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LOCALIZATION FOR QUASI-ONE-DIMENSIONAL DIRAC OPERATORS
HAKIM BOUMAZA AND SYLVAIN ZALCZER

ABSTRACT. We consider a random family of Dirac operators on N parallel real lines, mod-
elling for example a graphene nanoribbon. We establish a localization criterion involving
properties on the group generated by transfer matrices. In particular, we consider not only
the case where this group is the symplectic group but also a strict subgroup of it. We establish
under quite general hypotheses that the sum of the Lyapunov exponents and the integrated
density of states are Holder continuous. Moreover, for a set of concrete cases where the po-
tentials are on Pauli matrices, we compute the transfer matrices and prove either localization
or delocalization, depending on the potential and on the parity of N.

1. INTRODUCTION

Dirac introduced the operator bearing his name in order to describe the motion of a relativis-
tic electron. While nonrelativistic quantum matter is described by the Schrodinger operator,
which is a second-order differential operator acting on scalar-valued functions, the Dirac op-
erator has order 1 and acts on vector-valued functions. A standard reference on the Dirac
operator from a mathematics point of view is the book of Thaller [32].

In the last twenty years, the Dirac operator has been used as an effective Hamiltonian to
describe graphene samples, although no relativistic effects are considered. Graphene is a 2-
dimensional material made of carbon atoms arranged according to a honeycomb structure.
The setting which we are mostly interested in this paper is the one of graphene nanoribbons,
which consist in an infinite band of graphene, bounded transversely. In [4], a model of Dirac
operator on a waveguide is studied.

The question of localization on graphene nanoribbons has already been considered by physi-
cists, although they generally consider a discrete tight-binding model instead of the Dirac
operator. In [30], some localization is obtained for a quasi-periodic perturbation. In [25]
and [15], different Anderson-like models are considered. In [33], several interesting phenom-
ena are highlighted. First, different types of disorder can lead to different localization regimes.
Second, in some cases there is localization for all nonzero energy but delocalization for energy
zero, for symmetry reasons. Third, the Lyapunov exponents can be grouped into pairs, here
again because of some symmetry of the system. We will be able to recover these properties
in our results.

From a mathematical point of view, a few papers have already considered random Dirac
operators. In [3], Barbaroux, Cornean and the second author proved localization at band
edges for a gapped Dirac Hamiltonian in any dimension. The latter continued with [34],
where he proved the Lipschitz regularity of the integrated density of states for the same
model, and [35], in which Anderson localization is proven at any energy for a one-dimensional
model. Discretized versions of the Dirac operator have been studied by Prado and de Oliveira,
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2 H. BOUMAZA AND S. ZALCZER

either for a Bernoulli random potential [26], 28] or for a potential with an absolutely continuous
distribution [27]. In [29], Sadel and Schulz-Baldes consider a quasi-one-dimensional random
Dirac operator with some symmetry property. They look at the Lyapunov exponents and
establish delocalization in some cases, but they do not prove localization.

In the present paper, we consider a semi-discretized model: the nanoribbon is represented
by a finite number of parallel infinite lines. This makes it possible to use techniques which
are specific to one-dimensional systems, based on transfer matrices and Lyapunov exponents.
These methods have already been used to prove localization for Schrodinger operators with
random potentials even with singular distributions, in [23] in the discrete case and in [§] in
the continuous case. A survey article on these methods has recently been published [I0]. The
proof of the localization itself relies on the method called multiscale analysis, in its version
developped by Germinet and Klein in [16].

Our paper is organized as follows. In Section [I] we present the model as well as the main
tools used in the analysis, and we state our results. In Section [2] we prove a general criterion
ensuring localization for a quasi-one-dimensional random Dirac operators. In Section [3 we
prove that we can apply this criterion to some explicit examples. Finally, in Appendix [A]
we study the properties of a group appearing in one of the cases considered in Section [3| and
in Appendix [B] we prove an initial length-scale estimate for a quasi-one-dimensional random
Schrodinger operator, correcting a mistake of []].

1.1. Quasi-one-dimensional operators of Dirac type. Given an integer N > 1, the free
Dirac operator on N parallel straight lines is

v g d e (0 Iy (V) _ g1 2N
(1.1) Dy = de, with J := (IN 0 ) and Dom(D; ') = H (R) ® C*".
It is easy to see that this operator is self-adjoint.

We add to this free operator a random potential. Let (2, .4, P) a complete probability space
and ¢ > 0 be a disorder parameter: the smaller ¢ is, the "more disordered” the system is. The

random potential (Vw(”))nez is a sequence of independent and identically distributed (i.i.d. for

short) random variables such that, for every n € Z, the function = — VJ”’(x) takes values in
the Hermitian matrices, is supported in [0, ¢] and is uniformly bounded in z, n and w.

We consider the random family {D,,}.cq of quasi-one-dimensional Dirac operators defined
for every realization w € €2 by:

(1.2) D, =Dg" + Y V(- — tn).

neL

Under such conditions, for each w € €0, the operator D, is self-adjoint on the Sobolev space
H'(R) ® C* and thus, for every w € €, the spectrum of D,,, denoted by o (D,,), is included
in R.

The random potential is such that {D,},cq is a £Z-ergodic random family of operators. As
a consequence, there exists ¥ C R such that, for P-almost every w € Q, ¥ = o(D,,). There
also exist Xpp, X, and X, subsets of R, such that, for P-almost every w € €2, ¥, = opp(Dy),
Yae = 0ac(Dy) and Xg. = o0y (D,,), respectively the pure point, absolutely continuous and
singular continuous spectrum of D, (see for example [21], Theorem 4.3]).
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We aim at proving that under conditions involving notions coming from the theory of
dynamical systems, the phenomenon of Anderson localization occurs for {D,}.cq at all en-
ergies, except maybe those in a discrete set. There are several mathematical definitions to
translate the Anderson localization phenomenon for a general family of random operators.
Let {H, }weq be a family of self-adjoint random operator on a Hilbert space, which will be
the space H'(R) ® C*" in our model ([1.2)).

Definition 1.1 (AL). Let I be an interval of R. We say that the family {H,},cq of almost-
sure spectrum Y has the property of Anderson localization in I when:
() ENnI=%Y,NI#0and X, NI =%.NI=10,
(2) the eigenfunctions associated with the eigenvalues in ¥ NI decay exponentially to 0 at
infinity.

Note that if {H, },ecq exhibits Anderson localization in I, P-almost surely the point spec-
trum of H, is dense in XN I. The definition of Anderson localization is a stationary definition,
involving only the Hamiltonian H,, and not the associated one-parameter group. The following
definition takes into account the dynamics in time of the wave packets.

Definition 1.2 (DL). Let I be an interval of R. We say that the family {H, },cq is dynami-
cally localized in I, when

(1) XN 1 #0,

: 2 IN

0 )
(2) for every compact interval Iy C I, every ¢ € L*(R) ® C*" with compact support and
every p > 0,
P 2
(1.3) E (Sup |1 gey, 1)y ) < +00
teR L*(R)

where 1;,(H,) denotes the spectral projector on I, associated with H,,.

The definition is dynamical in nature and follows the evolution of wave packets over time.
It tells us that the solutions of the Schrodinger equation are localized in space in the vicinity
of their initial position and this, uniformly over time. This reflects the absence of quantum
transport. More precisely, let || be the position operator, i.e., the multiplication operator by
z— (1+]|z|]2)2 on L2(R) ® C*N. For any state 1) € L2(R) ® CV, if we denote ¢;(t) as the
evolution of the spectral projection of ¢ at time ¢, then the moments of the position operator
are bounded in ¢:

ACy 1 >0, Vp >0, Vt e R, (¢;(t), |z[Pr(t)) < Cyr.
On the contrary, we will say that there is quantum transport in an interval I’ when
Jda >0, I3p>0, YVt € R, (Wp(t),|zPyr(t)) > [t

Let us point out that the use of multiscale analysis as done in this paper will imply both An-
derson localization and dynamical localization [14]. Note that dynamical localization implies
absence of continuous spectrum but does not imply in general, the exponential decay of the
eigenfunctions as in (AL). It is also possible to define even stronger notions of localization,
all of them being implied by the use of multiscale analysis. For an exhaustive presentation of
these notions we refer to the third part of [22].

Before stating our main result, a localization criterion for quasi-one-dimensional operators
of Dirac type, we need to introduce the Lyapunov exponents and the Furstenberg group of
such operators.
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1.2. Transfer matrices, Lyapunov exponents and the Furstenberg group. In order
to determine the almost-sure spectrum of { D, },cq and to study the asymptotic behaviour of
the corresponding generalized eigenfunctions, one considers the equation for the generalized
eigenvalues, for every w € (),

(1.4) D,u= FEu, where E€C and u= <“T> : R— CV.

uy

The notation u = <ZI ) refers to the decomposition spin up / spin down of the solution of the
Dirac equation.

Equation (|1.4) is a linear differential system of order 1. We introduce, for £ € C and every
z,y € R, the transfer matrix TY(F) of D,, from z to y which maps a solution (u',u}) at time

x to the same solution at time y. It is defined by the relation

(1.5 (i) =me ()

and in particular, T7(E) = Iox for every z € R. The transfer matrices are elements of the
complex symplectic group

(1.6) SpA(C) = {M € Mox(T) | M*TM = J}
with J = <I?v V). Indeed, for E € C and = € R fixed y — TY(E) satisfies D, (TY(E)) =

E(TY(E)) on R. It implies <d%Tj’(E)>* JT;{(E)—F(T;’(E))*J%T%’(E) = 0. Hence, the function
y — (TY(E))*JTY(E) is constant on R. Taking the value at y = x one obtains J and

(TY(E))*JTY(F) = J for every y € R.

Remark 1.3. Note that despite its name, Spy(C) is a real Lie group since it is a C'*° manifold
and not a holomorphic manifold because of the presence of a conjugation in its definition.

For E € C fixed and two couples (z,y) and (2/,y’) in R?, the random matrices TY(F)
and Ti,’,l(E) are not necessarily independent. In order to apply the results of the theory of
products of i.i.d. random matrices, we also introduce, for every n € Z, the transfer matrices
T, (F) = Té&nﬂ)(E) from /n to ¢(n + 1). The transfer matrix T, (F) is therefore defined

by the relation

ut(l(n+1 ut(bn
(1.7) ( u¢E€En+ 1;; ) =T (E) ( uigﬁng )
for all n € Z.

The sequence (T, (E))nez is a sequence of i.i.d. matrices because of the i.i.d. character of

the Vs and the disjointness of their supports for different values of n.
By iterating the relation |) we get the asymptotic behaviour of (’JI ) More precisely, we
introduce, for E € C fixed, the cocycle ®f : Z x Q — Sp}(C) defined by : Vn € Z, Yw € Q,

Tw(n—l) (E) s Tw(O) (E) if n>0
Sp(n,w) = < Ix if n=20
(T (E)) - (Tyen (B)™Y i n <0

w w

To get the exponential asymptotic behaviour of (gI ), we define the exponential growth (or

decay) exponents of the product of random matrices T, 1) (E) - -+ T, (E).
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Definition 1.4. Let £ € C. The Lyapunov exponents i (E), ..., 75y (E) associated with the
sequence (1), (E))nez are defined inductively by

n—+oo |n|

(18) S EB) =l oEog | A7 ()]

for every p € {1,...,2N}. Here, A’ M denotes the p-th exterior power of the matrix M, acting
on the p-th exterior power of C*V.

Since the transfer matrices all lie in Spy(C), for every i € {1,...,2N}, v (E) = ~; (E).
Indeed, for each M € Spy(C), ||M]|| = ||[M~].
One can link the Lyapunov exponents to the singulars values of the cocycle ®g(n,w).

Proposition 1.5 ([5],Proposition A.IIL.5.6). If s;(Pg(n,w)) > ... > son(Pgr(n,w)) > 0 are
the singular values of ®(n,w), then, for P-almost every w € €2,
: 1 . 1
vpe{l,....2N}, 3 (E) = lim_ mE(log sp(Pp(n,w)) = lim Tl log s,(®p(n,w)).
This implies in particular that v (E) > ... > 7oy (E). Moreover, the symplecticity of the
transfer matrices also implies the following symmetry property (cf. [5, Proposition A.IV.3.2])

Vie{l,...,N}, vonv—it1(E) = —(E).

To study the properties of the Lyapunov exponents, we introduce the group which contains
all the different products of transfer matrices, the so-called Furstenberg group.

Definition 1.6. For every E' € C, let ugp be the common distribution of the random matrices
T, (E). We define the Furstenberg group of {D,},cq at E as the closed group generated by
the support of g,

G(E) = <suppug >,

where the closure is taken for the usual topology in Max(C).
We already remark that for all £ € C, G(E) is a subgroup of Spy(C).

1.3. Localization criterion for quasi-one-dimensional operators of Dirac type. The
formalism of transfer matrices, Lyapunov exponents and the Furstenberg group enables to
state a criterion of dynamical localization for quasi-one-dimensional operators of Dirac type.
Before that, we introduce several definitions in order to fix the framework in which we are
able to obtain such a criterion of dynamical localization.
We introduce two properties concerning the Furstenberg group. Let p € {1,...,N}. The
first property is called p-contractivity.

Definition 1.7. A subset T of GLan(C) is called p-contracting if there exists a sequence (M,,)
of elements of T such that |[[APM,,||"*APM,, converges to a rank-one matrix.

Let L > 1 an integer. For | € {1,..., L} we denote indifferently by &, a bilinear form on
C?V or its matrix in the canonical basis of C*¥. We also denote by by, or most simply by J,
the symplectic bilinear form on C?V associated with the matrix J = (I?\I _éN )

For any p € {1,...,N}, let (J,by,...,br)-L, be the vector subspace of APC*N whose ele-

ments are p-decomposable vectors u; A - -+ A u, such that
VZ,j € {1, Ce ,p}7 Vil e {O, ce ,L}, bl(ui,uj) =0
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i.e, the family (us, ..., u,) is orthogonal for all the bilinear forms b; (and in particular each u;
is orthogonal to itself for all b;).

The second property is called the (J, by, ..., br)-L,-strong irreducibility. It generalizes the
notion of L,-strong irreducibility as defined in [5] in the setting of the real symplectic group.

Definition 1.8. We say that a subset 1" of GLon(C) is (J, b1, . . ., by)-L,-strongly irreducible if
there does not exist any W, finite union of proper vector subspaces of (J,by,...,br)-L,, such
that (APM)(W) =W for all M in T.

We now state two localization criteria for {D, },eq in some particular cases of the group
G. The first one states for the group G = Spy(C).

