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LOCALIZATION FOR QUASI-ONE-DIMENSIONAL DIRAC OPERATORS

HAKIM BOUMAZA AND SYLVAIN ZALCZER

Abstract. We consider a random family of Dirac operators on N parallel real lines, mod-
elling for example a graphene nanoribbon. We establish a localization criterion involving
properties on the group generated by transfer matrices. In particular, we consider not only
the case where this group is the symplectic group but also a strict subgroup of it. We establish
under quite general hypotheses that the sum of the Lyapunov exponents and the integrated
density of states are Hölder continuous. Moreover, for a set of concrete cases where the po-
tentials are on Pauli matrices, we compute the transfer matrices and prove either localization
or delocalization, depending on the potential and on the parity of N .

1. Introduction

Dirac introduced the operator bearing his name in order to describe the motion of a relativis-
tic electron. While nonrelativistic quantum matter is described by the Schrödinger operator,
which is a second-order differential operator acting on scalar-valued functions, the Dirac op-
erator has order 1 and acts on vector-valued functions. A standard reference on the Dirac
operator from a mathematics point of view is the book of Thaller [32].

In the last twenty years, the Dirac operator has been used as an effective Hamiltonian to
describe graphene samples, although no relativistic effects are considered. Graphene is a 2-
dimensional material made of carbon atoms arranged according to a honeycomb structure.
The setting which we are mostly interested in this paper is the one of graphene nanoribbons,
which consist in an infinite band of graphene, bounded transversely. In [4], a model of Dirac
operator on a waveguide is studied.

The question of localization on graphene nanoribbons has already been considered by physi-
cists, although they generally consider a discrete tight-binding model instead of the Dirac
operator. In [30], some localization is obtained for a quasi-periodic perturbation. In [25]
and [15], different Anderson-like models are considered. In [33], several interesting phenom-
ena are highlighted. First, different types of disorder can lead to different localization regimes.
Second, in some cases there is localization for all nonzero energy but delocalization for energy
zero, for symmetry reasons. Third, the Lyapunov exponents can be grouped into pairs, here
again because of some symmetry of the system. We will be able to recover these properties
in our results.

From a mathematical point of view, a few papers have already considered random Dirac
operators. In [3], Barbaroux, Cornean and the second author proved localization at band
edges for a gapped Dirac Hamiltonian in any dimension. The latter continued with [34],
where he proved the Lipschitz regularity of the integrated density of states for the same
model, and [35], in which Anderson localization is proven at any energy for a one-dimensional
model. Discretized versions of the Dirac operator have been studied by Prado and de Oliveira,
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either for a Bernoulli random potential [26, 28] or for a potential with an absolutely continuous
distribution [27]. In [29], Sadel and Schulz-Baldes consider a quasi-one-dimensional random
Dirac operator with some symmetry property. They look at the Lyapunov exponents and
establish delocalization in some cases, but they do not prove localization.

In the present paper, we consider a semi-discretized model: the nanoribbon is represented
by a finite number of parallel infinite lines. This makes it possible to use techniques which
are specific to one-dimensional systems, based on transfer matrices and Lyapunov exponents.
These methods have already been used to prove localization for Schrödinger operators with
random potentials even with singular distributions, in [23] in the discrete case and in [8] in
the continuous case. A survey article on these methods has recently been published [10]. The
proof of the localization itself relies on the method called multiscale analysis, in its version
developped by Germinet and Klein in [16].

Our paper is organized as follows. In Section 1, we present the model as well as the main
tools used in the analysis, and we state our results. In Section 2, we prove a general criterion
ensuring localization for a quasi-one-dimensional random Dirac operators. In Section 3, we
prove that we can apply this criterion to some explicit examples. Finally, in Appendix A,
we study the properties of a group appearing in one of the cases considered in Section 3 and
in Appendix B, we prove an initial length-scale estimate for a quasi-one-dimensional random
Schrödinger operator, correcting a mistake of [8].

1.1. Quasi-one-dimensional operators of Dirac type. Given an integer N ≥ 1, the free
Dirac operator on N parallel straight lines is

(1.1) D
(N)
0 := J

d

dx
, with J :=

(
0 −IN
IN 0

)
and Dom(D

(N)
0 ) = H1(R)⊗ C2N .

It is easy to see that this operator is self-adjoint.
We add to this free operator a random potential. Let (Ω,A,P) a complete probability space

and ℓ > 0 be a disorder parameter: the smaller ℓ is, the ”more disordered” the system is. The

random potential (V
(n)
ω )n∈Z is a sequence of independent and identically distributed (i.i.d. for

short) random variables such that, for every n ∈ Z, the function x 7→ V
(n)
ω (x) takes values in

the Hermitian matrices, is supported in [0, ℓ] and is uniformly bounded in x, n and ω.
We consider the random family {Dω}ω∈Ω of quasi-one-dimensional Dirac operators defined

for every realization ω ∈ Ω by:

(1.2) Dω := D
(N)
0 +

∑
n∈Z

V (n)
ω (· − ℓn).

Under such conditions, for each ω ∈ Ω, the operator Dω is self-adjoint on the Sobolev space
H1(R)⊗ C2N and thus, for every ω ∈ Ω, the spectrum of Dω, denoted by σ (Dω), is included
in R.

The random potential is such that {Dω}ω∈Ω is a ℓZ-ergodic random family of operators. As
a consequence, there exists Σ ⊂ R such that, for P-almost every ω ∈ Ω, Σ = σ(Dω). There
also exist Σpp, Σac and Σsc, subsets of R, such that, for P-almost every ω ∈ Ω, Σpp = σpp(Dω),
Σac = σac(Dω) and Σsc = σsc(Dω), respectively the pure point, absolutely continuous and
singular continuous spectrum of Dω (see for example [21, Theorem 4.3]).
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We aim at proving that under conditions involving notions coming from the theory of
dynamical systems, the phenomenon of Anderson localization occurs for {Dω}ω∈Ω at all en-
ergies, except maybe those in a discrete set. There are several mathematical definitions to
translate the Anderson localization phenomenon for a general family of random operators.
Let {Hω}ω∈Ω be a family of self-adjoint random operator on a Hilbert space, which will be
the space H1(R)⊗ C2N in our model (1.2).

