first hand, we have the following almost everywhere convergences

δ

1 + δ|wn|
A(x)DwnDwn →

δ

1 + δ|w|
A(x)DwDw a.e. in Ω,

(1 + δ|wn|)H(x,−1

δ
log(1 + δ|wn|),

Dwn
1 + δ|wn|

)→

→ (1 + δ|w|)H(x,−1

δ
log(1 + δ|w|), Dw

1 + δ|w|
) a.e. in Ω,

(1 + δ|wn|)H(x,
1

δ
log(1 + δ|wn|),

Dwn
1 + δ|wn|

)→

→ (1 + δ|w|)H(x,
1

δ
log(1 + δ|w|), Dw

1 + δ|w|
) a.e. in Ω.

(3.18)

On the other hand, for almost every x fixed in the set {y ∈ Ω : w(y) > 0}, the assertion
wn(x)→ w(x) implies that, since w(x) > 0, one has wn(x) > 0 for n > ν(x), i.e. for n sufficiently
large (depending on x); therefore

χ{wn<0}(wn(x)) = 0 = χ{w<0}(w(x)), for n > ν(x),

χ{wn=0}(wn(x)) = 0 = χ{w=0}(w(x)), for n > ν(x),

χ{wn>0}(wn(x)) = 1 = χ{w>0}(w(x)), for n > ν(x).

(3.19)

These convergences and (3.18) imply that Kδ(x,wn, Dwn)→ Kδ(x,w,Dw) a.e. in {y ∈ Ω : w(y) > 0},

Kδ(x,wn, Dwn) sign(wn)→ Kδ(x,w,Dw) sign(w) a.e. in {y ∈ Ω : w(y) > 0}.

The same proof gives the similar result in the set {y ∈ Ω : w(y) < 0}.

The proof of the similar result in the set {y ∈ Ω : w(y) = 0} is a little bit more delicate. Since
for w ∈ H1(Ω) one has

Dw = 0 a.e. in {y ∈ Ω : w(y) = 0}, (3.20)

and since inequality (2.4) on the function H implies that

H(x, s, 0) = 0 a.e. x ∈ Ω, ∀s ∈ R, s 6= 0, (3.21)

and therefore by continuity in s that

H(x, 0, 0) = 0 a.e. x ∈ Ω, (3.22)

formulas (3.13) and (3.14) imply on the first hand that

Kδ(x,w,Dw) = Kδ(x,w,Dw) sign(w) = 0 a.e. in {y ∈ Ω : w(y) = 0}. (3.23)

12
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On the other hand, in view of (3.20) and (3.22), the three functions which appear in the limits in
(3.18) vanish almost everywhere in the set {y ∈ Ω : w(y) = 0}. Even if we do not know anything
about the (almost everywhere) convergence of the functions χ{wn<0}(wn(x)), and χ{wn>0}(wn(x))
in the set {y ∈ Ω : w(y) = 0}, this fact and formulas (3.13) and (3.14) prove that Kδ(x,wn, Dwn)→ 0 a.e. in {y ∈ Ω : w(y) = 0},

Kδ(x,wn, Dwn) sign(wn)→ 0 a.e. in {y ∈ Ω : w(y) = 0}.
(3.24)

From (3.23) and (3.24) we deduce that Kδ(x,wn, Dwn)→ Kδ(x,w,Dw) a.e. in {y ∈ Ω : w(y) = 0},

Kδ(x,wn, Dwn) sign(wn)→ Kδ(x,w,Dw) sign(w) a.e. in {y ∈ Ω : w(y) = 0}.
(3.25)

This completes the proof of (3.17). �

Remark 3.4 Observe that the function gδ(s) sign(s) is a Carathéodory function since in view of
(6.4) this function is continuous at s = 0. This allows one to define gδ(w) sign(w) as a measurable
function for every w ∈ H1(Ω). �

The main result of this Section is the following equivalence Theorem.

Theorem 3.5 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true, and let δ > 0 be
fixed. Let the functions Kδ and gδ be defined by (3.6) and (3.7) .

If u is any solution of (2.1) which satisfies

(eδ|u| − 1) ∈ H1
0 (Ω), (3.26)

then the function wδ defined by (3.3), namely by

wδ =
1

δ

(
eδ|u| − 1

)
sign(u),

satisfies 
wδ ∈ H1

0 (Ω),

−div (A(x)Dwδ) +Kδ(x,wδ, Dwδ) sign(wδ) =

= (1 + δ|wδ|) f(x) + a0(x) wδ + a0(x) gδ(wδ) sign(wδ) in D′(Ω).

(3.27)

Conversely, if wδ is any solution of (3.27), then the function u defined by (3.4), namely by

u =
1

δ
log(1 + δ|wδ|) sign(wδ),

is a solution of (2.1) which satisfies (3.26).

Remark 3.6 Every term of the equation in (3.27) makes sense as a measurable function (see
Remarks 3.2 and 3.4): actually the second term of the left-hand side of the equation in (3.27)
belongs to L1(Ω) in view of (3.10), while the three terms of the right-hand side of (3.27)can be
proved to belong to (L2?(Ω))′ (and therefore to H−1(Ω), see e.g. the proof of (3.40) in Remark 3.9
and the proof of (4.8) in the proof of Lemma 4.2). �
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Remark 3.7 Observe that the equivalence Theorem 3.5 holds true without assuming the two
smallness conditions (2.14) and (2.15); moreover one could even have removed in (2.3) the hypoth-
esis that the matrix A is coercive, and still obtain this equivalence result.

Note however that Theorem 3.5 is an equivalence result which does not proves neither the
existence of a solution of (2.1) nor the existence of a solution of (3.27), but which assumes as an
hypothesis either the existence of a solution of (2.1) which also satisfies (3.26), or the existence of
a solution of (3.27). �

Proof of Theorem 3.5 Define the function f̂ by

f̂(x) = f(x) + a0(x) u(x), (3.28)

In view of (3.3) and of the definition (3.7) of gδ(s), one has (see (3.8) and (3.4))

(1 + δ|wδ|) f(x) + a0(x) wδ + a0(x)gδ(wδ) sign(wδ) =

= (1 + δ|wδ|)
(
f(x) + a0(x)

1

δ
log(1 + δ|wδ|) sign(wδ)

)
=

= (1 + δ|wδ|) (f(x) + a0(x)u(x)) = (1 + δ|wδ|)f̂(x).

(3.29)

Then Theorem 3.5 becomes an immediate application of Proposition 1.8 of [13], once one
observes that

f̂ ∈ LN/2(Ω); (3.30)

such is the case in the setting of Theorem 3.5: indeed f̂ = f + a0u, where f belongs to LN/2(Ω)
by hypothesis (2.8), and where a0u also belongs to LN/2(Ω), since a0 is assumed to belong to
Lq(Ω), q > N

2 (see hypothesis (2.6)), while u belongs to Lr(Ω) for every r < +∞, since by (3.26)
(eδ|u| − 1) is assumed to belong to H1

0 (Ω), hence in particular to L1(Ω), which implies that eδ|u|
belongs to L1(Ω).The first part of Theorem 3.5 is therefore proved.