Theorem 1.9. We fiz a compact interval I C R. We assume that there exists an open interval
I containing I and such that for every E € I:

(1) the Furstenberg group G(E) is included in Spy(C) ;

(2) for everyp € {1,...,N}, G(E) is p-contracting and J-L,-strongly irreducible.
Then {D,}weq exhibits dynamical localization in 3N 1.

In order to state a second theorem, we introduce the matrix

K 0
(1.9) S i ( N ) € May(R),
where K is the diagonal matrix with (—1)""! in position 7. We define the group
(1.10) SPOx(R) := {M € Myn(R), *"MJM = J, 'MSM = S} .

The second locahzatlon criterion states for the group G = SpOy(R).

Theorem 1.10. Assume that N is even. We fix a compact interval I C R. We assume that
there exists an open interval I containing I and such that for every E € I:

(1) the Furstenberg group G(E) is included in SpOy(R) ;
(2) for every 2p € {1,..., N}, G(E) is 2p-contracting and (J, S)-La,-strongly irreducible.
Then { Dy, }weq exhibits dynamical localization in ¥ N 1.

Theorems (1.9 and [1.10[ are comparable to [8, Theorem 1] which is a criterion of localization
for qua81—one—d1men81onal operators of Schrodinger type. This former result deals only with
the case of G = Spy(R).

The proofs of Theorems [1.9) and [L.10] involve several steps as detailed in Section [2}

(1) The assumptions of the two theorems lead to an integral formula for the Lyapunov
exponents which implies their Holder regularity.

(2) We then deduce the same Holder regularity for the integrated density of states, using
a Thouless formula.

(3) From this regularity of the integrated density of states, we get a weak Wegner’s estimate
adapted to Bernoulli randomness.

(4) Finally we apply a multiscale analysis scheme which involves the proof of an Initial
Length Scale Estimate.

Actually, we will see in Section [2| that most of these steps except the proof of the Initial
Length Scale Estimate in the last one are true with more general hypothesis. Let us state
them now.
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Assumption (L™). We fix a compact interval I C R. We assume that there exists Ly a
vector subspace of ANC2Y and an open interval I containing I such that, for all E € I:
(L) for all g € G(E), (ANg)(Ly) C Ly;

(L) for all # # 0 in Ly,

N
nlgn nE(logHA bp(n Z%

(LéN)) there exists a unique probability measure vy g on P(Ly) which is pp-invariant, such
that

AN )z
vl(E)+---+'yN(E)=/ logMdME(g)dVN,E(f);
G(E)xP(Ly) [| ]|

(L) 1 (B) + -+ (E) > 0.

The properties of N-contractivity and J or (J, S)-Ly-strong irreducibility imply Assumption
(LM)). Tt is a consequence of [5, Proposition A.IV.3.4] in the case of Spx(C) since one has
the identification between Spy (C) and Spyy(R) using the following application which split the
real and imaginery parts of the matrices in Myn(C):

MQN((C) — M4N(R)
A+iB — (4°F8).
In the case of SpOy(R), it is proven in Proposition

In the following Section, we will present some explicit cases of the model {D,, },cq for which
we are able to verify the assumptions of Theorem or Theorem [1.10[

1.4. Application of the localization criterion to a class of splitting potentials. In
this Section, we introduce a particular case of quasi-one-dimensional operators of Dirac type
whose potentials split in a sum of two tensorized Pauli matrices. Recall the usual notations
for Pauli matrices :

o=, o1:=(%%), o2 =(V3), o5:=(§ ).

Consider the particular family {D N }weg where the potential split into a periodic part and
a random part :

(1.11) DY) = D§V + Vyer + V..

The potential Vi, is a f-periodic function, linear combination of tensorized Pauli matrices
of the form

(112) ‘/per = (()é00'0+0410'1 —|—0420'2+0630'3> ®Vper,
where «, ..., a3 are real numbers and Vper is a (-periodic function with value in the space of

the N-by-N real symmetric matrices denoted by Sx(R). Note that :
oo @V = ({ y) € Max(C)

and the same for the other tensor products.
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We construct the random potential V, in the following way. Let (Qy, A1, Py), ..., (Qn, Ay, Py)
be N complete probability spaces. We take

(Q,A,P):<X QlX---XQN7®A1®"’®AN,®P1®"'®H}N>.

nel
neL neL

For ¢ € {1,..., N}, the sequences (wfn))nez are independent of each other and each one is a

sequence of i.i.d. real-valued random variables on (ﬁ,, .Zi, EN”,) Let v; be the common law of

the wgn)’s. We assume that {0,1} C suppv; and supp v; is bounded. In particular, the wi(") s
can be Bernoulli random variables which is the most difficult case of randomness to deal with
since it will imply the smallest possible Furstenberg group. We also set, for every n € Z,
w) = (wi"), .. ,w](\?)), which is a random variable on (ﬁl X xQn, A @@ AN, P1®- - ~®@N)
oflaw v =11 ® - - - ® vy. For each n in Z, we introduce the random function

A le)vl(-—ﬁn) 0

Ve = - ,

0 wg\?)"uN(_Zn)

where the v; are measurable functions from [0, ) to R. We take

(1.13) Vo = (Booo + Bro1 + Baoa + P303) @ Z Vi
nez
where [y, ..., f3 are real numbers.

In order to compute the Furstenberg group associated with {D, },eq, we will express the
transfer matrices as matrix exponentials (¢f. Section . This is possible only when the
potentials are constant on each interval (nf, (n + 1)¢). For this reason, we only consider the
case where Vper is a constant function and v; = --- = vy = 1)g4. By a small abuse of notation,
we will denote by Ve (resp. V) the unique value of the function Ve (resp. V).

Moreover, we will restrict ourselves to particular combinations of non-vanishing «;’s and
B;’s. For simplicity we will only consider real-valued potentials Ve, and V,,, which corresponds
to the absence of magnetic field and to the following assumption.

Assumption. We assume that ap, = S5 = 0.

Hence we only consider potentials which are on o(, 0; and o3 which implies in particular
that the corresponding Furstenberg groups will be included in Spy(R) instead of Spy(C).
Next, we consider only splitting potentials with one deterministic term and one random term
which allows to reduce the number of cases in which we should compute the Furstenberg group
from 43 to 9.

Assumption. We assume that one and only one among ag, a; and ag is different from zero
and one and only one among 3y, 81 and 3 is different from zero.

Since we have to choose one random potential and one deterministic one, there are a priori
nine possibilities. Nevertheless, it is possible to reduce this number to five in the following
way. If one sets for (Vo, V1, V3) € (Mn(R))3,

D(Vo,Vi,Vs) =D\ 4+ 60 @ Vo + 01 @ Vi + 03 @ Vs
acting on H'(R) ® R?, then
V(Vo, Vi, Vs) € (Mn(R))?, D(Vo, Vi, Vs) = P(—D(=Vy, =V, —V4)) P*
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with P the unitary matrix defined by

1 (Iy In
1.14 P=— :
A V2 (IN —fN)
Hence, for any (Vj, Vi, V3) € (Mn(R))3, the operators D(Vy, V4, V3) and —D(—Vy, —V3, —V))

have the same spectrum and also the same pure point, absolutely continuous and singular
continuous spectra. These two operators have transfer matrices which are unitarily equivalent
(through P defined at ), hence their Lyapunov exponents are equal. They also have
Furstenberg groups which are unitarily equivalent (again through P) and there is localization
for D(Vy, Vi, V3) if and only if there is localization for —D(—V,, —V3, —V1). As a consequence,
there are five cases, as explained in the following table.

Vw \ ‘/per 0op |01 |03
o)) 1 5) 5)
o1 31214
03 3 4 2

TABLE 1. The five possible cases

For each of these cases, we prove either localization or delocalization.

Theorem 1.11. Denote by V' the unique value of the function Vper. For almost-every real
symmetric matriz V€ Sx(R), there exist a finite set Sy C R and lc = Lo(N,V) > 0
such that, for every ¢ € (0,{c), there exists a compact interval 1(N,V,{) C R such that if
I C I(N,V,0)\ Sy is an open interval with ¥ N1 # 0, then :

(i) in case 1, X NI is purely a.c.;
(i) in cases 2, 3 and 4, {D%)}weg exhibits Anderson and dynamical localization in XN 1 ;
(iii) in case b, {D‘E)]’\Q}weg exhibits Anderson and dynamical localization in X NI if N is

even and there is presence of a.c. spectrum of multiplicity 2 if N is odd.

Remark that from its construction given at Section , the interval I(N,V,{) tends to the
whole real line R when ¢ tends to 0.

The localization results come from applications of our localization criteria in Theorems 1.9
and[L.10] The presence of a.c. spectrum in case 1 and in case 5 when N is odd is a consequence
of the following theorem of Sadel and Schulz-Baldes.

Theorem 1.12 ([29], Theorem 4). Let {D,},ecq be as in (1.2). Then, for k € {1,...,N},
the set

Sy :={FE € R, exactly 2k Lyapunov exponents vanish at E}

s an essential support of the almost-sure absolutely continuous spectrum of multiplicity 2k.

This result of Kotani’s theory for quasi-one-dimensional operators of Dirac type has to be
seen as a delocalization result for { D, }ueq-
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2. PROOF OF THE LOCALIZATION CRITERIA

The proofs of Theorem [1.9 and Theorem [I.10] consist of several steps, following the strategy
already used in [23| [13] [7], [§].

The first step is to prove that, under the hypotheses of the theorems, Assumption (L™))
or (LN-YV) is satisfied depending on the parity of N. As we mentioned in Section , this is
already known for a group which is J-L,-strongly irreducible. We provide a proof in the case
of a (J,5)-L,-strongly irreducible group.

Then, we prove that, under Assumption (L™) or (L&) | the sum of all nonnegative
Lyapunov exponents is Holder continuous.

Theorem 2.1. Let I be a compact interval on which Assumption (L™N)) holds or on which
Assumption (LN=V) holds and vy is identically 0. Then, the sum of the Lyapunov exponents
associated with { Dy },eq is Hélder continuous on I, i.e. there exist two real numbers o > 0
and C' > 0 such that

N
(21) VEaE/ € [7 (WP(E) _WP(E/))

p=1
We prove this first result in Section Note that holds not only on intervals where
the hypotheses of Theorem are satisfied but also trivially on intervals where Zﬁ;l Vp is
identically 0. A singularity can only occur at the boundary between such intervals.
Asin [8,135], the next step towards localization is to prove Holder regularity of the integrated
density of states. We get this regularity from the one of the Lyapunov exponents. We define
the density of states in the same way as in [35].

< C|E - E'|"

Given x € R and L > 0, we define the operator fo’L), called the restricted operator with

Dirichlet boundary condition to the interval Ap(z) := (x — L, x+ (L), as the operator acting
as D, on the domain

Dom (D&Y = {w - (;{]) € H' (Ap(z),R?) such that (v — (L) = ¢'(x + (L) = o} .
We will use the notation D for D).
We define the density of states in the following way.

Definition 2.2. For all compactly supported continuous functions ¢, the density of states is

/(6) = Jim S E(r(6(D))).

The well-definedness of this limit and its independence from w, consequence of the ergodic
theorem, are proven in [35, Appendix B] in the case N = 1. The generalization to bigger N
is straightforward.

The function v is a positive linear functional on the space of compactly supported continuous
functions. By the Riesz-Markov theorem, it can be seen as an integral with respect to some
Borel measure on R, which will be denoted by v too. The integrated density of states is
defined on R by

—v((E,0) if E <0
(2:2) F(E) = { ,,((é(, E])]i)fE zT)

We prove that, when the sum of the Lyapunov exponents is Holder continous, the integrated
density of states is Holder continuous as well:
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Theorem 2.3. Let I be a compact interval and I an open interval containing I. If the sum
ZZ —p Vp s Holder continuous on I, then there exist C' > 0 and o/ > 0 such that

(2.3) VE,E' €I, |F(E)— F(E')| < C'|E — E'|*".

The proof of Theorem is a combination of arguments of [35], [7] and [29]. We give the
main steps of it in Section [2.3]

The previous results will enable us to prove Anderson and dynamical localization for random
Dirac operators, under the hypotheses of Theorem or [.LI0l We use a method called
bootstrap multiscale analysis, which has been developed by Germinet and Klein in [16] for a
large class of operators. We present it in detail in Section [2.4.1] In Sections [2.4.2] and [2.4.3]
we explain how we get the conditions needed for the multiscale analysis from what we have
proved before.

2.1. Lyapunov exponents associated with subgroups of SpOy(R). We want to prove
here that if a group G is 2p-contracting and (J, S)-Lg,-strongly irreducible for every 2p in
{1,..., N}, then for all sequence of i.i.d. random matrices in G,
(1) if N is even, then (L) holds and the N-th Lyapunov exponent associated with the
sequence is positive;
(2) if N is odd, then (L™N-1) holds and the N-th Lyapunov exponent associated with the
sequence is zero.
We will use the properties of SpOy(R) proven in Appendix . First, we prove that when G is
included in SpOy(R), all Lyapunov exponents are twice degenerate.

Proposition 2.4. Let (AY),cz be an i.i.d. sequence of matrices in SpOy(R) and (71, ..., %2nN)
the associated family of Lyapunov exponents. Then, for allp < N, vap = Yop—1.

Proof. We see from Proposition |A.1| (4) that the singular values of a matrix in SpOy(R)
always have multiplicity at least 2. This together with [5, Proposition A.III.5.6] implies the
degeneracy of the Lyapunov exponents. 0

We denote, for even N, N =: 2d and, for odd N, N =: 2d + 1. The space (J,5)-L,
introduced in Section [2] can be described in the following way. For p < d, we define

1
(24)  fi= 5(61 +e2) A=+ A(egp—1 + €2p) A (ens1 — eny2) A A(engop—1 — eny2p)
and
(2.5) (J,S)-Ly, = span{A* M f; | M € SpOy(R)}.

We see in particular that (J,S)-Log is stable under the action of A%g: (L(12d)) is satisfied.
We prove (ngd))f(LELZd)) with the following result.

Proposition 2.5. Let (AY) be a sequence of i.i.d. random matrices in SpOy(R), of common
law 1, and p an integer between 1 and d. We denote by G, the Furstenberg group associated
with the sequence (AY). We assume that it is 2p-contracting and (J, S)-Lay-strongly irreducible
and that E(log ||Ay|) < oco. Then,

(1) for all x # 0 in Ly,

2p

1
(2.6) lim —log ||[A*P(AY ... A¥)z|| = Z’y@- almost surely;

n—oo M 1
1=
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(2) there exists a unique probability measure va, on P(Ls,) which is p-invariant, such that

A%Pg)x
(2.7) Vit ey = / log Mdu(g)dl/zp(ﬂ?f);
SpOx (R)xP(Layp) |||
(3)
(2.8) Yop > Vopti-

Points (1) and (2) of Proposition [2.5 for p = d directly give (L(22d)) and (Lézd)). Moreover,
Point (3) implies that 724 > v2q41. If N = 2d is even, we have vy, = —yn and if N =2d+1
is odd, yx = 0 by Proposition 2.4, In both cases this implies that vo4 > 0 and a fortiori
Ziil v > 0 which is (LEY).

