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TERM REWRITING ON NESTOHEDRA

PIERRE-LOUIS CURIEN AND GUILLAUME LAPLANTE-ANFOSSI

Abstract. We define term rewriting systems on the vertices and faces of nestohedra,
and show that the former are confluent and terminating. While the associated poset on
vertices generalizes Barnard–McConville’s flip order for graph-associahedra, the preorder
on faces likely generalizes the facial weak order for permutahedra. Moreover, we define and
study contextual families of nestohedra, whose local confluence diagrams satisfy a certain
uniformity condition. Among them are associahedra and operahedra, whose associated
proofs of confluence for their rewriting systems reproduce proofs of categorical coherence
theorems for monoidal categories and categorified operads.

Introduction

From rewriting to coherence. In his seminal notes [Hue85] for a graduate course at
Université Paris 7, Gérard Huet explained Mac Lane’s proof of the coherence theorem for
monoidal categories through the lenses of equational reasoning and term rewriting theory.
Huet remarked that instantiations in context of Mac Lane’s pentagon can be read as local
confluence diagrams. Iterated tensor bifunctors are represented as terms over the signature
on a single operation b of arity 2, the associator gives rise to the single rewrite rule pX b

Y q b Z Ñ X b pY b Zq (more details are provided in Section 4.5), and

(1) proving the coherence statement in the case of canonical natural transformations
λ : F Ñ G, where λ is defined using the associator only (and not its inverse) and
where G is a normal form for the above rewriting system, amounts to annotating
the proof of Newman’s lemma with explicit names for the rewriting steps;

(2) moreover, the proof of the general case of the coherence theorem resembles the proof
of the Church-Rosser property, which states that if two terms P,Q can be proved
equal in the equational theory obtained by forgetting the orientation of the rewrite
rules, then there is some N such that P Ñ ¨ ¨ ¨ Ñ N and Q Ñ ¨ ¨ ¨ Ñ N .

In addition, in order to check local confluence, it is enough to check local confluence of
critical pairs, which are minimal situations in whichM Ñ P andM Ñ Q and the respective
subterms of M to which the two reductions are applied overlap. Huet observed that Mac
Lane’s pentagon expresses the unique critical pair of the rewriting system given by the
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associator. The reader unfamiliar with the terminology of rewrite systems will find a brief
hopefully self-contained introduction to rewriting in Section 3.1.

Coherence and polytopes. In a previous paper [CL23], we discussed combinatorial topo-
logical proofs of coherence theorems. In particular, we gave an explicit topological proof
of Mac Lane’s coherence theorem by using the fact that all diagrams involved live on the
2-skeleton of a family of polytopes, the associahedra. Here,

(0) 0-cells correspond to functors,
(1) paths in the 1-skeleton correspond to natural transformations,
(2) pentagons as well as naturality and bifunctoriality squares correspond to 2-faces,

and the coherence statement amounts to asking whether any two parallel cellular paths can
be related by repeatedly replacing a portion of a path fitting on the boundary of a 2-face
by the complementary path on that same boundary. In fact, our topological/combinatorial
results can be applied to give “one step proofs” (quoting Kapranov [Kap93]) of a number
of other categorical coherence theorems.

Rewriting on nestohedra. It is therefore natural to ask if we can extend Huet’s corre-
spondence and associate a term rewriting system to a polytope, yielding the above coherence
results for different families of interest in a unified way. In this paper, we give a positive
answer to this question for the family of hypergraph polytopes, a.k.a nestohedra. We con-
struct confluent and terminating term rewriting systems (Theorem 3.24) on the vertices of
hypergraph polytopes in such a way that edges are naturally oriented and feature rewrit-
ing steps. We characterize the local confluence diagrams of their critical pairs as certain
types of 2-faces (Proposition 3.26). The rewrite steps on the vertices generalize Barnard–
McConville’s flip order on the vertices of graph-associahedra [BM21], and are induced by
an orientation vector (Corollary 3.21). Meanwhile, the rewrite rules on the faces seem to
generalize the facial weak order on the faces of permutahedra [KLN`01, PR06, DHP18].

Contextual hypergraphs. We shall then specialize the discussion to contextual families of
hypergraphs (Definition 4.5). Among these families, one finds the associahedra and the op-
erahedra (Theorem 4.8), whose term rewriting systems provide, via Huet’s correspondence,
coherence theorems for monoidal categories and categorified operads, see Remark 3.27 and
Section 4.5. The idea behind the condition satisfied by contextual nestohedra is to enforce
the shape of local confluence diagrams for critical pairs to be “uniform”, in some sense rely-
ing on the combinatorics of hypergraph polytopes, see Section 4.1. Other contextual families
of nestohedra include permutahedra and contextual graph-associahedra, whose term rewrit-
ing systems should provide coherence theorems for categorified permutads [LR13, Mar20]
and reconnectads [DKL22]. Known and unknown structures and coherence theorems are
summarized in Table 1. Another interesting question would be to characterize combinato-
rially contextual graph-associahedra and nestohedra, as defined in Section 4.4.

Plan of the paper. In Section 1 we recollect some background on hypergraph polytopes,
and we examine their 2-faces in Section 2. Section 3 introduces hypergraphic rewrite systems
and contains our main results establishing a geometric form of Huet’s correspondence for
nestohedra. Contextual hypergraphs are introduced and illustrated in Section 4.
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Notations. We denote by R˚ the reflexive and transitive closure of a relation R. We
use | ´ | to denote the cardinality of a set. We shall manipulate trees of various sorts. They
will always be rooted. We define the full subtree relation as follows: S is a subtree of T
if S is obtained by picking a node of T and all its descendants. The subtree relation is
traditionally defined by taking connected components. Clearly full subtrees are subtrees,
but not conversely. We shall only need full subtrees, and as a matter of abbreviation we
shall call them just subtrees, following the computer science tradition.

Acknowledgements. We would like to thank Vincent Pilaud for useful discussions.

1. Hypergraph polytopes

In this section, we recall the definition of hypergraph polytopes. We refer to [DP11,
COI19] for more details.

1.1. Hypergraphs. A hypergraph is given by a finite set H of vertices and a subset of
hyperedges H Ď PpHqzH such that

Ť

H “ H. We say that H is ordered if H is equipped
with a total order. We always assume that H is atomic, that is txu P H, for all x P H. A
hyperedge of cardinality 2 is called an edge. For X Ď H, the plain restriction of H to X is
the set HX :“ tZ P H | Z Ď Xu.

We say that H is connected if there is no non-trivial partition H “ X1 Y X2 such that
H “ HX1 YHX2 . For each hypergraph, there exists a partition H “ X1 Y . . .YXm such that
each HXi is connected and H “

Ť

pHXiq. The HXi ’s are called the connected components
of H. We say that a non-empty subset X Ď H of vertices is connected (resp. a connected
component) whenever HX is connected (resp. a connected component of H). Thus our uses
of “connected” in the sequel will always carry the non-emptyness information. We denote
by HzX :“HHzX the plain restriction of H to HzX. The saturation of H is the hypergraph
SatpHq :“ tX | H ⊊ X Ď H and HX is connectedu. A hypergraph is called saturated when
H “ SatpHq. The reconnected restriction of H to X is the set

HXX :“ tZ XX | Z P SatpHq, Z XX ‰ Hu .

Remark 1.1. Atomic and saturated hypergraphs are called building sets in the literature on
nestohedra, see for example [Pos09, FS05].

For X Ď H, we will express the fact that tHi | i P Iu is the set of connected components
of HzX by the notation H, X ; tHi | i P Iu. If H is ordered, we order the connected
components by increasing order of their maximal vertices, i.e., tHi | i P Iu “ tHi1 ă ¨ ¨ ¨ ă

Hinu, and we write H, X ; Hi1 , . . . ,Hin . In the specific situation where x, y, z P H and
H, txu ; tHi | i P Iu, we shall write

x
H
⇝ ty, zu if y, z P Hi for some i P I

x
H
⇝ tyu , tzu otherwise.

In the second case, we will say that x disconnects y and z in H. The reconnected restriction
allows one to characterize the preceding two situations as follows.
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Lemma 1.2. We have

x
H
⇝ ty, zu iff HXtx,y,zu, txu ; ty, zu

x
H
⇝ tyu , tzu iff HXtx,y,zu, txu ; tyu , tzu .