To prove the converse, observe that when f̂ is defined by (3.29), then f̂ is also given by (3.28),
where u belongs to Lr(Ω) for every r < +∞. Theorem 3.5 is proved. �

From the equivalence Theorem 3.5 one immediately deduces, setting

w =
1

δ0
(eδ0|u| − 1) sign(u) (3.31)

and equivalently

u =
1

δ0
log(1 + δ0|w|) sign(w), (3.32)

that Theorem 2.1 is equivalent to the following Theorem.

Theorem 3.8 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that (2.14) and (2.15) hold true.

14
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Then there exist a constant δ0 with δ0 ≥ γ, and a constant Zδ0 , which are defined in
Lemma 6.2 (see (6.15), (6.16) and (6.17)), such that there exists at least one solution w of

w ∈ H1
0 (Ω),

−div(A(x)Dw) +Kδ0(x,w,Dw) sign(w) =

= (1 + δ0|w|) f(x) + a0(x)w + a0(x)gδ0(w) sign(w) in D′(Ω),

(3.33)

which satisfies
‖w‖H1

0 (Ω) ≤ Zδ0 . (3.34)

The rest of this paper will therefore be devoted to prove Theorem 3.8. This will be done in
Section 4 (where the existence of a solution satisfying (3.34) of a problem which approximates
(3.33) will be proved, see Theorem 4.1), and in Section 5 (where we will pass to the limit in this
approximate problem and prove that the limit satisfies (3.33) and (3.34)).

Remark 3.9 In this Remark we assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
We also assume that the two smallness conditions (2.14) and (2.15) hold true, and we try to explain
how these two conditions come from an “a priori estimate” that one can obtain on the solutions of
(3.27).

If wδ is any solution of (3.27), using Tk(wδ) ∈ H1
0 (Ω)∩L∞(Ω) as test function, where Tk : R→ R

is the usual truncation at height k defined by

Tk(s) =


s, if |s| ≤ k,

k
s

|s|
, if |s| ≥ k,

(3.35)

one has 

∫
Ω

A(x)DwδDTk(wδ) +

∫
Ω

Kδ(x,wδ, Dwδ)|Tk(wδ)| =

=

∫
Ω

f(x)Tk(wδ) +

∫
Ω

δf(x)|wδ|Tk(wδ) +

∫
Ω

a0(x)wδ Tk(wδ)+

+

∫
Ω

a0(x) gδ(wδ) |Tk(wδ)|.

(3.36)

From now we assume in this Remark that δ satisfies

γ ≤ δ ≤ δ1, (3.37)

where δ1 is defined by (6.11) (note that γ < δ1 results from (2.14), see (6.22)). Since δ ≥ γ by
(3.37), we deduce from (3.11) that Kδ(x, s, ζ) ≥ 0, and therefore that the second term of the
left-hand side of (3.36) is nonnegative. We then use the fact that the matrix A is coercive (see
(2.3)) in the first term of the left-hand side of (3.36), the fact that f ∈ LN/2(Ω) (see (2.8)), which
implies that f ∈ H−1(Ω), in the first term of the right-hand of (3.36), Hölder’s inequality with

1
N
2

+
2

2?
= 1
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in the second and in the third terms of the right-hand side of (3.36), and finally the fact that using
(6.18), namely

0 ≤ gδ(s) < G|s|1+θ, ∀s ∈ R, s 6= 0, ∀δ, 0 < δ ≤ δ1, (3.38)

(note that here we use δ ≤ δ1, see (3.37)), and Hölder’s inequality with

1

q
+

2 + θ

2?
= 1

(which results from the definition (2.11) of θ) in the fourth term of the right-hand side of (3.36).
This allows us to pass to the limit in k in (3.36) and to obtain that α‖Dwδ‖22 < ‖f‖H−1(Ω)‖Dwδ‖2 + δ‖f‖N/2‖wδ‖22? + |a0‖N/2‖wδ‖22? +G‖a0‖q‖wδ‖2+θ

2? ,

if wδ 6= 0,
(3.39)

(note that in view of (3.38), inequality (3.39) is a strict inequality). Using Sobolev’s inequality
(2.9) and dividing by ‖Dwδ‖2 this implies that (even in the case where wδ = 0)

α‖Dwδ‖2 < ‖f‖H−1(Ω) + δC2
N‖f‖N/2 + C2

N‖a0‖N/2 +GC2+θ
N ‖a0‖q‖Dwδ‖1+θ

2 . (3.40)

In view of the definition (6.12) of the function Φδ (see also Figure 2), we have proved that if
wδ is any solution of (3.27), one has

Φδ(‖Dwδ‖2) > 0 if γ ≤ δ ≤ δ1. (3.41)

But by the definition of δ0, one has

Φδ(X) > 0, ∀X ≥ 0, ∀δ, δ0 < δ ≤ δ1,

and therefore inequality (3.41) does not imply anything on ‖Dwδ‖2 when δ satisfies δ0 < δ ≤ δ1.
In contrast, when δ < δ0, the strict inequality (3.41) implies that

either ‖Dwδ‖2 < Y −δ or ‖Dwδ‖2 > Y +
δ if δ < δ0, (3.42)

where Y −δ < Y +
δ are the two zeros of the function Φδ (see Remark 2.4 and Figure 2), and when

δ = δ0, the strict inequality (3.41) implies that

either ‖Dwδ0‖2 < Zδ0 or ‖Dwδ0‖2 > Zδ0 if δ = δ0. (3.43)

Inequalities (3.42) and (3.43) are not really a priori estimates, since they do not imply any
bound on ‖Dwδ‖2. Nevertheless these inequalities exclude the closed interval [Y −δ , Y +

δ ] or the
point Zδ0 for ‖Dwδ‖2, and they give the hope to prove the existence of a fixed point in the set
‖Dwδ‖2 ≤ Y −δ , when δ < δ0, or in the set ‖Dwδ0‖2 ≤ Zδ0 , when δ = δ0.

These inequalities also explain where the two smallness conditions (2.14) and (2.15) come from,
since we claim that these two conditions imply that the value δ0 of δ for which Φδ has a double zero
satisfies δ0 ≥ γ, which is the case where hope is allowed: indeed (2.14) ensures that (and actually
is equivalent to the fact that) the minimum on X ≥ 0 of Φγ(X) is attained for some X = Zγ > 0,
and (2.15) then ensures that (and actually is equivalent to the fact that) Φγ(Zγ) ≤ 0. �
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Remark 3.10 In the present paper, we have chosen to prove the existence of a function w which
is solution of (3.33) (or equivalently of a function w = wδ0 which is solution of (3.27) with δ = δ0)
which satisfies ‖w‖H1

0 (Ω) ≤ Zδ0 (see (3.34)). We could as well have chosen to prove that for any
fixed δ with γ ≤ δ ≤ δ0, there exists a function ŵδ which is solution of (3.27) and which satisfies
‖ŵδ‖H1

0 (Ω) ≤ Y −δ , where Y −δ is the smallest zero of the function Φδ (see Remark 6.4 and Figure 2):
indeed the proofs made in Sections 4 and 5 continue to work in this framework.