Definition 1.1 (AL). Let I be an interval of R. We say that the family {Hω}ω∈Ω of almost-
sure spectrum Σ has the property of Anderson localization in I when:

(1) Σ ∩ I = Σpp ∩ I ̸= ∅ and Σac ∩ I = Σsc ∩ I = ∅,
(2) the eigenfunctions associated with the eigenvalues in Σ∩ I decay exponentially to 0 at

infinity.

Note that if {Hω}ω∈Ω exhibits Anderson localization in I, P-almost surely the point spec-
trum of Hω is dense in Σ∩I. The definition of Anderson localization is a stationary definition,
involving only the HamiltonianHω and not the associated one-parameter group. The following
definition takes into account the dynamics in time of the wave packets.

Definition 1.2 (DL). Let I be an interval of R. We say that the family {Hω}ω∈Ω is dynami-
cally localized in I, when

(1) Σ ∩ I ̸= ∅,
(2) for every compact interval I0 ⊂ I, every ψ ∈ L2(R)⊗ C2N with compact support and

every p ≥ 0,

(1.3) E
(
sup
t∈R

∥∥∥(1 + | · |2)
p
2 e−itHω1I0(Hω)ψ

∥∥∥2
L2(R)

)
< +∞

where 1I0(Hω) denotes the spectral projector on I0 associated with Hω.

The definition 1.2 is dynamical in nature and follows the evolution of wave packets over time.
It tells us that the solutions of the Schrödinger equation are localized in space in the vicinity
of their initial position and this, uniformly over time. This reflects the absence of quantum
transport. More precisely, let |x| be the position operator, i.e., the multiplication operator by

x 7→ (1 + ||x||22)
1
2 on L2(R)⊗ C2N . For any state ψ ∈ L2(R)⊗ C2N , if we denote ψI(t) as the

evolution of the spectral projection of ψ at time t, then the moments of the position operator
are bounded in t:

∃Cψ,I > 0, ∀p ≥ 0, ∀t ∈ R, ⟨ψI(t), |x|pψI(t)⟩ ≤ Cψ,I .

On the contrary, we will say that there is quantum transport in an interval I ′ when

∃α > 0, ∃p ≥ 0, ∀t ∈ R, ⟨ψI′(t), |x|pψI′(t)⟩ ≥ |t|α.
Let us point out that the use of multiscale analysis as done in this paper will imply both An-
derson localization and dynamical localization [14]. Note that dynamical localization implies
absence of continuous spectrum but does not imply in general, the exponential decay of the
eigenfunctions as in (AL). It is also possible to define even stronger notions of localization,
all of them being implied by the use of multiscale analysis. For an exhaustive presentation of
these notions we refer to the third part of [22].

Before stating our main result, a localization criterion for quasi-one-dimensional operators
of Dirac type, we need to introduce the Lyapunov exponents and the Furstenberg group of
such operators.



4 H. BOUMAZA AND S. ZALCZER

1.2. Transfer matrices, Lyapunov exponents and the Furstenberg group. In order
to determine the almost-sure spectrum of {Dω}ω∈Ω and to study the asymptotic behaviour of
the corresponding generalized eigenfunctions, one considers the equation for the generalized
eigenvalues, for every ω ∈ Ω,

(1.4) Dωu = Eu, where E ∈ C and u =
(
u↑
u↓

)
: R → C2N .

The notation u =
(
u↑
u↓

)
refers to the decomposition spin up / spin down of the solution of the

Dirac equation.
Equation (1.4) is a linear differential system of order 1. We introduce, for E ∈ C and every

x, y ∈ R, the transfer matrix T yx (E) of Dω from x to y which maps a solution (u↑, u↓) at time
x to the same solution at time y. It is defined by the relation

(1.5)

(
u↑(y)
u↓(y)

)
= T yx (E)

(
u↑(x)
u↓(x)

)
and in particular, T xx (E) = I2N for every x ∈ R. The transfer matrices are elements of the
complex symplectic group

(1.6) Sp∗N(C) = {M ∈ M2N(C) | M∗JM = J}

with J =
(

0 −IN
IN 0

)
. Indeed, for E ∈ C and x ∈ R fixed y 7→ T yx (E) satisfies Dω(T

y
x (E)) =

E(T yx (E)) on R. It implies
(
d
dy
T yx (E)

)∗
JT yx (E)+(T yx (E))

∗J d
dy
T yx (E) = 0. Hence, the function

y 7→ (T yx (E))
∗JT yx (E) is constant on R. Taking the value at y = x one obtains J and

(T yx (E))
∗JT yx (E) = J for every y ∈ R.

Remark 1.3. Note that despite its name, Sp∗N(C) is a real Lie group since it is a C∞ manifold
and not a holomorphic manifold because of the presence of a conjugation in its definition.

For E ∈ C fixed and two couples (x, y) and (x′, y′) in R2, the random matrices T yx (E)

and T y
′

x′ (E) are not necessarily independent. In order to apply the results of the theory of
products of i.i.d. random matrices, we also introduce, for every n ∈ Z, the transfer matrices

Tω(n)(E) = T
ℓ(n+1)
ℓn (E) from ℓn to ℓ(n + 1). The transfer matrix Tω(n)(E) is therefore defined

by the relation

(1.7)

(
u↑(ℓ(n+ 1))
u↓(ℓ(n+ 1))

)
= Tω(n)(E)

(
u↑(ℓn)
u↓(ℓn)

)
for all n ∈ Z.
The sequence (Tω(n)(E))n∈Z is a sequence of i.i.d. matrices because of the i.i.d. character of

the V
(n)
ω ’s and the disjointness of their supports for different values of n.

