
HAL Id: hal-04521343
https://hal.science/hal-04521343v1

Submitted on 26 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Hidden Convex Optimization Landscape of
Two-Layer ReLU Networks

Victor Mercklé, Franck Iutzeler, Ievgen Redko

To cite this version:
Victor Mercklé, Franck Iutzeler, Ievgen Redko. The Hidden Convex Optimization Landscape of Two-
Layer ReLU Networks. 2024. �hal-04521343�

https://hal.science/hal-04521343v1
https://hal.archives-ouvertes.fr

AUTHORS AFFILIATIONS

Victor Mercklé LabHC, LJK - France

Franck Iutzeler Institut de

Mathématiques de

Toulouse, Université

de Toulouse, CNRS

Ievgen Redko Paris Noah's Ark lab

PUBLISHED

May 7, 2024

The Hidden Convex
Optimization
Landscape of Two-
Layer ReLU Networks
In this article, we delve into the research paper titled 'The

Hidden Convex Optimization Landscape of Regularized Two-

Layer ReLU Networks'. We put our focus on the signi�cance

of this study and evaluate its relevance in the current

landscape of the theory of machine learning. This paper

describes how solving a convex problem can directly give the

solution to the highly non-convex problem that is optimizing

a two-layer ReLU Network. After giving some intuition on the

proof through a few examples, we will observe the limits of

this model as we might not yet be able to throw away the

non-convex problem.

Contents

I. Overview and Motivation

Problem and notation

Research context

II. Convex Reformulation

Small example

walkthrough

Speci�cs about

equivalence

Activation patterns

Extensions of the convex

reformulation to other

settings

III. Can we Forget the Non-

Convex Problem?

Solving the convex

problem e�ciently is hard

Activation patterns are not

a constant in the non-

convex problem

On large initialization scale

On very small initialization

Conclusion

There exists an equivalent convex formulation to the

classical non-convex ReLU two-layer network training.

That sounds like great news but is it the case in

practice? Let's �nd out together.

https://victormerckle.fr/
https://victormerckle.fr/
https://iutzeler.org/
https://iutzeler.org/
https://ievred.github.io/
https://ievred.github.io/
http://localhost:4000/2024/blog/hidden-convex-relu/#i-overview-and-motivation
http://localhost:4000/2024/blog/hidden-convex-relu/#i-overview-and-motivation
http://localhost:4000/2024/blog/hidden-convex-relu/#problem-and-notation
http://localhost:4000/2024/blog/hidden-convex-relu/#problem-and-notation
http://localhost:4000/2024/blog/hidden-convex-relu/#research-context
http://localhost:4000/2024/blog/hidden-convex-relu/#research-context
http://localhost:4000/2024/blog/hidden-convex-relu/#ii-convex-reformulation
http://localhost:4000/2024/blog/hidden-convex-relu/#ii-convex-reformulation
http://localhost:4000/2024/blog/hidden-convex-relu/#small-example-walkthrough
http://localhost:4000/2024/blog/hidden-convex-relu/#small-example-walkthrough
http://localhost:4000/2024/blog/hidden-convex-relu/#small-example-walkthrough
http://localhost:4000/2024/blog/hidden-convex-relu/#small-example-walkthrough
http://localhost:4000/2024/blog/hidden-convex-relu/#specifics-about-equivalence
http://localhost:4000/2024/blog/hidden-convex-relu/#specifics-about-equivalence
http://localhost:4000/2024/blog/hidden-convex-relu/#specifics-about-equivalence
http://localhost:4000/2024/blog/hidden-convex-relu/#specifics-about-equivalence
http://localhost:4000/2024/blog/hidden-convex-relu/#activation-patterns
http://localhost:4000/2024/blog/hidden-convex-relu/#activation-patterns
http://localhost:4000/2024/blog/hidden-convex-relu/#extensions-of-the-convex-reformulation-to-other-settings
http://localhost:4000/2024/blog/hidden-convex-relu/#extensions-of-the-convex-reformulation-to-other-settings
http://localhost:4000/2024/blog/hidden-convex-relu/#extensions-of-the-convex-reformulation-to-other-settings
http://localhost:4000/2024/blog/hidden-convex-relu/#extensions-of-the-convex-reformulation-to-other-settings
http://localhost:4000/2024/blog/hidden-convex-relu/#extensions-of-the-convex-reformulation-to-other-settings
http://localhost:4000/2024/blog/hidden-convex-relu/#extensions-of-the-convex-reformulation-to-other-settings
http://localhost:4000/2024/blog/hidden-convex-relu/#iii-can-we-forget-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#iii-can-we-forget-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#iii-can-we-forget-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#iii-can-we-forget-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#solving-the-convex-problem-efficiently-is-hard
http://localhost:4000/2024/blog/hidden-convex-relu/#solving-the-convex-problem-efficiently-is-hard
http://localhost:4000/2024/blog/hidden-convex-relu/#solving-the-convex-problem-efficiently-is-hard
http://localhost:4000/2024/blog/hidden-convex-relu/#solving-the-convex-problem-efficiently-is-hard
http://localhost:4000/2024/blog/hidden-convex-relu/#activation-patterns-are-not-a-constant-in-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#activation-patterns-are-not-a-constant-in-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#activation-patterns-are-not-a-constant-in-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#activation-patterns-are-not-a-constant-in-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#activation-patterns-are-not-a-constant-in-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#activation-patterns-are-not-a-constant-in-the-non-convex-problem
http://localhost:4000/2024/blog/hidden-convex-relu/#on-large-initialization-scale
http://localhost:4000/2024/blog/hidden-convex-relu/#on-large-initialization-scale
http://localhost:4000/2024/blog/hidden-convex-relu/#on-very-small-initialization
http://localhost:4000/2024/blog/hidden-convex-relu/#on-very-small-initialization
http://localhost:4000/2024/blog/hidden-convex-relu/#conclusion
http://localhost:4000/2024/blog/hidden-convex-relu/#conclusion

The code for this plot is available and reproducible on this Jupyter

Notebook (or in HTML).

I. Overview and Motivation

50 years ago, two-layer networks with non-linear activations were

known to be universal approximators, however, they did not catch on

as they were hard to train. The recent years have been marked by

deeper networks running on dedicated hardware with very large

datasets. Those networks have since been at the top of the

benchmark in many applications including self-driving and text

generation. The pragmatic method to train such models is to run

stochastic gradient descent on the non-convex optimization problem,

which is concretely tuning the weights (and bias) until the model is

accurate enough. The best models usually require billions of

parameters and very large datasets. The training, in turn, requires

millions of dollars of hardware and electricity to run gradient descent

and train a single model.