In this framework, defining ûδ by

ûδ =
1

δ
log(1 + δ|ŵδ|) sign(ŵδ) (3.44)

(compare with the definition (3.32) of u where δ = δ0), the existence of ŵδ which is solution
of (3.27) and which satisfies ‖ŵδ‖H1

0 (Ω) ≤ Y −δ proves (see the equivalence Theorem 3.5) that ûδ
defined by (3.44) is solution of (2.1) and satisfies (see (3.4))

‖eδ|ûδ|Dûδ‖2 = ‖Dŵδ‖2 ≤ Y −δ .

But the function u which is defined by (3.32) from the function w given by Theorem 3.8 satisfies
(2.1) (by the equivalence Theorem 3.5 with δ = δ0) and (see (3.4) again)

‖eδ0|u|Du‖2 = ‖Dw‖2 ≤ Zδ0 .

When δ < δ0, we therefore have

‖eδ|u|Du‖2 ≤ ‖eδ0|u|Du‖2 ≤ Zδ0 , if δ < δ0,

and therefore eδ|u| − 1 ∈ H1
0 (Ω). By the equivalence Theorem 3.5, the function wδ defined from u

by

wδ =
1

δ
(eδ|u| − 1) sign(u) (3.45)

is solution of (3.27). Moreover, since Dwδ = eδ|u|Du and since Zδ0 < Y +
δ for δ < δ0 (see (6.26)),

one has in particular

‖Dwδ‖2 < Y +
δ , if δ < δ0,

which implies by (3.42) that wδ satisfies

‖Dwδ‖2 < Y −δ . (3.46)

Therefore the result of Theorem 3.8 (which is concerned with the case δ = δ0) provides us
with a function w, and then with a function u defined by (3.32), and finally with a function wδ
defined by (3.45) which is solution of (3.27) and which satisfies (3.46). So this function wδ is a
solution ŵδ of (3.27) which satisfies ‖ŵδ‖H1

0 (Ω) ≤ Y −δ . Therefore the result of Theorem 3.8 (where
δ = δ0) provides us with a solution for every δ with γ ≤ δ ≤ δ0 of the problem posed in the second
paragraph of this Remark . �
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4 Existence of a solution for an approximate problem
In this Section we introduce an approximation of problem (3.33) (see (4.1)). Under the two small-
ness assumptions (2.14) and (2.15), we prove by applying Schauder’s fixed point theorem that this
approximate problem has a solution which satisfies the estimate (3.34).

Let δ0 be defined by (6.15), (6.16) and (6.17). For any k > 0, we consider the approximate
problem of finding a solution wk of (compare with (3.33))

wk ∈ H1
0 (Ω),

−div (A(x)Dwk) + Tk(Kδ0(x,wk, Dwk)) signk(wk) =

= (1 + δ0|wk|) f(x) + a0(x)wk + a0(x) gδ0(wk) sign(wk) in D′(Ω),

(4.1)

where Tk is the usual truncation at height k defined by (3.35) and where signk : R → R is the
approximation of the function sign which is defined by

signk(s) =


ks, if |s| ≤ 1

k
,

sign(s), if |s| ≥ 1

k
.

(4.2)

Theorem 4.1 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that (2.14) and (2.15) hold true. Let δ0 be defined in Lemma 6.2 (see (6.15) and (6.16)), and let
k > 0 be fixed.

Then there exists at least one solution of (4.1) such that

‖wk‖H1
0 (Ω) ≤ Zδ0 , (4.3)

where Zδ0 is defined in Lemma 6.2 (see (6.15), (6.16) and (6.17)).

The proof of Theorem 4.1 consists in applying Schauder’s fixed point theorem. First we prove
the two following lemmas.

Lemma 4.2 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Let k > 0 be fixed.
Then, for any w ∈ H1

0 (Ω), there exists a unique solution W of the following semilinear problem
W ∈ H1

0 (Ω),

−div(A(x)DW ) + Tk(Kδ0(x,w,Dw)) signk(W ) =

= (1 + δ0|w|) f(x) + a0(x)w + a0(x) gδ0(w) sign(w) in D′(Ω).

(4.4)

Moreover W satisfies

α‖DW‖2 ≤ ‖f‖H−1(Ω) + δ0C
2
N‖f‖N/2‖Dw‖2 +C2

N‖a0‖N/2‖Dw‖2 +GC2+θ
N ‖a0‖q‖Dw‖1+θ

2 , (4.5)

where CN and G are the constants given by (2.8) and (6.13).
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Proof Problem (4.4) is of the form
W ∈ H1

0 (Ω),

−div (A(x)DW ) + b̂(x) signk(W ) = F̂ (x) in D′(Ω),

(4.6)

where b̂(x) and F̂ (x) are given. Since b̂(x) = Tk(Kδ0(x,w,Dw)) belongs to L∞(Ω) and is nonneg-
ative in view of (3.11) and of δ0 ≥ γ, since the function signk is continuous and non decreasing,
and since F̂ belong to H−1(Ω) (see e.g. the computation which allows one to obtain (4.8) below),
this problem has a unique solution.

Since W ∈ H1
0 (Ω), the use of W as a test function in (4.4) is licit. Since Tk(Kδ(x, s, ζ)) is

nonnegative, this gives

∫
Ω

A(x)DWDW dx ≤

≤
∫

Ω

(1 + δ0|w|) f(x)Wdx +

∫
Ω

a0(x)wWdx +

∫
Ω

a0(x) gδ0(w) sign(w)Wdx.

(4.7)

As in the computation made in Remark 3.9 to obtain the “a priori estimate” (3.39), we use in (4.7)

the coercivity (2.3) of the matrix A, Hölder’s inequality with
1
N
2

+
2

2?
= 1, inequality (6.19) on gδ0 ,

1

q
+

1 + θ

2?
+

1

2?
= 1 (which results from the definition (2.11) of θ), and finally Sobolev’s inequality

(2.9). We obtain

α‖DW‖22 ≤ ‖f‖H−1(Ω)‖DW‖2 + δ0‖f‖N/2‖w‖2?‖W‖2? + ‖a0‖N/2‖w‖2?‖W‖2?+

+G ‖a0‖q‖w‖1+θ
2? ‖W‖2? ≤

≤ |f‖H−1(Ω)‖DW‖2 + δ0C
2
N‖f‖N/2‖Dw‖2‖DW‖2 + C2

N‖a0‖N/2‖Dw‖2‖DW‖2+

+GC2+θ
N ‖a0‖q‖Dw‖1+θ

2 ‖DW‖2,

(4.8)

which immediately implies (4.5). �

Lemma 4.3 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Let k > 0 be fixed.
Let wn be a sequence such that

wn ⇀ w in H1
0 (Ω) weakly and a.e. in Ω. (4.9)

Define Wn as the unique solution of (4.4) for w = wn, i.e.
Wn ∈ H1

0 (Ω),

−div (A(x)DWn) + Tk(Kδ0(x,wn, Dwn)) signk(Wn) =

= (1 + δ0|wn|) f(x) + a0(x)wn + a0(x) gδ0(wn) sign(wn) in D′(Ω).

