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ABSTRACT

An aspect ratio 9.5 rectangular wing is articulated in revolving and translating motions at a 45� angle of incidence and Reynolds number
Re ¼ Oð300Þ. The effects of rotational (Coriolis and centripetal) accelerations and relative inflow velocity profile on vorticity transport within
the leading-edge vortex (LEV) system are independently investigated. For the range of displacements studied (180� rotation and correspond-
ing translational displacement), a stably attached leading-edge vortex (LEV) is observed when rotational accelerations and/or a linearly vary-
ing inflow velocity profile is present; however, the inflow velocity profile has a stronger effect on stability of the LEV. LEV vorticity
magnitude and lift are significantly augmented when both factors are included (i.e., the full revolving wing case). Vorticity transport analyses
are conducted in a planar control region two chords from the axis of rotation, where LEV stability is typically observed on revolving wings at
high incidence and at an equivalent spanwise position in the translating case. The fully revolving wing case exhibits a substantially larger
leading-edge shear-layer vorticity flux than the other cases, whereas Coriolis tilting makes little contribution to regulation of LEV strength. A
correlation is found between the spanwise convective flux and tilting flux contributions in all cases. Decomposition of the spanwise convective
flux term demonstrates that the two phenomena are kinematically linked and, together, define a new out-of-plane convective flux term that
captures the essence of the spanwise convective flux. The role of this term and the effect of rotational accelerations on it are examined.

https://doi.org/10.1063/5.0171240

I. INTRODUCTION

It is well established that revolving, rolling, or flapping of wings
or blades can have a profound effect on the development of stall and
the evolution of the leading-edge vortex (LEV) in a broad range of nat-
ural and engineered systems, such as aircraft propellers and rotors,
wind turbines, gas turbine blades, and biological or bio-inspired
fliers.1–5 On high-angle-of-attack aerodynamic structures, rotational
effects can stabilize leading-edge vortices (LEVs), often resulting in
higher sectional lift coefficients and greater force stability than similar
translating wings.5,6 At a given spanwise location, we define unstable
LEVs as those in which the vortex core is advected downstream, and
ceases to interact with the wing, and stable LEVs as those which
remain in proximity to the wing and perpetually influence the sectional
aerodynamic loads. This stabilizing effect is known to be governed by
each of the two primary attributes distinguishing rotating and translat-
ing wings: non-inertial accelerations in the rotating frame of reference
and spanwise variation of the relative inflow velocity.7 However, it is
not well understood how these two attributes affect transport of vortic-
ity within the LEV, which regulates the strength of the vortex system

and thereby may influence its stability on the lifting surface. A better
understanding of the relationships between rotational effects, transport
processes, and aerodynamic consequences will support the develop-
ment of reduced order models,8 the optimization of blade shape, and
the design of flow control strategies to optimize aerodynamic perfor-
mance.9,10 Furthermore, such a fundamental understanding of the
underlying physics of vortex stability may inspire new design strategies
for translating wings that are more robust to unsteady flow phenom-
ena such as gusts.

The present study seeks to further elucidate the flow physics gov-
erning LEV evolution on rotating bodies by independently investigat-
ing the effects of the inflow velocity gradient and non-inertial
accelerations on flow evolution, sectional lift performance, and vortic-
ity transport. In particular, we seek to better understand to what extent
these rotational effects influence the attachment of the vortex through
the spanwise draining of vorticity from the LEV.11,12 To achieve the
comparison, we investigate two rotating cases and two translating
cases. In each category, one case incorporates a uniform inflow velocity
and the other, a linearly varying inflow velocity. A vorticity transport
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framework is employed to help quantify the growth of the vortex sys-
tem and to elucidate the influences of the rotation attributes.

II. BACKGROUND

The source of increased sectional lift for revolving wings has been
attributed to multiple unsteady phenomena; however, a primary con-
tributor is the LEV, as summarized in the reviews by Eldredge and
Jones5 and Chen et al.13 Ford and Babinsky14 demonstrated that, for
an impulsively started translating wing, the LEV contained the major-
ity of the total circulation about the wing. Also looking at impulsively
started translating wings, Jardin et al.15 empirically related the sectional
lift coefficient with LEV circulation and the proximity of the LEV to
the wing surface.

Biological flyers have been a primary inspiration for studies of
LEV behavior. Lentink and Dickinson3 visualized the flow field over a
model fruit fly wing and demonstrated LEV dependence on rotational
motion where LEV stability was attributed to rotational accelerations.
This was further elucidated by the same authors,16 who used theoreti-
cal analysis and flow visualizations to argue that both Coriolis and cen-
tripetal accelerations are important. Likewise, the centripetal
acceleration number and the Rossby number (representing Coriolis
accelerations) were shown to be relevant to a variety of flapping and
spinning wing scenarios. Sufficiently small local Rossby numbers—
proportional to spanwise distance from the rotation axis—were found
to create suitable conditions for LEV stability, such that the LEV is
more stable close to the root of a revolving wing. Lentink and
Dickinson16 proposed that spanwise flow on the wing, caused by cen-
tripetal acceleration, results in an upstream Coriolis acceleration,
which stabilizes the vortex. However, Garmann et al.17 computed a
Coriolis force within the fluid over a revolving wing of aspect ratio one
and demonstrated that the wing-normal component actually pointed
away from the wing, promoting detachment.

Jardin18 provided further insight into the role of Coriolis accelera-
tion on LEV stability for an aspect ratio 9.5 rectangular wing, on which
a stable LEV was observed over the inboard region at Re 2 ½100; 750�
(where the Reynolds number is based on the wing chord and mid-
span velocity). By artificially increasing the relative contribution of the
Coriolis term in the Navier–Stokes equation, Jardin18 was able to move
the LEV instability point further outboard; however, at Reynolds num-
bers below 200, it was shown that Reynolds number more strongly
influenced LEV stability. It was additionally noted that greater Coriolis
accelerations increased spanwise flow within the LEV core, supporting
the claim that spanwise flow promotes LEV attachment. Jardin and
Colonius19 used a numerical simulation to demonstrate that local
Rossby numbers could be utilized to predict the salient flow features
over a revolving wing, where lower Rossby numbers near the root of
the wing promoted a stably attached LEV as the Coriolis effects domi-
nate. Additionally, the root effects were studied by varying root cutoffs,
where increasing the radial position of the wing root led to a conical
LEV structure near the root even at Rossby numbers that demon-
strated LEV detachment with smaller root cutoff.

The effect of inflow shear profile on LEV behavior was numeri-
cally studied by Jardin and David,7 in which a rectangular planform
wing was simulated with and without an inflow velocity gradient pre-
sent. It was shown that the spanwise inflow gradient, viscous effects,
and rotational accelerations (in the case of a revolving wing) all con-
tributed to LEV attachment at low Reynolds numbers (Re � 100).
Spanwise flow was enhanced by the presence of the inflow velocity

gradient, and it was suggested that the spanwise inflow gradient was
solely sufficient to sustain LEV attachment over small flapping ampli-
tudes (i.e., up to approximately h¼ 120�). However, it did not signifi-
cantly alter the lift coefficient of the wing in comparison with pure
translation.