Proof. Let H, txu ; tH1, . . . ,Hnu. Suppose that x
H
⇝ ty, zu. Then there exists i such

that ty, zu Ď Hi, and hence ty, zu Ď Hi X tx, y, zu, and in fact ty, zu “ Hi X tx, y, zu

since x R Hi. Thus HXtx,y,zu, txu ; ty, zu holds by definition of reconnected restriction. If

to the contrary we have x
H
⇝ tyu , tzu, then there exists i ‰ j such that y P Hi and z P Hj .

We then derive likewise that Hi X tx, y, zu “ tyu and Hj X tx, y, zu “ tzu from which
HXtx,y,zu, txu ; tyu , tzu follows. The reverse implications are immediate. □

1.2. Constructs. A connected hypergraph H gives rise to a set of constructs, which are
defined inductively as follows.

Definition 1.3. Let H be a connected hypergraph and Y be a non-empty subset of H.

(1) If Y “ H, then the one-node tree H decorated with H is a construct of H.
(2) If H, Y ; tH1, . . . ,Hnu, and if T1, . . . , Tn are constructs of H1, . . . ,Hn, respec-

tively, then the non-planar tree Y pT1, . . . , Tnq whose root is decorated by Y , with n
outgoing edges on which the respective Ti ’s are grafted is a construct.

In the notation Y pT1, . . . , Tnq, no order is intended on T1, . . . , Tn. However, when H is
ordered, the trees T1, . . . , Tn are listed according to the order given by H, Y ; H1, . . . ,Hn,
making constructs planar. When Y “ z is a singleton, we freely write z in place of tzu. A
construction is a construct all of whose nodes are decorated with singletons.

Since all decorations in a construct are disjoint, we freely identify nodes with subsets
of H. We use the notation T {X to denote the subtree of T rooted at X, defined only if
X is indeed a decoration of a node of T . If S is a subtree of T , we denote by supppSq the
union of the decorations of the nodes of S.

Remark 1.4. The intention behind this presentation is algorithmic: a construct is built
by picking and removing a non-empty subset Y of H, then branching to the connected
components of HzY and continuing inductively in all the branches. It follows readily from
the definition that T {X is a construct of HsupppT {Xq.

Remark 1.5. The notion of construct is equivalent to the notion of nested set [Pos09], and
to the notion of tubing in the case where H is a graph [CD06]. We refer to [COI19, Sec. 3.1]
for details.

If X,Y are two nodes of a construct S of H, X being the father of Y , we can define
a new construct T by contracting the edge between X and Y , and labeling the resulting
vertex of T by the union of the labels of X and Y . Formally, if X is a node of S such that
S{X “ XpY pS1, . . . , Smq, Sm`1, . . . Snq, then T is obtained by replacing in S the subtree
rooted at X with pXYY qpS1, . . . , Snq. We say that T covers S and use the notation S ă T .

Definition 1.6. We denote pApHq,ă˚q the poset of constructs of a connected hypergraph H
obtained as the reflexive and transitive closure of the covering relation ă.
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We shall need the following lemma.

Lemma 1.7. Let H be a connected hypergraph. If H, X ; tH1, . . . ,Hnu and if con-
structs Ti of Hi are given for all i P I Ď t1, . . . , nu, then XptTi | i P Iuq is a construct
of HXpHzYtHj |jRIuq.

Proof. This is an immediate consequence of the following two observations: we have

HXpHzYtHj |jRIuq, X ; tHi | i P Iu and pHXpHzYtHj |jRIuqqHi “ HHi “ Hi.

□

1.3. Hypergraph polytopes. We are now ready to define hypergraph polytopes, a.k.a
nestohedra.

Definition 1.8. A hypergraph polytope is a polytope whose face lattice is isomorphic to the
poset of constructs of some connected hypergraph H.

Došen and Petrić gave polytopal realizations of hypergraph polytopes in [DP11]. The
idea is that the connected subsets of H specify the faces of a fixed p|H| ´ 1q-dimensional
simplex that are to be truncated.

Let us introduce a few families of hypergraph polytopes that will be studied in Section 4.4.
When H is a graph, hypergraph polytopes are known as graph-associahedra [CD06].

1.3.1. Simplices. The n-dimensional simplex is the realization of the hypergraph

Sn :“ tt1u, t2u, . . . , tn` 1u, t1, . . . , n` 1uu.

1.3.2. Cubes. The n-dimensional cube is the realization of the hypergraph

Cn :“ tt1u, t2u, . . . , tn` 1uu Y ttj | 1 ď j ď iu | 1 ď i ď n` 1u.

Note that these two families of hypergraph polytopes are defined by genuine hypergraphs,
contrary to the following families of graph-associahedra.

1.3.3. Associahedra. The n-dimensional associahedron is the realization of the graph

Kn :“ tt1u, t2u, . . . , tn` 1u, t1, 2u, . . . , tn, n` 1uu.

In other words, it is the graph-associahedron for the linear graph with n` 1 vertices.

1.3.4. Permutahedra. The n-dimensional permutahedron is the realization of the graph

Pn :“ tt1u, t2u, . . . , tn` 1uu Y tti, ju | 1 ď i ‰ j ď n` 1u.

In other words, it is the graph-associahedron for the complete graph on n` 1 vertices.
Note that the definition of Sn and Pn does not depend on any order on the vertices, while

the definition of Cn and Kn involves the total order on t1 . . . , n` 1u.

Remark 1.9. In the above descriptions, we can replace t1, . . . , n` 1u by any finite set
X “ tx1, . . . , xn`1u (resp. any finite linear order X “ x1 ă ¨ ¨ ¨ ă xn`1) and define SX
and PX (resp. CX , KX) accordingly.
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1.3.5. Operahedra. To every planar tree T with n ` 2 vertices, one can associate its n-
dimensional operahedron, whose faces are in bijection with the nestings of T [Lap22, CL23],
which in turn are in bijection with the tubings of the line graph LpT q of T . The vertices
of LpT q are the edges of T , and two vertices are connected whenever as edges of T they
share a common vertex, see Figure 1. In other words, an n-dimensional operahedron is the
graph-associahedron of a clawfree block graph with n` 1 vertices.

a

b e

c d

z u

x y

z u

x y

Figure 1. A planar tree with 5 vertices (left) and its line graph (right).

Many more examples are to be found in [DP11, COI19, CDOO22], as well as in the
abundant literature on nestohedra.

2. Anatomy of the 2-skeleton

In this section we describe all the possible 2-faces of a hypergraph polytope. These will
be associated with the local confluence diagrams of a rewrite system on constructions in
Section 3.4.

2.1. Two types of two-faces. The dimension of a construct T , or equivalently of its
corresponding face in the associated hypergraph polytope, is given by

dimT :“
ÿ

X node of T

p|X| ´ 1q.

In particular, constructions have dimension 0. Constructs of dimension 1 have a single
non-singleton node of the form tx, yu. Constructs T of dimension 2 are of two kinds:

(A) T has exactly two non-singleton nodes tx1, x2u and ty1, y2u, both of cardinal 2.
(B) T has exactly one non-singleton node tx1, x2, x3u of cardinal 3.

Type (A). If T is of type (A), we get the following generic picture.

x1px2q ¨ ¨ ¨ y1py2q

x1px2q¨¨¨ty1,y2u

tx1,x2u¨¨¨y1py2q
x2px1q ¨ ¨ ¨ y1py2q

x2px1q¨¨¨ty1,y2utx1, x2u ¨ ¨ ¨ ty1, y2u

x1px2q ¨ ¨ ¨ y2py1q
tx1,x2u¨¨¨y2py1q

x2px1q ¨ ¨ ¨ y2py1q

The central construct T , schematised as tx1, x2u ¨ ¨ ¨ ty1, y2u, has two distinct nodes tx1, x2u

and ty1, y2u. All the other constructs are obtained by replacing in T one or two of these
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nodes, say tx1, x2u, by a tree x1px2q or x2px1q and redistributing the children of tx1, x2u as
children of x1 or x2, in a unique way dictated by connectivity.

Type (B). If T is of type (B), then, up to permutation of x1, x2, x3, we get four possible
shapes corresponding to the number N of elements in X :“ tx1, x2, x3u that disconnect the
other two in K :“HsupppT {Xq. Here there are no ¨ ¨ ¨ on the picture, but likewise all the
edges and vertices of T , considered as a 2-face, are the result of replacing in T the node
X with the indicated respective trees and redistributing uniquely the children of X (see
also Lemma 2.1).

