
HAL Id: hal-04521242
https://hal.science/hal-04521242

Submitted on 26 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applying Fuzzy Logic to Efficiently Manage Shared
Edge Infrastructure

Tidiane Sylla, Mohamed Aymen Chalouf, Leo Mendiboure, Francine Krief,
Hasnaâ Aniss, Lylia Alouache

To cite this version:
Tidiane Sylla, Mohamed Aymen Chalouf, Leo Mendiboure, Francine Krief, Hasnaâ Aniss, et al..
Applying Fuzzy Logic to Efficiently Manage Shared Edge Infrastructure. 31th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2023)),
Dec 2023, Paris, France. �hal-04521242�

https://hal.science/hal-04521242
https://hal.archives-ouvertes.fr


Applying Fuzzy Logic to Efficiently Manage
Shared Edge Infrastructure

Tidiane Sylla 1, Mohamed Aymen Chalouf2, Leo Mendiboure 3 (IEEE Member), Francine Krief4, Hasnaa Aniss 3,
Lylia Alouache 5

1Dept. ISA-GEII,Univ. of Sciences, Techniques and Technologies of Bamako, Bamako, Mali (tidiane.sylla@usttb.edu.ml)
2IRISA Lab, University of Rennes 1, F-22300 Lannion, France

3COSYS-ERENA, Univ. Gustave Eiffel, F-77454 Marne-la-Vallée, France
4LaBRI Lab, Bordeaux INP, F-33000 Bordeaux, France

5ETIS UMR 8051 CNRS lab CY Cergy Paris University F-95000 Cergy, France

Abstract—Edge Computing promise a bright future for In-
ternet of Things (IoT). Edge Computing servers can be geo-
graphically distributed to be closer to users and ensure low
latency communications and real-time data processing for the
third-party applications using this infrastructure. However, user
mobility and limited Edge servers capabilities (CPU, memory,
bandwidth) may cause many services placement failures. That’s
why in this article we propose a new strategy aimed at enabling
a fair sharing of available Edge resources through a dynamic
and real-time IoT Service placement. Our strategy uses Fuzzy
Logic to enable 1) quick and low-cost deployment of the solution
and 2) real-time modification of the policies defined by the Edge
operator. It takes advantage, among others, of a microservice
decomposition to optimize the use of the Edge architecture.
Experiments demonstrate the benefits of our approach in terms
of placement reliability, execution time and resources utilization.

Index Terms—IoT, Edge Computing, Infrastructure Sharing,
Placement Strategy, Fuzzy logic, Utility function

I. INTRODUCTION

Internet of Things (IoT) has contributed to the improvement
of users’ daily life, business and industrial processes. The
connected devices collect and transfer large volumes of data
which are then processed and analyzed to provide efficient
services [1]. IoT services are classically deployed in Cloud
infrastructures resulting in long response times and non-
context-aware services [1]. That is why new data process-
ing architectures emerged: Edge Computing architectures [2].
They enable IoT data to be processed by third-party services
hosted at the network’s Edge, close to data sources, reducing
the applications delay as well as the bandwidth required to
transfer data to the Cloud. Edge Computing infrastructure is
composed of small data centers and includes heterogeneous
nodes with often limited bandwidth and computing resources:
Access Points, mobile phones, etc. The available resources
depend on the geographical area, time of day and users density.

Many IoT services are designed following the as-a-service
approach, where functional components are implemented by
microservices [3]. These microservices can be deployed on
different nodes of the Edge infrastructure depending on their
available resources [4] and according to the demands of the

various users of the infrastructure. The Edge Orchestrator auto-
mates and coordinates the management of Edge infrastructure
resources and the placement of IoT services.

Placing IoT services with user mobility and quality of
service (QoS) in mind is a challenging task [5]. That is
why, several strategies for dynamic service placement in Edge
infrastructures have been proposed in the literature [5]–[8].
However, the as-a-service approach is not considered even
though it could address dynamicity and flexibility issues in
Edge environments. In addition, these strategies need long
processing time and are not suitable for low-latency services.
These important limitations reduce the reliability of placement
strategies and could disrupt the operation of IoT services [4].

Thus, we propose, in this paper, a new Fuzzy Logic-based
strategy for dynamic and real-time IoT service placement in
Edge infrastructures. Based on our strategy, the orchestrator
will be able to obtain a placement for an IoT service after
a quick evaluation considering user mobility, nodes resources
availability, node end-to-end delay and data migration cost.
The proposed strategy considers every service as a set of
microservices to be placed. To the best of our knowledge, such
a resilient placement strategy, considering user’s mobility and
applications QoS, has not yet been proposed. This could be
an efficient tool for managing shared Edge infrastructure.