(4.10)
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Assume moreover that for some W ? ∈ H1
0 (Ω), Wn satisfies

Wn ⇀W ? in H1
0 (Ω) weakly and a.e. in Ω. (4.11)

Then
Wn →W ? in H1

0 (Ω) strongly. (4.12)

Proof Since Wn−W ? ∈ H1
0 (Ω), the use of (Wn−W ?) as test function in (4.10) is licit. This gives

∫
Ω

A(x)D(Wn −W ?)D(Wn −W ?) dx =

= −
∫

Ω

A(x)DW ?D(Wn −W ?) dx+

−
∫

Ω

Tk (Kδ0(x,wn, Dwn)) signk(Wn) (Wn −W ?) dx+

+

∫
Ω

(1 + δ0|wn|)f(x) (Wn −W ?) dx +

∫
Ω

a0(x)wn(Wn −W ?) dx+

+

∫
Ω

a0(x)gδ0(wn) sign(wn) (Wn −W ?) dx.

(4.13)

We claim that every term of the right-hand of (4.13) tends to zero as n tends to infinity.
For the first term, we just use the fact that Wn −W ? tends to zero in H1

0 (Ω) weakly.
For the second term, we use the fact Tk(Kδ0(x,wn, Dwn)) signk(Wn) is bounded in L∞(Ω),

since k is fixed, while Wn −W ? tends to zero in L1(Ω) strongly.
For the last three terms we observe that, in view of (4.9) and (4.11), we have

(1 + δ0|wn|) f(x) (Wn −W ?)→ 0 a.e. in Ω,

a0(x)wn (Wn −W ?)→ 0 a.e. in Ω,

a0(x) gδ0(wn) sign(wn) (Wn −W ?)→ 0 a.e. in Ω.

(4.14)

We will now prove that each of the three sequences which appear in (4.14) are equiintegrable.
Together with (4.14), this will imply that these sequences converge to zero in L1(Ω) strongly, and
this will prove that the three last terms of the right-hand side of (4.13) tend to zero as n tends to
infinity.

In order to prove that the sequence (1 + δ0|wn|) f(x) (Wn −W ?) is uniformly equiintegrable,

we use Hölder’s inequality with
1
N
2

+
2

2?
= 1. For any measurable set E, E ⊂ Ω, we have



∫
E

|(1 + δ|wn|) f(x) (Wn −W ?)| dx ≤

≤
(∫

E

|f(x)|N/2dx
)2/N

‖(1 + δ0|wn|)‖2? ‖Wn −W ?‖2? ≤ c
(∫

E

|f(x)|N/2 dx
)2/N

,
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where c denotes a constant which is independent of n.
Proving that the sequence a0(x)wn (Wn −W ?) is uniformly equiintegrable is similar, since for

any measurable set E, E ⊂ Ω, we have

∫
E

|a0(x)wn (Wn −W ?)| dx ≤

≤
(∫

E

|a0(x)|N/2 dx
)2/N

‖wn‖2? ‖Wn −W ?‖2? ≤ c
(∫

E

|a0(x)|N/2 dx
)2/N

.

Finally, in order to prove that the sequence a0(x) gδ0(wn) sign(wn) (Wn − W ?) is uniformly

equiintegrable, we use as in (4.8) inequality (6.19) and Hölder’s inequality with
1

q
+

1 + θ

2?
+

1

2?
= 1;

for any measurable set E, E ⊂ Ω, we have

∫
E

|a0(x) gδ0(wn) sign(wn) (Wn −W ?)| dx ≤
∫
E

|a0(x)|G |wn|1+θ |Wn −W ?| dx ≤

≤
(∫

E

|a0(x)|q dx
)1/q

G ‖wn‖1+θ
2? ‖Wn −W ?‖2? ≤ c

(∫
E

|a0(x)|q dx
)1/q

.

We have proved that the right-hand side of (4.13) tends to zero. Since the matrix A is coercive
(see (2.3)), this proves that Wn tends to W ? in H1

0 (Ω) strongly. Lemma 4.3 is proved. �

Proof of Theorem 4.1 Recall that k > 0 is fixed.
Consider the ball B of H1

0 (Ω) defined by

B = {w ∈ H1
0 (Ω) : ‖Dw‖2 ≤ Zδ0}, (4.15)

where Zδ0 is defined from δ0 by (6.17).
Consider also the mapping S : H1

0 (Ω)→ H1
0 (Ω) defined by

S(w) = W, (4.16)

where for every w ∈ H1
0 (Ω), W is the unique solution of (4.4) (see Lemma 4.2) .

We will apply Schauder’s fixed point theorem in the Hilbert space H1
0 (Ω) to the mapping S

and to the ball B.

First step In this step we prove that S maps B into itself.
Indeed by Lemma 4.2, W = S(w) satisfies (4.5); therefore, when ‖Dw‖2 ≤ Zδ0 , one has, in

view of the definition (6.12) the function Φδ and of the property (6.16) of Zδ0 ,

α‖DW‖2 ≤

≤ ‖f‖H−1(Ω) + δ0C
2
N‖f‖N/2‖Dw‖2 + C2

N‖a0‖N/2‖Dw‖2 +GC2+θ
N ‖a0‖q‖Dw‖1+θ

2 ≤

≤ ‖f‖H−1(Ω) + δ0C
2
N‖f‖N/2 Zδ0 + C2

N‖a0‖N/2Zδ0 +GC2+θ
N ‖a0‖q Z1+θ

δ0
=

= αZδ0 + Φδ0(Zδ0) = αZδ0 ,

(4.17)
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i.e. ‖DW‖2 ≤ Zδ0 , or in other terms W ∈ B, which proves that S(B) ⊂ B.

Second step In this step we prove that S is continuous from H1
0 (Ω) strongly into H1

0 (Ω) strongly.
For this we consider a sequence such that

wn ∈ B, wn → w in H1
0 (Ω) strongly, (4.18)

and define Wn as Wn = S(wn), i.e. as the solution of (4.10).
The functions wn belong to B, and therefore the functions Wn belong to B in view of the First

step. We can therefore extract a subsequence, still denoted by n, such that for some W ? ∈ H1
0 (Ω),

Wn ⇀W ? in H1
0 (Ω) weakly and a.e. in Ω. (4.19)

We can moreover assume that for the same subsequence

wn ⇀ w a.e. in Ω and Dwn ⇀ Dw a.e. in Ω.