(B1) When N “ 3, that is when x1
K
⇝ tx2u,tx3u, x2

K
⇝ tx1u,tx3u, and x3

K
⇝ tx1u,tx2u, we

have

x1px2, x3q
tx1,x2upx3q tx1,x3upx2q

x2px3, x1q
tx2,x3upx1q

x3px1, x2q

(B2) When N “ 2, that is when x1
K
⇝ tx2u,tx3u, x2

K
⇝ tx1, x3u and x3

K
⇝ tx1u,tx2u, we

have

x1px2, x3q
tx1,x2upx3q tx1,x3upx2q

x2px1px3qq

x2ptx1,x3uq

tx1, x2, x3u x3px1, x2q

tx2,x3upx1q

x2px3px1qq

(B3) When N “ 1, that is when x1
K
⇝ tx2u,tx3u, x2

K
⇝ tx1, x3u and x3

K
⇝ tx1, x2u, we have

x1px2, x3q
tx1,x2upx3q tx1,x3upx2q

x2px1px3qq
x2ptx1,x3uq

tx1, x2, x3u x3px1px2qq
x3ptx1,x2uq

x2px3px1qq
tx2,x3upx1q

x3px2px1qq

(B4) When N “ 0, that is when x1
K
⇝ tx2, x3u, x2

K
⇝ tx1, x3u and x3

K
⇝ tx1, x2u, we have
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x1px2px3qq
tx1,x2upx3q x1ptx2,x3uq

x2px1px3qq

x2ptx1,x3uq

tx1, x2, x3u x1px3px2qq

tx1,x3upx2q

x2px3px1qq

tx2,x3upx1q

x3px1px2qq

x3ptx1,x2uq

x3px2px1qq

By Lemma 1.2, we can read those pictures as describing the respective reconnected
restrictions KXX of K:

pB1q ttx1u , tx2u , tx3u , tx1, x2, x3uu (2-simplex)
pB2q ttx1u , tx2u , tx3u , tx1, x3u , tx1, x2, x3uu (2-cubeq

pB3q ttx1u , tx2u , tx3u , tx1, x3u , tx1, x2u , tx1, x2, x3uu (2-associahedron)
pB4q ttx1u , tx2u , tx3u , tx1, x3u , tx1, x2u , tx2, x3u , tx1, x2, x3uu (2-permutahedron)

Incidentally, these hypergraphs witness the fact that there do exist 2-faces of type (B) of
each of these types: take H to be one of those four hypergraphs, and T to be their unique
construct of dimension 2.

2.2. X-faces and shapes. In the rest of this section, we make the discussion above on ¨ ¨ ¨

more formal. For a 3-element subset X “ tx1, x2, x3u of H, we say that a 2-face T of H is
an X-face if its unique non-singleton node is decorated by X. By letting X range over all
subsets of H of cardinal 3, we form in this way a partition of all 2-faces of type (B). If X is
the root of T , the following lemma invites us to see T “ Xp. . .q as an “instantiation” of X
(viewed as the maximum face of HXX), as we shall see.

Lemma 2.1. If H is a connected hypergraph, if X is a subset of H such that |X| “ 3 and T
is a 2-dimensional construct with root X, then the map ψ from the poset of faces of T to
the poset of faces of HXX defined on a face S by pruning all nodes of S that are not subsets
of X is an order-isomorphism.

Proof. We shall build an inverse ϕ of ψ. When discussing type (B) 2-faces, we have described
up to permutation all the possible connected hypergraphs on the set X of vertices and their
respective posets of faces. We will treat the case where ApHXXq is the poset described in
case (B2). The other cases are similar. Pick the 0-face S :“x1px2, x3q. We map S to a 0-face

ϕpSq of T as follows. Let H, x ; tH1, . . . ,Hnu. By Lemma 1.2, we have x1
H
⇝ tx2u , tx3u,

hence we have, say x2 P H1 and x3 P H2. Then let H1, x2 ; tH1,1, . . . ,H1,pu and H2, x3 ;
tH2,1, . . . ,H2,qu. Then we have H, X ; tH1,1, . . . ,H1,p, H2,1, . . . ,H2,q, H3, . . . Hnu, so that
T writes as

T “ XpT1,1, . . . , T1,p, T2,1, . . . , T2,q, T3, . . . Tnq.

All these data determine uniquely a 0-dimensional subface of T , namely

ϕpSq :“x1px2pT1,1, . . . , T1,pq, x3pT2,1, . . . , T2,qq, T3, . . . Tnq.
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It is plain that ψpϕpSqq “ S. The same applies to all other 0-dimensional (resp. 1-
dimensional) faces of HXX , establishing ϕ as a bijection, which is also easily seen to be
monotonic: for example, we have

ϕptx1, x2u px3qq “ tx1, x2u px3pT2,1, . . . , T2,qq, T1,1, . . . , T1,p, T3, . . . Tnq,

evidencing ϕpx1px2, x3qq ĺ ϕptx1, x2u px3qq. The map ψ is also monotonic, since the
above pruning does not affect the place where the contraction occurs – e.g., the edge of
ϕpx1px2, x3qq that is contracted to get ϕptx1, x2u px3qq is the edge between x1 and x2, which
can thus be contracted in the preimage x1px2, x3q to yield the preimage tx1, x2u px3q. Fi-
nally, we set

ϕptx1, x2, x3uq :“ tx1, x2, x3u pT1,1, . . . , T1,p, T2,1, . . . , T2,q, T3, . . . Tnq “ T,

which concludes the proof. □

Corollary 2.2. If H is a connected hypergraph, if X is a subset of H such that |X| “ 3
and T is an X-face of H, then the poset of faces of T is isomorphic to the poset of faces
of pHsupppT {XqqXX .

Proof. This is an immediate consequence of the previous Lemma and of the observation
that the poset of faces of T is isomorphic to the poset of faces of T {X. □

Based on this Corollary, we shall say, for any X-face T , that T has shape pHsupppT {XqqXX .

3. Hypergraphic rewriting systems

We associate to each hypergraph two term rewriting systems, one given on its constructs,
and one given on its constructions. We show that the latter is terminating and confluent,
and describe its critical pairs.

3.1. Recollections on rewriting. A signature Σ is a tuple pV, F, S, ar, out, inq made of

‚ a set V of variables,
‚ a non-empty set F of function symbols, and
‚ a set S of sorts,

together with an arity , output sort and input sort functions

‚ ar : F Ñ N,
‚ out : F Y V Ñ S,
‚ in : F Ñ Σně0S

n, such that for f P F , we have inpfq P Sarpfq.

The ith component of inpfq is denoted inpf, iq. The set TerpΣq of terms over a signature Σ
is defined inductively as follows.

(1) If t P V is a variable, then t is a term.
(2) If f P F is an arity n function symbol, and t1, . . . , tn are terms such that outptiq “

inpf, iq, then fpt1, . . . , tnq is a term, and outpfpt1, . . . , tnqq :“ outpfq.

We say that a term has sort outptq. For a term t P TerpΣq, its set of variables is defined as

varptq :“

#

ttu if t P V,
Ť

1ďiďn varptiq if t “ fpt1, . . . , tnq.
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A term t is closed (resp. open) if it does not contain any variable, i.e., if varptq “ H (resp.
varptq ‰ H). A rewrite rule over Σ is an ordered pair pl, rq of terms in TerpΣq, denoted
l Ñ r, such that outplq “ outprq and the following conditions hold:

(1) the first term l is not a variable, that is l R V ,
(2) the variables of the second term are already in the first term, that is varprq Ď varplq.

Definition 3.1. A many-sorted term rewriting system is a pair pΣ, Rq made of a signature
and a set of rewrite rules R over Σ.

A context Cr´s is defined inductively as follows.

(1) We give ourselves symbols r´sa for a P S, which we declare to be contexts with
outpr´saq :“ a.

(2) If f P F is an arity n function symbol, t1, . . . , ti´1, ti`1, . . . , tn are terms such that
outptjq “ inpf, jq and C is a context such that outpCq “ inpf, iq, then

fpt1, . . . , ti´1, C, ti`1, . . . , tnq

is a context, and outpfpt1, . . . , tnqq :“ outpfq.

Note that by construction a context contains exactly one symbol r´sa for some a P S, called
the hole. Given such a context C and a term t with outptq “ a, then we denote by Crts the
term obtained by filling the hole with t, i.e., by replacing r´sa by t in C.

A substitution is a map σ : TerpΣq Ñ TerpΣq which satisfies

σpfpt1, . . . , tnqq “ fpσpt1q, . . . , σptnqq

for all terms fpt1, . . . , tnq in TerpΣq. That is, a substitution is completely determined by its
value on variables. We say that t1 is an instance of t if t1 “ σptq for some σ, and that t1 is
a closed instance of t if moreover t1 is closed.