The rest of this paper is organized as follows. Section II
compares state-of-the-art approaches. Section III presents our
placement strategy. Section IV details the proposed algorithms.
Section V discusses the performance evaluation results while
comparing our solution to some relevant existing ones.

II. RELATED WORK

A. State-of-the-art strategies

Service placement approaches can be primarily categorized
into three classes: centralized, decentralized, and hierarchical
approach. Each class uses classical mathematics and meta-
heuristic optimization, fuzzy logic and ML approaches [9].

• Studies based on classical mathematics optimization [5]–
[8]: they mainly characterize the problem of dynamic ser-
vice placement at Edge nodes considering the constraints

https://orcid.org/0000-0002-3781-6973
https://orcid.org/0000-0001-6643-9567
https://orcid.org/0000-0002-9382-3123
https://orcid.org/0000-0001-7277-6682


Fig. 1: Proposed Edge Infrastructure architecture and scenario

of these nodes as a complex optimization problem.
The proposed strategies use the Lyapunov optimization
method [6], [8] or Integer Linear Programming method
[7] to optimize the dynamic placement of IoT services on
the Edge. They show significant results in terms of place-
ment reliability, QoS guarantee and energy consumption
[9]. However, they did not consider resource availability
and user mobility resulting in placement failure;

• Studies based on AI techniques [10]–[13]: these papers
aimed to propose a dynamic placement strategy that
considers the flexibility of Edge infrastructure resources.
They differentiated IoT services according to application
requirements (CPU, memory, bandwidth) and targeted an
efficient lightweight placement strategy. Several AI-based
techniques are used in this context: 1) fuzzy logic [11],
[14], 2) reinforcement learning [10] and 3) deep rein-
forcement learning [12], [13]. However, they have limita-
tions, in particular, they 1) propose workload distribution
methods and do not consider the as-a-service approach
(micro-service granularity), and 2) do not provide a re-
configurable system that considers the random mobility
of nodes.Therefore, the strategies based on distributed
approaches [15] may not be suitable for the placement
of delay and failure sensitive IoT services.

B. Positioning

Existing solutions do not consider: as-a-service property
(IoT service decomposition), post-placement IoT service and
the use of lightweight solutions. Thus, this paper proposes
a new Fuzzy Logic-based placement strategy to overcome
these limitations by: 1) considering user mobility, 2) estimat-
ing candidate nodes resources availability, 3) estimating data
migration cost and latency perceived by users, and 4) defining
a new algorithm for fast evaluation of instantaneous conditions
of Edge nodes to obtain a placement on one or many nodes.

III. FUZZY LOGIC-BASED PLACEMENT STRATEGY

A. Overview

The first idea is to predict the user’s destination area
based on its mobility and evaluate, in advance, the avail-
able resources in that area to orchestrate an efficient service

placement. To achieve that, our strategy requires information
from: Edge infrastructure (available resources), user devices
(perceived QoS) and Service Level Agreement (SLA) (re-
quired latency and bandwidth). Figure 1 illustrates the Edge
architecture in a Smart City use case: several Access Points
(AP) are deployed and connected to a set of Edge servers.

Our strategy is implemented through two algorithms: 1)
global placement strategy (Fig. 2.1) and 2) service blocks’
placement strategy (Algorithm 1). Global algorithm uses utility
functions to evaluate and rank potential destination areas based
on the SLA satisfaction degree. Service Block Algorithm
uses utility functions to rank the Edge nodes in an area
according to their ability to receive service blocks to be placed.
Subsequently, it uses fuzzy logic to determine whether service
blocks can be placed on one or several nodes while satisfying
the service constraints (see Section IV).

B. Mobility prediction

The smart city scenario considers users as pedestrians
following the nomadic mobility model [16] that can cause
frequent placement failures due to frequent needs to place
services when conditions are degraded [17]. To reduce this
frequent need for placement, we propose to form groups of
Edge nodes that are located within the same geographical
area and have close average delays. For example, access
points covering 3-4 city blocks with 40 ms average delay can
form a group. The problem of service placement considering
user mobility is a stochastic process, composed of random
variables with discrete evolution. The process is divided into
time intervals (ti) and states (si). In a state si, the service
is placed in a block on a single node, or in several blocks
on several nodes. Figure 1 illustrates the mobility of one user
in a smart city. A user typically follows a regular route (e.g.
going to work) and may exceptionally take other routes. The
mobility model enables determining from a mobile connected
to a base station controller the next station controller in the
area to which the mobile will be connected. To predict user
routes, Hidden Markov Model (HMM) is used.