Deep learning is not without faults. Even though the test

performance can surpass those of many machine learning models, it

is very hard to know what the network has learned because of its

black-box nature. Interpretability in neural networks is crucial for

creating trustworthy AI systems, one of the biggest obstacle to AI

adoption. It may also lead us to simpler models that are cheaper to

run, are more robust, generalize better, and are easier to adapt to

speci�c tasks.

To �gure out what a neural network learns, we will focus in this post

on the training of a shallow ReLU network by vanilla gradient descent,

using the full batch of data at each step, in a regression setting. More

precisely, we will investigate how the construction of a convex

equivalent to the non-convex training problem can enlighten us on

how neurons evolve during the training phase, with a speci�c focus

on the activation of the ReLU functions and their consequences.

Problem and notation

Our problem of interest will be the training of a simple two-layer

neural network with ReLU activation. We focus on a classical

regression problem with a mean squared error loss and we add a

weight decay term (whose importance will be underlined later). This

leads to the following full-batch gradient method (note that we make

a slight abuse of notation by denoting by the output of the

derivative of the parameters, obtained, for instance, by

backpropagation).

Because there are only two layers, we will integrate the biases of the

neurons directly into the data by adding a dimension �lled with ones.

∇

http://localhost:4000/2024/assets/html/2024-05-07-hidden-convex-relu/hidden-convex-relu.ipynb
http://localhost:4000/2024/assets/html/2024-05-07-hidden-convex-relu/hidden-convex-relu.ipynb
http://localhost:4000/2024/assets/html/2024-05-07-hidden-convex-relu/hidden-convex-relu.ipynb
http://localhost:4000/2024/assets/html/2024-05-07-hidden-convex-relu/hidden-convex-relu.ipynb
http://localhost:4000/2024/assets/html/2024-05-07-hidden-convex-relu/hidden-convex-relu.html
http://localhost:4000/2024/assets/html/2024-05-07-hidden-convex-relu/hidden-convex-relu.html

Two-Layer ReLU Network Training

Data points: inputs and labels ,

Model: neurons: First layer , second layer ,

Hyper-parameters: step-size , regularization

Loss to be minimized:

(Full-batch) Gradient Descent:

Even the simplest ReLU models have non-trivial non-convexity as

depicted in the �gure below. We plot the loss function of a network

with two neurons on one-dimensional data. We only optimize the �rst

layer here so we have a total of two parameters to optimize. Despite

the simple setup, a gradient descent starting from a random

initialization can converge to three different values, two of them

being bigger than zero. However, there always exists a path of non-

increasing loss from initialization to the global minimum (as

predicted by a).

n xxj ∈ R
d yj ∈ R j = 1, .., n

m wwi ∈ R
d αi ∈ R

i = 1, .., m

γ > 0 λ ≥ 0

L(WW , αα) =
n

∑
j=1

(m

∑
i=1

max(0, ww⊤
i xxj)αi

Network's Output

− yj)
2

+ λ

m

∑
i=1

∥wwi∥
2
2 + α2

i

Weight Decay

(1)

(WW , αα)t+1 = (WW , αα)t − γ∇L((WW , αα)t)

L

[1]

Loss landscape of a network with two parameters, one

for each ReLU neuron, and two data points:

 and are �xed.

Since all labels are positive, we �x the second layer

 to 1 to plot the loss in 2D without a loss of

generality. The black lines represent the loss for only

one neuron (since the other is equal to 0). The red

lines(critical points) are paths of parameters for which

the loss is constant and the gradient is zero. They

represent the parameters for which the neuron �ts

exactly one data point and is deactivated for the other

and thus suffers a loss of for the red line on the

left and for the other. The exact formula to

compute each point of the loss landscape is:

To avoid the local minima, one idea is to add constraints to the

parameters. The constrained problem where has to be positive

and has to be negative, is convex, and a simple gradient descent

will �nd the global minima of the original unconstrained problem. In

, they �nd a more general way to build an equivalent convex

problem to our ReLU shallow network training problem.

In this blog post, we will �rst work out the intuition needed to

understand why an equivalent, �nite convex problem even exists.

Then we will study the exact links between the problem in practice

and the convex problem, and go over the limits of such an approach

both in theory and in practice.

Research context

The question of how neural networks learn is a very active domain of

research with many different paths of investigation. Its main goal is

to lay a mathematical foundation for deep learning and for that goal,

shallow neural networks act as a stepping stone for understanding

deeper and more complex networks.

(x , y) = (−1, 1)1 1 (x , y) = (1, 2)2 2

α , α1 2

(y)1
2

(y)2
2

L(w1, w2) = (max(0, x1w1) + max(0, x1w2) − y1)2

+ (max(0, x2w1) + max(0, x2w2) − y2)2

w1

w2

[2]

For networks with a hidden layer of in�nite width, it is proven that

gradient descent converges to one of the global minima under

the NTK regime, or by considering them as Wasserstein gradient

�ows . Studying the NTK amounts to analyzing the �rst-order

Taylor expansion of the network, treating the network as a linear

regression over a feature map. This approximation is accurate if the

neurons are initialized with a large scale(far from zero), large enough

that neurons do not move far from their initialization. This is also

called the lazy regime , in contrast with the feature learning regime

where neurons align themselves to a �nite amount of directions.

While it is noticeable, we are also interested here in a feature-learning

regime with small initialization where we can observe actual non-

convex behavior such as neuron alignment, incremental learning

and saddle to saddle dynamic .

Examining the loss landscape reveals that shallow networks with

more neurons than data points always have a non-increasing path to

a global minimum . This is a favorable property for (stochastic)

gradient convergence. In ‘The Hidden Convex Optimization

Landscape of Regularized Two-Layer ReLU Networks‘ , the

authors extend those results by adding the weight decay

regularization.

Regularization plays a pivotal role as it let us in�uence which local

minimum we will reach with gradient descent, usually to favor a

simpler solution. Even if no explicit regularization is used, it is known

that there is an implicit bias of gradient descent for linear activations,

and more recently for ReLU networks using the convex

reformulation.