Stability of the LEV has often been understood, in part, as the
result of transport phenomena, which act to limit the growth of the
vortex, and thus prevent it from shedding after reaching a threshold
size. Spanwise convection of vorticity in the core of the vortex has been
postulated as one of these limiting mechanisms, in which the spanwise
flow drains circulation from the vortex, through the tip vortex and into
the wake.11,12,20,21 However, spanwise gradients in LEV circulation
must also be present for the phenomenon to be effective.22 For exam-
ple, Wong et al.23 showed that spanwise flow could strengthen or
weaken the vortex depending on the sign of the spanwise vorticity gra-
dient. Jia et al. found that spanwise bending altered the spanwise con-
vective flux (SPCF) such as to delay LEV growth.10

Nevertheless, spanwise transport of vorticity does not appear to
be ubiquitous on revolving wings, nor necessary to maintain attach-
ment of the leading-edge vortex. For example, Birch and Dickinson24

found that blocking spanwise flow by applying chordwise fences to a
revolving wing had little effect on vortex development. Chen et al.25

investigated the starting rotation of an aspect ratio 4 wing at Re¼ 1500
and observed that spanwise convection of vorticity was only significant
relatively early in the rotation and suggested that it may not be impor-
tant for steadily revolving wings. Eldredge and Jones5 derived a vortic-
ity transport budget from which the spanwise convective flux vanishes
identically. Other studies26,27 found that the influence of spanwise con-
vective flux on vortex circulation is often unimportant.

Derivation of a comprehensive vorticity transport budget pro-
vides a means of tracking not only the role of spanwise flow on vortex
circulation (if any), but also identifies other sources and sinks of circu-
lation governing its growth or decay. Such analyses typically reveal a
significant role of the diffusive vorticity flux from solid surfaces due to
pressure gradients, which typically leads to entrainment and cross-
cancellation with the primary vortex.28,29 Acharya and Metwally30

showed, experimentally, that the diffusive flux is primarily active near
the leading edge on a pitching airfoil. This interaction can have a sub-
stantial effect on the strength of the LEV. Shih and Ho31 used an
order-of-magnitude vorticity transport analysis to show that the diffu-
sive contributions are on the same order of magnitude as the convec-
tive contributions during the formation of a dynamic stall vortex on an
unsteady airfoil. More recent measurements of leading-edge vortices
on lifting surfaces have quantitatively verified this assertion.26–28,32 For
example, Panah et al.28 found the secondary vorticity flux on a plung-
ing plate to be approximately half that of the leading-edge shear-layer
flux.

From their own analyses and a review of the literature, Eldredge
and Jones5 concluded that interaction with the surface, as well as tilting
of vorticity, is the primary means of vortex weakening, leading to the
stabilization of leading-edge vortices on revolving wings. Specifically,
they noted that the rotational motion of the wing induces a component
of vorticity parallel to the rotation axis (as observed from an inertial
coordinate system) that is tilted into the spanwise direction by the
radial shear flow. This mechanism, which they dubbed Coriolis tilting,
resulted in spanwise vorticity opposite to that in the LEV, thus weak-
ening it. Werner et al.33 verified the process through numerical
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simulations and attributed the tilting to a vertical gradient of Coriolis
acceleration. In contrast, Wabick et al.34 found the Coriolis tilting con-
tribution to be negligible on a wing rolling in a uniform flow, in com-
parison with other mechanisms of vorticity transport.

This study seeks to further elucidate the role of inflow velocity
profile and rotational accelerations on leading-edge vortex develop-
ment by invoking a vorticity transport framework developed by
Wabick et al.34 to understand how these two factors influence the
fluxes of vorticity that govern the strength of the vortex system. A
rectangular planform wing of aspect ratio AR¼ 9.5 is articulated in
rotational and translational motions to isolate the effects of rota-
tional accelerations, and inflow velocity gradients are systematically
introduced to isolate their specific effects on LEV behavior. The
large aspect ratio is used to mitigate tip effects. The case configura-
tions are described in Sec. III, and details of the numerical scheme
are given in Sec. IV. The vorticity transport analysis, which is
described in Sec. V, is conducted in a plane located two chord
lengths from the axis of rotation in the rotating cases—or 1.5 chord
lengths from the wing root—and, correspondingly, 1.5 chord
lengths from one end of the translating wings, due to the promi-
nence of rotational effects within a few chord lengths of the rotation
axis. A Reynolds number of 300 at the interrogation plane is investi-
gated, which is relevant to small biological swimmers and flyers, and
minimizes computational complexity while remaining sufficiently
large to exhibit rotational effects that are robust through much
larger Reynolds numbers.18 To provide context for the analysis, the
structures of the global flow fields and the spanwise vorticity and
velocity fields are first presented in Sec. VI A, and sectional lift coef-
ficients are discussed in Sec. VI B. The modes of vorticity transport
for each of the cases are quantified and discussed in Sec. VI C.
Motivated by observations of symmetry in the transport modes, a
new form of the vorticity transport equation is introduced in Sec.
VID, leading to a new interpretation of the spanwise convective and

tilting vorticity transport terms. In Sec. VI E, the four cases are reex-
amined in the context of the new vorticity transport terms identified
in Sec. VID.

III. PROBLEM SETUP

Four cases are considered with varied aspects of rotational
motion, as summarized in Fig. 1. In all cases, the wing is held station-
ary in the domain and rotational effects are systematically introduced
by including or excluding Coriolis and centripetal accelerations in the
Navier–Stokes equations and incorporating either a uniform or line-
arly varying inflow velocity profile, as illustrated in Figs. 1(c) and 1(d).
Two cases (A and C) are studied in a cylindrical domain [Fig. 1(a)]
with azimuthal flow and Coriolis and centripetal accelerations
included in the Navier–Stokes equations. The other two cases (B and
D) are studied in a rectangular domain [Fig. 1(b)] with no rotational
accelerations.

Case A, therefore, represents purely rotational motion, with an
approach velocity that varies linearly with the distance from the axis of
rotation and rotational accelerations included within the
Navier–Stokes equations. Case B implements the same inflow velocity
profile on the translating wing (where there are no Coriolis and cen-
tripetal accelerations). Cases C and D mirror cases A and B except that
the inflow velocity is uniform along the span. Therefore, case D repre-
sents true translation of the wing in a quiescent fluid, and cases B and
C are hybrid cases.

A rectangular planform wing of aspect ratio AR¼ 9.5 was simu-
lated in each case. In the rotating-wing cases, the wing revolved about
an axis perpendicular to the span and intersected the mid-chord. A
root cutout of 0:5c (where c is the chord length of the wing) was used,
resulting in a wing tip trajectory radius of R ¼ 10c. The wing thickness
is 0:04c, with sharp leading and trailing edges.

The wing was impulsively started and rotated through a revolu-
tion angle of h¼ 180�, at a pitch angle of a¼ 45�, far exceeding the

FIG. 1. The computational domains, inflow
velocity profiles, and coordinate defini-
tions: (a) Annular domain for cases A and
C; (b) rectangular domain for cases B and
D; (c) wing detail for cases A and C illus-
trated with the linearly varying inflow
velocity profile applied to cases A and B;
and (d) wing detail for cases B and D illus-
trated with the uniform inflow velocity pro-
file applied to cases C and D.
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stall angle for the corresponding 2D wing. Most of the analyses in this
study were conducted at a radial location of r=c ¼ 2 (where r is the
distance from the rotation axis and c is the wing chord), where prior
studies have shown that rotational effects are strong, resulting in a
locally attached LEV. The non-dimensional displacement of the wing,
d, is normalized by the wing chord. In the rotating cases, the displace-
ment is measured at r=c ¼ 2 such that d ¼ hr=c ¼ hð2cÞ=c ¼ 2h
(rad.). The corresponding values of d and angular displacement, h, for
rotating wings are presented in Table I.