Since the assumptions of Lemma 4.3 are satisfied by the subsequences wn andWn, the subsequence
Wn converges to W ? in H1

0 (Ω) strongly.
We now pass to the limit in equation (4.10) as n tends to infinity by using the fact that

signk(s) and gδ0(s) sign(s) are Carathéodory functions, and the first result of (3.17) as far as
Tk(Kδ0(x,wn, Dwn)) is concerned (this point is the only part of the proof where the hypothesis of
strong H1

0 (Ω) convergence in (4.18) is used). This proves that W ? is a solution of (4.4). Since the
solution of (4.4) is unique, one has W ? = S(w).

In view of the fact that W ? is uniquely determined, we conclude that it was not necessary to
extract a subsequence in (4.19) and that the whole sequence Wn = S(wn) converges in H1

0 (Ω)
strongly to W ? = S(w). This proves the continuity of the application S.

Third step In this step we prove that S(B) is precompact in H1
0 (Ω).

For this we consider a sequence wn ∈ B and we define Wn as Wn = S(wn); in other terms Wn

is the solution of (4.10). Since wn and Wn belong to B, they are bounded in H1
0 (Ω), and we can

extract a subsequence, still denoted by n, such that

wn ⇀ w in H1
0 (Ω) weakly and a.e. in Ω,

Wn ⇀W ? in H1
0 (Ω) weakly and a.e. in Ω.

Since wn and Wn satisfies the assumptions of Lemma 4.3, we have

Wn →W ? in H1
0 (Ω) strongly.

This proves that S(B) is precompact in H1
0 (Ω) (note that in contrast with the second step, we

do not need here to prove that W ? = S(w)).

End of the proof of Theorem 4.1 We have proved that the application S and the ball B satisfy
the assumptions of Schauder’s fixed point theorem. Therefore there exists at least one wk ∈ B
such that S(wk) = wk. This proves Theorem 4.1. �
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5 Proof of Theorem 3.8
Theorem 4.1 asserts that for for every k > 0 fixed there exists at least a solution wk of (4.1) which
satisfies (4.3). We can therefore extract a subsequence, still denoted by k, such that for some
w? ∈ H1

0 (Ω)
wk ⇀ w? in H1

0 (Ω) weakly and a.e. in Ω, (5.1)

where w? satisfies
‖w?‖H1

0 (Ω) ≤ Zδ0 ,

i.e. (3.34).

In this Section we will first prove that

wk → w? in H1
0 (Ω) strongly, (5.2)

and then that w? is a solution of (3.33) and (3.34). This will prove Theorem 3.8.

To prove (5.2), we use a technique which traces back to [6] (see also [13]).
For n > 0, we define Gn : R→ R as the remainder of the truncation at height n, namely

Gn(s) = s− Tn(s), ∀s ∈ R (5.3)

where Tn is the truncation at height n defined by (3.35), or in other terms

Gn(s) =

 s+ n, if s ≤ −n,
0, if − n ≤ s ≤ n,
s− n, if s ≥ n.

(5.4)

First we prove the two following Lemmas.

Lemma 5.1 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that (2.14) and (2.15) hold true. Let wk be a solution of (4.1). Assume that the sequence wk
satisfies (5.1).

Then we have
lim sup
k→+∞

∫
Ω

|DGn(wk)|2dx→ 0 as n→ +∞. (5.5)

Proof Since Gn(wk) ∈ H1
0 (Ω), the use of Gn(wk) as test function in (4.1) is licit. This gives

∫
Ω

A(x)DwkDGn(wk) dx+

∫
Ω

Tk(Kδ0(x,wk, Dwk)) signk(wk)Gn(wk) dx =

=

∫
Ω

(
(1 + δ0|wk|) f(x) + a0(x)wk + a0(x)gδ0(wk) sign(wk)

)
Gn(wk) dx.

(5.6)

Using the coercivity (2.3) of the matrix A, we have for the first term of (5.6)∫
Ω

A(x)DwkDGn(wk) dx =

∫
Ω

A(x)DGn(wk)DGn(wk) dx ≥ α
∫

Ω

|DGn(wk|2 dx. (5.7)
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On the other hand, since

signk(s)Gn(s) = |signk(s)| |Gn(s)| ≥ 0, ∀s ∈ R,

and since Tk(Kδ0(x,wk, Dwk)) ≥ 0 in view of (3.11) and of δ0 ≥ γ, we have∫
Ω

Tk(Kδ0(x,wk, Dwk)) signk(wk)Gn(wk) dx ≥ 0. (5.8)

Finally, we observe that, by a proof which is similar to the one that we used in the proof of Lemma
4.3, we have 

(
(1 + δ0|wk|) f(x) + a0(x)wk + a0(x)gδ0(wk) sign(wk)

)
Gn(wk)→

→
(

(1 + δ0|w?|) f(x) + a0(x)w? + a0(x)gδ0(w?) sign(w?)
)
Gn(w?)

in L1(Ω) strongly,

(5.9)

since the functions in the left-hand side of (5.9) converge almost everywhere in Ω and are equiin-
tegrable.

Together with (5.6), the three results (5.7), (5.8) and (5.9) imply that
lim sup
k→+∞

α

∫
Ω

|DGn(wk|2 dx ≤

≤
∫

Ω

(
(1 + δ0|w?|) f(x) + a0(x)w? + a0(x)gδ0(w?) sign(w?)

)
Gn(w?) dx.

(5.10)

But since |Gn(w?)| ≤ |w?| and since Gn(w?) = 0 in the set {|w?| ≤ n}, the right-hand side of
(5.10) is bounded from above by∫

{|w?|≥n}

(
(1 + δ0|w?|) |f(x)|+ a0(x) |w?|+ a0(x)|gδ0(w?)|

)
|w?| dx, (5.11)

which tends to zero when n tends to infinity because the integrand belongs to L1(Ω).
This prove (5.5). �

Lemma 5.2 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that (2.14) and (2.15) hold true. Let wk be a solution of (4.1). Assume that the sequence wk
satisfies (5.1).

Then for every n > 0 fixed we have

Tn(wk)→ Tn(w?) in H1
0 (Ω) strongly as k → +∞. (5.12)

Proof In this proof n is fixed. We define

zk = Tn(wk)− Tn(w?), (5.13)
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and we fix a C1 function ψ : R→ R such that

ψ(0) = 0, ψ′(s)− (c0 + δ0) |ψ(s)| ≥ 1/2, ∀s ∈ R, (5.14)

where c0 is the constant which appears in the hypothesis (2.4) on H. Such that ψ exists; indeed
an example is

ψ(s) = s exp

(
(c0 + δ0)2

4
s2

)
.