By iterating the relation (1.7) we get the asymptotic behaviour of
(
u↑
u↓

)
. More precisely, we

introduce, for E ∈ C fixed, the cocycle ΦE : Z× Ω → Sp∗N(C) defined by : ∀n ∈ Z, ∀ω ∈ Ω,

ΦE(n, ω) =

 Tω(n−1)(E) · · ·Tω(0)(E) if n > 0
IN if n = 0
(Tω(n)(E))−1 · · · (Tω(−1)(E))−1 if n < 0

To get the exponential asymptotic behaviour of
(
u↑
u↓

)
, we define the exponential growth (or

decay) exponents of the product of random matrices Tω(n−1)(E) · · ·Tω(0)(E).
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Definition 1.4. Let E ∈ C. The Lyapunov exponents γ±1 (E), . . . , γ
±
2N(E) associated with the

sequence (Tω(n)(E))n∈Z are defined inductively by

(1.8)

p∑
i=1

γ±i (E) = lim
n→±∞

1

|n|
E(log || ∧p ΦE(n, ω)||)

for every p ∈ {1, . . . , 2N}. Here, ∧pM denotes the p-th exterior power of the matrixM , acting
on the p-th exterior power of C2N .

Since the transfer matrices all lie in Sp∗N(C), for every i ∈ {1, . . . , 2N}, γ+i (E) = γ−i (E).
Indeed, for each M ∈ Sp∗N(C), ||M || = ||M−1||.

One can link the Lyapunov exponents to the singulars values of the cocycle ΦE(n, ω).

Proposition 1.5 ([5],Proposition A.III.5.6). If s1(ΦE(n, ω)) ≥ . . . ≥ s2N(ΦE(n, ω)) > 0 are
the singular values of ΦE(n, ω), then, for P-almost every ω ∈ Ω,

∀p ∈ {1, . . . , 2N}, γ±p (E) = lim
n→±∞

1

|n|
E(log sp(ΦE(n, ω)) = lim

n→±∞

1

|n|
log sp(ΦE(n, ω)).

This implies in particular that γ1(E) ≥ . . . ≥ γ2N(E). Moreover, the symplecticity of the
transfer matrices also implies the following symmetry property (cf. [5, Proposition A.IV.3.2])

∀i ∈ {1, . . . , N}, γ2N−i+1(E) = −γi(E).

To study the properties of the Lyapunov exponents, we introduce the group which contains
all the different products of transfer matrices, the so-called Furstenberg group.

Definition 1.6. For every E ∈ C, let µE be the common distribution of the random matrices
Tω(n)(E). We define the Furstenberg group of {Dω}ω∈Ω at E as the closed group generated by
the support of µE,

G(E) = < suppµE >,

where the closure is taken for the usual topology in M2N(C).

We already remark that for all E ∈ C, G(E) is a subgroup of Sp∗N(C).

1.3. Localization criterion for quasi-one-dimensional operators of Dirac type. The
formalism of transfer matrices, Lyapunov exponents and the Furstenberg group enables to
state a criterion of dynamical localization for quasi-one-dimensional operators of Dirac type.

Before that, we introduce several definitions in order to fix the framework in which we are
able to obtain such a criterion of dynamical localization.

We introduce two properties concerning the Furstenberg group. Let p ∈ {1, . . . , N}. The
first property is called p-contractivity.

Definition 1.7. A subset T of GL2N(C) is called p-contracting if there exists a sequence (Mn)
of elements of T such that ∥ΛpMn∥−1ΛpMn converges to a rank-one matrix.

Let L ≥ 1 an integer. For l ∈ {1, . . . , L} we denote indifferently by bl a bilinear form on
C2N or its matrix in the canonical basis of C2N . We also denote by b0, or most simply by J ,
the symplectic bilinear form on C2N associated with the matrix J =

(
0 −IN
IN 0

)
.

For any p ∈ {1, . . . , N}, let (J, b1, . . . , bL)-Lp be the vector subspace of ΛpC2N whose ele-
ments are p-decomposable vectors u1 ∧ · · · ∧ up such that

∀i, j ∈ {1, . . . , p}, ∀l ∈ {0, . . . , L}, bl(ui, uj) = 0
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i.e, the family (u1, . . . , up) is orthogonal for all the bilinear forms bl (and in particular each ui
is orthogonal to itself for all bl).

The second property is called the (J, b1, . . . , bL)-Lp-strong irreducibility. It generalizes the
notion of Lp-strong irreducibility as defined in [5] in the setting of the real symplectic group.

Definition 1.8. We say that a subset T of GL2N(C) is (J, b1, . . . , bL)-Lp-strongly irreducible if
there does not exist any W , finite union of proper vector subspaces of (J, b1, . . . , bL)-Lp, such
that (ΛpM)(W ) = W for all M in T .

We now state two localization criteria for {Dω}ω∈Ω in some particular cases of the group
G. The first one states for the group G = Sp∗N(C).

Theorem 1.9. We fix a compact interval I ⊂ R. We assume that there exists an open interval
Ĩ containing I and such that for every E ∈ Ĩ:

(1) the Furstenberg group G(E) is included in Sp∗N(C) ;
(2) for every p ∈ {1, . . . , N}, G(E) is p-contracting and J-Lp-strongly irreducible.

Then {Dω}ω∈Ω exhibits dynamical localization in Σ ∩ I.