Proof of Proposition[2.5. Let k be the dimension of (J,S)-Lo,. Given an orthonormal basis

(fi,-.-, fx) of (J,S)-La, (f1 being defined by (2.4])), for each M € SpOy(R), we denote by M
the matrix of GLg(R) such that

(2.9) M; = (fi, AP M [}).

Let us now denote by G ., the subgroup of GL,(R) which is generated by all (@5’) We want
to prove that G .. satisfies the hypotheses of theorems given in Chapter A.III of [5], which will
give us information on the two top Lyapunov exponents associated with the sequence (ﬁﬁ)
In a second time, we will establish a relation between the Lyapunov exponents associated
with the sequence (A%) of matrices of GLi(R) and partial sums of the Lyapunov exponents
associated with the sequence (A%) of matrices of SpOy(R).

Since G, is (J, S)-Lgy-strongly irreducible, G , is strongly irreducible, as a subset of GL;(RR).
Similarly, as G, is 2p-contracting, CAJH is contracting. We can thus apply [5, Theorem A.I11.6.1]
and find, denoting by 4; and 45 the two highest Lyapunov exponents associated with the
sequence (%Aliij), that

Moreover, Corollary A.I11.3.4 of [5] gives that, for all x # 0 in R*,
1 . .
(2.11) lim —log||(A%_; ... Ay)z|| = 41 almost surely
n—oo 1

and, together with Theorem A.I11.4.3 of the same [5], that there exists a unique probability
measure 2 on P(R¥) which is p-invariant, such that

. gx e
(2.12) 7= [ tog 197, (g) o).
SpOy (R) X P(RF)

We now link the two Lyapunov exponents 47 and 7, with the Lyapunov exponents associated
with the sequence (A%). In view of Definition (1.8)), we have to estimate ||M|| and [|[A2M || for

matrices M € G,,.
For such a matrix, we consider ¢; > --- > t, the values given in the decomposition of

Proposition (v). Let us prove that ||]\//_7|| = ||A**M|| = e*1...e*»: this will imply that
Y1 = 3% 4. Since (J,S)-Ly, is a subspace of A?R?*Y | we have that | M| < |[A%*M]|. To
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prove the other inequality, recall that f;, defined in (2.4)), is in (J, S)-Lo,. As a consequence,
we have, using the notation of Proposition (5),

IAM|| = e . e® = [APRA| = |RAI < R < [APR]| = [|A*M].

We used [5], Proposition A.II1.5.3] for the first equality and the fact that (.J, S)- Lo, is a subspace
of A?R?Y for the last inequality. This implies that ||A?’M|| = ||R||. But, since the matrices
K and U are orthogonal and in SpOy(R), |[|R]| = ||[KRU|| = ||M||. As a consequence,

2p
(2.13) =%
=1

This last equality together with (2.11]) implies (2.6)). Together with (2.12), (2.13)) implies ([2.7)).
In order to prove (2.8)), we now estimate ||[A2M||. We first notice that, since (J,S)-Lo, is a

vector subspace of AZR2N | [|[A2[A?M]|| > ||A2M]).
We begin with the case p < d. We choose

1
(214) fg = 5(61 + 62) VANERIVAY (egp_g + 6213—2) VAN (62p+1 + 62p+2)

A(eny1 —ent2) Ao A(entop-3 — entop-2) A (EN+2p+1 — ENy2pt2)-
Let

[2p—2

0 I
(5 %) 0

(2.15) My = In—2p-2
I2p—2
0 I
0 (& )

Then My € SpOy(R) and A My f; = fo, hence fo € (J,S)-Lo, and it is easy to see that
f1 and fy are orthogonal. Consequently, we can complete (fi, f2) into an orthonormal basis
(fi,-.-, fx) of GLi(R) and use it in the definition of M.

We find that

[N72p72

(216) |A2RT) = AR > [AR(fi A fo)]| = [T .. i,

In terms of Lyapunov exponents, this implies that ¥, + 42 > +; + Z?ipl_l) ¥ + 272p+1. This

together with (2.10) and (2.13) implies that v, > Y2p11.
When p = d, we prove that y94 > 0. This implies ([2.8)) since, when N is even, 79411 =

Yv+1 < 0 and, when N is odd, v94+1 = v = 0 as we have already seen. We define

1
(217) f2 = @(61 + 62) A A (62d_3 -+ €2d—2) A (egd_l — €2d)

A (ent1 —ent2) A A (entad—s — entad—2) N (Ent2d—1 + €Nt24)-



14 H. BOUMAZA AND S. ZALCZER

If we introduce
(2.18)

In-o

(INl 0 \I ~1 0
M = ! (even N) or My := L (odd N)

B Ina In2
\ ) : o
1

then M) € SpOy(R) and fo = A*f) so fo € (J,S)-Lo, with f, orthogonal to f;. As a
consequence,

(2.19) |AZM| = |A%RI| 2 AR A fo)l = M. e,

In terms of Lyapunov exponents, this means that 4, > ng_l) i, which, together with (2.10))
and ([2.13), implies that vo4 > 0. O

2.2. Regularity of the Lyapunov exponents. The goal of this section is to prove The-
orem 2.1} Tt is a consequence of the following result. First, we note that the definitions of
Lyapunov exponents and Furstenberg group can be extended to the case of a sequence of i.i.d.
random matrices in GLyn(C). Hence one can state hypothesis (L™)) not only for transfer
matrices associated with an ergodic family of operators.

Theorem 2.6. We fix a compact interval I C R. Let (AY(FE))nez be a sequence of i.i.d.
random matrices in Spx(C) depending on a parameter E in I. For each E, let ug be the
common distribution of the A%(E). We assume that, for all E € I, E(log| Ay (E)|) < oc.
We also assume that Assumption (L™N) holds on I, or that Assumption (L™N"Y) holds and
vn s tdentically O on I. Moreover, we assume that,

(1) there exists Cy > 0 independent of E, w and n such that, for every E € I,

(2.20) AN AR(B)|? < O
(2) there exists Cy > 0 independent of E, w and n such that for every E, E' € I
(2.21) IANAL(E) = AVAR(E)|? < Go|E - E|.
Then, there exist C > 0 and o > 0 such that
(222)  VEE €l |n(E)+-+aw(E) = n(E) - —w(E)| < ClE - E°.

This theorem is basically a restatement of Theorem 1 of [7]. A detailed proof can be
found in [6, Section 6.3]. One difference is that we only prove Holder regularity for the sum
7 + -+ - + 7n, while the result of [7] provides regularity for each of the ~,’s. For this reason,
it needs hypotheses for all p while we need them only for p = N. Then, our hypotheses (1)
and (2) correspond to hypotheses (ii) and (iii) in [7]. His hypothesis (i) is the fact that the
Furstenberg group is p-contracting and J-L,-strongly irreducible for all pin {1,..., N}. If we
carefully look at the proof of the theorem of [7], we see that the only reason for which this
is needed is because it implies Assumption (L™)) on I. As a consequence, we can use this
hypothesis instead of the one of p-contractivity and J-L,-strong irreducibilty for all p, which
makes it possible to apply the theorem in a more general setting.

We want to apply Theorem to the sequence (AY(E))nez = (T,ym) (E))nez, the transfer

w

matrices as defined in (1.7), to get Theorem 2.1} Therefore, we have to prove that this sequence
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satisfies the hypotheses of Theorem . We already assumed that Assumption (L(N)) holds
on I, or that Assumption (L™N"Y) holds and 7y is identically 0 on I in the hypotheses of
Theorem [2.1] The boundedness of the potential implies that E(log ||T,,0 (E)|) < oo for all E.
Finally, we are left with proving that the estimates and are always satisfied for
the sequence (T}, (F))nez. We begin with two lemmas which provides estimates on solutions
of Dirac equations. Both have been proven in the case N = 1 in [35] and can easily be
generalized to N > 1. As a consequence, we give only sketches of the proofs.

Lemma 2.7. Let ¢ = be a solution to D(()N)¢ + Vi = 0, where V is a L, function

¢T
()
with values in 2N -by-2N matrices. Then, for all x, y € R,

max(z,y)
(2.23) [T (@) P + [t (@)]* < (W1 ()P + [+ ()]?) exp (2/ IV(t)|dt> :

min(z,y)

Proof. This is a straightforward adaptation of |3

[35, Lemma 4.3]. The key argument is Gronwall’s
lemma applied to the function [T (x)[* + |¥(z)

2, O

T T

Lemma 2.8. Let ¢, = (Zi) and 1y = (iﬁ) be solutions to D(()N)wi + Vi; = 0, where, for
1 2

i=1,2, Vi is a L}, function with values in 2N-by-2N matrices, and such that, for some y

in R, ¥1(y) = wo(y). Then, we have, for all x in R,

(2.24)

max(y,z) max(y,z)
[91(2) = Pa(2)] < [2(y)] exp </ Vi(®) + |V2(t)|dt) X / [Vi(s) — Va(s)|ds.

min(y,z) min(y.z)

Proof. The proof is similar to the one of Lemma 4.4 in [35]. It relies once again on Gronwall’s
lemma, applied here to the function ¥ — 5. O

We get and applying the arguments of [0, Section 6.2.2.1]. We prove that
|A(E)||* < C) and that ||[AY(E) — A%(E")||* < Cy|E — E'| by applying respectively Lem-
mas and to each column of the transfer matrix, which is a solution of D(()N) v+ (V, —
E)Y =0 (¢f. Lemmas 6.2.3 and 6.2.5 of [6]). We get the estimates with the external power
as in Lemma 6.2.6 of [6]: directly comes from the fact that, for all invertible matrix M,
|ANM|| < ||[M]]Y, while the proof of uses that, for all invertible matrices M; and My,

IAYM, — AYM|| < (|07 — M| (MG [V + M Y2 M) + -+ (MY
This concludes the proof of (2.20) and (2.21)) and thus of Theorem

2.3. Holder continuity of the integrated density of states. We prove in this section
Theorem The link between the Lyapunov exponents and the integrated density of states
is given by the following Thouless formula, similar to [35, Proposition 5.2] and [7, Theorem 3].

Proposition 2.9. Let F' and Fy be the integrated densities of states, respectively of { Dy }ueq

and DéN), and 1, ..., yn be the Lyapunov exponents of {Dy},ecq. Then, there ezists a € R
such that, for every almost-every E € R,

(2.25) Z%(E) =—a+ /Rlog

Tt a - R
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Moreover, if I C R is an interval on which E — (y1 + ...+ yn)(E) is continuous then (2.25))
holds for every E € 1.

Note that, since the spectrum of D(()N) is purely absolutely continuous with multiplicity 2/V
on the whole real line, all its Lyapunov exponents are identically zero for real energies (cf. [13]
Corollary VII.3.4]). That is why they do not appear in the formulas. The integrated density of
states F{ of the free Dirac operator D(()N) can be explicitly computed. Indeeed, the eigenvalues
of D(()N) restricted to [—¢L, (L] with Dirichlet boundary conditions are the (k{L)gecyz, each of
them with multiplicity N. As a consequence, Fy(E) = NE/7.

The following lemma, which has been proven in the case N =1 in [35], holds in fact for all
N. Tt makes it possible to control the difference F(E) — Fy(E).

Lemma 2.10 ([35], Lemma 5.3). There exists a constant C, depending only on ||V, such
that for all E € R, we have

(2.26) |F(E) — Fo(E)| < C.

The next step towards the Thouless formula is to introduce a tool named Kotani w-function.
We use it in the way it has been introduced by Sadel and Schulz-Baldes for Dirac operators
in [29, Section 5]. The first step is to introduced the so-called Weyl-Titchmarsh matrix.
Existence and uniqueness of this matrix are proven in [29, Theorem 2].

Definition 2.11. Let z € C\R. Then, there exists a unique M, (z) € My(C), called the
Weyl-Titchmarsh matriz such that the space of solutions of D, = zv¢ which are square-
integrable on (0, +00) is spanned by the solutions whose value in 0 is one of the column of

In
My(z) |-

In order to be able to use the results of Sadel and Schulz-Baldes, we need to have an R-
ergodic operator, which is a priori stronger than being Z-ergodic. Nevertheless, in [20], Kirsch
proves that, given a Z-ergodic operator H,, we can construct an R-ergodic operator ﬁw, on
a wider probability space, with, for each @, Hy is unitarily equivalent to H,, for some w. We
apply in our setting Kirsch’s suspension procedure. Therefore, we introduce a new expectation
E which must here be understood as both expectation on Q and average value on [0, ¢] for the
potentials.

As in [29], we introduce a block decomposition for the potential:

P, R,
= o)

The w function is defined on C\ R (with values in C) as follows:
(2.27) w(z) = —E [tr(Ry, + M,(2)(Qu — 2))] .

This function will provide us a link between the Lyapunov exponent and the integrated density
of states through the Green’s function. We recall that the Green’s function G(z,-,-) is the
integral kernel of the resolvent (D,, — z)~'. We start by the following theorem of Sadel and
Schulz-Baldes, which links the Green’s function and the Lyapunov exponent. Here G(z) :=
G(z,z, ), and we drop the dependence in z since we take the expectation E.

Theorem 2.12 ([29], Theorem 5). Let Im(z) # 0. Then,
(1) Y0y (2) = = Re(w(2)).
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(2) O.w(z) = E(tr G(2)).

Once we have this, proving Proposition [2.9/can be done as in [35], Section 5] (which considers
the case N = 1) and [7, Section 4.2] (which considers Schrodinger operators for general N).
As a consequence, we give here only the main steps of the proof and let the interested reader
refer to the cited papers for details. We first establish a relation between the density of states
measure v and the Green’s function.

Lemma 2.13 ([35], Lemma 5.5,[7], Proposition 9). Let z € C\R. Then,

— dv(E)
E(tr(G = [ ——.
(G = [ G
This together with the second point of Theorem give a relation between the imaginary
part of the w function and the integrated density of states.

Lemma 2.14 ([35], Lemma 5.6, [7], Proposition 10). There ezists ¢ € R such that, for all
E € R, we have
(2.28) lim Im (w(E +ia) — wo(E +1ia)) = n(F(E) — Fy(E)) + c.

a—0t

We have an analogous result for the real part of w.

Lemma 2.15. For Lebesgue-almost every E in R, we have :

(2.29) Jim Re (w(E +ia) —wo(E +ia)) = —( + ...+ 9w)(E).

Moreover, if I C R is an interval on which E — —(y1+...4+7vn)(E) is continuous then
holds for every E € 1.