The two translational cases were defined such as to match the
inflow velocity at r=c ¼ 2 of the rotating cases, as well as the inflow
velocity gradient and angle of attack. Thus, the cases with uniform and
linearly varying inflow velocity profiles have the inflow velocities
matched at 1.5 chord lengths from the wing root (i.e., the end of the
wing near the domain boundary), such that the chord-based Reynolds
number is Recðr=c¼2Þ ¼ 300.

In the rotating cases, a global cylindrical coordinate system is
defined with the Y axis coincident with the rotation axis, r in the radial
direction, and h in the azimuthal direction, as illustrated in Fig. 1(a). In
the subsequent discussion, h is used to characterize the progression of
wing rotation. The vector r, shown in Fig. 1, denotes position in the
domain. The domain is annular with an inner radius of 0.25c to avoid
discontinuity in the flow field in case C (which would exist at the rota-
tion axis for a more conventional right circular cylinder shape). The
wing maneuvers are simulated by holding the wing stationary and sub-
jecting it to a circumferential velocity field with either a uniform or lin-
early varying velocity profile uh (i.e., uh ¼ U or uh ¼ Xr, where U is
the constant inflow velocity and X ¼ 15:67 rad/s is the equivalent
wing rotation rate).

In the translating cases, a global rectangular coordinate system is
defined, with the wing oriented along the Z axis and inflow velocity in
the positive X direction, as illustrated in Fig. 1(b). Again the wing is
held stationary and subjected to the same inflow profiles as for the
revolving cases. The root of the translating wing is located 0.5c away
from the sidewall of the domain to match the 0:5c root cutout in the
revolving case. We further note that the spanwise Z direction in the
rectangular domain corresponds to the radial direction (r) in the annu-
lar domain such that the extent of both domains in the spanwise direc-
tions is consistent (with a length equal to 30c). For short simulation
times as those considered here (i.e., shorter than a rotation period), the
wake in cases A and C mainly advects in the azimuthal direction, while
it advects in the positive X direction in cases B and D. Because h is not
bounded, there is no direct correspondence between the extent of the
circular domain in the azimuthal direction and that of the rectangular
domain in the X direction. For very large simulation times, the wake in
cases A and C would advect in both the azimuthal and negative Y
directions due to the vertical induced downwash. Accordingly, the
extent of the circular domain in the Y direction is set to be consistent
with that of the rectangular domain in the X direction (with a length

equal to 40c in both domains). However, we stress that the dimensions
of the domains are set such that the results do not depend on the loca-
tion of the far-field boundary conditions.

Although cases B and C are hybrid rotating/translating cases that
can be used to elucidate the individual effects of rotational accelera-
tions and inflow velocity profile on flow structure, aerodynamics, and
vorticity transport, it is important to note that case C contains addi-
tional artifacts. Specifically, the circumferential motion of the flow
within the domain, with uniform azimuthal velocity profile, results in
the radial pressure distribution shown in Fig. 2, in contrast to cases A,
B, and D, in which the pressure is uniform in undisturbed regions of
the domain. The theoretical pressure distribution shown in Fig. 2 is a
solution to the Navier–Stokes equation in the cylindrical domain with
the prescribed azimuthal velocity field. It should be noted that the
pressure gradient within the wing tip radius (r=c ¼ 10) is small,
increasing further outboard. For case C at r=c ¼ 2:0, the spanwise
pressure gradient induced within the LEV generally exceeds the radial
pressure gradient by two orders of magnitude. Second, the uniform
azimuthal flow field uh ¼ U is rotational, resulting in the background
vorticity fieldxZ;BG

xZ;BG ¼ 1
r
@ðruhÞ
@r

� 1
r
@ur
@h

¼ uh
r
¼ U

r
: (1)

The background vorticity is 125.4 rad/s at the domain inner
boundary and drops to 62.7 rad/s at the wing root and 3.13 rad/s at the
wing tip. It is 15.7 rad/s at r=c ¼ 2, where most of the analysis is con-
ducted in this paper. In contrast, the peak vorticity value over the wing
is on the order of 800 rad/s at r=c ¼ 2. The background vorticity for
the true revolving wing (case A) is constant:xZ;BG ¼ 2X.

IV. NUMERICAL SCHEME

The flow is computed by directly resolving the three-dimensional
incompressible Navier–Stokes equations on annular and rectangular
domains shown in Fig. 1. For cases A and C where the annular domain
is used, the equations are solved in the non-inertial reference frame of

TABLE I. Wing displacement correspondence, expressed in terms of azimuthal dis-
placement h (rotating wing) and tangential displacement d (rotating and translating
wings).

h (deg) 5 30 60 90 120 180

d 0.175 1.05 2.09 3.14 4.19 6.28

FIG. 2. Radial pressure distribution in case C. The analytical solution for uniform
azimuthal velocity uh ¼ U is pðrÞ ¼ qðU2 lnðrÞ þ X2 r2

2 þ 2XUrÞ þ C.
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the wing where the Coriolis (2X� u) and centrifugal (X� ðX� rÞ)
terms apply and hence read

@u
@t

þ u � ru ¼ � 1
q
rp�X� ðX� rÞ � 2X� uþ �r2u: (2)

In Eq. (2), t is the time,X is the wing rotation rate, and the variables u,
p, q, and � are the fluid velocity, pressure, density, and kinematic vis-
cosity, respectively. For cases A and C, centripetal and Coriolis acceler-
ations were computed using the rotation rate, X. For cases B and D
where the rectangular domain is used, the Coriolis and centrifugal
terms do not apply.

A cell-centered finite volume method (StarCCMþ v13.04) is used
to solve the momentum and continuity equations in an uncoupled
way, using a predictor-corrector approach. A variable arrangement
and a Rhie-Chow-type pressure–velocity coupling combined with a
SIMPLE-type algorithm are employed. Second-order schemes are used
for both spatial and temporal discretizations. The numerical method is
further detailed in the works by Demird�zi�c and Muzaferija.35,36

The annular domain has an outer diameter of 60c and height of
40c, spatially discretized into 25 � 106 Cartesian cells. The cells are
trimmed to fit the wing and the far field boundary surfaces. The typical
grid spacing in all three dimensions and in the vicinity and wake of the
wing is equal to 0:02c. Specifically, the refined wake region extends
approximately 6c, 1:2c, and 90� in the radial, vertical, and azimuthal
direction, respectively, beyond which the grid spacing progressively
relaxes to 1c at the far-field. The far-field boundary condition (includ-
ing the inner surface of the annular domain) is treated as a Dirichlet
velocity condition and the wing is modeled as a fixed, no-slip surface.
The far-field condition, combined with the initial velocity condition,

effectively enforces the incoming velocity to be that shown in Fig. 1.
The wing motion is temporally discretized into 360 time steps.