In order to state a second theorem, we introduce the matrix

(1.9) S :=

(
K 0
0 K

)
∈ M2N(R),

where K is the diagonal matrix with (−1)i+1 in position i. We define the group

(1.10) SpON(R) :=
{
M ∈ M2N(R), tMJM = J, tMSM = S

}
.

The second localization criterion states for the group G = SpON(R).

Theorem 1.10. Assume that N is even. We fix a compact interval I ⊂ R. We assume that
there exists an open interval Ĩ containing I and such that for every E ∈ Ĩ:

(1) the Furstenberg group G(E) is included in SpON(R) ;
(2) for every 2p ∈ {1, . . . , N}, G(E) is 2p-contracting and (J, S)-L2p-strongly irreducible.

Then {Dω}ω∈Ω exhibits dynamical localization in Σ ∩ I.

Theorems 1.9 and 1.10 are comparable to [8, Theorem 1] which is a criterion of localization
for quasi-one-dimensional operators of Schrödinger type. This former result deals only with
the case of G = SpN(R).

The proofs of Theorems 1.9 and 1.10 involve several steps as detailed in Section 2:

(1) The assumptions of the two theorems lead to an integral formula for the Lyapunov
exponents which implies their Hölder regularity.

(2) We then deduce the same Hölder regularity for the integrated density of states, using
a Thouless formula.

(3) From this regularity of the integrated density of states, we get a weakWegner’s estimate
adapted to Bernoulli randomness.

(4) Finally we apply a multiscale analysis scheme which involves the proof of an Initial
Length Scale Estimate.

Actually, we will see in Section 2 that most of these steps except the proof of the Initial
Length Scale Estimate in the last one are true with more general hypothesis. Let us state
them now.
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Assumption (L(N)). We fix a compact interval I ⊂ R. We assume that there exists LN a
vector subspace of ΛNC2N and an open interval Ĩ containing I such that, for all E ∈ Ĩ:

(L
(N)
1 ) for all g ∈ G(E), (ΛNg)(LN) ⊂ LN ;

(L
(N)
2 ) for all x ̸= 0 in LN ,

lim
n→∞

1

n
E(log ∥ΛNΦE(n, ·)x∥) =

N∑
i=1

γi(E);

(L
(N)
3 ) there exists a unique probability measure νN,E on P(LN) which is µE-invariant, such

that

γ1(E) + · · ·+ γN(E) =

∫
G(E)×P(LN )

log
∥(ΛNg)x∥

∥x∥
dµE(g)dνN,E(x̄);

(L
(N)
4 ) γ1(E) + · · ·+ γN(E) > 0.

The properties ofN -contractivity and J or (J, S)-LN -strong irreducibility imply Assumption
(L(N)). It is a consequence of [5, Proposition A.IV.3.4] in the case of Sp∗N(C) since one has
the identification between Sp∗N(C) and Sp2N(R) using the following application which split the
real and imaginery parts of the matrices in M2N(C):

π :
M2N(C) → M4N(R)
A+ iB 7→

(
A −B
B A

)
.

In the case of SpON(R), it is proven in Proposition 2.5.
In the following Section, we will present some explicit cases of the model {Dω}ω∈Ω for which

we are able to verify the assumptions of Theorem 1.9 or Theorem 1.10.

1.4. Application of the localization criterion to a class of splitting potentials. In
this Section, we introduce a particular case of quasi-one-dimensional operators of Dirac type
whose potentials split in a sum of two tensorized Pauli matrices. Recall the usual notations
for Pauli matrices :

σ0 := I2, σ1 := ( 0 1
1 0 ) , σ2 := ( 0 −i

i 0 ) , σ3 := ( 1 0
0 −1 ) .

Consider the particular family {D(N)
ω,ℓ }ω∈Ω where the potential split into a periodic part and

a random part :

(1.11) D
(N)
ω,ℓ := D

(N)
0 + Vper + Vω.

The potential Vper is a ℓ-periodic function, linear combination of tensorized Pauli matrices
of the form

(1.12) Vper := (α0σ0 + α1σ1 + α2σ2 + α3σ3)⊗ V̂per,

where α0, . . . , α3 are real numbers and V̂per is a ℓ-periodic function with value in the space of
the N -by-N real symmetric matrices denoted by SN(R) . Note that :

σ0 ⊗ V := ( V 0
0 V ) ∈ M2N(C)

and the same for the other tensor products.
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We construct the random potential Vω in the following way. Let (Ω̃1, Ã1, P̃1), . . . , (Ω̃N , ÃN , P̃N)
be N complete probability spaces. We take

(Ω,A,P) =

(
"
n∈Z

Ω̃1 × · · · × Ω̃N ,
⊗
n∈Z

Ã1 ⊗ · · · ⊗ ÃN ,
⊗
n∈Z

P̃1 ⊗ · · · ⊗ P̃N

)
.

For i ∈ {1, . . . , N}, the sequences (ω
(n)
i )n∈Z are independent of each other and each one is a

sequence of i.i.d. real-valued random variables on (Ω̃i, Ãi, P̃i). Let νi be the common law of

the ω
(n)
i ’s. We assume that {0, 1} ⊂ supp νi and supp νi is bounded. In particular, the ω

(n)
i ’s

can be Bernoulli random variables which is the most difficult case of randomness to deal with
since it will imply the smallest possible Furstenberg group. We also set, for every n ∈ Z,
ω(n) = (ω

(n)
1 , . . . , ω

(n)
N ), which is a random variable on (Ω̃1×· · ·× Ω̃N , Ã1⊗· · ·⊗ÃN , P̃1⊗· · ·⊗ P̃N )

of law ν = ν1 ⊗ · · · ⊗ νN . For each n in Z, we introduce the random function

V̂ω(n) :=

 ω
(n)
1 v1(·−ℓn) 0

...
0 ω

(n)
N vN (·−ℓn)