First step Since zk ∈ H1
0 (Ω) ∩ L∞(Ω), and since ψ(0) = 0, the function ψ(zk) belongs to

H1
0 (Ω) ∩ L∞(Ω). The use of ψ(zk) as test function in (4.1) is therefore licit. This gives



∫
Ω

A(x)DwkDzk ψ
′(zk)dx+

∫
Ω

Tk(Kδ0(x,wk, Dwk)) signk(wk)ψ(zk) dx =

=

∫
Ω

(
(1 + δ0|wk|) f(x) + a0(x)wk + a0(x)gδ0(wk) sign(wk)

)
ψ(zk) dx.

(5.15)

Since
Dwk = DTn(wk) +DGn(wk) = Dzk +DTn(w?) +DGn(wk), (5.16)

the first term of the left-hand side of (5.15) reads as

∫
Ω

A(x)DwkDzk ψ
′(zk) dx =

∫
Ω

A(x)DzkDzk ψ
′(zk) dx+

+

∫
Ω

A(x)DTn(w?)Dzk ψ
′(zk) dx +

∫
Ω

A(x)DGn(wk)Dzk ψ
′(zk) dx.

(5.17)

On the other hand, splitting Ω into Ω = {|wk| > n} ∪ {|wk| ≤ n}, the second term of the
left-hand side of (5.15) reads as

∫
Ω

Tk(Kδ0(x,wk, Dwk)) signk(wk)ψ(zk) dx =

=

∫
{|wk|>n}

Tk(Kδ0(x,wk, Dwk)) signk(wk)ψ(zk) dx+

+

∫
{|wk|≤n}

Tk(Kδ0(x,wk, Dwk)) signk(wk)ψ(zk) dx.

(5.18)

For what concerns the first term of the right-hand of (5.18), we claim that∫
{|wk|>n}

Tk(Kδ0(x,wk, Dwk)) signk(wk)ψ(zk) dx ≥ 0. (5.19)

Indeed in {|wk| > n}, the integrand is non negative since on the first hand Tk(Kδ0(x,wk, Dwk)) ≥ 0
in view of (3.11) and of δ0 ≥ γ, and since on the other hand one has

signk(wk)ψ(zk) ≥ 0 in {|wk| > n}; (5.20)
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indeed since sign(s) and signk(s) have the same sign, it is equivalent to prove (5.20) or to prove
that

sign(wk)ψ(zk) ≥ 0 in {|wk| > n}; (5.21)

but in {|wk| > n} one has zk = n sign(wk)−Tn(w?), and therefore sign(zk) = sign(wk); this implies
that

sign(wk)ψ(zk) = sign(zk)ψ(zk) = |ψ(zk)| in {|wk| > n},

which proves (5.21).

For what concerns the second term of the right-hand side of (5.18), we observe that, in view of
(3.11) and of δ0 ≥ γ, we have

 |Tk(Kδ0(x,wk, Dwk)) signk(wk)ψ(zk)| ≤ |Kδ0(x,wk, Dwk)||ψ(zk)| ≤

≤ (c0 + δ0)|ψ(zk)|A(x)DwkDwk.
(5.22)

Since in view of (5.16) one has

Dwk = Dzk +DTn(w?) in {|wk| ≤ n},

we obtain



∫
{|wk|≤n}

Tk(Kδ0(x,wk, Dwk)) signk(wk)ψ(zk) dx ≥

≥ −
∫
{|wk|≤n}

(c0 + δ0)|ψ(zk)|A(x)DwkDwk dx =

= −
∫
{|wk|≤n}

(c0 + δ0)|ψ(zk)|A(x)(Dzk +DTn(w?))(Dzk +DTn(w?)) dx ≥

= −
∫

Ω

(c0 + δ0)|ψ(zk)|A(x)(Dzk +DTn(w?))(Dzk +DTn(w?)) dx ≥

≥ −
∫

Ω

(c0 + δ0)|ψ(zk)|A(x)DzkDzk dx+

−
∫

Ω

(c0 + δ0)|ψ(zk)|

(
A(x)DTn(w?)Dzk +A(x)DzkDTn(w?) +A(x)DTn(w?)DTn(w?)

)
dx.

(5.23)
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From (5.15), (5.17), (5.18), (5.19) and (5.23) we deduce that

∫
Ω

A(x)DzkDzk
(
ψ′(zk)− (c0 + δ0)|ψ(zk)|

)
dx ≤

≤ −
∫

Ω

A(x)DTn(w?)Dzk ψ
′(zk)dx−

∫
Ω

A(x)DGn(wk)Dzk ψ
′(zk) dx+

+

∫
Ω

(c0 + δ0)|ψ(zk)|

(
A(x)DTn(w?)Dzk +A(x)DzkDTn(w?) +A(x)DTn(w?)DTn(w?)

)
dx+

+

∫
Ω

(
(1 + δ0|wk|) f(x) + a0(x)wk + a0(x)gδ0(wk) sign(wk)

)
ψ(zk) dx.

(5.24)

Second step We claim that each term of the right-hand side of (5.24) tends to zero as k tends
to infinity. Since ψ′(zk)− (c0 + δ) |ψ(zk)| ≥ 1/2 by (5.14), and since the matrix A is coercive (see
(2.3)), this will imply that

zk → 0 in H1
0 (Ω) strongly,

or in other terms (see the definition (5.13) of zk) that

Tn(wk)→ Tn(w?) in H1
0 (Ω) strongly as k → +∞,

which is nothing but (5.12). Lemma 5.2 will therefore be proved.

In order to prove the claim let us recall that in view of (5.1) and of the definition (5.13) of zk
we have

zk ⇀ 0 in H1
0 (Ω) weakly, L∞(Ω) weakly ? and a.e. in Ω as k → +∞.

Since ψ(0) = 0, this implies that ψ(zk) tends to zero almost everywhere in Ω and in L∞(Ω)
weakly ? as k tends to infinity, which in turn implies that

Dzk ψ
′(zk) = Dψ(zk) ⇀ 0 in L2(Ω)N weakly as k → +∞.

This implies that the first term of the right-hand side of (5.24) tends to zero as k tends to infinity.

For the second term of the right-hand side of of (5.24) we observe that

A(x)DGn(wk)Dzk = A(x)DGn(wk)(DTn(wk)−DTn(w?)) = −A(x)DGn(wk)DTn(w?),

and that by Lebesgue’s dominated convergence theorem

DTn(w?)ψ′(zk)→ DTn(w?)ψ′(0) in L2(Ω)N strongly as k → +∞,

while DGn(wk) tends to DGn(w?) weakly in L2(Ω)N . Since A(x)DGn(w?)DTn(w?) = 0 almost
everywhere, the second term of the right-hand side of (5.24) tends to zero.
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For the third term of the right-hand side of (5.24), we observe that

(c0 + δ0)|ψ(zk)|A(x)DTn(w?)→ 0 in L2(Ω)N strongly as k → +∞

by Lebesgue’s dominated convergence theorem, since ψ(zk) is bounded in L∞(Ω) and since ψ(zk)
tends almost everywhere to zero because ψ(0) = 0. Since Dzk is bounded in (L2(Ω))N , this implies
that the first part of this third term tends to zero. A similar proof holds true for the two others
parts of this third term.