The rectangular domain has a length of 40c, a width of 30c, and a
height of 20c. It is discretized into 26� 106 Cartesian cells with similar
grid spacings as used for the annular domain. Here, the refined wake
region extends 6c, 1:2c, and 13:5c in the spanwise, vertical, and stream-
wise directions, respectively. Again, the far-field and the wing are
treated as Dirichlet velocity condition and fixed, no-slip surface, respec-
tively. The wingmotion is temporally discretized into 360 time steps.

Figure 3(a) displays the sectional lift coefficient cl as a function of
d obtained in case A at r=c ¼ 2 (i.e., radial location considered
throughout the paper) for three different typical grid spacings with
Dx ¼ 0:01c (190 � 106 cells), 0:02c (25 � 106 cells), and 0:04c (3
� 106 cells). While large differences exist between the coarse (0:04c)
and base (0:02c) size grids, base and fine (0:01c) size grids yield similar
results, with differences on the mean lift and maximum differences on
the instantaneous lift below 1% and 1.5%, respectively. Figure 3(b) dis-
plays spanwise vorticity isolines (non-dimensional value equal to�10)
obtained for the three grids. Again, base and fine size grids are found
to yield very similar flow topology. Figure 3(c) depicts the topology of
the homogeneous hexahedral mesh around and in the wake of the
wing for Dx ¼ 0:01c, together with spanwise vorticity contours.
Moreover, increasing the temporal resolution of the base size grid by a
factor of 2 (i.e., from 360 to 720 time steps to discretize the motion)
did not significantly change the results, with differences on the mean
lift and maximum differences on the instantaneous lift below 0.1% and
0.5%, respectively.

Finally, for completeness, results obtained using the present
approach are compared with those from Ref. 17 for an aspect ratio

FIG. 3. Influence of grid spacing on (a)
sectional lift coefficient and (b) vorticity
isolines obtained at r=c ¼ 2 in case A.
The homogeneous hexahedral mesh in the
vicinity and wake of the wing and spanwise
vorticity contours are depicted in (c).
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one, revolving wing. The Reynolds number based on the wing chord
and wing speed at midspan is 500, i.e., comparable to that used in the
present paper. Spatial and temporal resolutions are similar to those
used thereafter (2p=720 rotation per time step and Dx ¼ 0:02c).
Results are shown in terms of (global) time-averaged lift and drag coef-
ficients in Fig. 4. Very good agreement is observed between both
datasets.

V. VORTICITY TRANSPORT FRAMEWORK

The sources and sinks of vorticity contributing to the growth of
the LEV system on the wing were quantified using a vorticity transport
analysis within a planar control region adjacent to the suction surface
of the wing, as shown in Fig. 5. The coordinate system fixed to the
wing (which is non-inertial in the rotating cases) is illustrated in Fig. 5,
where the x axis is in the chordwise direction, the y axis is normal to
the wing, and the z axis is positive inboard for the rotating cases and as
shown in Fig. 1 for the translating cases.

The present paper utilizes and advances the transport framework
derived by Panah et al.28 and extended to a non-inertial, rotating

reference frame by Wabick et al.34 The rate of change of circulation,
with constant-reference-frame angular velocity X ¼ ðXx;Xy;XzÞ, is
given by

dC
dt

¼ �
þ
@Az

u � n@Að Þxz ds�
ð
Az

uz
@xz

@z

� �
dA

þ
ð
Az

xx
@uz
@x

þ xy
@uz
@y

� �
dAþ 1

q

ð
bound 4

@p
@x

þ X2
yx

� �
dx

�
þ
@Az

u � n@Að Þ2Xz dsþ
ð
Az

2 Xx
@uz
@x

þ Xy
@uz
@y

� �
dA:

(3)

The velocity and vorticity values presented in Eq. (3) are repre-
sented in the non-inertial frame fixed to the wing. The first term on
the right-hand side of Eq. (3) describes the in-plane convection across
the control region boundaries (IPCF). This includes the shear-layer
flux which is the primary source of LEV circulation. If the LEV is sta-
ble, there is negligible in-plane convective flux of circulation across
boundaries 2 and 3, such that the shear-layer contribution dominates
the IPCF. The second term describes the contribution due to the span-
wise convective flux (SPCF), or transport due to the convection of vor-
ticity in the direction normal to the plane of the control region. The
third term describes the contribution due to the tilting of free vorticity
captured within the non-inertial reference frame. Although vorticity
tilting cannot affect the strength of a vortex tube surrounded by invis-
cid fluid, it can make a finite net contribution here due to the continu-
ous distribution of vorticity and finite extent of the control region. The
fourth term, which is only evaluated on boundary 4 (the surface of the
wing), approximates the diffusive flux of vorticity from the surface.
Diffusive and turbulent transport are neglected in this analysis, except
on the surface of the wing (boundary 4), where diffusive transport
dominates.

The third line of Eq. (3) contains terms related to Coriolis acceler-
ations (�2X� u) in the non-inertial reference frame attached to the
revolving wing. The fifth term is identically zero for the cases examined
in this study, since Xz ¼ 0. However, it has the same form as the IPCF
and, therefore, can be interpreted as a correction to the IPCF measured
within the non-inertial reference frame due to the apparent solid-body
rotation introduced by a rotation of the reference frame about an axis
normal to the control region. The final term is the Coriolis tilting term.
The physical and Coriolis tilting terms will be further analyzed and
interpreted in Sec. VID.

Prior to computing the terms of Eq. (3), the computed pressure
distribution and velocity vectors in chordwise planes were linearly
interpolated onto a Cartesian grid rotated 45� such that the grid was
aligned with the wing chord. The interpolation was conducted sepa-
rately above and below the wing in order to prevent interpolation
across the solid body. The resulting data sets were smoothed using a
3� 3� 3 box filter, except for points on the wing surface, before join-
ing the top and bottom portions. Derivatives were computed numeri-
cally using second-order centered finite differences, and integrals were
computed using rectangular integration. The final resolution of the
grid was 0.02c in the x and y directions and 0.1c in the z direction.

Other studies employ either a rectangular control region of
smaller chordwise extent, such as to contain only the LEV sys-
tem,28,32,34 or a control region with boundaries that conform to the
vortex.5,26,27 In the present work, a rectangular control region was

FIG. 4. Time-averaged lift and drag coefficients obtained for an aspect ratio 1,
revolving wing using the present approach and reported in Ref. 17.

FIG. 5. The planar control region (red box) in which the vorticity transport analysis
is conducted.
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selected to capture the diffusive flux of vorticity generated on the suc-
tion surface of the wing, and its size results from a compromise
between exclusion of the trailing-edge vortex (TEV) and maximum
inclusion of the LEV (which is unstable in some cases). Since our
objective is to characterize the sources of circulation governing the
strength of the LEV system, the upstream boundary is placed at the
leading-edge, capturing the transport of vorticity into the structure via
the shear layer. A small region of the shear layer is not captured within
the control region; its circulation is typically approximately 20% of
that inside the control region when the LEV resides within the control
region, for the cases examined in this study. Boundaries 2 and 3 are
placed to mitigate interaction with the TEV while still containing the
stable LEV structure, with Boundary 2 lying one chord above the wing
surface and Boundary 3 lying 0.9 chords from the leading edge. Since
this study focuses on LEV stability, control region boundaries are
placed to be most meaningful when the LEV is stably attached. While
the definition of the control region does not affect the validity of Eq.
(3), it can have some effect on the magnitudes of the terms, and these
effects are discussed in Sec. VIC.