A rewrite rule l Ñ r determines a set of rewrites σplq Ñ σprq for all substitutions σ. We
say that σplq Ñ σprq is an instance of l Ñ r. These in turn give rise to reduction steps
Crσplqs Ñ Crσprqs, whenever Crσplqs is defined. We say that Crσplqs Ñ Crσprqs is an
instance in context of the rewrite rule l Ñ r.

A rewriting system is terminating if every reduction sequence eventually must terminate.
A term l P TerpΣq is reducible if there exists an r P TerpΣq such that l Ñ r; otherwise it is
called irreducible. We say that r is a normal form of l if l Ñ˚ r and r is irreducible.

We say that pΣ, Rq is locally confluent (resp. confluent) if for all s, t1, t2 P TerpΣq such
that t1 Ð s Ñ t2 (resp. t1

˚Ð s Ñ˚ t2), there exists a term t with t1 Ñ˚ t ˚Ð t2. The
diagram

s

t1 t2

t
˚ ˚

is called a local confluence diagram.
There are two cornerstone lemmas in term rewriting theory (Lemmas 3.2 and 3.3 below).
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Lemma 3.2 (Newman’s lemma). If pΣ, Rq is terminating, then it is confluent if and only
if it is locally confluent.

We can further characterize local confluence. A pair of reduction steps s Ñ t1 and s Ñ t2
is said to form a critical pair if

(1) there are no terms s1, t11, t
1
2 and context Cr´s such that s1 Ñ t11, s

1 Ñ t12, s “ Crs1s,
t1 “ Crt11s and t2 “ Crt12s.

(2) there are no terms s1, t11, t
1
2 and substitution σ such that s1 Ñ t11, s

1 Ñ t12, s “ σps1q,
t1 “ σpt11q and t2 “ σpt12q.

A local confluence diagram for a critical pair is called a critical confluence diagram. It can
be shown that every pair of reduction steps s Ñ t1 and s Ñ t2 falls in exactly one of the
following situations (up to permuting t1 and t2):

(a1) One can write s “ Drs1s1rs2s2 and there exist t11, t
1
2 such that s1 Ñ t11, s2 Ñ t12,

t1 “ Drt11s1rs2s2 and t2 “ Drs1s1rt12s2. Here, D is a context with two holes, which is
defined just like contexts, replacing terms and contexts with contexts and contexts
with two holes in the definition of contexts.

(a2) s, t1, t2 are such that there exists a substitution σ, a variable x, a context C and
two terms t11 and t12 such that s “ Crσps1qs, s1 Ñ t11, t1 “ Crσpt11qs, σpxq Ñ t12 and
t2 “ Crσ1ps1qs, where σ1pxq :“ t12 and σ1pyq :“σpyq for y “ x.

(b) s, t1, t2 are such that there exists a critical pair s1, t11, t
1
2, a substitution σ and a

context C such that s “ Crσps1qs, t1 “ Crσpt11qs, and t2 “ Crσpt12qs.

We refer to Example 4.11 for an illustration of these three cases in the seminal rewriting
system underlying Mac Lane’s coherence theorem. Situation (b) above is called an overlap-
ping , and critical pairs are alternatively called minimal overlappings. It can also be shown
that all pairs of type (a1) or (a2) above can always be completed into local confluence
diagrams, that is, they converge. For pairs of type (a1), those diagrams are squares, i.e.
t1 Ñ t Ð t2. If the system is linear , that is if all variables on each side of the rewrite rules
are distinct, then the local confluence diagrams of type (a2) are also squares. Finally, we
observe that if critical confluence diagrams are provided for all critical pairs, then, by taking
their instantiations in context, we get all local confluence diagrams of type (b). These are
the ingredients of the proof of the following second cornerstone lemma.

Lemma 3.3 (Knuth-Bendix lemma). A term rewriting system is locally confluent if and
only if every critical pair is convergent.

Thus, for a terminating rewriting system, it suffices to check that all critical pairs converge
to conclude that the system is confluent.

We shall need the following lemma.

Lemma 3.4. If the signature Σ is such that for every sort s there exists a closed term t such
that outptq “ s, and if every closed term t is such that every reduction sequence starting
from t terminates, then pΣ, Rq is terminating.

Proof. Let t be an arbitrary term. By our assumption, there exists a substitution σ such
that σptq is closed. The result follows immediately by contradiction: any infinite reduction
sequence from t would reflect in an infinite reduction sequence for σptq. □
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3.2. Rewriting on constructs. We define our first term rewriting system on constructs.
From now on, we will consider only ordered hypergraphs.

Definition 3.5. Let H be an ordered connected hypergraph. Consider the signature ΣH
made of the following data:

‚ Variables are connected subsets of H, that is V :“ tX Ď H | HX is connectedu.
‚ Function symbols are pairs of a connected subset of H and one of its subsets:

F :“ tpX,Y q | H ‰ X Ď Y Ď H, HY is connectedu.

‚ Sorts are connected subsets of H, i.e., S :“ tX Ď H | HX is connectedu.
‚ For pX,Y q P F , we define arpX,Y q as the number of connected components ofHY zX.
‚ Variables X P V are their own sort, i.e., outpXq “ X, while function symbols

pX,Y q P F are of sort outpX,Y q “ Y .
‚ For function symbols pX,Y q P F such that HY , X ; Y1, . . . , Yn, and for 1 ď i ď n,
we set inppX,Y q, iq “ Yi.

Remark 3.6. Note that, according to this definition, the variables appearing in a term
are always distinct. Therefore, we can unambiguously identify them (as we did, and will
continue to do) with their sort. We observe that any term t may be considered as a closed
term t, by replacing all its variables Y with 0-ary symbols pY, Y q. Formally, t “ σptq where,
for all variables Y of t, σpY q “ pY, Y q.

Lemma 3.7. There is a bijection between the set of closed terms of sort H over ΣH and
the set of constructs of H, defined by projecting all function symbols pX,Y q to their first
component X.

Proof. We compare the inductive definition of constructs (Definition 1.3) with the inductive
definition of TerpΣHq above. First observe that there is only one arity 0 function symbol of
output sort H, the pair pH,Hq. We associate to this term the non-planar tree with only one
node, decorated by H. Now, an arity n function symbol of output sort H is a pair pY,Hq

with Y Ď H. If H, Y ; H1, . . . ,Hn, then a valid closed term pY,Hqpt1, . . . , tnq is made
of closed terms ti of sort Hi, for 1 ď i ď n. We associate to the term pY,Hqpt1, . . . , tnq

the non-planar tree Y pT1, . . . , Tnq with root decorated by Y , and the non-planar trees Ti,
associated by induction to the various ti’s, grafted on its leaves. It is clear from the inductive
nature of the definitions that this correspondence is bijective. □

The correspondence between terms and constructs extends to all terms.

Lemma 3.8. For every non-empty subset X Ď H, there is a bijection χ between the set of
terms t of sort H over ΣH such that

Ť

varptq “ HzX and the set of constructs of HXX ,
defined by projecting all function symbols pZ, Y q to their first component Z and by pruning
all variables.

Proof. The proof is a variation on the proof of Lemma 3.7, and subsumes it (take X “ H).
Let t be a term of sort H. It cannot be a variable, as it would have to be H, contra-
dicting the non-emptyness of X. Thus, ignoring the order of subterms, t has the form
pY,Hqptti | i P Iu Y tHj | j R Iuq, where H, Y ; H1, . . . ,Hn and I Ď t1, . . . , nu, and we
conclude by induction together with Lemma 1.7. □
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We define a family of rewrite rules as follows.

Definition 3.9. Let H be a connected hypergraph. Let K be a connected subset of H,
and let X Ď K be such that K, X ; U1, . . . Un. Let Y Ď Ui and suppose that KizY ;

V1, . . . , Vk. Then, we define the rewrite rule

pX,KqpU1, . . . , Ui´1, pY,UiqpV1, . . . , Vkq, Ui`1, . . . , Unq

ÝÑ pX Y Y,KqpU1, . . . , Ui´1, V1, . . . , Vk, Ui`1, . . . , Unq

if maxpX Y Y q P Y , and

pX Y Y,KqpU1, . . . , Ui´1, V1, . . . , Vk, Ui`1, . . . , Unq

ÝÑ pX,KqpU1, . . . , Ui´1, pY,UiqpV1, . . . , Vkq, Ui`1, . . . , Unq

if maxpX Y Y q P X. We denote this set of rules by RH.