Finally the fourth term of the right-hand side of (5.24) tends to zero by a proof which is similar
to the one that we used in the proof of Lemma 4.3, since the integrand converges almost everywhere
to zero and is equiintegrable.

The claim made at the beginning of the second term is proved. This completes the proof of
Lemma 5.2. �

End of the proof of Theorem 3.8

First step Since we have

wk − w? = Tn(wk) +Gn(wk)− Tn(w?)−Gn(w?),

and since by Lemma 5.2 (see (5.12)) we have

‖Tn(wk)− Tn(w?)‖H1
0 (Ω) → 0 as k → +∞ for every n > 0 fixed,

while by Lemma 5.1 (see (5.5)) we have

lim sup
n→+∞

lim sup
k→+∞

‖Gn(wk)‖H1
0 (Ω) = 0,

and while we have
lim sup
n→+∞

‖Gn(w?)‖H1
0 (Ω) = 0,

since w? ∈ H1
0 (Ω), we conclude that

wk → w? in H1
0 (Ω) strongly as k → +∞.

This proves (5.2).

Second step Let us now pass to the limit in (4.1) as k tends to infinity. This is easy for the first
term of the left-hand side of (4.1) as well as for the three terms of the right-hand side of (4.1),
which pass to the limit in (L2?(Ω))′ strongly by a proof which is similar to the one that we used in
the proof of Lemma 4.3.

It remains to pass to the limit in the second term of the left-hand side of (4.1), namely in

Tk
(
Kδ0(x,wk, Dwk)

)
signk(wk).
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We first observe that in view of (3.11) and of δ0 ≥ γ, we have

|Tk
(
Kδ0(x,wk, Dwk)

)
signk(wk)| ≤ |Kδ0(x,wk, Dwk)| ≤ (c0 + δ0) ‖A‖∞|Dwk|2 a.e. in Ω,

which implies that the functions Tk
(
Kδ0(x,wk, Dwk)

)
signk(wk) are equiintegrable since Dwk con-

verges strongly to Dw? in L2(Ω)N .
Extracting if necessary a subsequence, still denoted by k, such that

Dwk → Dw? a.e. in Ω,

we claim that

Tk
(
Kδ0(x,wk, Dwk)

)
signk(wk)→ Kδ0(x,w?, Dw?) sign(w?) a.e. in Ω. (5.25)

On the first hand we use the first part of (3.17), which asserts that

Kδ0(x,wk, Dwk)→ Kδ0(x,w?, Dw?) a.e. in Ω,

and the fact that for every s ∈ R

Tk(sk)→ s if k → +∞ when sk → s,

to deduce that
Tk
(
Kδ0(x,wk, Dwk)

)
→ Kδ0(x,w?, Dw?) a.e. in Ω. (5.26)

On the other hand we use the fact that

signk(wk)→ sign(w?) a.e. in {y ∈ Ω : w?(y) 6= 0},

which together with (5.26) proves the convergence (5.25) in the set {y ∈ Ω : w?(y) 6= 0}.

Finally, as far as the convergence in the set {y ∈ Ω : w?(y) = 0} is concerned, convergence
(5.26) and the fact that (see (3.23))

Kδ0(x,w?, Dw?) = 0 a.e. in {y ∈ Ω : w?(y) = 0},

prove that

Tk
(
Kδ0(x,wk, Dwk)

)
signk(wk)→ 0 = Kδ0(x,w?, Dw?) sign(w?) a.e. in {y ∈ Ω : w?(y) = 0}.

This completes the proof of (5.25).

The equiintegrability and the almost everywhere convergence of Tk
(
Kδ0(x,wk, Dwk)

)
signk(wk)

then imply that

Tk
(
Kδ0(x,wk, Dwk)

)
signk(wk)→ Kδ0(x,w?, Dw?) sign(w?) in L1(Ω) strongly.

This proves that w? satisfies (3.33). Since w? also satisfies (3.34), Theorem 3.8 is proved. �
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6 Appendix
In this Appendix, we give an estimate on the function gδ defined by (3.7) (see Lemma 6.1), and
the definitions of the constants δ0 and Zδ0 which appear in Theorem 2.1 (see Lemma 6.2 ).

6.1 An estimate for the function gδ

Lemma 6.1 For δ > 0, let gδ : R→ R be the function defined by (3.7), i.e. by

gδ(s) = −|s|+ 1

δ
(1 + δ|s|) log(1 + δ|s|), ∀s ∈ R. (6.1)

Then, for every λ and δ? with
0 < λ < 1, 0 < δ? < +∞, (6.2)

there exists a constant C(λ) which depends only on λ, with

0 < C(λ) ≤ sup

{
1 ,

21+λ

λe

}
, (6.3)

such that
0 ≤ gδ(s) ≤ δλ?C(λ)|s|1+λ, ∀s ∈ R, ∀δ, 0 < δ ≤ δ?. (6.4)

Moreover
0 ≤ gδ(s) < δλ?C(λ)|s|1+λ, ∀s ∈ R, s 6= 0, ∀δ, 0 < δ ≤ δ?. (6.5)

Proof Let g : R+ → R be the function defined by

g(t) = −t+ (1 + t) log(1 + t), ∀t ≥ 0.

Since g(0) = 0 and g′(t) ≥ 0, one has

g(t) ≥ 0, ∀t ≥ 0. (6.6)

On the other hand, since log(1 + t) < t for t > 0, one has g(t) < t2 ≤ t1−λt1+λ for t > 0, and
therefore for 0 < λ < 1 and for every m > 0

g(t) < m1−λt1+λ, ∀t, 0 < t ≤ m. (6.7)

One has also
g(t)

t1+λ
<

(1 + t) log(1 + t)

t1+λ
=

(
1 + t

t

)1+λ
log(1 + t)

(1 + t)λ
, ∀t > 0,

and therefore
g(t)

t1+λ
<

(
1 +m

m

)1+λ
log(1 + t)

(1 + t)λ
∀t ≥ m > 0.

But the function
log(1 + t)

(1 + t)λ
reaches its maximum for t0 defined by (1 + t0) = e1/λ, hence

log(1 + t)

(1 + t)λ
≤ 1

λe
, ∀t ≥ 0.

30



Quasilinear problems with a noncoercive zeroth order term

This implies that for 0 < λ < 1 and for every m > 0

g(t) <

(
1 +m

m

)1+λ
1

λe
t1+λ, ∀t ≥ m, (6.8)

which, with (6.6) and (6.7), implies that for 0 < λ < 1 and for every m > 0

0 ≤ g(t) < sup

{
m1−λ ,

(
1 +m

m

)1+λ
1

λe

}
t1+λ, ∀t > 0, (6.9)

or in other terms that for every λ, 0 < λ < 1,

0 ≤ g(t) < C(λ) t1+λ, ∀t > 0, (6.10)

for some C(λ), with (take m = 1)

0 < C(λ) ≤ sup

{
1 ,

21+λ

λe

}
,

which is nothing but (6.3).
Since

gδ(s) =
1

δ
g(δ|s|), ∀s ∈ R,

one deduces from (6.10) that gδ satisfies 0 ≤ gδ(s) ≤ δλC(λ)|s|1+λ, ∀s ∈ R, ∀δ > 0,

0 ≤ gδ(s) < δλC(λ)|s|1+λ, ∀s ∈ R, s 6= 0, ∀δ > 0,

which proves (6.4) and (6.5) with a constant C(λ) which satisfies (6.3).