VI. RESULTS
A. Flow structure

In this section, we examine the effects of independently including
or excluding inflow velocity gradient and rotational accelerations on
the global flow structure, the evolution of the vorticity field in a chord-
wise plane near the wing root, and spanwise flow over the suction sur-
face of the wing. Specifically, their influences on global flow patterns,
distribution of spanwise vorticity, lift force, and vorticity transport
mechanisms are discussed.

1. Global flow patterns

Figure 6 (Multimedia view) contains three-dimensional volume
renderings of dimensionless vorticity magnitude x� ¼ xc=uh;ðr=c¼2Þ
[where x is the vorticity magnitude, uhðrÞ is the azimuthal inflow
velocity, and r is the distance from the center of the domain and wing
rotation axis], for each of cases A–D. In the translational cases, the
same velocity scale is used as for the rotational cases. A comparison of
the four cases in Fig. 6 demonstrates that inflow velocity profile and
rotational accelerations individually have a significant impact on flow
structure at different times during the wing rotation.

At d ¼ 0:349, the leading-edge, trailing-edge, and tip vortices are
visible on the wing for all four cases, but the effects of velocity gradient
are already apparent as spanwise variability in the sizes of the LEVs
and TEVs is clearly evident. By d ¼ 1:05, a striking disparity between
the variable inflow and uniform inflow cases has developed, such that
the chordwise convection of the LEV and TEV structures varies signifi-
cantly over the span of the wing, and the LEV is beginning to form an
arch structure over the outboard region of the wing for cases A and B.
The flow is much more uniform along the span for cases C and D.
Importantly, the differences in the rendered vorticity fields between
cases A and B, and between cases C and D, are very minimal, sugges-
ting that rotational accelerations have little influence on the early evo-
lution of the flow.

By d ¼ 2:09, conical LEV structures are clearly evident for cases
A and B, further demonstrating dominance of the inflow velocity pro-
file on the early development of the LEV. Over the outboard region of
the wing, multiple LEV structures have formed and shed, resulting in

apparent bifurcations of the LEV structure around the 30% spanwise
position. Similar shedding occurs for cases C and D, but the evolution
is more uniform over the span of the wing.

At d ¼ 3:14, the attached conical LEV is evident over the inboard
third of the wing for case A. Outboard of that region, shed vortices are
nearly perpendicular to the leading edge. The inboard LEV behavior is
consistent with other observations in the literature for regions suffi-
ciently close to the axis of rotation.16,37,38 Case B, which lacks the rota-
tional accelerations, exhibits similar stability although the inboard LEV
has become larger, distinguishing the two cases. This suggests that
rotational accelerations become important later in the maneuver.
Jardin and David7 also found that an LEV formed in the presence of
rotational accelerations and inflow velocity gradient was more compact
than one formed with only the inflow velocity gradient and suggested
that the velocity gradient is a key contributor to maintaining a strong,
attached LEV for shorter stroke lengths. Periodic shedding of the LEV
and TEV system is apparent in both cases C and D. By d ¼ 4:19, insta-
bilities have grown on the LEV structures, which somewhat obscures
the large-scale topology; however, cases A and B are clearly distinct
from C and D, maintaining compact, attached, conical LEVs in the
inboard region of the wing. Figure 6 (Multimedia view) demonstrates
periodic shedding of the LEV in case D.

2. Spanwise vorticity distributions

The visualizations of the 3D vortex structures discussed in Sec.
VIA1 indicate that rotational accelerations are most active later in the
rotation, while inflow velocity gradients are important throughout the
rotation. The differences between the cases are greatest for the inboard
regions of the rotating wings, where the effects of the inflow velocity
gradient and rotational accelerations are strongest. Figure 7
(Multimedia view) shows the evolution of the vorticity fields in the
chordwise planes at r=c ¼ 2 for the rotating wings and, correspond-
ingly, 1.5 chords inboard from the root of the translating wing. For
simplicity, we will subsequently refer to this position as r=c ¼ 2 for
both rotating and translating wings. Consistent with the 3D flow struc-
ture renderings, at d ¼ 0:175, the spanwise vorticity fields appear
nearly identical for all four cases; however, by d ¼ 1:05, notable differ-
ences are apparent. In particular, the cases without inflow velocity gra-
dients (C and D) have significantly lower values of vorticity in the
LEV, further illuminating the impact of inflow profile on the early
development of the LEV. It is noteworthy that the vorticity fields in
cases A and B and cases C and D are nearly identical at this stage, indi-
cating that rotational effects are not yet manifest on the LEV structure.

As the wing stroke progresses, the behaviors of the four cases
diverge. By d ¼ 3:14, the vortex has moved further away from the
wing in case B than in case A; however, additional simulations of case
B, extending to d¼ 17 (not shown), revealed that the LEV remained
stable. In contrast, for case C, the LEV convects away from the wing
early in the rotation at r=c ¼ 2, but the attachment of the vortex is
restored late in the rotation (i.e., d ¼ 4:19), though with significantly
lower peak vorticity than cases A and B, providing further evidence
that rotational accelerations assist LEV stability later in the motion.
Case D sheds leading- and trailing-edge vortices in an alternating man-
ner as can be seen in Fig. 7 (Multimedia view). Figure 7 (Multimedia
view) also reveals a slight oscillation in the LEV position in case B
which is not present in case A. Thus, the inflow velocity gradient
appears to strengthen the LEV while assisting attachment, while
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rotational accelerations work to maintain LEV proximity to the wing
surface.

3. Spanwise velocity fields

Figure 8 (Multimedia view) contains isocontours of spanwise
velocity in the vicinity of the wing, to help elucidate the effects of
inflow velocity gradient and rotational accelerations on spanwise trans-
port over the wing surface. The leading-edge vortex and shear-layer
loci are indicated using an isocontour of xz ¼ �200 (s�1). Since the
flow within the simulation domain is circumferential in cases A and C,
the isocontours reveal a weak, diagonal gradient in spanwise flow

within the plane due to the 45� pitch angle of the wing. Outboard flow
is clearly evident over the suction surface of the wing for cases A–C,
but is notably absent for case D. This is similar to flow behavior seen
in Ref. 7 where outboard flow was shown to be negligible when neither
aspect of rotational motion is active. Rotational accelerations were also
shown by Jardin to substantially alter outboard flow.18

A comparison of Figs. 7 and 8 shows that the tendency for the
LEV to remain attached is concomitant with the presence of outboard
spanwise flow as noted in prior studies.12,16,39 Outboard spanwise flow
is present throughout the rotation of cases A and B (which have inflow
velocity gradients) and late in the rotation for case C (which has only
rotational accelerations). In cases A and B, the outboard flow is

FIG. 6. Three-dimensional volume renderings of dimensionless vorticity magnitude. (a) Case A, (b) case B, (c) case C, and (d) case D at d ¼ ð0:349; 1:05; 2:09; 3:14; 4:19Þ
from top to bottom, respectively. Note that the plotted vorticity range is (3 	 xc=uh;ðr=c¼2Þ 	 300); however, values greater than approximately 130 are interior to the vortex
structure and masked by the lower values on the exterior. The visible range is approximately 3 (dark red) to 130 (light red) and opacity increases with vorticity strength.
Multimedia available online.
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significantly stronger than in case C, and the high-velocity regions are
aligned with the vortex cores. This indicates that the inflow velocity
gradient is a much stronger driver of spanwise flow than rotational
accelerations.