 ,

where the vi are measurable functions from [0, ℓ) to R. We take

(1.13) Vω = (β0σ0 + β1σ1 + β2σ2 + β3σ3)⊗
∑
n∈Z

V̂ω(n)

where β0, . . . , β3 are real numbers.
In order to compute the Furstenberg group associated with {Dω}ω∈Ω, we will express the

transfer matrices as matrix exponentials (cf. Section 3.1). This is possible only when the
potentials are constant on each interval (nℓ, (n + 1)ℓ). For this reason, we only consider the

case where V̂per is a constant function and v1 = · · · = vN = 1[0,ℓ]. By a small abuse of notation,

we will denote by V̂per (resp. V̂ω(n)) the unique value of the function V̂per (resp. V̂ω(n)).
Moreover, we will restrict ourselves to particular combinations of non-vanishing αi’s and

βj’s. For simplicity we will only consider real-valued potentials Vper and Vω, which corresponds
to the absence of magnetic field and to the following assumption.

Assumption. We assume that α2 = β2 = 0.

Hence we only consider potentials which are on σ0, σ1 and σ3 which implies in particular
that the corresponding Furstenberg groups will be included in SpN(R) instead of Sp∗N(C).
Next, we consider only splitting potentials with one deterministic term and one random term
which allows to reduce the number of cases in which we should compute the Furstenberg group
from 43 to 9.

Assumption. We assume that one and only one among α0, α1 and α3 is different from zero
and one and only one among β0, β1 and β3 is different from zero.

Since we have to choose one random potential and one deterministic one, there are a priori
nine possibilities. Nevertheless, it is possible to reduce this number to five in the following
way. If one sets for (V0, V1, V3) ∈ (MN(R))3,

D(V0, V1, V3) = D
(N)
0 + σ0 ⊗ V0 + σ1 ⊗ V1 + σ3 ⊗ V3

acting on H1(R)⊗ R2, then

∀(V0, V1, V3) ∈ (MN(R))3, D(V0, V1, V3) = P (−D(−V0,−V3,−V1))P ∗
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with P the unitary matrix defined by

(1.14) P =
1√
2

(
IN IN
IN −IN

)
.

Hence, for any (V0, V1, V3) ∈ (MN(R))3, the operatorsD(V0, V1, V3) and −D(−V0,−V3,−V1)
have the same spectrum and also the same pure point, absolutely continuous and singular
continuous spectra. These two operators have transfer matrices which are unitarily equivalent
(through P defined at (1.14)), hence their Lyapunov exponents are equal. They also have
Furstenberg groups which are unitarily equivalent (again through P ) and there is localization
for D(V0, V1, V3) if and only if there is localization for −D(−V0,−V3,−V1). As a consequence,
there are five cases, as explained in the following table.

Vω \ Vper σ0 σ1 σ3
σ0 1 5 5
σ1 3 2 4
σ3 3 4 2

Table 1. The five possible cases

For each of these cases, we prove either localization or delocalization.

Theorem 1.11. Denote by V the unique value of the function V̂per. For almost-every real
symmetric matrix V ∈ SN(R) , there exist a finite set SV ⊂ R and ℓC := ℓC(N, V ) > 0
such that, for every ℓ ∈ (0, ℓC), there exists a compact interval I(N, V, ℓ) ⊂ R such that if
I ⊂ I(N, V, ℓ) \ SV is an open interval with Σ ∩ I ̸= ∅, then :

(i) in case 1, Σ ∩ I is purely a.c.;

(ii) in cases 2, 3 and 4, {D(N)
ω,ℓ }ω∈Ω exhibits Anderson and dynamical localization in Σ∩ I;

(iii) in case 5, {D(N)
ω,ℓ }ω∈Ω exhibits Anderson and dynamical localization in Σ ∩ I if N is

even and there is presence of a.c. spectrum of multiplicity 2 if N is odd.

Remark that from its construction given at Section 3.1, the interval I(N, V, ℓ) tends to the
whole real line R when ℓ tends to 0.
The localization results come from applications of our localization criteria in Theorems 1.9

and 1.10. The presence of a.c. spectrum in case 1 and in case 5 when N is odd is a consequence
of the following theorem of Sadel and Schulz-Baldes.

Theorem 1.12 ([29], Theorem 4). Let {Dω}ω∈Ω be as in (1.2). Then, for k ∈ {1, . . . , N},
the set

Sk := {E ∈ R, exactly 2k Lyapunov exponents vanish at E}
is an essential support of the almost-sure absolutely continuous spectrum of multiplicity 2k.

This result of Kotani’s theory for quasi-one-dimensional operators of Dirac type has to be
seen as a delocalization result for {Dω}ω∈Ω.
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2. Proof of the localization criteria

The proofs of Theorem 1.9 and Theorem 1.10 consist of several steps, following the strategy
already used in [23, 13, 7, 8].

The first step is to prove that, under the hypotheses of the theorems, Assumption (L(N))
or (L(N−1)) is satisfied depending on the parity of N . As we mentioned in Section 2, this is
already known for a group which is J-Lp-strongly irreducible. We provide a proof in the case
of a (J, S)-Lp-strongly irreducible group.

Then, we prove that, under Assumption (L(N)) or (L(N−1)) , the sum of all nonnegative
Lyapunov exponents is Hölder continuous.

Theorem 2.1. Let I be a compact interval on which Assumption (L(N)) holds or on which
Assumption (L(N−1)) holds and γN is identically 0. Then, the sum of the Lyapunov exponents
associated with {Dω}ω∈Ω is Hölder continuous on I, i.e. there exist two real numbers α > 0
and C > 0 such that

(2.1) ∀E,E ′ ∈ I,

∣∣∣∣∣
N∑
p=1

(γp(E)− γp(E
′))

∣∣∣∣∣ ≤ C|E − E ′|α.