C. Resources availability, delay and migration cost

The second step consists in selecting candidate Edge nodes
that can run the service. The nodes in the predicted area
are classified in terms of resources availability (CPU, RAM,
bandwidth) to identify those whose the available resources
exceed the threshold required to keep the entire service or
specific microservices running without failure. When candi-
date nodes are identified, the latency is evaluated to select
those having the lowest latency. Placement in the predicted
area is not relevant if none of the candidate nodes has a latency
that meets the service threshold. The orchestrator evaluates
whether to maintain the service on the nodes in the user’s
current area. The available bandwidth of an Edge node is used
to estimate the cost of data migration to determine candidate
nodes allowing optimal placement.



IV. PROPOSED STRATEGY ALGORITHMS

A. Algorithms description

The Edge orchestrator performs the main algorithm
(Fig. 2.1) whenever there is a placement request or if the con-
ditions of a running service degrade (e.g., latency). When user
is moving, the prediction of the user’s probable destination
areas is performed. Multiple probable destination areas can be
detected in addition to the current one. The proposed utility
function evaluates (compute a score) these areas according to
their conditions and ranks them in descending order. Areas
are then successively selected based on theirs scores and the
blocks placement algorithm is executed to place/migrate the
service. When no node in the selected area is able to receive
all the blocks of the service, these blocks will be placed
on several nodes according to theirs characteristics and the
service’s needs. Simultaneous placements on several nodes is
studied to find a suitable placement solution.

Algorithm 1 Fuzzy-based placement of a service’s blocks
Require: NA,SBw,SBlocks
Ensure: Result : The service is placed or not (True or False)

Compute the score of nodes N and rank them;
1: RankedN ← UtilityFunction(NA)
2: i← 1;
3: while Card(SBlocks) > 0 and i ≤ Card(RankedN ) do
4: N ← RankedN(i) ;
5: NCPULoad(N)← N CPU load;
6: NMemLoad(N)← N Memory usage ;
7: FLSRes← FLS(NCPULoad,NMemLoad,NBw

SBlocksLoad, SBw);
8: if FLSRes = V erygood or FLSRes = Good then
9: placedBlocks← PlaceSBlocksMax(FLSRes,

SBlocks, SBw,N);
10: else
11: if FLSRes = Medium then
12: placedBlocks← PlaceSBlocksMin(FLSRes,

SBlocks, SBw,N);
13: end if
14: end if
15: Remove placedBlocks from SBlocks;
16: i← i+ 1;
17: end while
18: if Card(SBlocks = 0) then
19: Result← True
20: else
21: Result← False
22: end if
23: return Result

Service Block’s Algorithm (Algorithm 1) takes as input
information about nodes of the selected area (NA), service
throughput (SBw), and service’s blocks (SBlocks). A second
utility function is then used to compute scores of all the
nodes of the NA area and rank them. For each node, starting
with the one with the highest score, available resources are
evaluated using a proposed Fuzzy Logic System (FLS) (see
Section IV-B). According to the FLS result, service blocks
are either all placed on a same node or successively placed
on the best nodes of the NA area. Based on FLS output and
service’s blocks information (memory: NMemLoad, processor:

NCPULoad, bandwidth: NBw, load per block: SBlocksLoad),
placements are performed using two functions: PlaceSBlocks-
Max and PlaceSBlocksMin. PlaceSBlocksMax function is
called when the placement of all the remaining service’s
blocks on one node is possible (FLS result=Very Good or
Good). PlaceSBlocksMin function is called, if needed (FLS
result=Medium), to place some service’s blocks according to
the nodes available resources (Fig. 2.2).

At the critical time, there may be no nodes that satisfy
the conditions for optimal placement in either case. When
placement fails in the Edge, the service is placed in the Cloud.

B. Proposed utility functions and Fuzzy Logic System

Utility functions are used to determine the satisfaction level
related to multi-criteria decision. Since the satisfaction degree
of a service placement in an Edge infrastructure depends on
the service constraints, we use utility functions to evaluate: the
utility of potential user destination areas as well as that of one
area’s nodes for service placement based on SLA constraints.

a) Utility functions: These functions are used to rank
potential destination areas and theirs nodes capabilities.