�

6.2 Definition of δ0 and Zδ0

The goal of this Subsection is to define the constants δ0 and Zδ0 which appear in Theorem 2.1.
We will prove the following result.

Lemma 6.2 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that (2.14) and (2.15) hold true.

Let δ1 be the number defined by

δ1 =
α− C2

N‖a0‖N/2
C2
N‖f‖N/2

. (6.11)

Note that δ1 > 0 since α− C2
N‖a0‖N/2 > 0 in view of (2.14).
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For δ ≥ 0, let Φδ : R+ → R (see Figure 2 ) be the function defined by

Φδ(X) = GC2+θ
N ‖a0‖qX1+θ − (α− C2

N‖a0‖N/2 − δC2
N‖f‖N/2)X + ‖f‖H−1(Ω), (6.12)

where θ is defined by (2.11) and where G is the constant defined by

G =

(
α− C2

N‖a0‖N/2
C2
N‖f‖N/2

)θ
C(θ), (6.13)

with CN the best constant in the Sobolev’s inequality (2.9) and C(θ) the constant which appears in
(6.4)(see also (6.3)).

Then, for 0 ≤ δ ≤ δ1, the function Φδ has a unique minimizing point Zδ on R+, which is given
by

Zδ =

(
α− C2

N‖a0‖N/2 − δC2
N‖f‖N/2

(1 + θ)GC2+θ
N ‖a0‖q

)1/θ

, for 0 ≤ δ ≤ δ1. (6.14)

Moreover, there exists a unique number δ0 such that

γ ≤ δ0 < δ1, (6.15)

and
Φδ0(Zδ0) = 0. (6.16)

This number is the number δ0 which appear in Theorem 2.1, and Zδ0 is then defined from δ0
through formula (6.14), namely by

Zδ0 =

(
α− C2

N‖a0‖N/2 − δ0C2
N‖f‖N/2

(1 + θ)GC2+θ
N ‖a0‖q

)1/θ

. (6.17)

Remark 6.3 In the present paper we use Lemma 6.1 with λ = θ defined by (2.11) (note that
0 < θ < 1 in view of (2.12)) and with δ? = δ1 defined by (6.11). Using the fact that G defined by
(6.13) is nothing but G = δθ1C(θ), inequalities (6.4) and (6.5) imply that 0 ≤ gδ(s) ≤ δθ1C(θ)|s|1+θ = G|s|1+θ, ∀s ∈ R, ∀δ, 0 < δ ≤ δ1,

0 ≤ gδ(s) < δθ1C(θ)|s|1+θ = G|s|1+θ, ∀s ∈ R, s 6= 0, ∀δ, 0 < δ ≤ δ1.
(6.18)

In particular for δ = δ0 defined by (6.15) and (6.16) we have

0 ≤ gδ0(s) ≤ G|s|1+θ, ∀s ∈ R. (6.19)

�
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Figure 1: The graph of the straight line Lδ

Proof of Lemma 6.2 For δ ≥ 0, let Lδ be the constant defined by (see Figure 1)

Lδ = α− C2
N‖a0‖N/2 − δC2

N‖f‖N/2, (6.20)

where CN is the best constant in the Sobolev’s inequality (2.9). Note that Lδ is decreasing with
respect to δ.

Since δ1 is defined by (6.11), one has

Lδ1 = 0. (6.21)

On the other hand, hypothesis (2.14) is nothing but Lγ > 0. Since Lδ is decreasing in δ, we have

γ < δ1. (6.22)

Let us now study the function Φδ : R+ → R defined by (6.12), i.e., in view of the definition
(6.20) of Lδ, by

Φδ(X) = GC2+θ
N ‖a0‖qX1+θ − LδX + ‖f‖H−1(Ω), ∀X ≥ 0, (6.23)

(see Figure 2).

Since a0 6= 0 (see (2.6)), the function Φδ looks like a parabola. Observe that the function Φδ is
a decreasing family of functions for 0 ≤ δ ≤ δ1.

When 0 ≤ δ ≤ δ1, one has Lδ ≥ 0, and the function Φδ has a unique minimizing point Zδ. A
simple computation shows that Zδ is given by

Zδ =

(
Lδ

(1 + θ)GC2+θ
N ‖a0‖q

)1/θ

=

(
α− C2

N‖a0‖N/2 − δC2
N‖f‖N/2

(1 + θ)GC2+θ
N ‖a0‖q

)1/θ

, (6.24)
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i.e (6.14), and that the minimum value Φδ(Zδ) of Φδ is given by
Φδ(Zδ) = ‖f‖H−1(Ω) −

θ

1 + θ

L
(1+θ)/θ
δ

((1 + θ)GC2+θ
N ‖a0‖q)1/θ

=

= ‖f‖H−1(Ω) −
θ

1 + θ

(α− C2
N‖a0‖N/2 − δC2

N‖f‖N/2)(1+θ)/θ

((1 + θ)GC2+θ
N ‖a0‖q)1/θ

.

(6.25)

When 0 ≤ δ ≤ δ1, the function Lδ is nonegative, continuous and decreasing with respect
to δ. Therefore Zδ is continuous and decreasing with respect to δ, while Φδ(Zδ) is continuous and
increasing with respect to δ.

When δ = δ1, one has Lδ1 = 0, the function Φδ1 attains its minimum in Zδ1 = 0 and Φδ1(Zδ1) =
= ‖f‖H−1(Ω) > 0, while hypothesis (2.15) is nothing but Φγ(Zγ) ≤ 0. Therefore there exists a
unique δ0 with γ ≤ δ0 < δ1 such that Φδ0(Zδ0) = 0. This is the definition of δ0 given by (6.15) and
(6.16) in Lemma 6.2.

Lemma 6.2 is proved. �

Figure 2: The graphs of the functions Φδ(X) for δ = γ, γ < δ < δ0, δ = δ0 and δ = δ1

Remark 6.4 The case where equality takes places in inequality (2.15) corresponds to the case
where δ0 = γ.
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On the other hand, we have δ0 < γ when (2.15) is a strict inequality, and for δ with δ0 < δ ≤ γ,
the function Φδ has two zeros Y −δ and Y +

δ with 0 < Y −δ < Y +
δ . Since the family of functions Φδ is

a decreasing family of functions, one has

0 < Y −δ < Zδ0 < Y +
δ if δ0 < δ ≤ γ. (6.26)

�
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