We can thus conclude the proof of Proposition [2.9 with the arguments of [7] and [35]. We
then use the Hilbert transformation as in [7] and [35] to get, through the Thouless formula
proven in Proposition 2.9 the Holder regularity of the integrated density of states from the
one of the sum of the N positive Lyapunov exponents. This achieve the proof of Theorem [2.3

2.4. Multiscale analysis and localization. In this last subsection, we explain how we can
apply the multiscale analysis to get Anderson and dynamical localization in our setting.

2.4.1. Conditions for the multiscale analysis. We state here the hypotheses and the theorems
on the multiscale analysis. We follow the presentation of the lecture notes [22]. Then, we
explain how we can apply them to our case. In the following paragraphs, {H,},cq will be
any self-adjoint random ergodic operator on L*(R, C?V).

The first property gives the possibility to use generalized eigenfunctions.

Let H := L*(R,dz; C*). Given v > 1/4, we put, for z € R, (z) := /1 + 22 and we define
the weighted spaces Hy as

Hy = LA(R, (2)*da; CH).
We define a duality map between H, and H_ by the following sesquilinear form, where

¢1 € Hy and ¢ € H_:
(D1, P2) . 1 = /(51(56) - o(z)d.

We set T' to be the self-adjoint operator on H given by multiplication by the function (x)?;
note that 7! is bounded.
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Property (SGEE). We say that an ergodic random operator {H,},cq satisfies the strong
property of generalized eigenfunction expansion (SGEE) in some open interval [ if, for some
v>1/4,
(1) The set
Domf := {¢ € Dom(H,) N H4; Hy¢ € H}
is dense in ‘H, and is an operator core for H, with probability one.

(2) There exists a bounded, continuous function f on R, strictly positive on the spectrum
of H,, such that

E {[tr(T~" f(H)IL(D)T™H)]*} < oo,
I1,, being the spectral projection associated with H,,,.

Definition 2.16. A measurable function 1) : R — C?¥ is said to be a generalized eigenfunction
of H, with generalized eigenvalue E if ¢p € H_\{0} and

(Hod, V)p, - = E{, )y, 3, forall ¢ € Dom?.

As explained in [22], when (SGEE) holds, a generalized eigenfunction which is in H is a
bona fide eigenfunction. Moreover, if p,, is the spectral measure for the restriction of H, to
the Hilbert space E,(I)H, then p,-almost every F is a generalized eigenvalue of H,,.

The following properties are about finite volume operators, restricted to intervals of the
form Ap(z) == [z — (L, x + (L].

Definition 2.17. We say that an ergodic random family of operators { H,, },cq is standard if
for each # € Z, L € N there is a measurable map H., ; from (2 to self-adjoint operators on

L*(AL(z),C*) such that
U(y)Hw,a:,LU<_y) - HTy(w),x—l—y,L
where 7 and U define the ergodicity:

U(y)H,U(y)" = Hy, (w)-

We can then define R, , 1(2) := (H, . — 2z)"" as the resolvent of H, . and I, . 1(-) as
its spectral projection.

We now enumerate the properties which are needed for multiscale analysis to be performed,
yielding thus various localization properties.

Definition 2.18. An event is said to be based in a box Ap(x) if it is determined by conditions
on the finite volume operators (H, 4 1 )wen-

Property (IAD). Events based in disjoint boxes are independent.

The following properties are to hold in a fixed open interval I. We will denote by x, 1 the
characteristic function of Az(z) and x, := Xxz1. We also denote by I'; ; the characteristic
function of the union of two regions near the boundary of Ay (x): [z — (L —1),z —¢(L —3)]U
[+ (L —3),x+ (L —1)].

Property (SLI). For any compact interval J C [ there exists a finite constant x; such that,
given L, ', 1" € 2N, z, y, v € Z with A (y) C Ap_3(y') C Ap_g(z), then, for P-almost every
w,if B € Jwith £ ¢ 0(Hya)Uo(H,, ) we have

(2.30) e,z R, £ (E) Xy | < R 10y 0 By (B) Xy [T, B, (B Ly |
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Property (EDI). For any compact interval J C I there exists a finite constant %, such that
for P-almost every w, given a generalized eigenfunction ¢ of H, with generalized eigenvalue
E € J, we have, for any € Z and L € 2N with £ ¢ o(H,,,.1), that

IXall < FsllTa L R e L (E) Xa | 1T, L]

Property (NE). For any compact interval J C I there exists a finite constant C; such that,
for all x € Z and L € 2N,

E (tr (I, ..(J))) < CyL.

Property (W). For every 5 € (0,1) and every o > 0, there exists Ly € N and o > 0 such
that

(2.31) P(dist(E, 0(Hy o)) < e %) < e’
forall Ee€l, x € Z and L > Ly.

This Wegner estimate is not exactly similar to the one stated in [22], but it is possible to
use this version for multiscale analysis, as explained in [I2] and [22, Remark 4.6].
The last property depends on several parameters: 6§ > 1, Ey € R and Ly € 6N.

Property (ILSE(0, Ey, Ly)).

1 1
(232) ]P){HFO,LORUJ,O,LO(EO)XO,L0/3|| < L_g} >1-— @

These properties are the hypotheses of the bootstrap multiscale analysis.

Definition 2.19. Given F € R, z € Z and L € 6N with £ ¢ o(H,, . 1), we say that the box
Ap(x) is (w,m, E)-regular for a given m > 0 if

(2.33) T2 Revso,r.(B) X3 || < €7
In the following, we denote
[L]sy = sup{n € 3N|n < L}.
Definition 2.20. For z, y € Z, L € 3N, m > 0 and I C R an interval, we denote
R(m, L, I,x,y) = {w;for every E’ € I either Ap(z) or A(y) is (w, m, E')-regular.} .

The multiscale analysis region X9 for {H, }ueq is the set of E € ¥ for which there exists
some open interval I > E such that, given any ¢, 0 < ( < land o, 1 < o < (!, there is a
length scale Ly € 3N and a mass m > 0 so if we set Lyy1 = [L}]sn, £ = 0,1,..., we have

P{R(m, Ly, I,z,y)} > 1 —e 5
for all k € N, z, y € Z* with |z — y| > L.

Theorem 2.21 (Multiscale analysis - Theorem 5.4 p136 of [22]). Let {H, }weq be a standard
ergodic random operator with (IAD) and properties (SLI), (NE) and (W) fulfilled in an open
interval I and let 3 be the almost sure spectrum of {H,}oeq. Given 0 > 1, for each E € [
there exists a finite scale Lo(E) = Lo(E) > 0 bounded on compact subintervals of I such that,
if for a given Ey € XN 1 we have (ILSE)(0, Ey, L) at some scale Ly € 3N with Ly > Lo(Ey),
then Ey € Yrsa.
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Theorem 2.22 (Localization - Theorem 6.1 p139 of [22]). Let {H, },cq be a standard ergodic
operator with (IAD) and properties (SGEE) and (EDI) in an open interval I. Then, {H,}weq
exhibits both dynamical and Anderson localization on Xprsa N 1.

We can summarize in the following figure, the ingredients of a proof of localization using
multiscale analysis.

(2.34) (IAD) + (SLI) + (NE) + (W) + (ILSE)

. ~
g

U
(MSA) + (SGEE) + (EDI)

(.

-~

U

—N—
(AL) + (DL)

These theorems make it possible to prove Theorem and Theorem by applying the
multiscale analysis to the random family of operators {D,,}.cq defined by (|1.2)).

2.4.2. The Wegner estimate. We begin with the Wegner estimate: we will get it from the
regularity of the integrated density of states. The proof is a straightforward adaptation of
what we have already done in [8] and [35]. As a consequence, we only give a sketch of it.

We prove the following proposition.

Proposition 2.23. Let I be a compact interval included in an open interval I on which
Assumption (L™ holds or on which Assumption (LON"Y) holds and vy is identically 0.
Then (W) is satisfied on 1.

If I is such an interval, we know from the previous sections that (2.3 is satisfied on I. This
implies the following lemma. It is proven in [35] in the case N = 1, but its generalization to
higher N is straightforward.

Lemma 2.24 ([35], Lemma 6.16). There exists p > 0 and C' < oo such that, for every E € 1

and every € > 0, we have for L > Ly
(2.35) P{ There exists E' € (E — ¢, E + €) and ¢ € Dom (D), ||¢|| = 1, such that
| (D) = E')¢ = 0,[¢"(~CL)[* + |¢* (L) < €} < CLe”.

Moreover, hypotheses of Proposition also implies Lemma 3 of [8], which is a priori
only applicable random Schrdodinger operators, but can also be applied to our setting since
its proof only consists of algebraic manipulations of transfer matrices.

Lemma 2.25 ([§], Lemma 3). For allp = 1,..., N, there exist & > 0, 6 > 0 and ny € N
such that, for every E € I, n > ny and x € APC* with ||z|| = 1, we have

(2.36) E (J[A®p(n,w)z| %) <e &

From these two lemmas, it is possible to prove Proposition following line by line the
arguments of [8, Section 5] or [35, Section 6.2].
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2.4.3. The Initial Length Scale Estimate. The last ingredient in order to apply a multiscale
analysis scheme to our models is an ILSE which allows to start the induction proof. We denote
by Ay the interval Ay (0). We will prove an estimate stronger that , namely that there
exists Lo € 3N and C, ¢, 0 > 0 such that, for all L > Ly and all E € I,

(237) P{HFO,LRUJ,O,L<EO)XO,L/3H < e_éL} Z 1-— CG_CL.

As in most previous works, we will use the fact that the resolvent of the restricted operator
has an integral kernel. We prove as in Equation (6.11) of [35] that the resolvent R, ¢ r(F) has
an integral kernel, i.e. there exists a function G such that for all ¢ in L*(Az) and almost
every y € Ap

/L
(2.38) (¥ - B) / G, (Bun,)iadds = v(o)

Note that [35] provides an explicit formula for this integral kernel, but we will not use it here.
We know from the Schur test that

(2-39) HFO,LRw,QL(E X0 L/3|| < L sup |F0 L( )GXL(E>$,?J)X0,L/3(5U)|-

z,yEAL

Our goal is therefore to bound |G (E, z,y)| for x and y respectively in the support of x¢,/3
and I'y 1, with probability exponentially close to 1.
To this purpose, we give an explicit formula for G~ at these points. For E' € I, we consider

+

N
the two functions &, = (if) with values in Moy n(C), satistying D, @4 = E®, with

(2.40) S_(—L)=(7,) and & ((L)= (7).
Lemma 2.26. Let w € Q and let x y € Ap. Assume that @' (z), O (z), CDT( ), and ¥ (z)
are invertible as well as ®* (z)®L ()1 — " (2)®! (2)~! and ®L (2)® (z)~' — @' (2)P* ()
The Green kernel of D) is given by

. _ ] ®as(x)  forz <y
(2.41) AL<E7$71/) = { d_(y)a_(z) forz >y

where

(2'42) g (I) — (Ql(x)fl((pi(x)q,l(x)fl,@i (z)®" (x)*1>—17q>ﬁ_(x)*1<cbi(x)¢’i_ (x)*lfcbl(x)qﬁ(x)*l)ﬂ )
and

(243) a_ (gj) = (<I>T_(m)—1(<I>f,_(a:)q)‘_l(;c)—lfqﬁ_(z)<I>T_(m)_1)71,<1>¢_(z)_1(<I>‘l(ac)<1>¢_(2)_1*‘1’3_(1)‘*‘1’i (Z)_1)71 )

+
Proof. By definition, (2.38)) has to be satisfied for all ¢ € L?(Az) and almost all x € Ap.
We compute this expression explicitly, assuming that G, has the form given by (2.41) with
ax = (a7, ay’). Using the fact that (DU(JL) — E)®, =0, we find that for all x € A,

Sl (2)as (@) - oL (Da(z) Sh(x)aT(e) - oL @a@) _ (0 Iy
(2:44) (@@)a;(@_w_(m)w@) ¢i<x>ar<x>—¢£<x>w<x>) (IN 0)

Assuming the invertibility conditions given in the statement of the lemma, we can solve this
linear system explicitly, which gives the expressions and ( - 0]
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We now introduce two events on which we will be able to bound the integral kernel. Their
probability will be controlled by either Proposition [2.28 or Proposition In order to
estimate blocks of the products of transfer matrices as in [24], we introduce, given a vector
subspace F of C*V, the orthogonal projection onto F 7 : C?¥ — F and we set

7T*.F—>C2N
L S

For any integer n € [—L/3,L/3], any T' € Myx(C) and any vector subspace F' C C*V, we
define

(2.45) QF[T] = { max (‘mbg 5, (T) — ’yp(E)‘ +

1<p<N

1 €
— 1 Tr%) — E < )
g s () =B ) < o |

where s,(-) denotes the p-th singular value of the considered matrix. Let

(2.46) Fro={(§) lueC"} cC? and F_:={(9) [veC"} cC?
and for any n € Z,
(2.47) F, = {(z) eCN |u= —@ﬁ(fn)(cpi(en))—lv} .
Then, set
(2.48)

Qe(n) = QM (TyL(B) TN Q (T ()] 0 Q[T (B) N Q- (T (B)) ] N Q7 [T (B))-

Note that if the transfer matrices are in Spy(C), the vector subspace F), is J-Lagrangian, i.e.
it is orthogonal to itself for J and of dimension N. If the transfer matrices are in SpOy(R), F),
is (J, S)-Lagrangian, i.e. it is orthogonal to itself for J and for S and it is of dimension N. Also
note that F'y and F_ are always J-Lagrangian, but they are not (J, S)-Lagrangian. To bypass
this difficulty in the case of N = 2d even, we write F, = Ff) & FJ(:) and F_ = FD g p)
where,

(2.49)
z1 ( 0 )
+x1 .
: 0
Ff) = S (. ma) € ¢ty and F® .= S (.., xg) € CY
0
0 L g )

Then all the F\™ are (J, S)-Lagrangian.
One then define the event

Ou(n) = QP (T(E) Nl (TE) N [mrm) 0o (TrE) N el [T (E)
(2.50) N0 (@) n e [mrE) e (TE) nel [T,

We can control ||GY (FE,z,y)|| on these two events.
A
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Proposition 2.27. Let [ C R a compact interval on which for every E € I, infpe; yn(E) > 0.
Assume either that

(1) VE €1, G(E) € Sp&(@) and w € Q, := = Mpe[- L/3, L/3]Q ( )

(2) VE € I, G(F) € SpOx(R), N is even andw e = = Mpe[- L/3L/3]Q (n).

N (E)
3

forall E € I, x € supp xo,/3 and y € supp o1,

Let us choose € € <O,infE€I ) Then, there exists C' > 0 such that, for L large enough,

(2.51) 1GR, (B, y)l| < Co2ontE=30L,

Proof. We give a complete proof in case (1). Then at the end we will explain the slight
differences in the proof when we assume that we are in case (2).