Other convex approaches are limited to an in�nite amount of

neurons, or to optimization in neuron-by-neuron fashion which

requires solving many non-convex problems. The setting studied

here allows for any number of neurons.

To sum up, the convex reformulation approach described in this post

contrasts with what precedes by presenting results for a shallow

network with �nite width layers, in a regression setting with ReLU

activation and weight decay regularization.

II. Convex reformulation

Small example walkthrough

First, let’s get familiar with and understand the inherent convexity

caused by ReLU and the second layer. To do so, we will take simple

yet non-convex examples and �nd their global minima using a

convex problem.

ONE RELU, NO SECOND LAYER, NO REGULARIZATION

[3] [4] [5]

[6]

[7]

[8]

[9]

[1]

[2] [10]

[11]

[12]

https://rajatvd.github.io/NTK/
https://rajatvd.github.io/NTK/

Below is the loss of a single ReLU neuron () trained on two

data points: and

Because our only trainable parameter is one-dimensional, we can

directly plot the entire loss landscape.

 is non-convex in a strong sense: two local minima

exist and have distinct values (and). In

practice, a gradient descent will never be able to switch

from �tting one data point to the other (switching from

positive to a negative weight can only be done by

increasing the loss).

We say that the ReLU neuron can activate one or more data points if

the output of its ReLU is non-zero when evaluated on said data. The

output of a one-neuron ReLU network is , we can plot

both the output and the two data points on the same graph.

w1 ∈ R

(x1, y1) = (−1, 1) (x2, y2) = (1, 0.5)

L(w1) = (max(0, x1 w1) − y1)2
+ (max(0, x2 w1) − y2)2

(2)

L

(y1)2 (y2)2

w1

max(0, x w1)

Plot of the output of a one-neuron ReLU network with a

positive weight . The ReLU only activates the second

data point (as and) so the network can

�t the second data point. However, doing so means it

cannot activate and will incur a constant loss .

Overall, depending on the sign of , we will have a loss

consisting of a constant term for not activating one

example and a quadratic term for matching the label of

the activated data point.

Before moving on, the important fact here is that we have a true non-

convexity of the loss(the difference between two local minima

 can be made arbitrarily large), even without a single

layer or regularization. Now we will explore the corresponding convex

problems.

ACTIVATION

We want to �nd the global minima of the one-neuron ReLU network

loss function . Recall that the loss has two local minima: for

 and for .

Which data points are activated plays a crucial role in the loss. In the

speci�c example above, is activated and is not. If we

�x the ReLU’s activation to this pattern and replace the max

operators with or :

This problem is convex. A gradient descent from any initialization will

converge to the optimal loss with the parameter .

This parameter directly corresponds to one of the two local minima

of the non-convex loss by taking .

Similarly, this convex problem’s optimal solution directly corresponds

to the second local minima: for .

All seems good. But keep in mind that we want to build an equivalent

problem. If is positive, taking does not lead to the same

loss value in the original problem because a positive parameter will

never activate the �rst data point.

To make the issue obvious, consider this convex problem obtained

by replacing the two operators by :

w1

x > 02 w > 01

x1 (y)1
2

w1

∣(y) − (y) ∣1
2

2
2

(2) (y)2
2

w = y /x1 1 1 (y)1
2 w = y /x1 2 2

x > 02 x < 01

0 1

min
u1∈R

(0 × x1u1 − y1)2 + (1 × x2u1 − y2)2 (3)

(y)1
2 u = y /x1 2 2

(2) w = u1 1

min
u2∈R

(1 × x1u2 − y1)2 + (0 × x2u2 − y2)2

(y)2
2 u = −y /x2 1 1

u2 w = u1 2

max 1

min
u3∈R

(1 × x1u3 − y1)2 + (1 × x2u3 − y2)2

http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss

While it is convex, there is no link between the ReLU parameter ,

and this new problem’s parameter : it is not possible to activate

both data points. This issue comes from the fact that replacing a

 by only makes sense if what is inside the is indeed

positive. In other words, as long as is positive we have that

.

We added the constraints corresponding to the activation, and it

adequately restricts to be in .

As a simple reformulation of , we vectorize (in the number of data

points) the convex loss and we add the constraints:

The diagonal activation matrix (named) summarize

the on/off behavior of one ReLU for all data points. The constraints

on are directly given by this activation matrix:

The other way around, we can de�ne the activation pattern vector for

a speci�c parameter : with the number

of data points. The activation matrix of is simply the matrix that

has this vector for its diagonal.

So we have exactly four possible activation matrices. and

 will have constraints that reduce to , making

them not interesting. The other two lead to convex problems with

convex constraints. Solving them will give the parameters that

correspond to the two local minima of the loss of ReLU neural

network with only a single neuron .

Remark.For any number of 1-D data points, there are distinct

activation matrices but only two of them will be interesting: activating

all positive data points, or only activating negative data points. Only

some are interesting in higher dimensions, but �nding all of them

is not obvious.

Replacing everything with the usual matrices (,)

will get us the equivalent convex problem to a one-neuron ReLU

network, whose activation pattern is :

w1

u3

max 1 max

x1 w1

max(x1 w1, 0) = 1x1 w1

min (1 × x1u3 − y1)2 + (1 × x2u3 − y2)2

x1 u3≥0
x2 u3≥0

u3 0

(3)

min []
diagonal activation matrix

[]u1 − [] 2

2[][]u1≥0
−1 0

0 1

x1

x2 ∥ 0 0

0 1

x1

x2

y1

y2 ∥Di ∈ {0, 1}n×n

u1

[] = 2 [] − I2 I2 the identity matrix of R2−1 0

0 1

0 0

0 1

u (𝟙u xj≥0)j=1…n ∈ {0, 1}n n

u

D1 = ()0 0
0 0

D2 = ()1 0
0 1 w = 01

(2)

n 2n

Di

X = ()x1
x2 Y = ()

y1
y2

Di

min DiXu1 − Y
2

2u1∈R

(2Di−I2)Xu1≥0 ∥ ∥

http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Afirsttry
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Aone_neuron_loss

Later sections will investigate what we can say about a ReLU

network with more than one neuron.

MULTIPLICATIVE NON-CONVEXITY FROM THE SECOND LAYER

 is not convex, it has two local minima. However, they are

symmetric. Simply replace the term by a new variable , and use

a simple mapping such as to get the solution of from

the solution of the convex problem: .

The initial problem with L2 regularization is non-convex as well:

The convex reformulation with one variable is:

We have to use a different mapping .