We prove this first result in Section 2.2. Note that (2.1) holds not only on intervals where

the hypotheses of Theorem 2.1 are satisfied but also trivially on intervals where
∑N

p=1 γp is
identically 0. A singularity can only occur at the boundary between such intervals.

As in [8, 35], the next step towards localization is to prove Hölder regularity of the integrated
density of states. We get this regularity from the one of the Lyapunov exponents. We define
the density of states in the same way as in [35].

Given x ∈ R and L > 0, we define the operator D
(x,L)
ω , called the restricted operator with

Dirichlet boundary condition to the interval ΛL(x) := (x− ℓL, x+ ℓL), as the operator acting
as Dω on the domain

Dom
(
D(x,L)
ω

)
:=
{
ψ =

(
ψ↑

ψ↓

)
∈ H1

(
ΛL(x),R2N

)
such that ψ↑(x− ℓL) = ψ↑(x+ ℓL) = 0

}
.

We will use the notation D
(L)
ω for D

(0,L)
ω .

We define the density of states in the following way.

Definition 2.2. For all compactly supported continuous functions ϕ, the density of states is

ν(ϕ) = lim
L→∞

1

2ℓL
E(tr(ϕ(D(L)

ω ))).

The well-definedness of this limit and its independence from ω, consequence of the ergodic
theorem, are proven in [35, Appendix B] in the case N = 1. The generalization to bigger N
is straightforward.

The function ν is a positive linear functional on the space of compactly supported continuous
functions. By the Riesz-Markov theorem, it can be seen as an integral with respect to some
Borel measure on R, which will be denoted by ν too. The integrated density of states is
defined on R by

(2.2) F (E) :=

{
−ν((E, 0]) if E < 0
ν((0, E]) if E ≥ 0

We prove that, when the sum of the Lyapunov exponents is Hölder continous, the integrated
density of states is Hölder continuous as well:
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Theorem 2.3. Let I be a compact interval and Ĩ an open interval containing I. If the sum∑N
i=p γp is Hölder continuous on Ĩ, then there exist C ′ > 0 and α′ > 0 such that

(2.3) ∀E,E ′ ∈ I, |F (E)− F (E ′)| ≤ C ′|E − E ′|α′
.

The proof of Theorem 2.3 is a combination of arguments of [35], [7] and [29]. We give the
main steps of it in Section 2.3.

The previous results will enable us to prove Anderson and dynamical localization for random
Dirac operators, under the hypotheses of Theorem 1.9 or 1.10. We use a method called
bootstrap multiscale analysis, which has been developed by Germinet and Klein in [16] for a
large class of operators. We present it in detail in Section 2.4.1. In Sections 2.4.2 and 2.4.3,
we explain how we get the conditions needed for the multiscale analysis from what we have
proved before.

2.1. Lyapunov exponents associated with subgroups of SpON(R). We want to prove
here that if a group G is 2p-contracting and (J, S)-L2p-strongly irreducible for every 2p in
{1, . . . , N}, then for all sequence of i.i.d. random matrices in G,

(1) if N is even, then (L(N) holds and the N -th Lyapunov exponent associated with the
sequence is positive;

(2) if N is odd, then (L(N−1)) holds and the N -th Lyapunov exponent associated with the
sequence is zero.

We will use the properties of SpON(R) proven in Appendix A. First, we prove that when G is
included in SpON(R), all Lyapunov exponents are twice degenerate.

Proposition 2.4. Let (Aωn)n∈Z be an i.i.d. sequence of matrices in SpON(R) and (γ1, . . . , γ2N)
the associated family of Lyapunov exponents. Then, for all p ≤ N , γ2p = γ2p−1.

Proof. We see from Proposition A.1 (4) that the singular values of a matrix in SpON(R)
always have multiplicity at least 2. This together with [5, Proposition A.III.5.6] implies the
degeneracy of the Lyapunov exponents. □

We denote, for even N , N =: 2d and, for odd N , N =: 2d + 1. The space (J, S)-Lp,
introduced in Section 2, can be described in the following way. For p ≤ d, we define

(2.4) f1 :=
1

2p
(e1 + e2) ∧ · · · ∧ (e2p−1 + e2p) ∧ (eN+1 − eN+2) ∧ · · · ∧ (eN+2p−1 − eN+2p)

and

(2.5) (J, S)-L2p = span{Λ2pMf1 |M ∈ SpON(R)}.

We see in particular that (J, S)-L2d is stable under the action of Λ2dg: (L
(2d)
1 ) is satisfied.

We prove (L
(2d)
2 )–(L

(2d)
4 ) with the following result.

Proposition 2.5. Let (Aωn) be a sequence of i.i.d. random matrices in SpON(R), of common
law µ, and p an integer between 1 and d. We denote by Gµ the Furstenberg group associated
with the sequence (Aωn). We assume that it is 2p-contracting and (J, S)-L2p-strongly irreducible
and that E(log ∥Aω0 ∥) <∞. Then,

(1) for all x ̸= 0 in L2p,

(2.6) lim
n→∞

1

n
log ∥Λ2p(Aωn−1 . . . A

ω
0 )x∥ =

2p∑
i=1

γi almost surely;
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(2) there exists a unique probability measure ν2p on P(L2p) which is µ-invariant, such that

(2.7) γ1 + · · ·+ γ2p =

∫
SpON(R)×P(L2p)

log
∥(Λ2pg)x∥

∥x∥
dµ(g)dν2p(x̄);

(3)

(2.8) γ2p > γ2p+1.

