March 21, 2024

Armelle Chabot MAST-LAMES Univ Eiffel

Illinois Kent Seminar

Mechanical analysis of Debonding Phenomena in Pavements

1/3: Interface Debonding & Pavements ?

Composite Pavement → **Case of a Sliding Interface**

https://lames.univ-gustave-eiffel.fr/materiels-et-logiciels/viscoroute ViscoRoute2.0 © (LCPC,2009) All rights reserved

Chupin, Chabot, Piau & Duhamel, 2010. IJSS, 47 (25/26): 3435-3446, doi:10.1016/j.ijsolstr.2010.08.020

Ą

DES PONTS ET CHAUSSEES

Université Gustave Eiffel

Composite Pavement \rightarrow **Case of a Sliding Interface**

https://lames.univ-gustave-eiffel.fr/materiels-et-logiciels/viscoroute ViscoRoute2.0 © (LCPC,2009) All rights reserved

5/35

Chupin, Chabot, Piau & Duhamel, 2010. IJSS, 47 (25/26): 3435-3446, doi:10.1016/j.ijsolstr.2010.08.020

Gharbi, Broutin, Roussel & Chabot, 2022, JTE 50(2): 818-835, doi.org/10.1520/JTE20210211

direction générale de l'Aviation civile

Debonding & Pavements?

Edge effects \rightarrow **Outplane Interface Stresses**

Bending exemple Pouteau PhD thesis (2004) https://theses.hal.science/tel-03118831

Bond Criteria? $G < G_c$ $K_{1} = \int_{0}^{x_{1}} \int_{0}^{y_{1}} f_{I}(\theta) + \frac{K_{II}}{\sqrt{r}} f_{II}(\theta) + \dots$ $\overline{\sigma} = \frac{K_{I}}{\sqrt{r}} f_{I}(\theta) + \frac{K_{II}}{\sqrt{r}} f_{II}(\theta) + \dots$ $\underline{U}(x_{1}, x_{2}) = \underline{U}(O) + kr \underbrace{\Delta_{I}}(\theta) + \dots$

The critical value k_c depends on the opening ω of the note λ it must be experimentally determined. The factors k and k_c are strongly dependent of the singularity and in particular or the exponent λ . Units for

For a bi-material, λ is a complex number!

Point stress? Average stress? Energy release rate -> fatigue...: Paris law?

England AH, 1965. A crack between dissimilar media. Journal of Applied Mechanics: 32:400–402. Williams ML., 1959. The stress around a fault or crack in dissimilar media. Bull ScismolSoc Am, 49:199–204.

Family of (5+2) Multi-particle Model of Multi-layer Materials (M4) - Chabot PhD thesis (1997) <u>https://pastel.hal.science/tel-00197853</u>

✓ Polynomial approximation per layer i in z for σ_{ij}(x,y,z)
✓ Hellinger-Reissner formulation (Reissner, 1950)

Chabot & Ehrlacher, 1998. Modèles Multiparticulaires des Matériaux Multicouches M4_5n et M4_(2n+1)M pour l'étude des effets de bord. JNC11, Arcachon, Ed. AMAC, 3: 1389-1397. <u>https://hal.science/hal-00325238</u>

Composite pavement → Vertically Cracked Layer

Nasser, Chabot, 2018. *Advances in Engineering Software*, 117: 107-122, doi.org/10.1016/j.advengsoft.2017.06.008 *Nasser, Chupin, Piau, Chabot, 2018. RMPD, 19 (3): 496-510, doi: 10.1080/14680629.2018.1418653

11/35

Université Gustave Eiffel

eRoad composite system

Chabot A., Deep P., 2019. RMPD, 20 (sup2): s590-s603, doi: 10.1080/14680629.2019.1621445

2/3: Lab. Characterization?

Cracking in Pavement Group (2001-2004) → 5th RILEM CP Int. Conf. (CP2004) Limoges, France

Pavement Cracking Study Group 1st Meeting BRRC Brussels, November 2001

Document TC157-PRC N21

1st Meeting of the Cracking in pavement study group

Belgian Road Technical University of KRAKOW (Poland) April 19-20 1999

Presents :

Mrs Wanda GRZYBOWSKA, Leslie MYERS, Prof. Imad Al Qadi, Louis FRANCKEN (Chairman), Ann VANELSTRAETE, Arlette CHABOT, Louisette WENDLING, Anne MILLIEN, Prof. Christophe PETIT, Prof. André MOLENAAR, Arian DE BONDT, John POTTER, Didier LEONARD.