While many studies have noted the concurrence of LEV stability
and spanwise flow, there are varying views on the dominating mecha-
nisms by which spanwise flow assists attachment. For example,
Maxworthy11 and Ellington et al.12 argued that the presence of span-
wise flow acts as an outboard sink of vorticity, while Lentink and

Dickinson16 argued that spanwise flow alters rotational accelerations
to stabilize the LEV. Chen et al.40 developed closed-form expressions
for the circulation and position of the LEV on a rotating wing by
employing the Brown–Michael vortex41 combined with a Lagrangian
spanwise transport model and found good agreement with simulations
at Re ¼ Oð100Þ and experiments at Re ¼ Oð1000Þ. In Sec. VIC, we
examine the extent to which spanwise transport of vorticity governs
vortex strength in comparison with other mechanisms of vorticity
transport.

FIG. 7. Spanwise vorticity contour plots (1/s) at r=c ¼ 2 for (a) case A, (b) case B, (c) case C, and (d) case D at d ¼ ð0:175; 1:05; 2:09; 3:14; 4:19Þ from top to bottom,
respectively. Multimedia available online.
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B. Lift coefficients

Sectional lift coefficients at r=c ¼ 2 are shown in Fig. 9. The sec-
tional lift coefficient is defined as cl ¼ 2dL

ðqcu2Þ, where dL is the sectional
lift at r=c ¼ 2, c is the chord length, q is the fluid density, and u is the
inflow velocity at r=c ¼ 2. Specifically, dL is obtained by integrating
pressure and viscous forces experienced by the wing in a spanwise strip
of width 0:01R, projecting the resulting force on the global vertical axis
and dividing it by 0:01R such that dL has dimensions N/m. The lift

generated in case A is substantially larger than that of the other cases
and is concomitant with a compact LEV that resides close to the wing
surface, as shown in Sec. VIA2. In contrast, case D exhibits the lowest
lift force through most of the maneuver and appears to evince the early
stage of the periodic vortex shedding pattern suggested by Fig. 7 in
which there is a corresponding oscillation of the lift. A slight oscillation
in the lift of case B is concomitant with the LEV oscillatory behavior
noted in Sec. VIA2.

FIG. 8. Spanwise velocity contour plots (m/s) with spanwise vorticity isolines [xz ¼ �200 (s�1)] of (a) case A, (b) case B, (c) case C, and (d) case D at
d ¼ ð0:175; 1:05; 2:09; 3:14; 4:19Þ from top to bottom, respectively. Note that positive spanwise velocity is oriented in the inboard direction in the local reference frame defined
in Fig. 5. Multimedia available online.
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Each case displays an inertial peak in sectional lift coefficient due
to the impulsive start before settling to an initial circulatory lift magni-
tude. Remarkably, this initial lift appears to be dominated, almost exclu-
sively, by whether or not an inflow velocity gradient is present and is
substantially unaffected by rotational accelerations. The influence of
the rotational accelerations becomes evident within the first chord
length of motion, where the cases without rotational accelerations (B
and D) begin to deviate from cases A and C, respectively. The devia-
tions reachmaxima by approximately three chord lengths of travel.

As may be anticipated, the sectional lift curves appear to strongly
correlate with the behavior of the LEVs as shown in Fig. 7. The differ-
ence in lift between cases A and B can be attributed to the movement
of the vortex away from the wing surface in case B. On the other hand,
the weaker lift in cases C and D can be attributed primarily to the
much weaker vortex structures, and the difference between the lift of
cases C and D is due to the shedding of the vortex in case D. Thus, the
lift appears to be directly governed by the impact of the inflow velocity
profile on LEV strength and the influence of the rotational accelera-
tions on its proximity to the wing surface.

C. Vorticity transport

Figure 10 displays the evolution of the terms of Eq. (3) for cases
A–D within the planar control region shown in Fig. 5. To verify clo-
sure, the values of the left- and right-hand sides of Eq. (3) are also plot-
ted. The differences are primarily due to truncation errors in the
numerical evaluation of the terms in Eq. (3). In most cases, the discrep-
ancy is small compared to the magnitudes of the terms dominating the
circulation budget; however, there are significant disparities early in
the motion, where the quantities change rapidly.

Viewing case A as the benchmark for comparison with the other
cases, several distinct characteristics are apparent. The IPCF is the pri-
mary source of LEV circulation. As will be shown later, it is dominated
by the shear-layer contribution. It is also negatively correlated with the
diffusive flux, as noted in earlier studies,28,31 since the two fluxes are
coupled by the suction peak near the leading edge, which affects both
the leading-edge shear-layer strength as well as the subsequent pressure
recovery that determines the magnitude of the surface diffusive flux.
Interestingly, the diffusive flux is larger than other sinks of circulation
throughout the maneuver. Spanwise convection, tilting, and Coriolis
tilting act primarily as sinks throughout themotion, although the tilting
and spanwise convective flux make negative (i.e., strengthening)

contributions early and late in the motion, respectively. This oscillatory
behavior exists despite that the outboard spanwise velocity increases
monotonically inmagnitude and spatial extent, throughout the motion,
as illustrated in Fig. 8(a). Similar to the IPCF and surface-diffusive
fluxes, the SPCF and tilting fluxes also exhibit a high degree of symme-
try. The reason for this behavior will be discussed in Sec. VID.

Removal of the rotational accelerations from case A results in
some striking differences in the magnitudes of the transport fluxes,
which are apparent when comparing cases A and B in Figs. 10(a) and
10(b), respectively. Importantly, the IPCF is significantly weaker in case
B than in case A, and the corresponding diffusive flux is also reduced.
However, this effect is not a robust effect of rotational accelerations, as
corresponding differences are not evident between cases C and D.
Figure 11 isolates the shear-layer contributions to the IPCF (i.e., that
through boundary 1 of the control region) for each of the four cases.
Comparing Fig. 11 with Figs. 10(a) and 10(b), it is evident that the
IPCF is essentially equal to the shear-layer contribution since there are
negligible fluxes of circulation across boundaries 2 and 3 of the control
region in cases A and B. The reduction in the shear-layer contribution
in case B is due to a weaker suction peak near the leading edge, which is
likely caused by the LEV residing further from the leading-edge, as dis-
cussed in Sec. VIA2. Significant correlation between the SPCF and tilt-
ing fluxes also persists in case B; however, crossover of the two fluxes is
delayed until approximately d¼ 6. This may be caused by the slower
growth of the LEV, due to the weaker shear-layer flux.

In cases C and D, the LEV system is more volatile such that its tra-
jectory results in significant fluxes of vorticity across boundaries 2 and 3
at certain times during themotion, making the values of the terms in Eq.
(3) sensitive to the placement of boundaries 2 and 3 of the control
region. For cases C and D, vortex interaction with the downstream
control-region boundary occurs at approximately d ¼ 1:5, as can be dis-
cerned by comparing the evolution of the shear-layer contributions in
Fig. 11 with the IPCF values plotted in Figs. 10(c) and 10(d). It should be
noted that, beyond this time, the circulation budget is still closed and Eq.
(3) is still valid within the control region; however, it does not capture
the entire vortex system. Nevertheless, the shear-layer contributions
provided in Fig. 11 are accurately quantified throughout themotion.