Points (1) and (2) of Proposition 2.5 for p = d directly give (L
(2d)
2 ) and (L

(2d)
3 ). Moreover,

Point (3) implies that γ2d > γ2d+1. If N = 2d is even, we have γN+1 = −γN and if N = 2d+1
is odd, γN = 0 by Proposition 2.4. In both cases this implies that γ2d > 0 and a fortiori∑2d

p=1 γp > 0 which is (L
(2d)
4 ).

Proof of Proposition 2.5. Let k be the dimension of (J, S)-L2p. Given an orthonormal basis

(f1, . . . , fk) of (J, S)-L2p (f1 being defined by (2.4)), for each M ∈ SpON(R), we denote by M̂
the matrix of GLk(R) such that

(2.9) M̂ij = ⟨fi,Λ2pMfj⟩.

Let us now denote by Ĝµ the subgroup of GLk(R) which is generated by all (Âω0 ). We want

to prove that Ĝµ satisfies the hypotheses of theorems given in Chapter A.III of [5], which will

give us information on the two top Lyapunov exponents associated with the sequence (Âωn).
In a second time, we will establish a relation between the Lyapunov exponents associated

with the sequence (Âωn) of matrices of GLk(R) and partial sums of the Lyapunov exponents
associated with the sequence (Aωn) of matrices of SpON(R).
Since Gµ is (J, S)-L2p-strongly irreducible, Ĝµ is strongly irreducible, as a subset of GLk(R).

Similarly, as Gµ is 2p-contracting, Ĝµ is contracting. We can thus apply [5, Theorem A.III.6.1]
and find, denoting by γ̂1 and γ̂2 the two highest Lyapunov exponents associated with the

sequence (Âωn), that

(2.10) γ̂1 > γ̂2.

Moreover, Corollary A.III.3.4 of [5] gives that, for all x ̸= 0 in Rk,

(2.11) lim
n→∞

1

n
log ∥(Âωn−1 . . . Âω0 )x∥ = γ̂1 almost surely

and, together with Theorem A.III.4.3 of the same [5], that there exists a unique probability
measure ν̂ on P(Rk) which is µ-invariant, such that

(2.12) γ̂1 =

∫
SpON(R)×P(Rk)

log
∥ĝx∥
∥x∥

dµ(g)dν̂(x̄).

We now link the two Lyapunov exponents γ̂1 and γ̂2 with the Lyapunov exponents associated

with the sequence (Aωn). In view of Definition (1.8), we have to estimate ∥M̂∥ and ∥Λ2M̂∥ for

matrices M̂ ∈ Ĝµ.
For such a matrix, we consider t1 ≥ · · · ≥ tp the values given in the decomposition of

Proposition A.1 (v). Let us prove that ∥M̂∥ = ∥Λ2pM∥ = e2t1 . . . e2tp : this will imply that

γ̂1 =
∑2p

i=1 γi. Since (J, S)-L2p is a subspace of Λ2pR2N , we have that ∥M̂∥ ≤ ∥Λ2pM∥. To
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prove the other inequality, recall that f1, defined in (2.4), is in (J, S)-L2p. As a consequence,
we have, using the notation of Proposition A.1 (5),

∥Λ2pM∥ = e2t1 . . . e2tp = ∥Λ2pRf1∥ = ∥R̂f1∥ ≤ ∥R̂∥ ≤ ∥Λ2pR∥ = ∥Λ2pM∥.

We used [5, Proposition A.III.5.3] for the first equality and the fact that (J, S)-L2p is a subspace

of Λ2pR2N for the last inequality. This implies that ∥Λ2pM∥ = ∥R̂∥. But, since the matrices

K and U are orthogonal and in SpON(R), ∥R̂∥ = ∥K̂R̂Û∥ = ∥M̂∥. As a consequence,

(2.13) γ̂1 =

2p∑
i=1

γi.

This last equality together with (2.11) implies (2.6). Together with (2.12), (2.13) implies (2.7).

In order to prove (2.8), we now estimate ∥Λ2M̂∥. We first notice that, since (J, S)-L2p is a

vector subspace of Λ2pR2N , ∥Λ2[Λ2pM ]∥ ≥ ∥Λ2M̂∥.
We begin with the case p < d. We choose

f2 :=
1

2p
(e1 + e2) ∧ · · · ∧ (e2p−3 + e2p−2) ∧ (e2p+1 + e2p+2)(2.14)

∧ (eN+1 − eN+2) ∧ · · · ∧ (eN+2p−3 − eN+2p−2) ∧ (eN+2p+1 − eN+2p+2).

Let

(2.15) M0 :=



I2p−2 (
0 I2
I2 0

)
IN−2p−2

0

0

I2p−2 (
0 I2
I2 0

)
IN−2p−2


.

Then M0 ∈ SpON(R) and ∧2pM0f1 = f2, hence f2 ∈ (J, S)-L2p and it is easy to see that
f1 and f2 are orthogonal. Consequently, we can complete (f1, f2) into an orthonormal basis

(f1, . . . , fk) of GLk(R) and use it in the definition of M̂ .
We find that

(2.16) ∥Λ2M̂∥ = ∥Λ2R̂∥ ≥ ∥Λ2R̂(f1 ∧ f2)∥ = ∥M̂∥e2t1 . . . e2tp−1e2tp+1 .