...TG2 of TC241-MCD (2011-2017) → Interface Debonding Behavior

2 MODE I – OPENING MODE

2.1 Tensile Bond Test (TBT) 2.2 **Tensile Notch Bond Test (**TNBT)

William G. Buttlar - Armelle Chabot Eshan V. Dave - Christophe Petit Gabriele Tebaldi - *Editors*

Mechanisms of Cracking and Debonding in Asphalt and Composite Pavements State-of-the-Art of the RILEM TC 241-MCD

D Springer

- S

3 MODE II – IN PLANE SHEAR MODE

3.1 Shear Bond Test SBT (without normal stress)3.2 Shear Bond Test SBT (with normal stress)

4 MODE III – OUT PLANE SHEAR MODE

5 MIXED MODE (I + II) 5.1 Three point bending test

5.2 Four point bending test 5.3 Composite specimen interface test (CSIC

Petit, Chabot, Destrée, Raab, 2018. RILEM State-of-the-Art Reports, 28: 103-153. Springer, Cham, doi: 10.1007/978-3-319-76849-6_3 Petit, Chabot, Destrée, Raab, 2018. Materials and Structures, 51 (4): article 96, doi: 10.1617/s11527-018-1223-y

Université Gustave Eiffel

4pt Bending tests (Mixed Mode): geometry & E₂/E₁

Interface 1,2 stresses

Hun PhD thesis (2012) https://www.theses.fr/2012ECDN0042

Tension stress at the Bottom of layer2

Chabot , Hun, Hammoum, 2013. CBM, 40:1076-1088, doi: 10.1016/j.conbuildmat.2012.11.027

M4-5n Energy Release Rate using VCCT, G_{VCCT}

$$G_{VCCT}(a) = G_I(a) + G_{II}(a)$$

•
$$G_l$$
 function of $(v^{1,2}(x_a))^2$

• G_{II} function of :

$$(\tau_1^{1,2}(x_a))^2$$
 and! $Q_1^1(x_a).\tau_1^{1,2}(x_a)$

Tschegg, 1986. Equipment and appropriate specimen shapes for tests to measure fracture values, AT No. 390328, Austrian Patent Office, Vienna, Austria.

Adaptation of the WST for extracted specimen coming from a test track

17/35

Gharbi, Nguyen, Trichet, Chabot, 2017. BCRRA2017, CRC Press (Verlag), doi: 10.1201/9781315100333-201

Wedge Splitting Test (WST)

Gharbi PhD thesis (2018) https://www.theses.fr/2018ECDN0037

Gharbi, Chabot, Geffard, Nguyen, 2022, RILEM BookSeries, 27: 263-269, doi.org/10.1007/978-3-030-46455-4_33

ANK 14-CE22-0019 (France) Cuniversité Gustave Eiffel

WST Modeling using Viscohinte in Cast3M FEM

Damage modeling tacking into account a delay and \neq opening modes

(Mode I or Mixed Mode I+II)

Damage speed:
$$\dot{d} = k(\omega(\underline{Y}) - d)^m$$

Gornet, Lévêque, Perret, 2000. Mécanique & Industries 1(3): 267-276, https://www.sciencedirect.com/science/article/abs/pii/S1296213900001159 Ladevèze, Allix, Gornet, Lévêque, Perret, 1998. Studies in Applied Mechanics, 46: 481–500, doi: 10.1016/S0922-5382(98)80059-7

Fitting two exp. curves using the Viscohinte model

Lemartinel, Chabot, Dave, Gornet, 2022. 25ème Congrès Français de Mécanique. https://hal.science/hal-03713539

3/3: Actual Direction → Cities & Urban Heat Island Pb

Climate Evolution (T°C)

Températures maximales du 23 août 2023. © Météo-France

Figure 1. Observations vs. forced response estimates. Observed annual mean temperatures over France (1899–2020, black points) are compared to various estimates of the forced response over the same period. Orange: simple smoothing spline estimate using df = 6 (degrees of freedom). Gray: CMIP6 multi-model mean estimate (best estimate only). Green: result of the KCC constraint using only GSAT observations (best estimate only). Blue: result of the KCC constraint using only regional observations (i.e., over France). Red: result of the KCC constraint using both GSAT and regional observations to build the constraint. The 5 %–95 % uncertainty range is assessed in the latter case.