We note that in the above definition pX,Kq, pY,Uiq, . . . are function symbols, while
U1, . . . , V1, . . . are variables. It is clear that these are well-defined rewrite rules: the term
on the left is never a variable, and the variables on both sides are the same. Their closed
instantiations consist in replacing the variables by actual constructs, via the identification
provided by Lemma 3.7.

Recall the covering relation ă from Definition 1.6.

Lemma 3.10. The closed instantiations in context of the rewrite rules RH admit the fol-
lowing description. Let S, T be two constructs such that S ă T . Then we have

S Ñ T if maxpX Y Y q P Y,
T Ñ S if maxpX Y Y q P X.

Proof. Restricting our attention to closed terms, and using Lemma 3.7 gives the result.
Concretely, one just needs to set K :“ supppS{Xq and Ki :“ supppS{Y q in Definition 3.9,
and map each variable to a construct by some substitution σ. □

Behind the scene, the two clauses are not as symmetric as they seem to be. Procedurally
speaking, in the first case, when moving from S to T , there is nothing else to check than
the condition maxpX Y Y q P Y , while in the second case, when moving from T to S, one
has first to decide on a splitting of a node Z of T as some X Y Y in such a way that Y is
connected in supppT {ZqzX and that the condition maxpX Y Y q P X holds.

Remark 3.11. This can be seen as the definition of a preorder on the set ApHq of constructs
of H, distinct from the face relation. Is this preorder a partial order? Computations
suggest that this is the case, and that this order should define a facial order on nestohedra,
and in particular coincide with the facial weak order [KLN`01, PR06, DHP18] on the
permutahedra and the generalised Tamari order [Ron12] on the associahedra.
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3.3. Rewriting on constructions. Restricting our attention to constructions, it is natural
to adapt the term rewriting system pΣH, RHq.

Definition 3.12. For a connected hypergraph H, we consider the constructions signa-
ture Σc

H defined by the following data:

‚ Variables are connected subsets of H, that is V :“ tX Ď H | HX is connectedu.
‚ Function symbols are pairs of a connected subset of H and one of its elements

F :“ tpx, Y q | x P Y Ď H, HY is connectedu.

‚ Sorts are connected subsets of H, i.e., S :“ tX Ď H | HX is connectedu.
‚ For px, Y q P F , we define arpx, Y q as the number of connected components of HY zx.
‚ Variables X P V are their own sort outpXq :“X, while function symbols px, Y q P F
are of sort outpx, Y q :“Y .

‚ For function symbols px, Y q P F such that HY , x ; Y1, . . . , Yn, and for 1 ď i ď n,
we define inppx, Y q, iq :“Yi.

Lemma 3.13. There is a bijection between the set of closed terms of sort H over Σc
H and

the set of constructions of H.

Proof. The proof is similar to that of Lemma 3.7. □

The rewrite rules are obtained by joining together the rules in Definition 3.9.

Definition 3.14. Let H be a connected hypergraph. Let K be a connected subset of H,
and let x, y P K be such that

K, tx, yu ; U1, . . . , Uℓ, V1, . . . , Vm,W1, . . . ,Wn,

where U1, . . . , Uℓ are the connected components of Kzx which do not contain y, W1, . . . ,Wn

are the connected components of Kzy which do not contain x, and V1, . . . , Vm are the
remaining connected components. Let Ky (resp. Kx) denote the connected component of
Kzx (resp. Kzy) which contains y (resp. x). Then we define the rewrite rule

px,KqpU1, . . . , Uℓ, py,KyqpV1, . . . , Vm,W1, . . . ,Wnqq

ÝÑ py,KqpW1, . . . ,Wn, px,KxqpV1, . . . , Vm, U1, . . . , Uℓqq

whenever x ă y. We denote this set of rules by Rc
H.

Once again, it is clear that these are well-defined rewrite rules: the term on the left is
never a variable, and the variables on both sides are the same. Their closed instantiations
in context define reduction steps on the set of constructions of a given hypergraph, i.e., on
the vertices of a given nestohedron. We also note that the two rewriting systems pΣH, RHq

and pΣc
H, R

c
Hq are linear.

Lemma 3.15. The closed instantiations in context of the rewrite rules Rc
H admit the fol-

lowing description. Let S, T be two constructions which are both faces of the same edge.
This means that there exists a node x of S such that S{x “ xpyp¨ ¨ ¨ q, ¨ ¨ ¨ q, and that T is
obtained by replacing in S the subtree rooted at x with ypxp¨ ¨ ¨ q, ¨ ¨ ¨ q. Then we have

S Ñ T if x ă y.
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Proof. Restricting our attention to closed terms and using Lemma 3.13 gives the result.
Concretely, one just needs to set K :“ supppS{xq and Ky :“ supppS{yq in Definition 3.14,
and map each variable to a construct by some substitution σ. □

We shall write S ăx,y T to record that the minimal subtree of S responsible for the
reduction from S to T is S{x and that the reduction concerns the son y of x. This defines a
preorder ă on the set of consructions of an hypergraph H. Is this preorder a partial order?

It turns out that our definition of ă on constructions is equivalent to the definition of the
flip relation on maximal tubings of a graph associahedron given by Barnard and McConville
in [BM21], of which particular cases are considered in [For12]. Their proof that the reflexive
and transitive closure of the flip relation is a partial order extends readily to hypergraph
polytopes.

Definition 3.16. Given a construct S of an ordered hypergraph H, its coordinate vector
vS “ p. . . , vSy , . . . , v

S
x , . . .q P R|H|, where the coordinates appear according to the increasing

order of the elements of H, is defined by

vSx :“ | te P SatpHq | x P e Ď supppS{xqu |.

Proposition 3.17 ([BM21, Lem. 2.8]). Let H be an ordered connected hypergraph. The
preorder generated by the flip relation ă defined above is a partial order, that is well-founded.

Proof. Let S, T be as in Lemma 3.15. We set K :“ supppS{xq “ supppT {yq, I :“ supppS{yq,
and J :“ supppT {xq. Let us examine vS and vT . One sees easily that they have the same
coordinates in all positions other than x and y. We have, by definition

vSx “ | te P SatpHq | x P e Ď Ku | and vTx “ | te P SatpHq | x P e Ď Ju |,

vSy “ | te P SatpHq | y P e Ď Iu | and vTy “ | te P SatpHq | y P e Ď Ku |.

We next claim that the following equality holds:

vSx ´ vTx “ λ “ vTy ´ vSy where λ :“ | te P SatpHq | tx, yu Ď e Ď Ku |.

We just prove the inclusion of sets

pte P SatpHq | x P e Ď Ku z te P SatpHq | x P e Ď Juq Ď te P SatpHq | tx, yu Ď e Ď Ku .

Suppose that e is connected, x P e, e Ď K and e Ď J , and y R e. Then y has to lie
entirely inside one of the connected components of Kzy, which has to be J since x P e,
contradicting e Ď J . We thus have vS ´ vT “ p0, . . . ,´λ, . . . , λ, . . .q, where λ is a positive
integer. Consider now an arbitrary vector µ “ p. . . , µy, . . . , µx, . . .q such that µ‚ : H Ñ R
is strictly decreasing, and consider the linear functional µ :“ x´, µy. Then we have µpvSq ´

µpvT q “ λpµx ´ µyq ă 0. The well-foundedness of Ñ then follows from the finiteness of the
set of constructions. In turn, well-foundedness prevents to create cycles when composing
flips, concluding the proof. □
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Theorem 3.18. The rewriting system pΣc
H, R

c
Hq is terminating.

Proof. We observe that there is a closed term for every sort X: just take of 0-ary func-
tion symbol pX,Xq (cf. Remark 3.6). Therefore, by Lemma 3.4, it suffices to show that
termination holds for closed terms. This follows immediately from Lemma 3.15 and Propo-
sition 3.17. □

But there is more to it. It turns out that the map v‚ from constructions to R|H| in
Definition 3.16 has a geometric significance. Let ∆n´1 be the standard pn´ 1q-dimensional
standard simplex in Rn, the convex hull of the basis vectors e1, . . . , en. Each non-empty
subset I Ď t1, . . . , nu determines a face ∆I of ∆n´1, the convex hull of tei | i P Iu.

Definition 3.19. Let H be a connected hypergraph such that H “ t1, . . . , nu. The Post-
nikov realization of the hypergraph polytope associated to H is the Minkowski sum

PH :“
ÿ

EPSatpHq

∆E .