Ranking of the user’s predicted destination areas: Depend-
ing on the considered attributes nature, various utility functions
are used before computing the aggregate utility value [18].
We use the sigmoidal utility function to evaluate the utility
of latency and bandwidth, and the linear utility function to
evaluate the number of users. For a sigmoidal utility function,
parameter a represents the threshold, and b is used to adjust
the slope of the function. Area utility is defined by Equ. (1).

SNA = (
(l/lmin)

4

1 + (l/lmin)4
)× (0.5)× (

(bw/bwmin)
10

1 + (bw/bwmin)10
)

×(0.3)× 1 +
1

70
∗ n× (0.2)

(1)

Ranking of nodes in a selected destination area: Sigmoidal
utility functions are also used to evaluate the utility of a service
placement on a set of nodes in a selected area: CPU load,
memory usage, and available bandwidth. The aggregate utility
value of a node is defined by equation (2).

SN = (
(c/cmin)

4

1 + (c/cmin)4
)× (0.4)× (

(m/mmin)
4

1 + (m/mmin)4
)

×(0.4)× (
(b/bmin)

4

1 + (b/bmin)4
)× (0.3)

(2)

b) Fuzzy Logic Inference System: Our approach uses
Fuzzy Logic, a well-known AI technique for decision making
in intelligent IoT control systems [19]. The proposed FLS
takes as input service blocks and Edge nodes resources pa-
rameters to determine the performance level of a node (a
set of nodes) after placing the service’s blocks on it (them).
This allows our algorithm to make a placement decision:
all microservices on one node or blocks distribution on a
set of nodes. The considered parameters are: node’s CPU
load (CPULoad), memory usage (MemLoad), available node
bandwidth (Bw), load required for running service’s blocks
(SBlocksLoad) and service’s required bandwidth (Sbw). They
allow evaluation of node’s instant state and thus whether
this last is able to receive all (or a set of) service’s blocks.
These inputs are converted into linguistic terms (fuzzified). For



Fig. 2: 1) Fuzzy Logic-based placement strategy main algorithm; 2) Node quality membership function

example, Low, Medium and High (denoted respectively µLo,
µM and µHi in the provided equations) correspond to the
considered parameter’s ratio like available memory, whereas
Saturated and Not Saturated correspond to the use level of
a resource like bandwidth. The equations (3)-(18) define the
proposed fuzzy variables membership functions of our FLS.
The membership functions intervals values are defined for
each parameter and intervals boundaries, depending on the
system’s operational goals, are fixed on the basis of the Edge
infrastructure performance requirements [2], [14].

1) CPU Load (c):

µLo(c) =


1, c≤30%

30%−c
30%−10%

, 10%<c≤30%

0, c≥30%
(3)

,µM (c) =



0, c≤30%
c−55%

55%−30%
, 30%<c≤55%

75%−c
75%−55%

, 55%<c≤75%

0, c≥75%
(4)

µHi(c) =


0, c ≤ 70%

c−80%
95%−85%

, 85% < c ≤ 95%

1, c > 95%
(5)

2) Memory usage (m):

µLo(m) =


1, m≤30%
30%−m

30%−10%
, 10%<m≤30%

0, m≥30%
(6)

,µM (m) =



0, m≤30%
m−55%

55%−30%
, 30%<m≤55%

75%−m
75%−55%

, 55%<m≤75%

0, m≥75%
(7)

µHi(m) =


0, m ≤ 70%
m−80%

95%−85%
, 85%<m≤95%

1, m>95%
(8)

3) Bandwidth (ab in Mbps) :

µS(ab) =


1, ab≤30
50−ab
50−30

, 30<ab≤50

0, ab≥50

(9), µLo(ab) =


0, ab≤40
ab−80
80−40

, 40<ab≤80

120−ab
120−80

, 80<ab≤120

0, ab≥120
(10)

µM (ab) =


0, ab≤100
ab−240
240−100

, 100<ab≤240

440−ab
440−240

, 240<ab≤440

0, ab≥440
(11)

,µHi(ab) =


0, ab≤420
ab−540
540−420

, 420<ab≤540

1, ab≥540
(12)

4) Service’s blocks load (bl) :