One can verify that plugging this mapping into the non-convex

problem will give the same value. Therefore, you can solve the

convex problem in lieu of the non-convex one.

Back to non-linear activations, consider the non-convex problem of

training a single ReLU neuron with a second layer() and a L2

regularization:

We �x the activation to only activate (as could be done for any

activation pattern) and add the corresponding constraint as done in

the previous section:

 is a non-convex problem because we are multiplying and

together (and some constant). However, this non-convexity can be

ignored by considering an equivalent convex function in a very similar

way to the problem.

min
(x,y)∈R2

(x y − 1)2 (4)

(4)

x y z

z → (1, z) (4)

minz∈R(z − 1)2

(4)

min
(x,y)∈R2

(x y − 1)2 +
λ

2
(|x|2 + |y|2)

min
z∈R

(z − 1)2 + λ|z|

z → (sgn(z)√(|z|), √(|z|))

α1

min
(w1,α1)∈R2

(max(0, x1w1)α1 − y1)2
+

λ

2
(|w1|2 + |α1|2)

x1

min (1 x1 u1 α1 − y1)2 +
λ

2
(|u1|2 + |α1|2)

(u1,α1)∈R
2

x1 u1≥0

(5)

(5) w1 α1

(x y − 1)2

http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvxlin
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1

 takes the role of the product . We can solve to get an

optimal and then use a mapping

. However, the two problems do

not have the same expressivity: can be negative

but not because of the constraint. Let’s add a second

variable with the same constraint as that will take the role of a

negative .

The variable represents a neuron with a positive second layer and

 a neuron with the same activation pattern but with a negative

second layer. This is a convex problem(adding a convex

regularization preserves the convexity) with convex constraints. At

the optimum, only one of the two variables will be non-zero. We

consider this mapping:

One can verify that this mapping does give the same value when

plugged into . The two problems share the same global minima

as we can easily map back and forth without altering the loss. The

global minima of the two problems have the same value as they have

the same expressivity, we can say the two problems are equivalent in

the sense that we can solve one to get the solution of the other by a

simple mapping.

To summarize, here’s the equivalent (with the above mapping)

convex problem for a one-neuron ReLU Network with regularization

and a second layer, whose activation pattern is :

EQUIVALENT CONVEX PROBLEM WITH TWO NEURONS

Before moving on to the general results, we want to �t two data

points, i.e. having both data points activated. To do so, we need at

least two neurons. The usual non-convex problem is as follows (with

, and):

min
x1 z1≥0

(1 x1 z1 − y1)2 + λ|z1| (6)

z1 w α1 1 (6)

z1

(w1, α1) = (sgn(z1) √|z1|, √|z1|)

max(0, x1 z1)α1

1 x1 z1

z1

α1

min (1 x1 (z1 − v1) − y1)2
+ λ(|z1| + |v1|)

x1 z1≥0
x1 v1≥0

(7)

z1

v1

(w1, α1) = (sgn(z1) √|z1|, √|z1|) if z1 is non-zero

(w1, α1) = (sgn(v1) √|v1|, −√|v1|) if v1 is non-zero

(5)

Di

min Di X(u1 − v1) − Y
2

2(2Di−I2)Xu1≥0
(2Di−I2)Xv1≥0 ∥ ∥X = ()x1

x2 Y = ()
y1
y2 m = 2

min
wi,αi∈R,i=1…m

m

∑
i=1

max(0, Xwi)αi − y
2

2
+ λ

m

∑
i=1

w2
i + α2

i .∥ ∥

http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Acvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Ancvx1

This loss is plotted (with and �xed second layer) in the

introduction section. The convex reformulation is very similar.

The best choice(only obvious in this 1-D data case) of activation

matrices would be and .

Solving and mapping the solutions would give the optimal global

solution to the problem of �tting two data points with a ReLU

network with two neurons. More insights about why this is true are

given after the general case section, and the complete proof can be

found in the paper.

GENERAL CASE

Let us consider a general two-layer ReLU network with an input of

dimension , an output of dimension 1 (vector output requires a

similar but parallel construction) and a hidden layer of size .

With data points, the full regularized loss is

This is the same loss as presented at the beginning of the article

but with matrix and vectors. is the data matrix and

 are the labels. Each neuron has its �rst layer parameter

 and second layer .

By analogy with what we saw earlier, an equivalent convex problem

can be found. Multiplications are replaced by scalar products in the

de�nition of activation matrices and thus most insights about

activation hold.

 are the activation matrix. The set of the constraints is the

concatenation of the constraints of all neurons. Each constraint can

be written succintely: . If respects the

constraint, its activation pattern is exactly and this is crucial to

retrieve the optimal solution of the non-convex loss from the

solution of the convex reformulation .

λ = 0

min
,i=1…m

m

∑
i=1

Di X(ui − vi) − Y
2

2
+ λ

m

∑
i=1

|ui| + |vi|
(2Di−I2)Xui≥0
(2Di−I2)Xvi≥0 ∥ ∥D1 = ()0 0

0 1 D2 = ()1 0
0 0

d

[13] m

n

L(WW , αα) =
m

∑
i=1

max(0, XXwwi)αi − yy
2

2
+ λ

m

∑
i=1

∥wwi∥
2
2 + α2

i∥ ∥ (1)

XX ∈ R
n×d

yy ∈ R
n

wwi ∈ R
d αi ∈ R

min
UU ,VV ∈K

m

∑
i=1

DDiXX(uui − vvi) − yy
2

2
+ λ

m

∑
i=1

∥uui∥2 + ∥vvi∥2∥ ∥ (8)

DDi K

(2DDi − IIn)Xuui ≥ 0 ui

Di

(1)

(8)

http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Atheloss
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx

A conceptually easy way to have the two problems have the same

global loss, is to consider a ReLU network with neurons, and to

formulate the convex problem using all distinct activation

matrices . In that case, it is easy to see that they both have the

same expressivity. In the paper, it is proved that in theory only

neurons and activation patterns are required (using carathéodory’s

theorem), but the patterns are not given explicitly. The next section

will give more insights on when the two problems are equivalent.

From a solution of the convex problem , the convex neurons

can be mapped to the non-convex neurons using this

mapping:

We use the same mapping as in the 1D case except the direction of

the neuron () is now a vector in

Remark.This is a very simple mapping from convex solution to non-

convex neurons. We will call convex neurons the set of parameters

that correspond to a neuron in the original, non-convex problem. One

can expect similar trajectories between the non-convex and convex

neurons during gradient descent.