We will prove the proposition only for y in [(L — 3¢,¢L — ¢|. The proof for y in [—(L +
¢, —(L + 3/] is similar. Since, in this case, z < y, the Green kernel will be given by the first

line of ([2.41)).

We begin with proving that on Q, for all z € [—£L/3,(L/3], the matrices ®', (x) and ", (z)
are invertible and we estimate their inverse. It corresponds to bounding from below their
N-th singular value. The reader who is not familiar with inequalities on singular values can
refer to Chapter 3 of [18].

By definition (recall (L.F])), for any z in Ay,

o' (x) 0
=T, (FE :
(c(e)) =78 (1,
We write the singular value decomposition of T}, (E):
(2.52) 15 (E) = U@n@y @)
where U® and V(®) are unitary and, since we have a symplectic matrix, we can write £*) =
=@ 0 : z . z : = .
( 0 £ ) with £ = diag(s1(T5;), .., sn(T5)) and B = diag(1/s1(T5), .., 1/sn(T}))
with sy (T%) > --- > sy(T%) > 1. We can write a block decomposition for U® and V(®):
U@ — vy Uy @ — (v
= o (o | and V¥ = & G |- We have then
U2l U22 V21 V22
(@}(az)) U SPVE + UGSV
oL@))  \UsPVE + U5V

As a consequence, we can write that

(2.53) sv (01@) 2 sx (UFSPVE) - U5 V|
(2.54) > sy (U ) sw (22 s (Vi5)) = 152,

where we used in the last line that the blocks Uzy , Vzgx have norm less than 1.
We now estimate sy <E(+)>, which is also ||E(f |71, on the event Q.. Let n be the unique

integer such that = € [(n — 1)¢,nf). We first remark that, for all p=1,... 2N,
(2.55) sp (Tip) = sp (Tir) son (Th) = s (Ter) 1 Tl "
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But we know from Lemma that there exists a constant C' > 0, independent of F, x, w
and L, such that ||T7,|| < C. As a consequence, s, (175) > C's, (T/;"). Consequently, on the

event Qg(”), SN (TfL) Z Cile('YN(E)fe)g‘nfld and ||E£$)|| S Cef(’YN(E)fe)ﬂn*L', SO
(2.56) sy (®1<x>> > Cfle(WN(E)fe)élnfL\SN <U1(f)) SN <V1(2='E)> — O~ (B)=e)tin—L|
and, similarly,

(2.57) SN <Q>i(a;)) > O lelw(B)=9tn—Llg (Ué?) Sn <V1(Qx)> _ (o~ ON(B)=)tin-L]|

We are left with controlling sy (Uﬁ”), SN (Ué?) and sy (Vl(;)> Recalling the nota-

tion introduced in (2.46]), we have that Ul(f) = 7T}k;~+U(x)7TF+, UQ(T) = 15 UWnp, and Vl(;) =
7T}<;+V(x)7TF_. Since the sets F, and F_ as defined in are J-Lagrangian, we can prove as
in Claim 3.4 and Remark 3.5 of [24] that, on Q.(n), we have for L large enough (depending
only on € and /)

(2.58) SN <v1<;>> > o sl g (Ug)) > o550 and sy (Uff’) > o 5stin—LI,

More precisely, the first inequality corresponds to the event Q- [T/ (E)], the second to the
event QF-[(T/*(E))*] and the third to QF+ [(T/(E))*].
As a consequence, on {2.(n),

(2.59) Sx (cpg(x)) > O et E) = FMn—LI _ = (w(B)=)tln-L]

For L large enough (depending here again only on C, € and /), one gets on {2.(n), using that
|In—L| > 2L/3,

20L
(2.60) sy (@’E(z)) > (N(E)-297" g

In particular, ®! () and & (z) are invertible.

The next step to be able to apply Lemmais to prove that &% (z)®] (z) "' =& (2)®! (z)~!
and @ (2)®% (z) '~ (2)®* (v)~! are invertible. By ([2.40), &% (2)®', (z)~" = (T5 )aa (T )12) "
and ®* (2)®" (2)~" = (T%,,)22((T%,,)12)~". It does not exactly correspond to the blocks in-
volved in X* and X~ in Equation (33) of [24] since we did not use the same boundary
conditions, but we will be able to carry on the same proof as [24]. Since the sets F),, F and

F_ are J-Lagrangian, we prove as in Equation (33) of [24] that there exists C' > 0 such that
on Q(n)

(2:61) sy (@@l ()t - ot (0)el (1)) = ¢ leni

as well as the same result for &1 (2)®* (z)~" — ®! (2)®* (z)~". Note that the constant C' > 0
appears as we estimate the N-th singular value of the matrix at point z by its value at n
its integer part and the norm of the difference which is bounded in L times sy (Us;) which is

lower bounded by an exponentially small term. Note also that in the proof appears sy (Vl(lx )>
which is controlled on Qf* [T/ (E)).

Consequently, these two matrices are invertible and the norm of their inverse is smaller than
Cez'r.
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Finally, we remark that, for y € [(L — 3¢, (L — (], we have by Lemma [2.7]

(2.62) 2L @)I* + 123 W)II* < N exp (2/ \Vw(t)\dt> <C,

with C' independent of F/, w and L.
Together with (2.60) and (2.61)), it gives that on €,

(2.63) 1G% (B, z,y)|| < Ce 20wE=iaL

which concludes the proof of the proposition under the assumptions of Theorem [1.9
Now let us briefly explain how to adapt the proof when we are in case (2). First, remark that
if the transfer matrices are in SpOy(R), then F,, is a (J, S)-Lagrangian since it depends on the
transfer matrices through two of their blocks. Moreover, all the Ff[) are (J,5)-Lagrangian.
Since, Tp, = W;i ot W;H, one has inequalities such as :
+

(2.64)

sv(UL) = sn(mp, UDh, ) = sy(mp, U@ F(+)+WF+U T0) = sa(mp, UW ) > e s inh,
+

FO

The first inequality comes from the fact that all the singular values are of multiplicity 2
using the decomposition (4) of Proposition [A.1] hence sq(mp, U@ * (+)) is the 2d-th singular

() +

value of 7TF+U ¥ R The second inequality comes from the fact that F." is a subspace of

F, for which we can use Claim 3.4 and Remark 3.5 of [24]. The same kind of inequalities allow
to obtain a lower bound for sy (UL — ®* (2)(®" ())*U) which is needed to obtain a lower
bound as under the assumptions of case (2). Having in mind these specific properties
when the transfer matrices are in SpOy(R), one proves in this case, the same way as it
was done when they are in Spy(C). O

In order to estimate the probability of Q. and ., we prove a Large Deviation Property for
the singular values of the products of transfer matrices. We need to do this separately for

Spx(C) and SpOy(R).
Proposition 2.28. We fix a compact interval I C R. We assume that for every 2 € I:

(1) the Furstenberg group G(E) is included in Spx(C) ;
(2) for everyp e {1,...,N}, G(E) is J-L,-strongly irreducible.

Then for all € > 0 and all E € I, there exist C(e, E) > 0 and c(e, E) > 0 such that, for all
p€{l,...,N}, any J-Lagrangian subspace F' and all integers m,n,

(2.65) P <{‘mlogsp (Tom(E)) — vp(E)‘ > }) < (e, E)e=cleBin—ml
and
(2.66) P ({‘é(n—im)bg s, (T (E)ml) — %(E)’ > 6}) < Cle. E)eeeB)in-nl

Remark 2.29. The constants C(e, F) and ¢(e, E') depend a priori on E and € but they can be
taken uniform in € as it tends to 0 and uniform in E on the compact interval I. This is one
of the reasons why we need to take the interval I compact.
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Proof. First of all, recall that Spy(C) can be identified to Spyy(R) using the following appli-
cation which split the real and imaginery parts of the matrices in Mon(C):

MQN(C) — M4N(R)
A+iB — (47F8).

In this identification, all the multiplicities of the Lyapunov exponents and the singular values
are doubled. Hence, we can use freely all the results concerning i.i.d. sequences of random
matrices in the real symplectic group.
Recall that for a symplectic matrix M € Spx(C), s,(M 1) = s,(M) forevery p € {1,...2N}.
Hence one can assume that m < n without loss of generality since (T/"(E))™ = T,™(FE).
Let p € {1,..., N}. As in the proof of Proposition , for each M € Spy(R), we denote by

M the matrix of GL;(R) such that

(2.67) My = (fi, A"M f;).

where k is the dimension of J-L, and (fi,..., fx) is an orthonormal basis of J-L,, with
fi=e AN---Nep. Let us now denote by CT(E) the subgroup of GL;(R) which is generated
by the matrices M for M € G(E). Then, since G(FE) is J-L,-strongly irreducible, @ is
strongly irreducible. Hence, applying [0, Theorem A.V.6.2], one gets the existence of a > 0

such that for any € > 0 and any z € P(J-L,),
(2.68)

: 1 1 " =
lim sup mbg P ('mlog(llAWm(E)xH) —(n+- +’Yp)(E)‘ > €> S -

|[n—m|—+o00
> e) < —qu.

Indeed, since the function = 1A (x) is uniformly bounded in z, n and w, and since the
support of the common law of the transfer matrices is bounded, the assumption of finiteness
of the integral in [5, Theorem A.V.6.2] is satisfied.

Now, let us take F' a J-Lagrangian subspace of C2V. Then,

AP (T (B)7E)|| = sup (AP Ty () (ur A=+ - Ay
ul A Aup€P(J-Lyp)
u; EF

and
(2.69)

1 1
1i — log P |——Tog(||APT™(E)||) — e E
sy o P ([ TN = )08

= ||APT;"(E) 1|, for some @ € P(J-L,)

since the supremum is attained by compactness of P(J-L,). Hence, (2.68)) rewrites,
(2.70)

1 1
li ———log P( |-——— log(/|A\P(T,(E)mp)]|) — e E)>¢) <-
Ty ttog P (|t oIV T — (14 +3,)(E)| > ] < o

for any J-Lagrangian F. Let, for n,m € Z, p € {1,..., N}, ¢ > 0 and F' a J-Lagrangian,

>€},

Anmaple, F) = {\m log(IN(TE(E)YTi)ll) = (n + 4+ ) ()
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Apmple) = {]m log(INPTE(B)) = (m + - + vp)(E)’ >}

Bpmp(e, F) = {

and

=y (oA (T )Tl — o114~ (T (B3 - ’yp(E)’ > }

1
lln — m)|

Branal) = {|

Then, one has

(2.71) Bpmp(2¢) C Apmp(€)NAymp_1(€) and By, (26, F) C Apmple, F)N Ay mp1(€, F).
Since for any p € {1,...., N}, [APTE(E)| = 5:(TE(E)) - ,(T{n(E)), combining 7]

and (2.69) one gets (2.65). Ome also has, for any J-Lagrangian F, ||[AP(T/"(E)7%)|| =

si(T(E)ry) - - sp(T/ (E)ms). Hence, combining (2.71) and (2.70) one gets (2.66). This

achieves the proof. O

(log (/AT (E)II) — log (|| A" T (B)I])) — %(E)‘ > 6} :

We then prove the counterpart of Proposition [2.28|in the case covered by Theorem [1.10]

Proposition 2.30. We fix a compact interval I C R. We assume that for every 2 € I:

(1) the Furstenberg group G(E) is included in SpOy(R) ;

(2) for every 2p € {1,...,N}, G(E) is (J, S)-Lay,-strongly irreducible.
Then for all € > 0 and all E € I, there exist C(e, E) > 0 and c(e, E) > 0 such that, for all
p€{l,...,N}, any (J,S)-Lagrangian subspace F and all integers m,n,

ey ({|ay e ) ) 2.} =0t e
and
(2.73) P ({‘m log s, (T/n(E)Ts) — 'yp(E)‘ > e}) < Cl(e, B)e~ceB)n—m|,

—_—~—

Proof. The proof is very similar to the proof of Proposition [2.28, First, we introduce G(F)
defined as in the proof of Proposition [2.5] Then, since G(E) is (J, S)-La,-strongly irreducible,

—_—

G(FE) is strongly irreducible and we can again apply [5, Theorem A.V.6.2] to get for each
2p € {1,..., N}, the analogous of (2.69)) for A* instead of A? and the same for (2.68)) for any
z € P((J,5)-Lap). Hence, one gets (2.70)) for any (J, S)-Lagrangian F' and for 2p instead of p.
Then, one has, for any n,m € Z, 2p € {1,...,N}, ¢ > 0 and F a (J, S)-Lagrangian,

(2.74)

Bim2p(2€) C Apmop(€) N Ay mop—2(€) and By, m0,(2¢, F) C Ay map(€, F) N Ay mop—a(€, F).
One conclude as in the proof of Proposition using that for each 2p € {1,..., N} and
each (J, S)-Lagrangian F, sy, (Tg(E)) = sap1(Ty(E)), s2p(Tion(E)5) = sopir (Ti (E) )
and 7o, (E) = y2p+1(E) since the transfer matrices are in SpOy(R). O
Proof of the ILSE ([2.37)). Assume either the assumptions of Theorem or those of Theorem

1.10l Applying Proposition for the J-Lagrangian spaces F,, F; and F_ one gets that
there exist C'(e, F) > 0 and ¢(e, E) > 0 such that,

(2.75) Ve >0, Vn € Aé, P (Q(n)) < C(e, B)ec()n-L]
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from which we deduce, since there is only a finite number of real numbers nf in A, that there
3
exist C' > 0 and ¢ > 0 such that,

(2.76) Ve >0, P(Q.) < Ce 3t

remembering that we can choose the constants C'(¢, E') and c(e, E') uniform in € when it tends
to 0 and uniform in £ € I by compactness of /.

Applying Proposition for the (J, S)-Lagrangian spaces F,, F¥ and F= one gets also
that there exist C' > 0 and ¢ > 0 such that,

(2.77) Ve >0, P <Q> < CloehtL

Proposition together with (2.39) and (2.76)) or (2.77) (up to a passage to the comple-
mentary sets of {2, and €2, ) lead to (2.37]) under either assumptions of Theorem or Theorem
L 10L U

Proof of Theorem and Theorem[1.10. In view of Theorems [2.21] and [2.22] proving The-
orem and Theorem [I.10] reduces to prove all the hypotheses stated in Section [2.4.1] on
interval I. It is easy to see that the restriction of the operators to intervals with Dirichlet
boundary conditions makes { D, },cq a standard family of operators.