µLo(bl) =


1, bl≤30%
30%−bl

30%−10%
, 10%<bl≤30%

0, bl≥30%
(13)

,µM (bl) =



0, bl≤30%
bl−55%

55%−30%
, 30%<bl≤55%

75%−bl
75%−55%

, 55%<bl≤75%

0, bl≥75%
(14)

µHi(bl) =


0, bl≤70%
bl−80%

95%−85%
, 85%<bl≤95%

1, bl>95%
(15)

5) Service bandwidth (sb in Mbps):

µLo(sb) =


0, sb ≤ 40
sb−80
80−40

, 40<sb≤80

120−sb
120−80

, 80<sb≤120

0, sb ≥ 120
(16)

µM (sb) =


0, sb≤100
sb−240
240−100

, 100<sb≤240

440−sb
440−240

, 240<sb≤440

0, sb≥440
(17)

,

µHi(sb) =


0, sb≤420
sb−540
540−420

, 420<sb≤540

1, sb≥540
(18)

Our fuzzy inference system uses the Mamdani model.
Fuzzy rules are used to determine nodes capabilities levels
(instantaneous conditions). For each rule (from Rule Base),
an associated implication, composed of an antecedent and a
consequent [19], is applied. The output of the fuzzy inference
system is a fuzzy variable (Low, Medium, Good) having also
a membership function (Fig. 2.2). The Rule Base proposed for
our FLS is composed of 243 rules. Table II extracts some of
the proposed rules (R1-R12).

The FLS evaluates rules, aggregates results before defuzzi-
fying these results to obtain the node quality (capabilities
level). Defuzzification consists in converting fuzzy output into
a crispy value using a defuzzification method (e.g. CoS: Center
of Sum, CoG: Center of Gravity and maxima methods). Our
proposed FLS uses the most suitable defuzzification method;
the CoG method implemented with Mamdani’s Min-Max in-
ference that has no interpolation effect. Equation (19) defines
the defuzzication process to obtain the node quality.

z∗ =
∑b

x=a µA(x) · x∑b
x=a µA(x)

(19)

The scenario detailed below illustrates the effectiveness
of the proposed FLS. Input parameters have the following
values: CPU load c=60%, RAM utilization m=45%, available
bandwidth ab=355 Mbps, required block load bl=45% and



required service throughput sb=150 Mbps. According to infer-
ence table, the inference system output, shown in Figure 4.1,
gives the following fuzzy output variable value: Medium that
corresponds to the crispy z* value.

V. PERFORMANCE EVALUATION

This section presents performance evaluation of the pro-
posed strategy compared to state-of-the-art strategies: i) re-
source utilization-based strategy and ii) Fuzzy Competitor-
based strategy [16]. The Fuzzy Competitor method employs
fuzzy logic to determine whether tasks should be performed on
an Edge or Cloud server, using bandwidth, data transfer size,
CPU speed, and delay as inputs for the FLS [14]. The fuzzy
utilization-based method prioritizes Edge server offloading if
VM CPU utilization is low. It aims at using Edge servers as
long as they are not overwhelmed by CPU utilization [14].

A. Experiment setup

Experiments were performed on EdgeCloudSim [16] that
enables building realistic Edge models since it supports: dy-
namic WLAN or WAN communication models, realistic load
generation, mobility models, etc. Simulations were performed
on a server configured with Ubuntu 20.04.5 LTS, Intel (R)
Xeon (R) Gold 5218R 2.10 GHz and having 80 cores, and
64GB RAM. Simulations parameters are listed in Table I.
In the considered scenario, smart city’s Edge servers were
uniformly distributed. Each area is managed by a nearby
datacenter and composed of at least one Edge server. Each
Edge server is composed of up to eight VM (Virtual Machine).
Each VM is able to perform several dozen tasks.