Here, we �xed the number of neurons and the corresponding

activations. A few questions are left unanswered: how many different

activation patterns need to be considered, and how many neurons

should we consider for both convex and non-convex problems?

Speci�cs about equivalence

Two problems are considered equivalent when their global optima

can be seamlessly mapped back and forth.

As seen before, there are only two interesting possible activation

patterns in the one-dimensional case (a single neuron can either

activate all the positive data points and none of the negative, or the

opposite), but there are close to interesting patterns when the

data dimension is higher. An activation pattern is interesting if there

exists a non-zero vector that can respect the constraints and in �ne,

the activation pattern.

The (unique) optimal loss of the convex problem with all possible

activation patterns(for �xed data) is the best loss any non-convex

network can reach. The following sections are dedicated to

understanding why adding more neurons than there are activation

patterns will not improve the loss.

2n

2n

Di

n

(8) ui

(wi, αi)

(wi, αi) = (
ui

√∥ui∥2

, √∥ui∥2) if ui is non-zero

(wi, αi) = (
vi

√∥vi∥2

, −√∥vi∥2) if vi is non-zero

ui R
d

2n

(8)

Di

http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx
http://localhost:4000/2024/blog/hidden-convex-relu/#mjx-eqn%3Aeq%3Athecvx

However, if we only consider a subset of all patterns, the convex

problem will in general correspond to a local optimum of the non-

convex network. Indeed, it is not as expressive as before. This would

either correspond to a non-convex network with not enough neurons,

or with too many neurons concentrated in the same regions.

To explore this idea, we go back to one-dimensional data.

1-D EXAMPLE, ONE NEURON

In the non-convex problem with only one neuron, there are exactly

two local minima.

Plot of the output of a ReLU Network with one neuron,

one for each of the parameter's local minima. The

parameter on the left can be formulated as a solution

of a convex problem with one convex neuron using the

activation matrix , and for the right output.

As seen in the previous section, each local minimum can be found

exactly by solving the convex problem with a subset of all possible

activations, that is on the left and on the right. Here we cannot say

that the convex problem (that considers only one pattern) is

equivalent to the non-convex one because the global minimum of the

non-convex cannot be achieved in the convex problem. However,

once we reach a local minimum in the non-convex gradient descent,

then it can be described as a convex problem, by considering one

pattern or the other.

1-D EXAMPLE, TWO NEURONS

The non-convex problem initialized with two random

neurons and optimized with gradient descent will have

three possible local minima (if there is some

regularization, otherwise there's an in�nite number of

them). Either we initialize a neuron for each activation

and it will reach the global optima (left), or two of them

will end up in the same pattern (right), activating the

same data point.

()0 0
0 1 ()1 0

0 0

In the case of two neurons, the convex equivalent problem is as

follows:

is equivalent to the non-convex problem i.e. solving it will give the

global optimum of the non-convex objective. (the negative are zero

at the optimal and are removed here only to be clear.)

1-D EXAMPLE, MANY NEURONS

Plotting the positive part of many ReLU neurons.

Summed up, they form a network output that perfectly

�ts the data.

We draw one example of a usual local minimum for gradient descent

in the speci�c case of having more neurons than existing patterns. In

practice (with more data in higher dimensions) there are much fewer

neurons than possible activations. However, there are many

situations in which neurons will lead to the same activation patterns,

and in the experiment section we will see how to force such

dynamics.

Note that we can merge neurons that are in the same activation

pattern by summing them up (even in higher dimensions), creating a

new neuron, and keeping both the output and the loss unchanged

(although regularization might decrease). The fact that having more

than one neuron in one pattern does not decrease the loss is at the

core of the proof.

Activation patterns

L(u1, u2) = [] []u1 + [] []u2 − [] 2

2
+ λ(|u1| + |u2|)∥ 0 0

0 1

x1

x2

1 0

0 0

x1

x2

y1

y2 ∥vi

The equivalence proof is heavily based on ReLU, speci�cally that a

ReLU unit divides the input space into two regions: one where it will

output zero, and the other where it is the identity. If you consider a

�nite set of samples and a single ReLU, it will activate and deactivate

some samples: this is called an activation pattern. A diagonal matrix

 describes one activation pattern, but not all are

possible for a given dataset. There is a �nite amount of such possible

patterns, exponential in the dimension of the data.

This section is important to understand the �nal animations in the

experimental section and helps understand how active activation

patterns evolve in the non-convex problem.

TWO-DIMENSIONAL DATA

In the previous part, we considered data to be one-dimensional which

resulted in only two possible activation patterns. Let us consider two-

dimensional data. To do so in the simplest way possible, we will

consider regular one-dimensional data and a dimension �lled with s.

This will effectively give the neural network a bias to use without

modifying the formulas.

We consider two data points: and , each

associated with their label and . We plot the output

of one ReLU unit initialized at , . Therefore

we have

The activation pattern of is . There are only three

other possible activation patterns, activating both data points:

, activating only the �rst one with and

activating no data point with a zero matrix.

One point of interest is the data for which the ReLU will be 0. This is

where the output changes its slope: where is the

i-th coordinate of . Here, . We call this the activation point

of the neuron .

We plot the output, , of the network as a function

of the �rst dimension of the data (here simply written):

DDi ∈ {0, 1}n×n

1

xx1 = (−0.2, 1) xx2 = (1, 1)

y1 = 0.5 y2 = 1

ww1 = (0.3, 0.15) α1 = 1

max(0, ww⊤
1 xx1) = 0

max(0, ww⊤
1 xx2) = ww⊤

1 xx2

ww1 DD1 = ()0 0
0 1

DD2 = ()1 0
0 1 DD3 = ()1 0

0 0

a1 = −w2
1/w1

1 wi
1

wwi a1 = 0.5

ww1

max(0, (x, 1) ww⊤
1)

x1 x

A neuron initialized so that it activates only one data

point i.e. its activation point is between the two

samples, and its slope tells us if it activates on the left

or on the right like in this case.

Illustration.