Proposition 3.20 ([Pos09, Prop. 7.9]). Let H be an ordered connected hypergraph. The
map v‚ is a bijection from the set of constructions of H to the set of vertices of PH.

Constructions correspond to maximal nested sets in the terminology of [Pos09].
Recall that an orientation vector of a polytope P Ă Rn is a vector µ P Rn which is not

perpendicular to any edge of P .

Corollary 3.21. Any vector µ with strictly decreasing coordinates is an orientation vector
for PH.

Proof. The statement follows immediately from reading the proof of Proposition 3.17 in the
light of Proposition 3.20. □

Our presentation is anachronical, since the vectors vS were preexisting to their use by
Barnard and McConville. But it stresses the fact that the proof of termination in Proposi-
tion 3.17 is purely combinatorial and does not rely on the existence of a geometric realization.

3.4. Critical pairs and confluence. We next examine the orientation induced on the
X-faces of H, for some X “ tx1, x2, x3u Ď H. Depending on the total order chosen on H,
each of the four shapes of type (B) from Section 2.1 gives rise to 6 possible local confluence
diagrams. We list them below in Figure 2 in schematic form (i.e., without the ¨ ¨ ¨ ) for the
quadrilateral shape (B2).

Each of these local confluence diagrams stems from a critical pair. For example, in the
first diagram, we can see the minimal overlapping between applying rewriting to the parts
x1p´, x3q and x1px2,´q of the construct x1px2, x3q. Let us make precise what we mean by
“parts”. Calling K the hypergraph underlying the poset (B2), and t the term corresponding
to the construction x1px2, x3q, we have (cf. Remark 3.6) t “ σ1pt1q (resp. t “ σ2pt2q), where
t1 :“ px1,Kqptx2u , px3, tx3uqq and σ1px2q :“ px2, tx2uq (resp. t2 :“ px1,Kqppx2, tx2uq, tx3uq

and σ2px3q :“ px3, tx3u)). This allows us to see the edges from t1 to x2px1px3qq and to
x3px1, x2q as instantiations of the rewrite rules of Definition 3.14. We shall make this
formal in Lemma 3.22 and Theorem 3.23.
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''
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x2px3px1qq

x2 ą x1 ą x3 x2 ą x3 ą x1

x1px2, x3q
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''
x2px1px3qq
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tx2,x3upx1q

x2px3px1qq

x1px2, x3q
66tx1,x2upx3q gg tx1,x3upx2q

x2px1px3qq
hh

x2ptx1,x3uq

tx1, x2, x3u x3px1, x2q
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tx2,x3upx1q

x2px3px1qq

x3 ą x1 ą x2 x3 ą x2 ą x1
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tx1,x2upx3q
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gg tx1,x3upx2q
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x2ptx1,x3uq
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x2px3px1qq

x1px2, x3q
99

tx1,x2upx3q
ee

tx1,x3upx2q
tx1, x2, x3u

x2px1px3qq
hh

x2ptx1,x3uq

x3px1, x2q

tx2,x3upx1qww
x2px3px1qq

Figure 2. The 6 local confluence diagrams associated to the shape (B2)
from Section 2.1, induced by a choice of total order on the set tx1, x2, x3u.
The mininum (resp. maximum) in the partial order is overlined (resp. un-
derlined).

Recall that a function f preserves (resp. reflects) a relation R if for all x, y, xRy implies
fpxq R fpyq (resp. fpxq R fpyq implies xR y).

Lemma 3.22. Let H be an ordered connected hypergraph. The bijections ψ (resp. χ)
preserve and reflect the flip order ă on constructions (resp. the rewriting steps Ñ),

Proof. The proof is an easy variation on the proof of Lemma 2.1 (resp. of Lemma 3.8).
□
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Theorem 3.23. The rewriting system pΣc
H, R

c
Hq is locally confluent. The local confluence

diagrams originating from closed terms of sort H are in one-to-one correspondence with the
oriented 2-faces of H. More precisely, the 2-faces of type (A) provide the local confluence
diagrams of type (a1) and (a2), and the X-faces of type (B) provide all the confluence
diagrams of type (b).

Proof. We use Lemmas 3.13, 3.15 and 3.22 to work directly with constructions. Let us
consider three constructions S, T, U such that S ăx,y T and S ău,v U , with px, yq ‰ pu, vq.
We have S{x “ xpyp. . .q, . . .q and S{u “ upvp. . .q, . . .q. There are two cases to consider:

(A) tx, yu X tu, vu “ H: then the two reductions do not overlap and we are in the
situation in which S, T, U fit in a 2-face of type (A). One sees easily that we get
local confluence diagrams of type (a1) (resp. of type (a2)) if the edge from x to y is
disjoint from (resp. below or above) the edge from u to v in S.

(B) tx, yu X tu, vu ‰ H. There are a priori four subcases:
– x “ u: then S{x “ xpyp. . .q, vp. . .q, . . .q,
– y “ u: then S{x “ xpypvp. . .q, . . .q, . . .q,
– x “ v: up to permuting T and U , this is the previous case,
– y “ v: this would force x “ u, contrary to our assumption.

This gives evidence that case (B) features the two (and only two) overlapping sit-
uations xpyp. . .q, vp. . .q, . . .q (with x ă y and x ă v) and xpypvp. . .q, . . .q, . . .q (with
x ă y ă v), and the four subcases (in their oriented version as above) show how to
complete the local confluence diagrams.

. □

Theorem 3.24. The rewriting system pΣc
H, R

c
Hq is confluent and terminating.

Proof. By Theorem 3.18 and Theorem 3.23, pΣc
H, R

c
Hq is terminating and locally confluent,

and therefore confluent by Lemma 3.2. □

We note that the proof of Theorem 3.23 above does not make use of the critical pair
Lemma 3.3. But we can analyse critical pairs geometrically, as we show now. Recall the
functions ψ and χ from Lemmas 2.1 and 3.8. The following Lemma substantiates the view
that X-faces are instantiations in context of their shape, and is the key to the analysis of
critical pairs in Proposition 3.26 below. Its statement requires a bit of “yoga”.

Our goal is to exhibit any closed term s corresponding to a construct of an X-face T as
an instantiation in context of an open term associated with the shape of that face. For this
we use the bijections χ and ψ. We first transform s into a construct S :“ χpsq. Then we use
ψ to get a construct S1 :“ ψpSq of the same dimension in the shape of T . Finally, we use
the inverse of χ to get an open term t1 :“ χ´1pS1q. The Lemma states that our original t is
an instance in context of t1.

Lemma 3.25. Let T be a X-face of a connected hypergraph H, and suppose that H, X ;

U1, . . . Un. Then, the composite ξ :“χ´1˝ψ˝χ mapping terms over ΣpHsupppT {XqqXX
to closed

terms over ΣH admits the following description:

‚ Writing χ´1pT q “ CrpX, supppT {Xqqpt1, . . . tnqs and defining the substitution σ by
σpUiq :“ ti, then we have ξpt1q “ Crσpt1qs, for all t1 in the domain of ξ.
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Proof. As is quite common in matters involving syntax, the difficulty lies more in formulat-
ing the statement than in proving it. The proof consists in carefully tracking the successive
transformations. The key observation is that the construction of the inverse ϕ of ψ in
the proof of Lemma 2.1 “secretly” performs an instantiation. The details are left to the
reader. □

Proposition 3.26. The critical confluence diagrams of the rewriting system pΣc
H, R

c
Hq are

provided by the maximal faces of all pHY qXX , for X Ď Y Ď H with Y connected and X of
cardinal 3.

Proof. This follows from Lemma 3.25. □

Remark 3.27. A consequence of a term rewriting system being confluent and terminating
is that it is coherent : every two parallel sequences s Ø s1 Ø . . . Ø sm Ñ t and s Ø s1

1 Ø

. . . Ø s1
n Ø t, where Ø is the symmetric closure of Ñ, can be proved equal by successive

transformations replacing a part of a sequence by a “complementary” sequence forming with
it the (non-oriented) border of a local confluence diagram. This statement can be proved
by following Huet’s steps sketched in the introduction. A nice and detailed exposition can
be found in [Bek11], see also [GM18] in the setting of word rewriting. Alternatively, via
the dictionary established in this section between rewriting and nestohedra, this result,
for pΣc

H, R
c
Hq, falls out as a special case of our combinatorial coherence theorem in [CL23,

Thm 1.4 & Prop. 1.7]. We observe here that since nestohedra are simple polytopes [DP11,
Sec. 9], the proof of the instrumental Lemma 1.3 in [CL23] can be simplified, as the simplicity
assumption implies that the case (3) considered in its proof does not apply. This makes our
combinatorial proof in [CL23] even more akin to the rewriting proof.