As in [35], we first remark that, for all families of operators of the form given by ,
(SGEE), (SLI), (IAD) and (EDI) have already been proven in [3, Proof of Theorem 4.1] on R.
Similarly, (NE) is proven in the same paper, in the proof of Theorem 4.2. Even if there are
extra hypotheses in that paper, they are not used in the proof of these specific assumptions.
We already proven the Wegner estimate (W) under the hypotheses of Theorem [1.9(or Theorem
10l

Finally, we have have just proven in this Section the ILSE under both hypotheses of Theo-
rem or Theorem [1.10], which achieves the proof of these two theorems. O

3. APPLICATION FOR POTENTIALS SPLITTING IN A SUM OF TWO PAULI MATRICES

The goal of this section is to establish the properties of Lyapunov exponents for the models
introduced in Section [I.4, We prove that the hypotheses of either Theorem [1.9] or
are satisfied, which respectively leads to the localization and delocalization results given by
Theorem [1.11} The fact that the hypotheses of the localization criterion are satisfied depends
in fact not really on the family of measures pg, but only on the Furstenberg groups G(FE).
Indeed, the Furstenberg group can be independent of E even if the measure ug depends on
E.

Therefore, our first task is to determine the Furstenberg groups in the five different cases.
Since all transfer matrices are symplectic and have real elements, G(FE) is always included
in the real symplectic group Spy(R). In some of the cases, we can have more. Let A, the
tridiagonal matrix with 0 on the diagonal and 1 on the upper and lower diagonal.

Proposition 3.1. In all cases, G(E) C Spx(R). Moreover,
e in Case 1, G(E) C SOx(R);
o in Case 5, if Voer = A, G(E) C SpOy(R).

Proof. We have already proved in Section that the Furstenberg group is always included
in Spy(R). In some of the cases defined in Table , we can prove stronger inclusions. First,
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we have that

d
3 (TY(E)) TY(E)] = (TY(E)) Vi + Voer, JITY (E).
When V,, + Vper = 09 ® Vp, i.e. in case 1, [V, + Vyer, J| = 0 50 (TY(E))*TY(E) = Iy for all ©
and y: G(E) C SOon(R).

If Voee = A, in Case 5, a direct computation shows that for any =,y € R and any E € R,
TY(E) € SpOy(R) hence the result on G(E). O

This has already consequences on the Lyapunov exponents in some cases. We prove that
some Lyapunov exponents vanish.

Theorem 3.2. In Case 1, all Lyapunov exponents are identically 0.
In Case 5 for odd N and Vyer = A, the lowest Lyapunov exponent vy is identically 0.

Proof. The fact that all Lyapunov exponents associated with a sequence of matrices included in
the compact group SO,y (R) are identically zero is a direct consequence of Proposition A.I11.5.6
of [5].

The result for Case 5 when N is odd, is a consequence of Proposition [2.4] combined with
Yp = —Yan—p+1 for all p, which leads to vy = yn41 = 0. O

From Theorems [3.2] and we directly get the delocalization results in Theorem [1.11]

To get localization results, we need more information. In Section [3.1, we compute the
Furstenberg groups in the different case when ¢ is close to 0, which means that the system is
strongly disordered.

Theorem 3.3. Recall the different cases given in Table . In case 1, G(E) is a subgroup of
SOon(R). Moreover, there exists L > 0 such that, for all £ € (0,4c), there exists a compact
interval I(N, ) such that for all E € I(N,£)\ {0},

e in cases 2, 8 and 4, G(E) = Spy(R).

o in Case 5, if Voer = A, G(E) = SpOy(R).

We then get that the hypotheses of either Theorem or Theorem are satisfied.

Theorem 3.4. Fiz { < (¢, for the lc introduced in Theorem [3.5  Then, for all E €
I(N, ¢, V) \ {0},
o in case 2, 3 or 4, G(E) is p-contracting and J-Ly,-strongly irreducible for all p in
{1,...,N}.
o in case 5, if Voer = A, G(E) is 2p-contracting and (J, S)-Lay-strongly irreducible for
every 2p in {1,..., N}.

Proof. The case where G(FE) = Spy(R) is treated in the proof of Proposition A.IV.3.5 of [5].
The remaining case is studied in section [3.2] of the present paper. 0

Combining Theorems and or [L.10], we get the localization results of Theorem [I.11]
at least for Ve, = A. We give the complete proof of Theorem in Section

3.1. Determination of the Furstenberg groups. In this section, we prove Theorem [3.3
For models of the type introduced in Section [1.4] the common distribution of the T, m (E)’s
is pup = (T, 0 (E))« () and we have the internal description of G(E):

w

(3.1) G(E) = <T,0(E); w® €suppr > for all E € R.
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Since we consider potentials which are constant on each interval (nf, (n + 1)), one has:
(3.2) Vl>0, VneZ, VE € R, Tw(n)<E) = exp (wa(n)(E)),

where, using the decomposition ([1.12)—(1.13]),
VEeR, VneZ, Xym(E) :=JVoer + Vom — E)

(33) o *CMlecr*ﬂle(n) E*(aofag)vpcrf(ﬁo7183)‘7“)(“)
—E+(ao+az) Vper +(B0+83) V., (n) a1 V4BV ()

The explicit formula for transfer matrices, given in , is not easy to handle since it is a
matrix exponential in which the random parameters and the energy parameter are mixed. As
a consequence, we would like to determine the Furstenberg groups directly from the matrices
X, (F). This is possible when the disorder is large enough thanks to the following result

w

due to Breuillard and Gelander [11].

Theorem 3.5 ([11], Theorem 2.1). Let G be a real, connected, semisimple Lie group, whose
Lie algebra is g. Then, there is a neighborhood © of 1 in G, on which log = exp™! is a
well defined diffeomorphism, such that gi,...,gm € O generate a dense subgroup whenever
log g1, ...,log g, generate g.

Note that this result holds only when we consider a finite number of generators. For any
(i,7) in {1,..., N} we denote by E;; the N-by-N matrix with a coefficient 1 in position (3, j)
and 0 everywhere else. For any P € {0,1}", we denote by X;(E) the matrix X ) (F) for
Vo = > p—1 i Let us introduce

Gy (B) =< exp ((Xp(E)) ; P€{0,1}" >C G(E)

since {0,1}" C suppr. The group Gyo13(E) has 2V generators. We will use Theorem 3.5 to
prove that Gyg1}(£) is dense in Spy(R) or SpOy(R), depending on the case. Together with
Proposition [3.1} it will conclude the proof of Theorem (3.3

We first need to ensure that the groups Spy(R) and SpOy(R) are connected and semisimple.
It is well-known that the symplectic group has these properties. In Appendix [A] we prove
that they hold for the group SpOy(R) as well.

We next prove that, under good conditions on F and ¢, the transfer matrices are in an
appropriate neighborhood of the unit. We prove it in a general result holding for all operators
of the form given by such that the potential V" is constant on [0, ¢] and has values in
the space of real symmetric matrices.

Lemma 3.6. For all neighborhood O of 1 in Spx(R), there exists {c > 0, ¢1,¢co € R and
d > 0 such that if { < {c, then ¢ —% < ¢y —i—% and T, o) (E) € O for all ' € {0,1}N and all
F e [Cl — %,Cz—i—%].

Note that we do not need to prove an analogous result for SpOy(R) since, for any neigh-
borhood O of 1 in SpOy(R), there exists a neighborhood O’ of 1 in Spy(R) such that
O = O’ NSpOy(R).

Proof. Given a neighborhood O of 1 in Spy(R), we set:
diog 0 :=sup{R > 0 | exp [B(0,R)] C O},
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where B(0, R) is the closed ball, centered on 0 and of radius R > 0, for the topology induced
on the Lie algebra spy(R) by the matrix norm induced by the euclidean norm on R*Y. Then,
T, (E) will be in O as soon as £|| X0 (E)]| < dieg o-
We remark that X o) (E) = J Y(E — V). Since J~! is an orthogonal matrix, we have,
denoting by ()\g')(()))lgigg ~ the eigenvalues of the symmetric matrix of Vo,
| X0 (B) = 1B = Vool = max |X* - E|.

<i<2N

We want to find an interval of values of E on which ¢||.X o) (E)| < diog 0. In other words,
we want to characterize the set

dio
I1(¢,0) := {EER, max  max \A;"—E|§%}.

we{0,1}V 1<i<N

We see that p p
I f O _ )\w . log O )\w log O ‘
( ? ) ﬂ ﬂ |: 7 g N + g
we{0,1}N 1<i<N
We define
Amax = max max A and A\pj, := min  min A
wel0,1}V 1<i<N wel0,1}N 1<i<N

If ()\max — )\min)/Q < dlog (9/6, then [(f, O) = [)\max — dlog (9/6, )\min + d]og (9/6] which is a
nonempty interval. As a consequence, we have proved that if ¢ < ¢ := 2diog 0/ (Amax — Amin),
then for all E € I(¢, N) (|| X 0 (E)| < diog 0. As a consequence, T, o) (E) = exp((XV(E)) €
0. O

Finally, we prove that, in each case, the Lie algebra generated by the X o) (E)’s corresponds
with the Lie algebra associated with the group appearing in Theorem [3.3] Let us denote, for
every E € R,
(3.4) g(E) == Lie {Xp(E); P€{0,1}"}.

We explicitly compute g(E) in the different cases described in Table [I In order to state
the result, we introduce the following algebras:

e spy(R) is the algebra associated with the symplectic group Spy(R), it consists of all

matrices of the shape (é _l,? 1) where B and C' are symmetric.

e Let us introduce the operator s defined on My (R) by (*M);; = (—=1)" 7T M;;. We
define the Lie algebra

(3.5) spoy(R) := { (Sé —§A) with *A=A'B = B} :

This is the Lie algebra associated with the group SpOy(R), as we prove in Appendix .
We have the following result.
Proposition 3.7. Let us recall the 5 cases defined in Table (1| and assume that Ve = A.
Then, for all E # 0,
e in cases 2, 3 and 4, g(F) = spx(R);
e in case 5, g(E) = spoy(R).

In the rest of the section, we prove this proposition in the different cases. We fix £ # 0.
We use the following lemma.
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Lemma 3.8. We introduce the following notations:
If some subalgebra g of spy(R) contains all the Z;;’s and Y;;’s for |[i—j| < 1, then g = spy(R).

A proof of this result can be found in the proof of Lemma 1 of [§], even if it is not really
stated.

Case 2: potentials both on o3. Recall that, according to Table [T, this case covers the case
where potentials are both on ¢, as well. We consider the family of matrices {Xp(E)}pero 13,
as defined in (3.3)), for ag = 3 = 1 and all other coefficients equal to 0. We have

0 E+A+)" =1 L
Xp(E) = <_E+A+2Pi:1 Eii 0 ) :

In view of Lemma we will prove that, for such a family {Xp(E)}pego13v, all matrices
Zi; and Yy for |i — j| < 1 are in g(F). First, for any P, P" € {0,1}",
0 ZPizl Eii_ZPi’:l E;;
XP(E) _XP/(E) — (ZP,L-=1 EiiiZP{:l E;; 0 ) .

For all i« € {1,...,N}, we can choose P = (0,...,1,...,0) with the 1 in position i and
P"=(0,...,0). We find that Z;; is in g(E).
Then, we have that for all P € {0,1}"

e (g 5)] =22 (5 5)

Iy 0
0 —In

In O . .
|:Xii7 ( 0 _IN):| - _23/;17

and thus all the Y; are in g(£). We have thus that
{([())2 %1) , D1, Dy diagonal} C g(E).

Therefore, since E # 0, < ) € g(F). We can then see that for all ¢ in {1,..., N}

Therefore,

0 E+> =1 L
Xp(E)— (*E+ZP1-=1 Ey; P()) ' )

We compute, for 7 in {1,..., N},

(5 0) -0 5)

where Bz = AE“ + E“A = Ei,i*l + Ei,iJrl + Ei*l,i + EfL'Jrl’/L' with the convention that E’LJ =0
if ¢ or j is not in [1, N]. We remark that

Span({B;,i =1,...,N —1}) = Span({E; j11 + Fis14,0=1,...,N — 1}),

which is the space of symmetric tridiagonal matrices with zeros on the diagonal
Now, for any ¢ in {1,..., N — 1},

Ei,i-i—l + E'i-‘!‘l,i 0 O ]N _ 2Y |
0 _(Ei,z‘+1 + Ez‘+1,z‘) "\Iy 0 iyit1

= (29) €9(E).
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As a consequence, all the Y;;’s with |i — j| =1 are in g(E). Last,

Bu B ! 0 INY| _oy
0 _(Ei,z‘+1+EZ-+17i) "\=Iy O ii+1-

We have that all the Z;;’s with |i — j| = 1 are in g(£). With Lemma this concludes the
proof that g(E) = spy(R)

Case 3: deterministic potential on oo, random potential on os. Recall that, according to
Table [T, this covers as well the case with the deterministic potential on oy and the random
potential on ;. We consider the family of matrices { Xp(E)}pcqo13n, as defined in (3.3), with
ag = B3 = 1 and all the other coefficients equal to 0. In other words,

0 E—A-‘rz = FEi;
Xp(E) = <_E+A+ZP¢:1 Ey 0 ) :

We prove that all the Z;;’s and Y;;’s, for |i — j| <1, are in g(E). First, we see that
0 2p=1 Bii=2pro Bii
(3.7) Xp(E) — Xp/(E) = <2Pi_l B~ pr_y Ei 0 )
so, for all i, Z; € g(F).
Then,
(s 7o) € 9(E).
Taking the bracket, we find that for all 7 in {1,..., N},

(3.8) [( —EO+A EEA) ini] - <2EEM_0{E“7A} —2EEii‘?‘{Eii7A}> € g(E).

Recall that we have defined the matrix K = S (=1)"1E;;. We find that {K, A} = 0. As
a consequence, since F # 0, we find that

N

(3.9) DT (Cha 708 Z] = 2B (§ %) € o(B).

i=1
Taking another bracket, we find that, for all i € {1,..., N},

(3.10) (5 %) (2, 5] = ( Ly, "% ) = (=15 € a(B).

On the other hand, we find that

N
(3.11) O = Z [(ha B0%)  Zia) = (%% _5ha) € 9(B).

i=1
For 7 between 2 and N — 1,
(3.12) %[@, Zi) = <72EEZ~Z~J?{E“,A} 2EEii7(;{Eii’A}> =FEY; +Yii+Yii
and
(3.13) %[@, Zu) = (72EE113{E11,A} QEEWO{EH’AU = EYi1 + Y.