In the animation below, we train this network using vanilla gradient

descent on the two data points and , represented by the red

crosses. We plot its in blue for every possible data point

(omitting the second dimension as it is always 1 in this example,

playing the role of the bias), and we plot in red the label associated

with the two data points. Each frame corresponds to one step of full-

batch gradient descent with a small learning rate. We mark the

 of the neuron with a green triangle, pointing

toward the side the neuron activates. The green triangle’s height is

the slope of the ReLU’s output, equal to , allowing us to

visualize how important one neuron is for the output of the network.

xx1 xx2

output

activation point

u1
1 = w1

1α1

Training a single neuron network with gradient descent

until it exactly �ts two data points. It starts by �tting the

only point it activates, . As training progresses, the

activation point represented by a green triangle shifts

position. As soon as the activation point reaches , it

activates it and starts �tting both points at the same

time. Its activation pattern shifts from to

and stays the same until convergence.

Adding more neurons will not create additional activation patterns,

only adding more data points will. With only two data points and

, we only had 4 possible patterns, with four data points we have 10

possible patterns.

We plot the individual output and activation points of

each of the ReLU neurons associated with the ten

interesting activation patterns in blue. Those are the

10 (20 with negative ones) neurons that need to be

considered to get the global optima using the convex

equivalent. When moving the activation point of a

neuron between two data points, its activation pattern

does not change.

Remark. Notice that it is not possible to only activate the data points

in the middle. However, if we increase the data's dimension, this

becomes possible. This is also possible with a second layer of ReLU.

In higher dimensions, we cannot visualize the activation patterns as

easily, but we can understand that as dimensionality increases, more

patterns are possible as it is easier to separate different data points.

Extensions of the convex reformulation to other settings

xx2

xx1

()0 0
0 1 ()1 0

0 1

xx1

xx2

ai

Batch Normalization (BN) is a key process that adjusts a batch of

data to have a mean of zero and a standard deviation of one, using

two trainable parameters. In the convex equivalent, we replace

with . This is the �rst matrix in the Singular Value

Decomposition (SVD) of . If the output is a

vector, rather than a scalar, the regularization changes to require a

nuclear norm in the convex equivalent . Three-layer networks also

have a convex equivalent using all possible combinations of two

activation matrices. Moreover, parallel networks are also linked to a

convex problem . Lastly, in Wasserstein Generative Adversarial

Network (WGAN) problems, the adversarial games played by two-

layer discriminators are identi�ed as instances of convex-concave

games .

III. Can We Forget the Non-

Convex Problem?

Solving the convex problem e�ciently is hard

In the last ten years, deep neural networks have been trained using

(stochastic) gradient descent on the non-convex problem. The

algorithm, the implementation, and even the hardware running the

training have been heavily optimized, supported, and pushed by

industrial and scienti�c applications. Such networks were practically

abandoned for years after being discovered because there did not

exist an e�cient way to train them. Nowadays, it takes a few lines to

train a network on dedicated hardware and this might make us forget

how much engineering has made this possible. This should be kept

in mind when comparing a new approach to the problem.

Training a network with the non-convex problem can be time

consuming as it requires tuning hyperparameters and

rollbacks(retrieving a previous state) to get out of a bad minimum. In

that case, the convex approach deals with much fewer parameters

and has only one global minimum.

In complexity terms, the convex reformulation with all possible

activation patterns gives an algorithm in polynomial time for all

parameters except for the rank of the data matrix . In practice and

with usual datasets, the rank is high and there will be too many

patterns to consider them all.

DDiXX

UUi UUi

DDiXX = UUiΣΣiVVi [14]

[13]

[15]

[16]

Di

[10]

There has been some work focused on solving the convex problem

quickly . The �rst idea is to take a random subset of activation

patterns and use standard convex solvers. Current convex solvers

(ECOS, …) are not tailored to problems with many constraints. There

is some hope in considering the unconstrained version of the

problem to build an approximation. In most deep learning scenarios,

it is hard to be faster, or even start to compete against a simple

gradient descent running on GPUs.

Dataset Convex Adam SGD Adagrad

MNIST 97.6 98.0 97.2 97.5

CIFAR-10 56.4 50.1 54.3 54.2

Test accuracy on popular datasets for a single layer

network with 5000 neurons.

Time to solve problems from the UCI datasets with

Adam on the non-convex problem and a custom solver

(using the augmented Lagrangian method). The

code for the paper's experiments is available on github,

as well as the convex problem toolkit.

For relatively small datasets and networks, convex solvers are fast

and do not require any tuning to get convergence. Adjusting the

regularization will directly reduce the amount of neurons needed.

Remark. A convex equivalent of deeper networks exists but

exacerbates existing problems. The only way to make it possible is to

optimize layer by layer. This is still a work in progress and needs

further improvements to be competitive.

Activation patterns are not a constant in the non-convex

problem

[17] [18]

[17]

[17]

https://github.com/pilancilab/scnn_experiments/tree/main
https://github.com/pilancilab/scnn_experiments/tree/main
https://github.com/pilancilab/scnn
https://github.com/pilancilab/scnn

Let’s set aside the performance concerns and use the reformulation

as a new point of view for observation. Our non-convex problem is

equivalent to a convex and well-speci�ed optimization problem with

constraints. The global optima might be the same, but training the

network with gradient descent almost always leads to a local

minimum. Because there are too many activations to consider them

all, the convex problem only �nd a local minimum. However, it is not

clear if they �nd the same kind of local minimum.

Activation patterns can and will change during gradient descent in

the non-convex problem. In some cases, this pattern shifting is

useful because the new activation patterns may lead to a better

minimizer. To verify this, we monitor the number of unique activation

patterns used by the network at each step of a gradient descent. If

two neurons have the same activation pattern (i.e. they activate and

deactivate the same data points), we would count them as one.

Training a network with 100 random data points in 10

dimensions. The network only has 20 randomly

initialized neurons and the data is linearly dependent on

the input. Each neuron has a unique activation pattern

as can be seen on the graph. It is expected in this

setting because there are so many possible activation

patterns (close to). However, as training

progresses, neurons align themselves to the same

pattern. After 300 steps, the 20 neurons only share 5

unique activation patterns.

However, we can show an aspect that sets both formulations apart.

The convex problem has �xed activation patterns. If the activations

are missing important data, the convex solution will not be optimal.

Meanwhile, in the non-convex problem, the gradient descent keeps

shifting from pattern to pattern until it converges.

Illustration.