B. Results

TABLE I: Simulation parameters

Parameter Value
Datacenters 14
Edge servers per datacenter 4
VM per Edge/Cloud server 8/4
VM CPU core 2/4
VM RAM 2 Gbytes
Simulation time 33 minutes
WAN/WLAN bandwidth Empirical [16]
MAN bandwidth MMPP/M/1 [16]
Maximum number of mobile devices 2000
Probability of selecting a location type Equiprobable

Simulation results includes performance indicators of Edge
Computing systems as described in [8], [16], [17]:

a) Placement reliability rate: Since IoT applications are
highly dynamic (due to, among others, users mobility), the
placement failure ratio is a critical performance indicator.
Figure 3.2 shows the failure rate of the compared approaches.
When infrastructure is less loaded (under 600 devices), the
compared strategies have a fairly close placement failure
rate with a slightly lower one for resource utilization-based
strategy. This is due to the implementation of the Least
Load Algorithm when placing services. When infrastructure is
moderately or high loaded (respectively between 600 and 1400

or more than 1400 devices), our Fuzzy Logic-based placement
strategy has the most interesting failure rate (under 2%). This
can be explained by the fact that network connections’ state
and Edge servers resources availability are considered.

b) Placement failures distribution: Analysis of place-
ment failure rate distribution between Edge and Cloud servers
(Figures 3.3 and 4.1) indicates how the strategy manages
services placement requests depending on infrastructure load.
Placement failure rate on Edge servers for our strategy at very
high load (more than 1600 devices) is above 80%, whereas the
compared strategies have less than 50%. Regarding placement
failure rate on Cloud servers, utilization-based strategy has
the highest one (above 80%) against the lowest one for our
strategy (under 20%) in case of very high load.

TABLE II: Some inference rules for area best node selection

Rule CPU Memory B.W. B.L. S.Thr. N.Q.
R1 Low Low Low Low Low Good
R2 Low Low Medium Low Low Good
R3 Low Low High Medium High Good
R4 Medium Medium Saturated Medium Low Medium
R5 Medium Medium Low High Medium Low
R6 Medium Medium Medium Medium Medium Medium
R7 High High Low High High Low
R8 High High Saturated High High Low
R9 High High Medium Medium Medium Medium
R10 High Medium Low Medium Medium Low
R11 Medium High High Low Low Medium
R12 Low Low High High Medium Good
Legends : B.W.: Bandwidth, B.L: Service Blocks Load, S. Thr:

Service Throughput, N. Q:Node Quality

c) Average resource usage of Edge nodes: Edge servers
resources utilization rate is a key indicator of the efficient
use of Edge infrastructure. Figure 4.2 shows the average
utilization rate of Edge resources. When the system load is
low, studied strategies have similar Edge and Cloud utilization
rates. For higher load, utilization-based strategy has an Edge
resources utilization rate slightly lower than others. This is
due to the systematic placement of new services on Cloud
servers (Fig. 4.1) when Edge ones are loaded. It can then
cause more failures when WAN connections are congested
(Fig. 3.1). In contrast, our strategy has a better Edge resources
utilization rate even in case of high system load. The compared
strategies have fairly similar Edge nodes resources. This can be
explained by the ability of these strategies to take advantage
of the high availability of the MAN to place new services.
Thus, they can adapt to dynamic changes. Unlike the two other
strategies, our approach has a low Cloud utilization rate for
low/medium system loads (under 30% for up to 900 devices),
maintaining a high QoS level, as a high Cloud resources
utilization can result in a significant QoS degradation.

VI. CONCLUSION

Edge Computing enables to fully leverage ubiquitous sys-
tems such as IoT. In this paper, we proposed a novel Fuzzy-
based strategy for dynamic IoT service placement in shared
Edge infrastructure. It takes into account, among others, users



Fig. 3: 1) Selected node quality output; 2) Placements failure rate; 3) Services placement failure on Edge

Fig. 4: 1) Services placement failure in Cloud; 2) Edge servers resources usage; 3) Cloud servers resources usage

mobility and nodes available resources in order to fasten
placement process and minimize placement failure rate while
optimizing the use of available Edge resources. Performance
evaluation confirmed benefits of the proposed placement strat-
egy in terms of placement failure rate as well as Edge and
Cloud resources utilization rates. In future work, we plan to
extend the proposed solution by considering more complex
architectures integrating heterogeneous Edge domains.

REFERENCES

[1] T. Sylla, M. A. Chalouf, F. Krief, and K. Samake, “Context-Aware
Security in the Internet of Things: A survey,” International Journal of
Autonomous and Adaptive Communications Systems, no. 3, 2021.

[2] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A Survey on
Edge Computing Systems and Tools,” Proceedings of the IEEE, vol.
107, no. 8, pp. 1537–1562, Aug. 2019.

[3] T. Sylla, M. A. Chalouf, F. Krief, and K. Samaké, “Towards a context-
aware security and privacy as a service in the internet of things,” in
Information Security Theory and Practice. Springer, 2020.