This, together with the fact that all Y;;’s are in g(F), implies that, for all ¢ = 1,..., N — 1,
Yiit+1 € g(F). Similarly, we prove, computing the commutators [0, Y] that all Z;;,, are in
g(E). As a consequence, by Lemma [3.8] g(E) = spy(R).
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Case 4: deterministic potential on oy, random potential on o3. Recall that, according to
Table |1} this covers as well the case where the deterministic potential is on o3 and the random
potential is on ;. We consider the family of matrices {Xp(E)} pegoyn, as defined in (3.3),
with a; = 3 = 1 and all other coefficients equal to 0. As a consequence,

( -A B+ p -1 Bii )

—E+3p,—1 B A

Xp(E) =

As in the previous cases, we will use Lemma and only prove that all the Z;;’s and Y;’s,
for [i — j| <1, are in g(F). First, we see that for all P, P’

(3.14) Xp(E) = Xp(E) =Y Zi— Y Zi€g(E)

P/=1

so, for all 4, Z;; € g(E).

Then,
Xp(E) — Z Zi= ("5 Kx) €09(B).
P=1
Taking the bracket, we find that for all 7 in {1,..., N},
— - i —{Fii,A
(3.15) (28 5) . 2Za] = (225 5 ) e a(®).
Similarly to the previous case, we can write
N
(3.16) 2T (Cha B6%) Xl = (P8 i) € o(B).
i=1
Taking another bracket, we find that, for all 4,
(3.17) [(§ %), Za] = (1) € g(B).

This implies that ©' := (*0A 2) € g(E). We can conclude as in the previous case.

Case 5: deterministic potential on os, random potential on oy. Recall that, according to
Table [I this covers as well the case with the deterministic potential on oy and the random
potential on oy. We consider the family of matrices {Xp(E)}pego13v, as defined in (3.3), with
asz = Py = 1 and all other coefficients equal to 0. We have

. 0 E-i-A—ZPi:l E;;
(3.18) Xp(B) = (piaiy, 5. i

Here, the Lie algebra g(E) will not be spy(R) but its subalgebra spoy(R). We have the
following result, similar to Lemma [3.8|

Lemma 3.9. We adopt the same notation as in Lemma . If some subalgebra g of spoy(R)
contains all the Y;;’s as well as the X;;’s for |i — j| =1, then g = spoy(R).

Proof. We first remark that all the Y;;’s as well as the X;;’s for |i — j| = 1 are in spoy(R). To
prove the other inclusion, let g be a subalgebra of spoy(R) which contains all these matrices.
Recall that a basis of {4 € My(R) | *A = A} is given by {E;; + (—=1)" 7™ E};}1<i<j<n and
one of {B € My(R) | ‘B = B} is given by {E;; + Eji}1<i<j<n. We introduce, for every
i,7 € {1,... N}, the matrices

. Eij+(71)i7j+1Eji 0 o 0 Eij+Ej;
Vw - ( 0 (-1)*~9E;;—Ej; and WZJ — \(-D)"ItYE;+E;) 0 ’
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By (3.5), {Vij, Wijhi<i<j<n is a basis of spoy(R). Hence, to prove Lemma [3.9] it suffices to
prove that g contains all the V;;’s and W;;’s for 1 <¢ < j < N. A direct computation shows
that for every 4,7, k,r € {1,..., N},

I i—q I
[‘/;j, Wkr] = (Sjk ( g (_1)1971'11\]) Wi + 5z‘k<—1) J+1 ( (I)\I (_1)?+kIN> VV]
il (1 0 I 0
+ O (1) ( 0 (—1)HIN) Wik + 0j0 < 0 (—1)*]‘*%) Wi
(3.19) = (=1)" T (6 Wjr + 66 Wi) + 0 Wi + 65 Wi,

and if (=)ijp, = (—1)i Ikl
fore Birt (S Jighe Eri 0 Eik+(=)ijkr Bri 0
[W/ij, Wi = (—1) + [5]'19 ( 0 ik 7((7)“”EW+ET¢)) +djr < k . jkr Bk 7((7)ijkTEik+EM)>

EjT+(_)i' rErj 0 E; +(_)i' rErj 0
+0i ( 0 " _((_)ijkTEjr+ETj)> + dir ( " 0 e _((_)ijkrEjk+Ekj)>:|
(3.20) = (=D (0 Vir + 05 Vi + 0 Vi + 05, Vi)
where 9;; is the Kronecker’s symbol :

s _ [t i=j

Y1 0 if i £
The hypothesis made on g implies that for every ¢ € {1,..., N}, W;; € g and for |i — j| = 1,
VVZ']' cg. Let ¢ € {1, .. ,N} Then, USng " [Wiiawi,i—i-l] = 2‘/;',1‘4_1 and ‘/i,i—i-l c€g. This
proves that g contains all the V;; and W;; for |i—j| = 1. Using (3.19), [Vii+1, Wit1i42] = Wiiso
and W, ;42 € g. Using (3.20)) this implies that [W;;, W 10] = —2V; ;42 and V; ;12 € g. Hence,
g contains all the V;; and W;; for |i — j| = 2. By induction, using (3.19) and (3.20)), we prove
that g contains all the V;; and W;; for ¢ < j, hence spoy(R) C g and g = spoy(R). O

To compute g(F), we begin as usual by taking Xp(E) — Xp/(FE) to find that all the Yj;’s

are in g(F). Then,
0 A
(A 0) € g(E).

(435 )] )

Taking commutators between this last matrix and the Y};’s, we find that all the Z;;’s with
li —j| =1 are in g(E). O

This implies that

3.2. p-contractivity and L,-strong irreducibility. As we already explained, Spy(R) is
p-contracting and J-L,-strongly irreducible for all p € {1,..., N}. We prove here the corre-
sponding result for SpOy(R). We prove a similar result for SpOy(R).

Proposition 3.10. The group SpOy(R) is 2p-contracting and (J, S)-La,-strongly irreducible
forallpe{l,...,N}.

Proof. According to [5, Proposition A.IV.2.1], a subset of GLyy(R) is 2p-contracting if there
exists in it a sequence (M,,) such that, if we denote by s1(M,,) > -+ > son(M,,) the singular
values of M, then lim,,_, Sopt1(M,)/s9,(M,,) = 0. But, if we take a sequence t; > --- >
tq > 0 and construct the matrix R as in Proposition (iv), then for all n € N the singular
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values of R"™ are, for p < d, s9p—1(M,) = $2,(M,,) = €™ so the sequence satisfies the criterion:
SpOx (R) is 2p-contracting.

Let us now prove that SpOy(R) is Lg,-strongly irreducible. Since SpOy(R) is connected (see
Proposition , according to [5, Exercise A.IV.2.9], we only have to prove that there exists
no proper subspace V' of Ly, such that (A??M)(V) C V for all M in SpOy(R). Assume that
such a V exists and let us consider a matrix R as in Proposition [A.1] (iv), with ¢; > -+ > 4.
We have in particular that (A*R)(V) C V. For f; defined in let us write the unique
decomposition f; = v + v+ with v € V and v+ € V. Then,

(3.21) (A¥R)fy = €21 ... e f; = (A®R)v + (AP R)v*.

Since V is stable by A%’ R and V' is stable by (A R)* = A*R, (A*R)v € V and (A*R)vt €
VL. By orthogonality, (A®*R)v = €21 ...¢e2»y, If v = 0 then f; € VL. If v # 0, v is an
eigenvector of A’ R associated with the eigenvalue e? - - - e?». But, by construction of R, its
eigenspace associated with the eigenvalue €1 - - - ¢ is Span(f1). Hence, if v is an eigenvector
of A’ R™ associated to the eigenvalue "1 - .- e then v € Span(f;) and f; € V. Thus, we
proved that either f; € V or f; € V.

If fi € V, then by definition V' = Ly,. If f is orthogonal to V/, then, for all v € V
and M € SpOy(R), (A’ M fi,v) = (f1,A**(*M)v) = 0 since ‘M is in SpOy(R) as well.
Consequently, V = Ljp, which contradicts the hypothesis that V' is proper. 0
3.3. Proof of Theorem [1.11] The proof of Theorem [I.11] comes from the application of one
of the localization criteria or the delocalization criterion (i.e. Theorem Theorem or
Theorem [1.12)) to {D,, },ecq for the particular choice of V' = A, the tridiagonal matrix with 0
on the diagonal and 1 on the upper and lower diagonal.

Proof of Theorem[1.11} Once we obtained Theorem for V' = A we apply the genericity
argument developed in [9] in the following way. We fix G € {Spx(R),SpOy(R)} and g €
{spn(R), spoy(R)} the corresponding Lie algebra. Both Spy(R) and SpOy(R) are algebraic
groups. The use of Theorem to obtain the separability of Lyapunov exponents leads us
to prove an algebraic property on a Lie algebra generated by a finite number of matrices.
Hence, the n-tuples of elements in G that do not generate a dense subgroup are contained
in a closed analytic subvariety which implies that we can perturb the interaction potential A
into a potential V' while keeping the property that the Furstenberg group is equal to G for
any energy in an interval I(N, ¢, V) for ¢ € (0,¢c(N,V)). The transfer matrices are written
in exponential form,

T (E) = exp({X,0(E,V)),

w

where the X ) (F, V) are define in (3.3]) and where we explicit the dependency in V' of these
matrices since E and V' are both important variables in the genericity argument. We denote
the family {X, o (E,V)},0epony by Xi(E,V), ..., Xon (£, V). For k € N, let

(3.22) Vi = {(X1,...,Xy) €spx(R)* | (X1,...,X}) does not generate g} .

Since generating the algebra g is an algebraic condition of the type non-vanishing of a finite
family of determinants (finite because, for all m € N* the ring R[Ty,...,T,,] is Noetherian),
there exist Qy,...,Q,, € R[g"] such that:

(3.23) Vi={(X1,....X) €g" | Qi(X1,...,. X)) =0,...,Qn(X1,...,X3) = 0}.
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Here, we identify R[g"] ~ R[T1, ..., Tkxdimg) where dimg = 2N? + N for g = spy(R) and
dimg = N? for g = spoy(R). Let E € R and,

(3.24) V(E)={V € Sx(R) | Xi(E,V),..., Xon(E,V) does not generate g} .
We show that Leb i (V(E)) = 0. Indeed, let

2

. Sy(R) = ¢
(3:29) o TV (B X (B V)
Then, fg is polynomial in the w coefficients defining V', and we have:
(3.26) VeVE) & (Qiofe)(V)=0,....(Qry o fe)(V)=0,

where each @); o fg is polynomial in the N(NTH

) coefficients defining V. But, we have shown
in Section that in Cases 2, 3, 4 and 5 for N even, A ¢ V(E). Therefore, there exists
ip € {1,...,m9n } such that (Q;, o fr)(A) # 0, and since the function @Q;, o fg is polynomial
and not identically zero,

(3.27) Lebyoven ({V € Sx(R) | (Qi 0 fi)(V) = 0)}) =0,
and, by inclusion,
(3.28) VE € R, LebN(]\;'Jrl) (V(E)) =0.

Finally, let V(g) = NgerV(E). Then V(g) has Lebesgue measure zero, and if V' ¢ V(g), there
exists Fy € R such that the family {X:(Ey, V),..., Xon(Eo, V)} generates g. Therefore, there
exists ig € {1,..., 7o~} such that (@Q;, o f)(Fo, V) # 0, where:

R x Sx(R 2N
(3.29) [ TE,V()) : ?Xl(E,V),...,XQN(E,V))'

Now, for V fixed, E +— (Q;, o fr)(E, V) is polynomial and not identically zero, so it has only
a finite set Sy of zeros, and for all £ € R\ Sy, {X1(E,V),..., Xon(E,V)} does not generate
g.

Thus we have obtained that V(g) has Lebesgue measure zero, and if V' ¢ V(g), there exists
Sy C R finite such that for all £ € R\ Sy, {X1(E,V),..., Xon(E,V)} generates g.

From there, we finish the proof of Theorem [L.11] In Cases 2, 3, 4, we fix V € Sy(R) \
V(spy(R)) and apply Theorem [3.5] using the real number ¢¢(N, V) and the interval I(N, V, ()
given by Lemmal[3.6] Then we get that the hypotheses of Theorem 1.9 are satisfied for this V on
I(N,V,0)\ Sy since G(E) = Spx(R) on this interval. In Case 5 we fix V' € Sy(R) \ V(spox(R))
and we do the same as in Cases 2, 3, 4 to get that the hypotheses of Theorem [1.10|are satisfied
since G(F) = SpOy(R) on the constructed interval. O

Remark 3.11. Tt is the algebraic nature of the objects involved that allows us to prove a
generic result in V' and the finiteness of the set of critical energies. We can summarize the
ideas used simply by recalling that the set of zeros of a non-zero single-variable polynomial is
finite and that more generally, the set of zeros of a non-zero polynomial in several variables is
of Lebesgue measure zero.
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APPENDIX A. THE GROUP SpOy(R)

In order to study the Lyapunov exponents associated with a sequence of i.i.d. matrices of
SpOyx(R), as defined by (1.10), we state here the most important properties of this group.

Proposition A.1. Let M € SpOy(R).
(1) M € SpOy(R).
(2) If Mv = Xv for v € R?N and X € R, then tMJv = \"'Jv, tMSv = \"1Sv and
MJSv = AJSwv.
(3) For all v € R?N, the vectors v and JSv are orthogonal.

cosht sinht .
(4) Fort € R, we denote B, := (sinht cosht ) If N is even, we denote N =: 2d and,

if N is odd, N =: 2d 4+ 1. There exists U € SOan(R) N SpOy(R) and real numbers
ty > --- >1tq >0 such that, if we denote in the even case

R diag(By,, ..., By,) 0
‘ O dia‘g(B*tla"'7Bftd) ’
in the odd case
R = diag(Btl,...,Btd,l) 0
) 0 diag(B_tl, e 7B—td7 1) ’
then
(A1) U'MM'U = R.

(5) There exists K, U € SOan(R)NSpOy(R) and a matriz R similar to the one introduced
above such that

(A.2) M = KRU.

(6) The group SpOy(R) is pathwise connected.
(7) The Lie algebra of the Lie group SpOy(R) is denoted by spoy(R) and is given by

A B s
spoy(R) = {(SB —tA) with A = A'B = B}
where the operator * is defined on My (R) by (*M);; = (=1)"It1M;;.
(8) The group SpOy(R) is semisimple.

Proof. (1) If we take the inverse of the relations defining SpOy(R), we find, since S™! = S
and J~! = —J,

MSEM) ™t =S and M J('M)™! = J,

so (*M)~! € SpOy(R), which implies that it is the case for M as well, since SpOy(R)
is a group.

(2) If Mv = M, then NX'M Jv = M JMuv = Jv. The same argument is true if we replace
J by S. Combining these two results, we find the one with JS.

(3) Since JS = (ZO( _0K>, for v = <:jl>, we have
2

v-JSv=—v; - Kvg+vy-Kv; =0

since the matrix K is symmetric.