1025 1

We will further study this setting with 100 data points and 20

neurons in high dimensions. To compare how the two methods deal

with activation patterns, we will use the activation pattern of the

neurons of the non-convex problem to construct a convex problem

and solve it. To be more explicit, for each non-convex neuron , we

�nd its activation pattern and add a constrained to this pattern to

the convex problem. In the end, we have a convex problem with 20

neurons that will activate the same data points as the non-convex

neurons.

We train the non-convex network using gradient descent, and at each

step, we construct a convex problem, solve it, and compare its global

minimum to our current non-convex loss. This convex problem fully

describes the local minimum we would �nd if the non-convex

problem was constrained to never change its activation patterns.

Training a 20-neuron network with gradient descent and

using the same activation patterns to solve the convex

equivalent. We plot for each step, the current loss of the

non-convex network and the optimal loss of the convex

problem. At initialization (�rst point on the graph), the

non-convex loss is 1. We take the current activation

pattern and build a convex problem and solve it, we �nd

an optimal loss of . In the next step, the non-convex

loss decreases and the activation pattern has changed,

thus we �nd a different optimal loss for the convex

problem. The initial optimal loss of the convex is quickly

beaten by gradient descent (at around step 175), this

means that the activation patterns at step 0 were far

from optimal. The convex loss at the start is quickly

beaten by gradient descent, this means our initial

choice of activation pattern was bad, and gradient

descent continually improves them. We use cvxpy to

de�ne the problem and solve it using ECOS.

In general, we cannot predict which patterns will be used by the

neurons found by GD, or which patterns are the best. Thus we cannot

hope that the convex problem will give us an insight as it requires us

to know the activation patterns.

In the next section, we focus on cases where the non-convex minima

can be accurately described by convex problems.

wwi

uui

0.1

2

On large initialization scale

The initialization scale of the network is the absolute size of the

neurons’ parameters. To get a change in the scale, we can simply

multiply every parameter by a scalar. The initial value of the neuron is

a large topic in machine learning as it has a large in�uence on the

quality of the local minimum. By default in popular libraries, He

initialization is used, it draws neurons from a normal distribution

centered on 0 and with a variance in with the number of

neurons. However, in the literature, there is a large choice to pick

from.

We say we are on a large scale when neurons do not move far from

their initial value during descent. This typically happens when using

large initial values for the parameters of each neuron.

The theory states that you can push the scale used high enough so

that neurons will not change their activation patterns at all. If this is

veri�ed, the convex reformulation will describe exactly the minima

that gradient descent will reach. However, it is not possible to

observe this in practice as the loss becomes very small and the

training process is too slow to carry on to the end. The NTK brie�y

mentioned in the introduction operates in this setting, using the fact

that the network is very close to its linear approximation. On a similar

note, reducing the step size for the �rst layer guarantee convergence

.

Illustration.

Using an animation, we plot every step of a gradient descent in the

non-convex problem until the loss is small enough. As mentioned

before, the training is too slow to continue until we reach a real local

minimum described by the convex problem here. We plot the output

of the network, which is the sum of all the neurons. We want to focus

on the activation point of each neuron.

[20]

1/m m

[21]

Training a network with 1000 neurons with big initial

values using gradient descent. The output of the

network is in blue, and the four data points (red

crosses) represent linear data. Each green triangle

represents one neuron with its activation point

horizontally, and its norm vertically. The orientation of

the triangle reveals which side the neuron will activate

the data. At initialization, the repartition of the activation

point is uniform. The movement of the activation point

is minimal, only a few neurons will change their

patterns, among the thousands.

Here, computing the convex optimal gives us a single neuron to �t

the linear data. While the non-convex problem has converged to very

low loss, their outputs are completely different.

Remark. A side effect of the large initialization is catastrophic

over�tting i.e. there are very large variations between data points

which will negatively impact test loss.

On very small initialization

At the other extreme, the small-scale setting effectively lets neurons

align themselves before ever decreasing the loss. In theory, if you

push the scale down enough, neurons will converge to a �nite set of

directions before trying to �t the objective.

Training a network with 1000 neurons with very small

initial values using gradient descent. The output of the

network is in blue, the four data points (red crosses)

represent linear data. Each green triangle represents

one neuron with its activation point horizontally, and its

norm vertically. The orientation of the triangle reveals

which side the neuron will activate the data. At

initialization, the repartition of the activation point is

uniform. However, as training progresses most neurons

that activate toward the right converge to . Once

the norm of the neuron at activating at is large

enough, the loss decreases and we quickly reach

convergence.

Taking a look at the loss on the same problem, we can identify the

two distinct regimes: alignment and �tting (then convergence).

Plot of the loss during gradient descent in the same

setting as the animation above. In the �rst half only the

directions of the neurons are changing (i.e. their

activation patterns), and start �tting the four data

points once their parameters are large enough.

If you take orthogonal data and a small scale, the behavior is very

predictable even in a regression setting.

Remark. Unless mentioned otherwise, all experiments were run using

full batch vanilla gradient descent. In experiments, it is clear that

adding momentum or using the Adam optimizer is much easier to

use on top of being faster to converge. However, the behavior is

much less predictable.

Conclusion

−1.3

−1.3

[9]

The main takeaway is that the best network for a given dataset can

be found exactly by solving a convex problem. Additionally, the

convex problem can describe every local minimum found by gradient

descent in the non-convex setting. However, �nding the global

optima is impossible in practice, and approximations are still costly in

precision. While there is no evident link between feature learning in

the non-convex and the convex reformulation, many settings allow

for a direct equivalence and the whole convex toolkit for proofs.

The performance side of the convex reformulation will bene�t from

dedicated software as has been the case for gradient descent in

deep networks. Only then will it offer a no-tuning alternative to costly

stochastic gradient descent. In smaller settings, it already allows us

to quickly �nd all the possible local minima that are so important in

machine learning.

Despite advancements in understanding the optimization landscape

of neural networks, a signi�cant gap persists in reconciling theory

with practical challenges, notably because of early stopping. In real-

world scenarios, networks often cease learning before reaching a

local minimum and this has a direct impact (in large-scale

initialization) but there are limited results.

Acknowledgements

This work is partly funded by the ANR JCJC project ANR-21-

CE23-0022-01.