In contrast to cases A and B, the shear-layer contributions for
cases C and D exhibit an initial decline in magnitude, reaching a local
minimum at approximately d¼ 2 in case C and d ¼ 3:2 in case D. The
diffusive flux correspondingly drops in magnitude as the LEV moves
away from the wing surface. In case C, the shear-layer contribution sub-
sequently recovers, reaching a local maximum at approximately d¼ 3,
and sustaining a relatively constant value during the remainder of the
motion. The recovery is commensurate with the descent of the LEV
core toward the surface, as shown in Fig. 7(c). Case D exhibits a similar,
but weaker, recovery at approximately d ¼ 5:7, corresponding to the
formation of a second LEV after the first vortex sheds, as illustrated in
Fig. 7(d) (Multimedia view). Prior to the advection of LEV vorticity out
of the control region, the tilting, Coriolis tilting, and SPCF contribu-
tions remain small in comparison with the IPCF (shear-layer) and dif-
fusive fluxes. Later in the motion, despite that the complete LEV system
is not captured within the control region, the symmetries between the
IPCF and diffusive fluxes, and between the SPCF and tilting fluxes,
remain remarkably strong for cases C and D.

In summary, the systematic removal of the inflow velocity gradi-
ent and/or the rotational accelerations from the full rotating case (case

FIG. 9. Sectional lift coefficients at r=c ¼ 2:0 for cases A–D.
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A) results in substantial reductions in the typical magnitudes of the
shear-layer flux. It is also evident in comparing cases A and B (where
there are not strong convective vorticity fluxes across the downstream
boundary) that the removal of the rotational accelerations also dimin-
ishes the diffusive flux. The contrary behaviors of the SPCF and tilting
flux are also robust in all cases; the removal of the inflow velocity gra-
dient in cases C and D results in a substantial decline in their contribu-
tions early in the motion.

Inspection of the Coriolis tilting contributions in cases A and C
reveals that, in both cases, the term is positive, or opposite in sign to
the LEV, as previously noted by Eldredge and Jones5 and Werner
et al.33 (see also more recent work by Chen et al.42). Although the con-
tribution of the Coriolis term in case C is significant in comparison
with the other terms, and relatively insignificant in case A, the magni-
tudes of the Coriolis contributions are similar between the two cases.
Considering the minimal contribution of Coriolis tilting to the total

FIG. 10. Dimensionless vorticity transport budget of (a) case A, (b) case B, (c) case C, and (d) case D. dC
�

dt ¼ dC
dt � ð 1

rXÞ2, where rX is constant across all 4 cases at r/c¼ 2.0.
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circulation budget in case A, and the similar observation by Wabick
et al.34 at ReC ¼ 104, it appears that the Coriolis tilting term is not a
robust regulator of LEV strength on revolving wings.

D. Interpretation of spanwise convective and tilting
transport terms

To understand the source of the negative correlation between the
tilting flux and spanwise convective flux, we first consider the spanwise
convective term. As shown in Appendix A, the SPCF can be expressed as

�
ð
Az

uz
@xz

@z

� �
dA ¼ �

þ
@Az

uz
@

@z
u � dsð Þ

�
ð
Az

xx
@uz
@x

þ xy
@uz
@y

� �
dA: (4)

The first term on the right-hand side of Eq. (4) can be physically
interpreted as out-of-plane transport due to a gradient in circulation.
The term captures the essence of the contribution to circulation associ-
ated with spanwise convection. This new term will be hereafter
referred to as the out-of-plane circulation flux (OPCF). The second
term on the right-hand side of Eq. (4) is the negative of the tilting term
in Eq. (3). This result provides insight into the correlation between the
SPCF and tilting fluxes observed in Fig. 10, as well as the action of the
tilting flux. That the tilting flux is a constituent of the spanwise convec-
tive flux is a consequence of the solenoidal condition, which requires
that the vorticity field be three-dimensional if there is a nonzero con-
tribution to the circulation by out-of-plane convection. Therefore, tilt-
ing appears to be inevitable if a spanwise convective flux contributes to
the circulation budget.

By substituting Eq. (4) into Eq. (3), we replace both the SPCF and
tilting terms with the OPCF. As shown in Appendix B, the Coriolis tilt-
ing flux can also be expressed as a contour integral in terms of the
apparent velocity field induced by the solid-body-rotation of the non-
inertial reference frame (u0 ¼ X� r). Equation (3) can, therefore, be
written as
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where the last term is the Coriolis tilting term. It is evident that the
Coriolis terms on the second line of Eq. (5) have the identical forms as
the IPCF and OPCF and can be combined with those terms to produce
a new form of the integral vorticity transport equation
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The first term on the right-hand side of Eq. (6) represents three-
dimensional convective transport, including Coriolis tilting. With the
inclusion of Coriolis tilting, we will refer to this term as OPCFCor. As
noted above, spanwise convection (as quantified in the replaced SPCF
term) and vorticity tilting are an integrated phenomenon, and there-
fore, it is appropriate to consider their net effect within the circulation
budget. The physical interpretation of Coriolis tilting in the context of
this budget will be discussed below. The high degree of symmetry
exhibited between the tilting and spanwise convective fluxes in Fig. 10
demonstrates that the actual physical out-of-plane convection of vor-
ticity, represented by the OPCFCor term, contributes significantly less
to the overall circulation budget than the spanwise convective flux.
This contribution will be quantified in Sec. VI E.

The second term in Eq. (6) is the in-plane convective transport
term (IPCF), which includes the in-plane Coriolis contribution. This
new term will be referred to as IPCFCor. It should be noted that, in the
present case, Xz ¼ 0, and therefore, there is no in-plane Coriolis con-
tribution for the maneuvers included in this study. The third term is
the diffusive flux from the wing surface, and it retains the same form
as in Eq. (3).

Although the analysis presented in Sec. VIC demonstrated
Coriolis tilting to be a small contributor to the circulation budget, and
overwhelmed by the contribution to the shear-layer flux attributed to
the rotational accelerations, a physical interpretation of the Coriolis
tilting flux is still fundamentally useful. Vorticity in the non-inertial
frame is augmented by the planetary vorticity, as designated by
Werner et al.,33 in analogy with vorticity acquired due to the spin of a
planet. They described Coriolis tilting as the tilting of planetary vortic-
ity within the rotating coordinate system by a vertical gradient of
Coriolis acceleration caused by a vertical gradient in spanwise flow. In
the present work, we adopt a literal interpretation of the planetary vor-
ticity, defined by the kinematics of the non-inertial reference frame,
which is therefore unable to tilt in the same sense as free vorticity.
Consequently, we interpret Coriolis tilting as the apparent vanishing of
vorticity associated with the tilting of free vorticity that is initially par-
allel to the rotation axis (which is augmented by the planetary rotation)
into the radial direction (which is not augmented by the planetary
rotation). The relative quantitative insignificance of the Coriolis tilting
term in the present study is due to the fact that the magnitude of the
planetary vorticity 2X is much smaller than peak vorticity values in the

FIG. 11. The non-dimensional shear-layer flux contributions dC�
dt

� �
of all four cases

(in-plane flux across boundary 1).
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LEV at the section studied here. It is possible that, in other applications
with lower vorticity magnitude, the Coriolis tilting term may constitute
a more significant portion of the OPCFCor. However, we emphasize
that Eqs. (4) and (6) demonstrate that SPCF, tilting, and Coriolis tilting
contributions to the circulation budget are not independent but, rather,
a collective consequence of the existence of out-of-plane flow and a
three-dimensional vorticity field.