(4)

LOCALIZATION FOR QUASI-ONE-DIMENSIONAL DIRAC OPERATORS 39

We first prove that M M has an orthonormal basis of eigenvectors which can be written
(v1,...,0q, Jur, ..., Jug, Svy, ..., Svg, JSv1, ..., JSvg)
when N = 2d and
(U1, .y Vg, Vas1, JU1, « ooy JUG, JUq1 S0, . o, Svg, JSvy, ..., JSUg)

when N = 2d + 1. To this purpose, we split the space R?" into 2 subspaces: V; is the
eigenspace of M M associated with the eigenvalue 1 and Vj = V;*.

Let us first consider Vj: we prove by induction that its dimension is a multiple of
4 and that it has a basis of the desired form. If the dimension is 0, there is nothing
to prove. Otherwise, we take an eigenvector vy of ‘M M, associated with its largest
eigenvalue e > 1 which has norm 1. We see by Point (2) that JSv is an eigenvector
associated with the same eigenvalue and, by Point (3), it is orthogonal to v;. It has
norm 1 as well. Since ‘M M is symmetric, Jv; and Sv; are by Point (2) eigenvectors
of it as well, associated with the eigenvalue e ™ # e''. They both have norm 1,
are orthogonal to each other (since Jv; = JSSwv), and orthogonal to v; and JSv;
since the eigenspaces associated with different eigenvalues are orthogonal. Then, the
space spanned by the 4 vectors vy, Jv;, Sv; and JSv; has dimension 4 and has an
orthonormal basis of the desired form. We can now consider the orthogonal of the
space spanned by these 4 eigenvectors to apply the induction hypothesis.

We now consider the space V;. Note that this space is stable under S. Therefore,
Vi = V" @ V", where the spaces V= := {w € V}, Sw = +w}, are orthogonal. These 2
spaces are moreover isomorphic since, if w € V;", then Jw € V;” and wvice versa. Let
us assume that dim(V}) > 4, which implies that dim (V;") > 2. We can consider two
orthogonal vectors wy, wy € V;", both with norm 1. If we define v, = (w1+Jw2)/\/§,
we can see that the vectors v,o1, Ju,p1 = (Jwy —ws)/v2, Sv,41 = (w1 — Jws,)/v/2 and
JSvy1 = (Jwy + wsy)/v/2 are orthonormal. We can complete the basis by applying
the same process to the orthogonal of the space spanned by these 4 vectors in V;. If
N is even, the dimension of V; is a multiple of 4 so we can construct the whole basis
in this way. If N is odd, we are left with a 2-dimensional subspace of V, of which we
can take an orthonormal basis of the form (vgy1, Jvgi1).

We now construct the matrix U in the following way. For ¢ = 1,...,d, we define
Uv; = 1/\/§(€2i +egi1), UJv; = 1/\/§<62i+N + egim14n), USv; = 1/\/5(62@' — €2i-1)
and UJSv; = 1/v/2(egipn — egi—1+n). 1f N is odd, we define too Uvgy = ey and
UJvgi1 = eany. We easily see that such a U is unitary. Moreover, by construc-
tion, UM M'Ues;_1 = coshties;_1 + sinht;eq;, UM M'Uey; = coshties; + sinh tjeq;_1,
UtMMtUegi_H_N = cosh tiGQZ’_1+N — sinh tiegi_;,_N and UtMMtU€2i+N = cosh ti€2i+N -
sinh t;e9; 14 n, so UM M'U = R. We can explicitly compute that UJ'Ue; = en; and
UJtUeny; = —e; so UJ'U = J. Similarly, we prove that US'U = S so U € SpOy(R).

Since U is a symplectic matrix, its determinant is 1, so U € SOqx(R).

Let us use the previous point to write that there exists R, U such that U!MM'U = R?,
since R? has the same shape as R with ¢; replaced by 2t;. If we set K = M!UR™!,
we see that K € G, in particular it has determinant 1. Moreover, M = KRU and
‘KK = RT'U'MMUR™! = 1.
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Let us prove that the group SOon (R)NSpOy(R) is pathwise connected. This, together
with the decomposition given by point (5), will imply that SpOy(R) is pathwise con-
nected. To this purpose, we introduce the matrices

0 —Ly 0 0
A . 0 0 0
o= <0 —Ik) md =100 00 0 —hp

0 0 Ly O

where k = k' = N when N is even and k = N +1 and ¥ = N — 1 when N is odd. We
see that SOon(R) N SpOy(R) is homeomorphic to SOyx(R) N G, where we have

Gy ={M € Moy(R),) MJ'M =J}'MSM=S5"}.

Indeed, the matrices J and J' (resp. S and S’) are unitarily equivalent since J’ is
obtained from J by permutating rows and columns. Therefore, SpOy(R) and SpOy(R)’
are unitarily equivalent hence homeomorphic.

We take a matrix M = (é ZB;) € SOsn (R) N GE, where the blocks have respective

size k and k’. Since ‘MM = Ly,

'AB+'CD = 0
tAA+ CC
tBB +t _DD = ]k’

Il
o

Similarly, since ‘M S'M = S,

'AB-'CD = 0
TAA-tCC = I,
tBB —t DD = _]k’

These two series of equations imply that B = C' = 0. We have then that A and D are
orthogonal matrices. Finally, the fact that *AMJ' M = J’ implies that the two matrices
A and D are symplectic matrices. As a consequence, all matrix M € SpOy(R) N

13 10)>’ where A, D € Spy. o(R) NSOy« (R), k* being & or k.

One easily checks that all such matrices are in SpOy(R) N SOyn(R). But, for all £*,
SPg« 2(R) N SOk« (R) is pathwise connected as an intersection of 2 pathwise connected
Lie groups so SpOy(R) N SO2x(R) is itself pathwise connected. For the pathwise
connectedness of SO+ (R), see [2]. For the pathwise connectedness of the symplectic
group, one uses the fact that this group is generated by the symplectic transvections
(see [19], Lemma 1, p. 392) to construct a continuous path between any symplectic
matrix and the identity matrix.

By differentiating both relations *MJM = J and *MSM = S one gets that the Lie
algebra of SpOy(R) is the set

{M € Moy(R) | ‘MJ + JM =0 and ‘MS + SM =0} C spy(R).

SO2n(r) can be written

If M = (45) e Myy(R) satisties "M J + JM = 0 one already gets that M = (& 7,)
with A € My(R) 'B = B and 'C' = C. For such a matrix M, we write the relation
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EMS + SM = 0:

(5 S (0 R) (0 %) (& 5=

Since B, C' and K are symmetric matrices, it implies that ‘AK + KA = 0 and BK +
KC = 0. This is equivalent, by definitions of the matrix K and of the operator *; to
A=°Aand C =°B.

(8) First, we remark that since the Lie algebra of the group SpOy(R) is a sub Lie algebra of
the Lie algebra of the symplectic group, its Killing form is the restriction of the Killing
form of the Lie algebra of the symplectic group to the Lie algebra of SpOy(R) given
by (X,Y) — 2(N + 1)Tr(XY) on Lie(SpOy(R)) x Lie(SpOyx(R)) (see [31]). Then,
a direct computation shows that this Killing form is non-degenerate, hence the Lie
algebra of SpOy(R) is semisimple. Moreover, since the relationships defining SpOy(R)
are polynomial in the matrix coefficients of its elements, the group SpOy(R) is an
algebraic group (actually it is an algebraic subgroup of the symplectic group). Hence
using for example [31], Proposition 27.2.2], the semisimplicity of the Lie algebra of
SpOx(R) imply the semisimplicity of SpOy(R) as an algebraic group : the derived
group of SpOy(R) is equal to SpOy(R).

O

Remark A.2. The semisimplicity of SpOy(R) implies that it is topologically perfect hence we
can apply to SpOy(R) the result of Breuillard and Gelander, Theorem , as in the case of
the symplectic group.

APPENDIX B. INITIAL LENGTH-SCALE ESTIMATE FOR SCHRODINGER

In this Appendix we give the proper rate of exponential decay for the ILSE in the case
of quasi-one-dimensional operators of Schrodinger type. This corrects the statement and the
demonstration of [8, Proposition 5], changing the v, (E) into a yy(F) in the exponential rate
of decay. Let (92,4, P) be a complete probability space. Recall that in [8] one considers, for
every w € €,

2

B.1 H,j=———
(B.1) w,l dz2

®In+ Y Vi(z - tn),

nez
acting on L?(R) ® CV, where N > 1 is an integer and ¢ > 0 is a real number. For every
n € Z, the functions x +— V" (x) are symmetric matrix-valued functions, supported on [0, /]
and bounded uniformly on x, n and w. The sequence (Vw(n))nez is a sequence of i.7.d random

variables on (2. We also assume that the potential x — ° _, Vw(")(x — fn) is such that
{Hy s }weq is (Z-ergodic.

Recall that the localized operator H,, , , is defined at Section . We also use all the other
notations introduced in Section 2.4

Proposition B.1 (ILSE for Schrodinger). Let I C R be an open interval such that, for
every E € I, the Furstenberg group associated with {H, ¢}uecq is p-contracting and L,-strongly
irreducible, for every p € {1,...,N}. Let E € I. For every ¢ > 0, there exist C,c > 0 and
Lo € N such that, for every L > Ly,

(B.2) P({AL is (w,7v(E) — ¢, E) — regular}) > 1 — Ce ",
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To prove the correct ILSE for {H,, ¢},cq, we follow the strategy of the proof of Proposition
m. The first step is to give an explicit formula for the Green kernel of H,, o, in terms of the
solutions &, of H, P, = Ed, satisfying the same boundary conditions as in ([2.40)), which
differs from the formula given in [8, Eq. (67)].

Lemma B.2. Let w € Q and let x,y € Ap. Assume that O, (x) and ®_(x) are invertible as
well as @' (x)P4(x) — @ (x)®_(x)~'. The Green kernel of H, o, is given by
C e p [ @)@ @) (@ @) () = @)D (2) ) fora<y
( 3) AL( ,fE,y) - 1 ’ 1 ’ 1\ 1

C_(y)(P-(2)) " (P (2) P (z) " — ()P (2) ) forz >y
Proof. We would like to have

. O, (y)a,(x for x <
(B.4) (B 2y) = { @_Ez;a_gxg for z > z

In addition, we want G, to be continuous, i.e. that for all x € A
(B.5) 0, (2)ay (x) = @_(z)a_(x).
By definition, we must have, for all ¢ € L?*(A) and almost all x € A,

(Hoo — E) / ¢ (B, z,ypp(a)de = b(y).

Computing this expression explicitly and using the fact that (H,, — E)®y = 0, we find that
for all x € A

(B.6) —& (2)d (2) + @ (2)a’ (z) = Iy
The derivative of (B.5) combined with implies that
(B.7) P (z)ay(z) — ' (x)a_(x) = In.

We can solve the system made of (B.5) and (B.7)) to find that
- - -1
(B5) { 0 (2) = (@) (@ (@)0, (1) — O (2)0_(2))

which concludes the proof. O

Our goal is now to bound sup,, e, oL, (x)G‘KLO (E,,y)Xo,10/3(y)| with good probability.
To this purpose, for any integer n € [—L/3, L/3], we consider the event €2.(n) as defined in
but for the sequence of transfer matrices associated with {H, s},eq. We also denote by
TY the transfer matrix from x to y associated with {Hy s}ueq

Proposition B.3. On €, := Myej—1/3,0/5%(n), we have that, for all x € [-(L/3,(L/3] and
ally € (0L — ¢, (L],

(B.9) 1GR, (B, 2, y)|| < Cem?On R,

Proof. We begin with proving that on 2, for all x € [-¢L/3,(L/3], ®,(z) is invertible and
we estimate its inverse. It corresponds to bounding from below its N-th singular value.

Let n be the unique integer such that x € [nf,(n + 1)f). We first remark that, for all
p=1,...,2N,

(B.10) sp(Tin) = sp(T)san(Th) = sp(TED)ITE N7
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where the last equality comes from the fact that T}, is symplectic. But we know from[8]
Lemma 6] that there exists a constant C' > 0, independent of x and w, such that |7}, | < C.
As a consequence, s,(T%) > C~ts,(T/).

We have the following singular value decomposition:

(B.11) TS (B) = USW,
where U and V are unitary and, since we have a symplectic matrix, we can write ¥ =

(zé)+ Z(]) > with ¥, = diag(sy,...,sy) and ¥_ = diag(1/s1,...,1/sy) with s; > 1 for every

i € {l,...,N}. We can write a block decomposition for U and V: U = (UH Ul?) and

U1 Us
V= (“21 “2;) We have then

D, (z) = (In 0) (218) — (Iy 0)T3(E) ( ]?V> = UnZ:Vig + UiaS_ Vs,
But since, on the one hand, the blocks U;;, V;; have norm less than 1 and, on the other hand,
on the event Q.(n), |S_|| < Ce=ONEI=9IL=1l we can write that
sy (P4 (2)) > sn(Un 24 Vig) — Ce (N (E)=€){|L—n]|
> sn(Unn)sn(E4)sn (Vig) — Cem OnE)ImtiEmnl,

Since sy (34) > C~teOWE=9UL=nl (on the event Q. (n)), we are left with controlling sy (Uy)
and sy(Vi2). We can prove as in Claim 3.4 and Remark 3.5 of [24] that, on Q.(n),

—=/{|L—n| —=/{|L—n|
: N > > :
(B.12) sn(Vig) > e % and sy(Uyp) > e %
As a consequence, on €. (n),
(B.13) s (P ()] > O~ et (B)=FE)IL—n| _ c1o—(yn(B)—c)|L—n|

For L large enough, one gets on €,

20L
(B.14) sy (P4 (2))] > VEI29757 5 .

In particular, & (x) is invertible.
The next step to be able to apply Lemmais to prove that @' (z)®, (z) "' =@’ (2)P_(x)*
is invertible. We prove as in Equation (33) of [24] that

(B.15) S (@ ()B4 () — B (2)D_(2) 1) 2 50

Then, we have by Lemma that
(B.16) 2 (B,,y) = Do () (B4 () () (2)8 (1) — B ()0 (2) )"
Finally, we remark that, for such a y, we have by Lemma

(B.17) @, ()2 < N exp <2 /yu ]Vw(t)]dt) <c

with C' independent of w and L.
Together with (B.17)), (B.13) and (B.15)), it gives that on 2.

(B.18) 1G% (B, z,y)|| < Ce20nE)=T0L,
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U

The last step is to estimate the probability of €2.. Since the sequence of transfer matrices
of {H,}ueq and its Furstenberg group satisfy the hypothesis of Proposition , changing
Spx(C) in Spy(R) (which the first step of the proof of Proposition 2.28)), there exist C,c¢ > 0
such that P(Q(n)) < Ce=¢"~El As a consequence,

(B.19) PE(Q) >1— > CemH>1- e

n€[—L/3,L/3]

which prove the ILSE for {H, /},cq-
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