Earth Syst. Dynam., 13, 1397–1415, 2022 - https://doi.org/10.5194/esd-13-1397-2022

Urban Heat Island (UHI)

2020: 80% of French people live in cities

From http://klimat.czn.uj.edu.pl/enid/2__Climat_urbain/-_llots_de_chaleur_2uk.html

Lyon ... Los Angeles ...

0.05 - 0.30

Nantes, Durham, ...

, Urbana-Champaign (2010)...

Upcoming literature review presentation:

→ Tormos, Chabot, Dave, 2024. Int. ISAP2024 conf., 2/6 June, Montreal, Canada. https://isap2024.ca

Bending case with Discontinuities and climate change

Comp. Pav. \rightarrow Effect of the coef. of thermal expansion

Tran PhD Thesis (2004) https://pastel.hal.science/pastel-00001026

M4-5nB:

- 5 kinematic fields per layer i, $i \in \{1, n\}$
- Boussinesq model for the soil

 $e_1 = 0.1m \ E_1 = 9300 MPa \ \upsilon_1 = 0.35$

 $\alpha = 12.10^{-6} \ \delta T = 10^{\circ}C$

 $E_s = 50 MPa v_s = 0.35$

 $\epsilon = \alpha . \delta T$

 $e_2 = 0.3m$ $E_2 = 23000 MPa$ $v_2 = 0.25$

Gustave Eiffel

Chabot, Tran & Ehrlacher, 2007. CRC Press 1: 431-440. https://pastel.hal.science/pastel-00001026

Comp. Pav. \rightarrow Effect of \neq E Ratio due to \neq T°C

2D M4-5nW analysis

Composite pavement \rightarrow Vertical crack reaching the interface 2,3

Nasser, Chabot, 2018. Advances in Engineering Software, 117: 107-122. https://doi.org/10.1016/j.advengsoft.2017.06.008

Bonding ALT analysis of UTW (French Urbain Roads)

Pouteau PhD thesis (2004) - https://hal.science/hal-04227042

Chabot A., Pouteau B., Balay J.-M., De Larrard F., 2008. 6th RILEM CP Int. Conf. (CP2008), CRC Press, 671-681.

French Climate evolution (water)

Figure 28 : Cartes des écarts de cumul de pluies extrêmes pour le RCP8.5 et les trois horizons et selon les paramètres de la distribution C5, C50 et C95.

https://www.drias-climat.fr/document/rapport-DRIAS-2020-red3-2.pdf

4pt Bending tests in Water & UTW Specimen

Hun PhD thesis (2012) https://theses.hal.science/tel-00851093

(0,7 mm/min) ~20°C

2) Ciment concret

30/35

Chabot, Hammoum & Hun, 2017. EJECE, 21 (sup1): 54-69. doi: 10.1080/19648189.2017.1320237

WST in Water & AC specimens

Gharbi PhD thesis (2018) https://www.theses.fr/2018ECDN0037

WST (2 mm/min) in water

P8-15a, 20.6 °C

31/35

Gharbi, Chabot, Geffard, Nguyen, 2022, RILEM BookSeries, 27: 263-269, doi.org/10.1007/978-3-030-46455-4_33

What about add. boundary condition effects?

Cities \rightarrow Pavement inclusions (such as eRoads, vegetation, ...)

https://contrevues.paris/wp-content/uploads/2019/09/synthese-des-travaux-de-sun_compressed.pdf

Conclusion / Prospects

Conclusion / Prospects

1/3: Interface Debonding & Pavements

Which Pavement model to use for which purpose? **Need of data** coming from field (Loads & T°C & Water, Materials, Geometries) Mixed-mode & "pure Mode" failure criteria required for debonding

2/3: Characterization of interface resistance up to failure

Repeated testing required for heterogeneous materials (sizes?) Tests with \neq T°C with and without **water effect** Tools: DIC; Damage/delay modeling (CZM)... but what about 3D?

3/3: Urban Heat Island Pb

Need to work with urban planning researchers Multi-materials ; Multiple loadings... **Boundary conditions**?

PHOTOS. Chutes d'arbres, toits arrachés : les dégâts de 2021 la tempête Aurore à Paris | Actu Paris

Thank you for your attention!

Armelle Chabot

MAST-LAMES (Campus de Nantes) https://www.univ-gustave-eiffel.fr/

Université Gustave Eiffel