E. Contributions of in-plane and out-of-plane vorticity
fluxes

With the primary contributions to the circulation of the LEV sys-
tem categorized as in-plane convection (IPCFCor), out-of-plane

convection (OPCFCor), and the surface diffusive flux in Eq. (6), we now
consider the relative importance of their roles in governing LEV
strength. As demonstrated in Sec. VIC, the leading-edge shear-layer
flux is the dominant contributor to the IPCF and thereby the growth
of the LEV system. The OPCFCor and diffusive fluxes regulate growth
by acting as circulation sinks. We can now clearly illustrate the relative
importance of these two terms and the impact of rotational accelera-
tions and inflow velocity profile on their magnitudes.

Figure 12 shows the evolution of the shear-layer component of
IPCFCor, the OPCFCor, and diffusive flux, for cases A–D, throughout
the maneuver. Considering Fig. 12(a), it is noteworthy that, for case A,
the diffusive flux magnitude exceeds that of the OPCFCor by at least
50% throughout the motion, despite that LEV stability was found to be

FIG. 12. Relative contributions of OPCFCor, shear-layer flux, and surface-diffusive flux for (a) case A, (b) case B, (c) case C, and (d) case D.
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concomitant with the existence of spanwise flow. In fact, since
OPCFCor vanishes at the beginning of the motion for all four cases, the
diffusive flux initially dominates in each case. When rotational acceler-
ations are removed in case B, there is only a small decline in the
OPCFCor, suggesting that OPCFCor is insensitive to the presence of the
rotational accelerations. However, due to the significant reduction in
the diffusive flux, the two contributions become comparable over
much of the latter half of the motion.

As noted in Sec. VIC, for cases C and D, the control region analy-
sis is not comprehensive for the LEV system after approximately
d ¼ 1:5; however, it is noteworthy that the trajectories of the OPCFCor
are relatively flat for d < 1:5 in both cases, and remain significantly
lower than their counterparts that incorporate inflow velocity gra-
dients. Thus, despite that prior studies have shown the importance of
rotational accelerations to LEV stability, this analysis again shows that
they do not significantly influence the OPCFCor and, therefore, do not
make a strong impact on LEV stability by invoking the spanwise drain-
ing of vorticity from the vortex. This appears to be the case even con-
sidering that it was shown in Sec. VIA3 that the inclusion of
rotational accelerations enhanced spanwise flow later in the motion of
the wing. In contrast, the inflow velocity profile appears to have a sig-
nificant impact on the regulation of vortex strength through out-of-
plane transport of vorticity.

Given the importance of the diffusive flux of vorticity on vortex
strength regulation, illustrated by Fig. 12, it is noteworthy that the
Lagrangian analytical model of Chen et al.40 achieved good prediction
of vortex strength and position by considering removal of LEV vortic-
ity from a Brown–Michael vortex only by spanwise convection. Thus,
it appears that useful practical predictions of LEV behavior can be
achieved in some cases without full consideration of all of the transport
mechanisms. However, we postulate that the use of Eq. (6) to charac-
terize the salient transport fluxes can be a useful framework for assess-
ing the state of a developing LEV system and provide metrics to guide
the design of lifting surfaces that leverage the benefits of rotating
wings.

VII. CONCLUSIONS

The rotational motion of wings and blades is known to be associ-
ated with greater LEV stability and higher sectional lift coefficients
than equivalent translational motion. By systematically introducing
the two salient features of rotational motion—rotational accelerations
and inflow shear—when and how each aspect was most influential to
the growth of the LEV system was demonstrated.

A vorticity transport budget was applied to each of the four cases
studied, providing insight into the sources and sinks of vorticity. A
strong, negative correlation was observed between the surface diffusive
flux and in-plane convective flux (IPCF), as observed in previous stud-
ies. In addition, in the present work, a strong negative correlation was
also observed between the spanwise convective (SPCF) and tilting
fluxes. In an effort to understand the relationship between SPCF and
tilting, we demonstrated that these two transport mechanisms are con-
stituents of a new transport term, which we have called the out-of-
plane convective flux (OPCF). The OPCF captures the essence of 3D
vorticity transport through the control region and provides a clearer
interpretation of the effects of three-dimensionality on vortex growth.
Based on this result, we assert that SPCF and tilting are kinematically
linked due to the solenoidal condition on the vorticity field.

A new formulation of the vorticity transport equation was pro-
posed, which includes Coriolis contributions to the in-plane convective
flux (IPCFCor) and out-of-plane convective flux (OPCFCor). Coriolis tilt-
ing was physically interpreted as a loss of apparent circulation as tilting
of the vorticity vector converts the scalar component of vorticity that is
parallel to the rotation axis—and, thus, augmented by the rotation of
the non-inertial frame—into directions perpendicular to the rotation
axis, where the augmentation vanishes. Although it was found to have a
weakening effect on LEV circulation in agreement with Werner et al.33

and Eldredge and Jones,5 our analysis within a comprehensive circula-
tion budget demonstrated that the Coriolis tilting is not an important
contributor, consistent with the observations ofWabick et al.34

Given that rotational accelerations are known to stabilize LEVs,
we sought to understand whether this rotationally driven stabilization
is achieved through spanwise transport of vorticity represented by the
OPCFCor term. It was shown that OPCFCor is insensitive to the pres-
ence or absence of rotational accelerations, but is strongly influenced
by the inflow velocity profile. It was also found that the regulating
effect of OPCFCor on LEV strength is significantly smaller in magni-
tude than the surface diffusive flux throughout the maneuver, and
especially in the early phase of the motion. These observations, thus,
shed light on how global flow attributes influence vortex growth and,
therefore, can provide insight into how to leverage attributes of rotat-
ing wings to achieve desirable aerodynamic behavior.
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APPENDIX A: EXPANSION OF THE SPANWISE
CONVECTIVE FLUX (SPCF)

Substituting @xz
@z ¼ @

@z
@uy
@x � @ux

@y

� �
and expressing the resulting

area integrals as double integrals in x and y over the rectangular
control region yields
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In Eq. (A1), the expressions in the square brackets can be integrated
by parts to produce the following expression:
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The first two integrals in Eq. (A2) can be combined into a
single closed contour integral on @Az . Furthermore, substituting
xx ¼ @uz

@y �
@uy
@z and xy ¼ @ux

@z � @uz
@x in the final double integral in Eq.

(A2) reveals that the integral is simply the negative of the tilting
term in Eq. (3). As a result, the spanwise convective flux can be
rewritten as Eq. (4).

APPENDIX B: THE VORTICITY TILTING TRANSPORT
TERM EXPRESSED AS A CONTOUR INTEGRAL

The area integral in the Coriolis tilting term in Eqs. (3) and (4)
can be changed to a contour integral by application of Green’s theo-
rem. To cast the term in a form resembling that of the OPCF,
the reference frame rotation rate can be expressed in terms of the
apparent velocity field induced by the solid-body-rotation of the
non-inertial reference frame: u0 ¼ X� r such thatð
Az

2 Xx
@uz
@x

þ Xy
@uz
@y

� �
dA ¼ 2
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@Az

�Xyuz dx þ Xxuz dy
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;
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