4. Contextual families of nestohedra

In this section, we define a subclass of the class of nestohedra, which, as we shall argue,
brings us even closer to our favourite categorical coherence results. We begin by giving
some intuition.

4.1. Discussion. In the previous section, we have established coherence (in our polytopal
sense) using standard term rewriting methods. So far so good. But it can be argued that
constructs are more economical than the terms on the signatures that we have introduced,
and that, being themselves trees, they “look like” terms. Can we somehow reproduce our
discussion of rewriting, and in particular of critical pairs, directly on constructs?

An obstacle is that the bijection χ of Lemma 3.7 strips off useful information on the
support of all subconstructions (i.e., subtrees) of the constructions to be “rewritten”. Tak-
ing Lemma 3.15 seriously, one can be tempted to consider xpyp¨ ¨ ¨ q, ¨ ¨ ¨ q ă ypxp¨ ¨ ¨ q, ¨ ¨ ¨ q as
a rewrite rule (for x ă y), but filling in the ¨ ¨ ¨ requires knowing the support K of S{x. So,
at the price of reconstructing K from the inductive definition of S, this description is ac-
ceptable. But for the study of critical confluence diagrams, say S ă x2px1px3, ¨ ¨ ¨ q, ¨ ¨ ¨ q, ¨ ¨ ¨ q

and S ă x3px1p¨ ¨ ¨ q, x2p¨ ¨ ¨ q, ¨ ¨ ¨ q, for S :“x1px2p¨ ¨ ¨ q, x3p¨ ¨ ¨ q, ¨ ¨ ¨ q, can we be sure that the
shape of the local confluence diagram will be independent of the support of S{x1?
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In view of Corollary 2.2, this shape is pHsupppT {x1qqXtx1,x2,x3u. It would be more sat-
isfying if the shape was HXtx1,x2,x3u, because then the critical confluence diagram would
be “context-independent” (for this informal notion of rewriting), i.e., all tx1, x2, x3u-faces
would have the same shape. This motivates the definition of contextual hypergraph below.

4.2. Contextual nestohedra.

Definition 4.1. A connected hypergraphH is contextual if, for all connected subsets Y Ď H
of cardinal |Y | ě 3, and for all 3-elements subsets X “ tx, y, zu Ď Y , one of the following
equivalent conditions is satisfied:

(1) x
HY⇝ ty, zu ô x

H
⇝ ty, zu ,

(2) HXX “ pHY qXX .

That these conditions are equivalent is a direct consequence of Lemma 1.2. We first give
two examples of hypergraphs that are not contextual.

Example 4.2. Consider the hypergraph

H :“ ttxu , tyu , tzu , tuu , tx, y, zu , tx, u, zuu ,

the setX :“ tx, y, zu and the twoX-faces S :“upXq and T :“Xpuq. Then S{X is a construct

of K :“Hz tuu while T {X “ T is a construct of H. But we have y
K
⇝ txu,tzu and y

H
⇝

tx, zu, which implies that S is a triangle while T is a quadrilateral, as KXtx,y,zu “ K “

ttxu , tyu , tzu , tx, y, zuu and HXtx,y,zu “ ttxu , tyu , tzu , tuu , tx, zu tx, y, zuu. Therefore H
is not contextual.

Example 4.3. Consider the graph

ttxu , tyu , tzu , tuu , tx, yu , ty, zu , tx, uu , tu, zuu .

Then exactly the same data as in Example 4.2 provide evidence that this graph, whose
realization is the three-dimensional cyclohedron, is not contextual.

The following Proposition allows us to see all X-faces as “instantiations in context”
of HXX .

Proposition 4.4. Let H be a contextual hypergraph. If X is a subset of H such that |X| “ 3
and T is an X-face of H, then the poset of faces of T is isomorphic to the poset of faces
of HXX .

Proof. This is a direct consequence of Corollary 2.2. □

4.3. Contextual families. Motivated by the examples presented in Section 1.3 and their
associated categorical coherence theorems listed in Table 1, we define now the notion of a
contextual family of nestohedra.

Identifying a hypergraph H with the maximal construct T of pApHq,ĺq, we say that H
has dimension dimT (cf. Section 2.1). For a family of hypergraphs H, we denote by Hpnq

the subset of hypergraphs of dimension n ě 0.
We will consider families of ordered hypergraphs. Note that when H is ordered, all the

restrictions HX and reconnected restrictions HXX are naturally ordered hypergraphs.
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Definition 4.5. A family H of ordered hypergraphs is contextual if

(1) any ordered hypergraph H P H is contextual,
(2) for any H P H and any X Ď H, all the connected components of HzX are in H,
(3) we have tHXX | X Ă H, |X| “ 3,H P Hu Ď Hp2q.

As for point (3) of this definition, we note that a reconnected restriction of a contextual
hypergraph is contextual.

The term rewriting systems from Sections 3.2 and 3.3 can be adapted to a rewriting
system on all hypergraphs of H. We shall focus on the constructions rewriting system.

Definition 4.6. For a contextual family of hypergraphs H, we consider the constructions
signature Σc

H defined by the following data:

‚ Variables and sorts are elements of H.
‚ Function symbols are pairs of a hypergraph H P H and one of its vertices:

F :“ tpx,Hq | x P H, H P Hu.

‚ For px,Hq P F , we define arpx,Hq as the number of connected components of Hzx.
‚ Variables H P V are their own sort outpHq :“H, while function symbols px,Hq P F
are of sort outpx,Hq :“H.

‚ For function symbols px,Hq P F such that H, x ; H1, . . . ,Hn, and for 1 ď i ď n,
we define inppx,Hq, iq :“Hi.

It follows from Definition 4.5 and the fact that the restriction of a contextual hyper-
graph is contextual, that this signature is well-defined. Moreover, it is straightforward to
adapt Lemma 3.13 and Definition 3.14 to obtain a term rewriting system pΣH, RHq on the
constructions of H.

From Theorem 3.23, we have that all local confluence diagrams for overlapping pairs
pΣH, RHq correspond to some X-face of some H P H. The fact that H is contextual imposes
an additional uniformity constraint on these diagrams.

Theorem 4.7. Let H be a contextual family of ordered hypergraphs. For any H P H and
subset X Ď H with |X| “ 3, all the X-faces and hence their associated overlapping local
confluence diagrams have the same shape HXX .

Proof. This is a direct consequence of Proposition 4.4. □

Mimicking Theorem 3.24, we get that pΣH, RHq is confluent and terminating. Moreover,
in virtue of Condition (3) in Definition 4.5, all the critical confluence diagrams of pΣH, RHq

are in Hp2q. We argue that these diagrams should be called coherence conditions, in view
of Remark 3.27 as well as the following examples of contextual families and their coherence
theorems.

4.4. Examples. We call contextual graph-associahedra (resp. contextual nestohedra) the
hypergraph polytopes whose underlying hypergraph is a contextual (hyper)graph. Here,
we include a copy of each (hyper)graph for each possible total order on its vertices. Re-
call that simplices, cubes, associahedra, permutahedra and operahedra were introduced in
Section 1.3.
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Theorem 4.8. The following families of hypergraph polytopes are contextual:

(a) simplices,
(b) cubes,
(c) associahedra,
(d) permutahedra,
(e) operahedra,
(f) contextual graph-associahedra,
(g) contextual nestohedra.

Proof. Let us proceed one family at a time. For each one, we check Conditions (1)-(3) in
Definition 4.5. We consider sets of vertices to be H “ t1, . . . , nu.

(a) Conditions (1)-(3) follow easily from the fact that hyperedges of simplices are all
either singletons or the maximal hyperedge.

(b) We first prove Condition (1). Note Cn is saturated, and that pCnqt1,...,mu “ Cm if

m ď n. So we have to check that for all m ď n and all i, j, k ď m, we have k
Cn⇝ ti, ju

iff k
Cm⇝ ti, ju, which follows immediately from the observation that for all p ě m we

have k
Cp
⇝ ti, ju iff i ă k and j ă k. For Conditions (2) and (3), it suffices to observe

that the connected components of CnzX, for some X, are all cubes Cm with m ă n,
and that reconnected restrictions of cubes are cubes.