Footnotes 1. The number of activation patterns is the same as the number of regions in a partition by

hyperplanes perpendicular to rows of and passing through the origin. This number of

region is bounded by with the rank of [↩]

2. We can however predict what (some of) the optimal solution will look like a spline

interpolation on each training sample . [↩]

X

[19] 2r(e (n−1)
r

)r

r X

[11]

http://localhost:4000/2024/blog/hidden-convex-relu/#d-footnote-1
http://localhost:4000/2024/blog/hidden-convex-relu/#d-footnote-1
http://localhost:4000/2024/blog/hidden-convex-relu/#d-footnote-2
http://localhost:4000/2024/blog/hidden-convex-relu/#d-footnote-2

References 1. Bounds on Over-Parameterization for Guaranteed Existence of Descent Paths in Shallow

ReLU Networks

Sharifnassab, A., Salehkaleybar, S. and Golestani, S.J., 2019. International Conference on

Learning Representations.

2. The Hidden Convex Optimization Landscape of Regularized Two-Layer Relu Networks: An

Exact Characterization of Optimal Solutions

Wang, Y., Lacotte, J. and Pilanci, M., 2021. International Conference on Learning

Representations.

3. A Convergence Theory for Deep Learning via Over-Parameterization

{Allen-Zhu}, Z., Li, Y. and Song, Z., 2019. International Conference on Machine Learning, pp.

242--252. PMLR.

4. Gradient Descent Provably Optimizes Over-Parameterized Neural Networks

Du, S.S., Zhai, X., Poczos, B. and Singh, A., 2018. International Conference on Learning

Representations.

5. Neural Tangent Kernel: Convergence and Generalization in Neural Networks

Jacot, A., Gabriel, F. and Hongler, C., 2018. Advances in neural information processing

systems, Vol 31.

�. On the Global Convergence of Gradient Descent for Over-Parameterized Models Using

Optimal Transport

Chizat, L. and Bach, F., 2018. Advances in neural information processing systems, Vol 31.

7. On Lazy Training in Differentiable Programming

Chizat, L., Oyallon, E. and Bach, F., 2019. Advances in neural information processing

systems, Vol 32.

�. Incremental Learning in Diagonal Linear Networks

Berthier, R., 2023. Journal of Machine Learning Research, Vol 24(171), pp. 1--26.

9. Gradient Flow Dynamics of Shallow Relu Networks for Square Loss and Orthogonal

Inputs

Boursier, E., {Pillaud-Vivien}, L. and Flammarion, N., 2022. Advances in Neural Information

Processing Systems, Vol 35, pp. 20105--20118.

10. Neural Networks Are Convex Regularizers: Exact Polynomial-Time Convex Optimization

Formulations for Two-Layer Networks

Pilanci, M. and Ergen, T., 2020. Proceedings of the 37th International Conference on

Machine Learning, pp. 7695--7705. PMLR.

11. The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to

Extreme Points of the Dual Convex Program

Wang, Y. and Pilanci, M., 2021. International Conference on Learning Representations.

12. Breaking the Curse of Dimensionality with Convex Neural Networks

Bach, F., 2017. The Journal of Machine Learning Research, Vol 18(1), pp. 629--681. JMLR.

org.

13. Vector-Output ReLU Neural Network Problems Are Copositive Programs: Convex Analysis

of Two Layer Networks and Polynomial-Time Algorithms

Sahiner, A., Ergen, T., Pauly, J.M. and Pilanci, M., 2020. International Conference on Learning

Representations.

14. Demystifying Batch Normalization in ReLU Networks: Equivalent Convex Optimization

Models and Implicit Regularization

Ergen, T., Sahiner, A., Ozturkler, B., Pauly, J.M., Mardani, M. and Pilanci, M., 2021.

International Conference on Learning Representations.

15. Parallel Deep Neural Networks Have Zero Duality Gap

Wang, Y., Ergen, T. and Pilanci, M., 2022. The Eleventh International Conference on Learning

Representations.

1�. Hidden Convexity of Wasserstein GANs: Interpretable Generative Models with Closed-

Form Solutions

Sahiner, A., Ergen, T., Ozturkler, B., Bartan, B., Pauly, J.M., Mardani, M. and Pilanci, M., 2021.

International Conference on Learning Representations.

17. Fast Convex Optimization for Two-Layer Relu Networks: Equivalent Model Classes and

Cone Decompositions

Mishkin, A., Sahiner, A. and Pilanci, M., 2022. International Conference on Machine Learning,

pp. 15770--15816. PMLR.

1�. E�cient Global Optimization of Two-Layer ReLU Networks: Quadratic-Time Algorithms

and Adversarial Training

Bai, Y., Gautam, T. and Sojoudi, S., 2023. SIAM Journal on Mathematics of Data Science, Vol

5(2), pp. 446--474. DOI: 10.1137/21M1467134

19. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications

in Pattern Recognition

Cover, T.M., 1965. IEEE transactions on electronic computers, pp. 326--334. IEEE.

20. Delving deep into recti�ers: Surpassing human-level performance on imagenet

classi�cation

He, K., Zhang, X., Ren, S. and Sun, J., 2015. Proceedings of the IEEE international conference

on computer vision, pp. 1026--1034.

21. Leveraging the Two Timescale Regime to Demonstrate Convergence of Neural Networks

Marion, P. and Berthier, R., 2023. arXiv.

For attribution in academic contexts, please cite this work as

Mercklé, et al., "The Hidden Convex Optimization

Landscape of Two-Layer ReLU Networks", ICLR Blogposts,

2024.

BibTeX citation

@inproceedings{mercklé2024thehiddenconvex,

 author = {Mercklé, Victor and Iutzeler, Franck and

Redko, Ievgen},

 title = {The Hidden Convex Optimization Landscape of

Two-Layer ReLU Networks},

 abstract = {In this article, we delve into the research

paper titled 'The Hidden Convex Optimization Landscape of

Regularized Two-Layer ReLU Networks'. We put our focus on

the significance of this study and evaluate its relevance

in the current landscape of the theory of machine

learning. This paper describes how solving a convex

problem can directly give the solution to the highly non-

convex problem that is optimizing a two-layer ReLU

Network. After giving some intuition on the proof through

a few examples, we will observe the limits of this model

as we might not yet be able to throw away the non-convex

problem.},

 booktitle = {ICLR Blogposts 2024},

 year = {2024},

 date = {May 7, 2024},

 note = {http://localhost:4000/2024/blog/hidden-convex-

relu/},

 url = {http://localhost:4000/2024/blog/hidden-convex-

relu/}

}

https://doi.org/10.1137/21M1467134
https://doi.org/10.1137/21M1467134