[4] H. Tabatabaee Malazi, S. R. Chaudhry, A. Kazmi, A. Palade, C. Cabrera,
G. White, and S. Clarke, “Dynamic service placement in multi-access
edge computing: A systematic literature review,” IEEE Access, vol. 10,
pp. 32 639–32 688, 2022.

[5] I. Petri, O. Rana, A. R. Zamani, and Y. Rezgui, “Edge-cloud orches-
tration: Strategies for service placement and enactment,” in 2019 IEEE
International Conference on Cloud Engineering (IC2E), 2019.

[6] T. Ouyang, Z. Zhou, and X. Chen, “Follow Me at the Edge: Mobility-
Aware Dynamic Service Placement for Mobile Edge Computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, Oct. 2018.

[7] E. F. Maleki and L. Mashayekhy, “Mobility-aware computation offload-
ing in edge computing using prediction,” in 2020 IEEE 4th International
Conference on Fog and Edge Computing (ICFEC). Melbourne,
Australia: IEEE, May 2020, pp. 69–74.

[8] K. Lu, J. Song, L. Yang, G. Xu, and M. Li, “Dynamic Service Placement
Algorithm for Partitionable Applications in Mobile Edge Computing,”
in 2022 22nd IEEE International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). Taormina, Italy: IEEE, May 2022.

[9] L. Heng, G. Yin, and X. Zhao, “Energy aware cloud-edge service place-
ment approaches in the internet of things communications,” International
Journal of Communication Systems, vol. 35, no. 1, p. e4899, 2022.

[10] H. Gao, W. Huang, T. Liu, Y. Yin, and Y. Li, “Ppo2: location privacy-
oriented task offloading to edge computing using reinforcement learning
for intelligent autonomous transport systems,” IEEE transactions on
intelligent transportation systems, 2022.

[11] F. Tavousi, S. Azizi, and A. Ghaderzadeh, “A fuzzy approach for
optimal placement of IoT applications in fog-cloud computing,” Cluster
Computing, vol. 25, no. 1, pp. 303–320, Feb. 2022.

[12] S. Lu, J. Wu, J. Shi, P. Lu, J. Fang, and H. Liu, “A dynamic service
placement based on deep reinforcement learning in mobile edge com-
puting,” Network, vol. 2, no. 1, pp. 106–122, 2022.

[13] A. Talpur and M. Gurusamy, “Drld-sp: A deep-reinforcement-learning-
based dynamic service placement in edge-enabled internet of vehicles,”
IEEE Internet of Things Journal, vol. 9, no. 8, pp. 6239–6251, 2022.

[14] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy Workload Orchestration
for Edge Computing,” IEEE Transactions on Network and Service
Management, vol. 16, no. 2, pp. 769–782, Jun. 2019.

[15] Z. Nezami, K. Zamanifar, K. Djemame, and E. Pournaras, “Decentral-
ized edge-to-cloud load balancing: Service placement for the internet of
things,” IEEE Access, vol. 9, pp. 64 983–65 000, 2021.

[16] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environ-
ment for performance evaluation of edge computing systems: Edge-
CloudSim,” Transactions on Emerging Telecommunications Technolo-
gies, vol. 29, no. 11, p. e3493, Nov. 2018.

[17] K. Goel, A. Bhaumick, D. Kaushal, and S. Bagchi, “Reliability Anal-
ysis of Edge Scenarios Using Pedestrian Mobility,” in 2020 50th
Annual IEEE-IFIP International Conference on Dependable Systems
and Networks-Supplemental Volume (DSN-S). Valencia, Spain: IEEE,
Jun. 2020, pp. 61–62.

[18] G. Liang and H. Yu, “Network selection algorithm for heterogeneous
wireless networks based on service characteristics and user preferences,”
EURASIP Journal on Wireless Communications and Networking, vol.
2018, no. 1, p. 241, Dec. 2018.

[19] T. Sylla, M. A. Chalouf, F. Krief, and K. Samaké, “Setucom: Secure and
trustworthy context management for context-aware security and privacy
in the internet of things,” Security and communication networks, 2021.


	Introduction
	Related work
	State-of-the-art strategies
	Positioning

	Fuzzy Logic-based placement strategy
	Overview
	Mobility prediction
	Resources availability, delay and migration cost

	Proposed Strategy algorithms
	Algorithms description
	Proposed utility functions and Fuzzy Logic System

	Performance Evaluation
	Experiment setup
	Results

	Conclusion
	References