(c)-(e) Conditions (1) and (2) follow from the fact that any connected subgraph of a linear
(resp. complete, clawfree block) graph is a linear (resp. complete, clawfree block)
graph. Condition (3) follows from the fact that any reconnected complement of a
subset in a linear (resp. complete, clawfree block) graph is a linear (resp. complete,
clawfree block) graph.

(f)-(g) This is immediate from the definitions.

□

Remark 4.9. Note that contextual (hyper)graphs do not contain all graph-associahedra.
For instance, we have seen in Example 4.3 that the cyclohedra are not contextual. It would
be interesting to characterize combinatorially contextual (hyper)graphs.

4.5. Categorical coherence. In this final Section, we recall the categorical coherence the-
orems associated with associahedra and operahedra, and conjecture one for permutahedra.

4.5.1. Associahedra. Recall that the scene is the data of a category C, a bifunctor b :
C2 Ñ C and a natural iso α from the functor pX,Y, Zq ÞÑ pX b Y q b Z to the functor
pX,Y, Zq ÞÑ X b pY b Zq. Mac Lane’s coherence theorem states that for any two functors
F,G from Cn`1 to C arising from n iterations of b, any two natural transformations λ1, λ2
from F to G “written using α or its inverse” are equal, provided the statement holds in the
following special case, called coherence condition:

‚ F :“ pX,Y, Z, Uq ÞÑ ppX bY q bZq bU, and G :“ pX,Y, Z, Uq ÞÑ X b pY b pZbUqq,
‚ λ1 :“ pX b αY,Z,U q ˝ αX,Y bZ,U ˝ pαX,Y,Z b Uq, and λ2 :“αX,Y,ZbU ˝ αXbY,Z,U ,

i.e. provided the following diagram (Mac Lane’s pentagon) commutes:
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ppX b Y q b Zq b U

αX,Y,ZbUtt αXbY,Z,U

''
pX b pY b Zqq b U

αX,Y bZ,U

��
pX b Y q b pZ b Uq

αX,Y,ZbU

ww

X b ppY b Zq b Uq

XbαY,Z,U **
X b pY b pZ b Uqq

Via Huet’s correspondence [Hue85], the annotated proof of confluence of the rewriting
system pΣH, RHq associated to the contextual family of associahedra H provides a proof of
Mac Lane’s coherence theorem, with the pentagon in Hp2q acting as the coherence condi-
tion. The following examples explain the translation between the language of hypergraph
polytopes and the language of monoidal categories.

Example 4.10. Consider the linear tree

T :“ X
1
Y

2
Z

3
U

Then LpT q is the associahedron K3. The constructs of T decorate a pentagon as follows

3p2p1qq
3pt1,2uq

xx t2,3up1q

��
3p1p2qq

t1,3up2q

��
2p1, 3q

t1,2up3q

��

1p3p2qq
1pt2,3uq

&&
1p2p3qq

and are in bijective correspondence with the vertices and edges of Mac Lane’s pentagon.
The encoding is given as follows:

‚ pX b1 Y q b2 pZ b3 Uq, where we annotated the “compositions” b with the vertices
of K2, can be written b2pb1pX,Y q,b3pZ,Uqq in prefix (or tree) notation. Then we
get 2p1, 3q by removing the leaf nodes of that tree.

‚ αX,Y,Z b3 U can be interpreted as pX b1 Y b2 Zq b3 U (a non fully parenthesized
expression), which likewise translates as 3pt1, 2uq,where 3p´q makes the job of con-
textualization.

‚ Likewise, we can move from αX,Y b2Z,U to X b1 pY b2 Zq b3 U to t1, 3u p2q, where
2 makes the job of instantiation.
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Example 4.11. Taking the 4-dimensional associahedron Kt0,1,2,3,4u, we get the following

instance in context of K3 “ Kt0,1,2,3,4u

Xt1,2,3u
, i.e., of Mac Lane’s coherence condition:

4p3p2p1p0qqqq
4p3pt1,2up0qqq

uu 4pt2,3up1p0qqq

$$
4p3p1p0, 2qqq

4pt1,3up0,2qq

��
4p2p1p0q, 3qq

4pt1,2up0,3qq

zz

4p1p0, 3p2qqq
4p1p0,t2,3uqq

))
4p1p0, 2p3qqq

We recover the (encoding of the) edge

ppppX1 b0 X2q b1 Y q b2 Zq b3 Uq b4 V

pαpX1bX2q,Y,ZbUqbV

rr
pppX1 b0 X2q b1 pY b2 Zqq b3 Uq b4 V

as the top left edge above.

Here, the fact that the family of associahedra is contextual implies in particular that the
local confluence diagram associated to the expression

ppX1 b0 X2q b1 Y b2 Z b3 Uq b4 V

which takes place on the 4-dimensional associahedron, has the same shape as the critical
confluence diagram associated to the expression

pX b1 Y b2 Z b3 Uq

and thus that the former one can be seen as an instance in context of MacLane’s pentagon.
Rigorously, the above data define a term rewriting system, that we shall call the Huet–Mac
Lane rewriting system, on a signature consisting of a single operation b and on linear terms
written with six variables X1, X2, Y, Z, U, V . This rewriting system is in exact correspon-
dence with our rewriting system for Kt0,1,2,3,4u. More precisely, we can go from constructs
to Huet–Mac Lane terms by applying the following recipe. Consider the linear tree

T 1 :“ X1
0
X2

1
Y

2
Z

3
U

4
V .

Then, building, say the construct 4p3p1p0, 2qqq “on this tree” rather than on its associated
line graph LpT 1q “ K5, we can see that picking 4 amounts to cutting T 1 by removing edge 4.
This leaves the one-node tree V alone on the right and the term associated to 3p1p0, 2qq on
the left, thus determining ´bV . And so on, until reaching pppX1bX2qbpY bZqqbUqbV .
Note that the information “leaving V alone” is lost on the associated line graph.
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We note that linear Huet–Mac Lane terms, as well as the partially parenthesised ex-
pressions such as those written above, can also be described as all possible nestings on,
say T 1.

As for the “easy” local confluence diagrams of type (a1) and (a2), let us point out
that they correspond in categorical terms to the bifunctoriality and naturality conditions,
respectively, as exemplified below:

ppX b Y q b Zq b ppU b V q bW q

pX b pY b Zqq b ppU b V q bW q ppX b Y q b Zq b pU b pV bW qq

pppX b Y q b Zq b Uq b V

ppX b pY b Zqq b Uq b V ppX b Y q b Zq b pU b V q

As we have seen in Example 4.3, this interpretation would not hold anymore if one were
to consider the cycle graph instead of the line graph, that is, if one were to identify X and
V in the expressions above.

4.5.2. Operahedra. In the case of operahedra, it turns out that the shape of a tx1, x2, x3u-
face is entirely determined by the relative positions of the edges x1, x2, x3 in the underlying
planar tree. Let us make this more precise. Let S be an X-face of LpT q, for some planar
tree T . Then its shape is given by (the line graph associated to) the tree TzX obtained
from T by contracting all edges except the three elements of X (which are edges of T ).
We leave the details to the reader, but note that this illustrates contextuality: this shape
is only determined by T and X, and does not depend on the position of X in S.

Let us also say a word on the actual coherence statement for categorified operads: it
relies on a signature and rewrite rules much in the spirit of the Huet–Mac Lane rewriting
system (see [DP15, Lap22, CL23]), that correspond to constructs of operahedra, to their
equivalent representations as nestings of planar trees (the linear trees of associahedra being
a particular case), and to our rewriting systems on the line graphs of planar trees.

4.5.3. Permutahedra and friends. It seems likely that the family of permutahedra admits
a similar categorical coherence theorem. The corresponding algebraic structure would be
here that of permutads [LR13, Mar20]. In the same fashion as associahedra are operahedra
associated to linear trees, permutahedra are operahedra associated to 2-leveled trees [Lap22,
Def. 2.8]. Therefore, one could define categorified permutads by adapting the definition of
categorified operads [CL23] to these trees.

In the case of contextual graph-associahedra, it seems likely that a corresponding coher-
ence theorem could be associated to a certain type of categorified reconnectads [DKL22].
The situation is summarized in Table 1.
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Family Algebraic structure Coherence theorem
Simplices - -
Cubes - -

Associahedra Monoidal category [ML63]
Permutahedra Categorified permutads -
Operahedra Categorified operads [DP15, CL23]

Contextual graph-associahedra Categorified reconnectads -
Contextual nestohedra - -

Table 1. Families of contextual hypergraphs, the categorical structures that
they (conjecturally) encode, and their associated coherence theorems.
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