In terms of Lyapunov exponents, this implies that γ̂1 + γ̂2 ≥ γ̂1 +
∑2(p−1)

i=1 γi + 2γ2p+1. This
together with (2.10) and (2.13) implies that γ2p > γ2p+1.
When p = d, we prove that γ2d > 0. This implies (2.8) since, when N is even, γ2d+1 =

γN+1 ≤ 0 and, when N is odd, γ2d+1 = γN = 0 as we have already seen. We define

f2 :=
1

2d
(e1 + e2) ∧ · · · ∧ (e2d−3 + e2d−2) ∧ (e2d−1 − e2d)(2.17)

∧ (eN+1 − eN+2) ∧ · · · ∧ (eN+2d−3 − eN+2d−2) ∧ (eN+2d−1 + eN+2d).
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If we introduce
(2.18)

M ′
0 :=


IN−1

−1
0

0
IN−1

−1

 (even N) or M ′
0 :=


IN−2

−1
1

0

0
IN−2

−1
1

 (odd N)

then M ′
0 ∈ SpON(R) and f2 = Λ2df1 so f2 ∈ (J, S)-L2p with f2 orthogonal to f1. As a

consequence,

(2.19) ∥Λ2M̂∥ = ∥Λ2R̂∥ ≥ ∥Λ2R̂(f1 ∧ f2)∥ = ∥M̂∥e2t1 . . . e2td−1 .

In terms of Lyapunov exponents, this means that γ̂2 ≥
∑2(d−1)

i=1 γi, which, together with (2.10)
and (2.13), implies that γ2d > 0. □

2.2. Regularity of the Lyapunov exponents. The goal of this section is to prove The-
orem 2.1. It is a consequence of the following result. First, we note that the definitions of
Lyapunov exponents and Furstenberg group can be extended to the case of a sequence of i.i.d.
random matrices in GL2N(C). Hence one can state hypothesis (L(N)) not only for transfer
matrices associated with an ergodic family of operators.

Theorem 2.6. We fix a compact interval I ⊂ R. Let (Aωn(E))n∈Z be a sequence of i.i.d.
random matrices in Sp∗N(C) depending on a parameter E in I. For each E, let µE be the
common distribution of the Aωn(E). We assume that, for all E ∈ I, E(log ∥Aω0 (E)∥) < ∞.
We also assume that Assumption (L(N)) holds on I, or that Assumption (L(N−1)) holds and
γN is identically 0 on I. Moreover, we assume that,

(1) there exists C1 > 0 independent of E, ω and n such that, for every E ∈ I,

(2.20) ∥ΛNAωn(E)∥2 ≤ C1;

(2) there exists C2 > 0 independent of E, ω and n such that for every E,E ′ ∈ I

(2.21) ∥ΛNAωn(E)− ΛNAωn(E
′)∥2 ≤ C2|E − E ′|.

Then, there exist C > 0 and α > 0 such that

(2.22) ∀E,E ′ ∈ I, |γ1(E) + · · ·+ γN(E)− γ1(E
′)− · · · − γN(E

′)| ≤ C|E − E ′|α.

This theorem is basically a restatement of Theorem 1 of [7]. A detailed proof can be
found in [6, Section 6.3]. One difference is that we only prove Hölder regularity for the sum
γ1 + · · · + γN , while the result of [7] provides regularity for each of the γp’s. For this reason,
it needs hypotheses for all p while we need them only for p = N . Then, our hypotheses (1)
and (2) correspond to hypotheses (ii) and (iii) in [7]. His hypothesis (i) is the fact that the
Furstenberg group is p-contracting and J-Lp-strongly irreducible for all p in {1, . . . , N}. If we
carefully look at the proof of the theorem of [7], we see that the only reason for which this
is needed is because it implies Assumption (L(N)) on I. As a consequence, we can use this
hypothesis instead of the one of p-contractivity and J-Lp-strong irreducibilty for all p, which
makes it possible to apply the theorem in a more general setting.

We want to apply Theorem 2.6 to the sequence (Aωn(E))n∈Z = (Tω(n)(E))n∈Z, the transfer
matrices as defined in (1.7), to get Theorem 2.1. Therefore, we have to prove that this sequence
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satisfies the hypotheses of Theorem 2.6. We already assumed that Assumption (L(N)) holds
on I, or that Assumption (L(N−1)) holds and γN is identically 0 on I in the hypotheses of
Theorem 2.1. The boundedness of the potential implies that E(log ∥Tω(0)(E)∥) <∞ for all E.
Finally, we are left with proving that the estimates (2.20) and (2.21) are always satisfied for
the sequence (Tω(n)(E))n∈Z. We begin with two lemmas which provides estimates on solutions
of Dirac equations. Both have been proven in the case N = 1 in [35] and can easily be
generalized to N ≥ 1. As a consequence, we give only sketches of the proofs.

Lemma 2.7. Let ψ =

(
ψ↑

ψ↓

)
be a solution to D

(N)
0 ψ + V ψ = 0, where V is a L1

loc function

with values in 2N-by-2N matrices. Then, for all x, y ∈ R,

(2.23) |ψ↑(x)|2 + |ψ↓(x)|2 ≤ (|ψ↑(y)|2 + |ψ↓(y)|2) exp

(
2

∫ max(x,y)

min(x,y)

|V (t)|dt

)
.

Proof. This is a straightforward adaptation of [35, Lemma 4.3]. The key argument is Grönwall’s
lemma applied to the function |ψ↑(x)|2 + |ψ↓(x)|2. □

Lemma 2.8. Let ψ1 =

(
ψ↑1
ψ↓1

)
and ψ2 =

(
ψ↑2
ψ↓2

)
be solutions to D

(N)
0 ψi + Viψi = 0, where, for

i = 1, 2, Vi is a L1
loc function with values in 2N-by-2N matrices, and such that, for some y

in R, ψ1(y) = ψ2(y). Then, we have, for all x in R,
(2.24)

|ψ1(x)− ψ2(x)| ≤ |ψ2(y)| exp

(∫ max(y,x)

min(y,x)

|V1(t)|+ |V2(t)|dt

)
×
∫ max(y,x)

min(y,x)

|V1(s)− V2(s)|ds.

Proof. The proof is similar to the one of Lemma 4.4 in [35]. It relies once again on Grönwall’s
lemma, applied here to the function ψ1 − ψ2. □

We get (2.20) and (2.21) applying the arguments of [6, Section 6.2.2.1]. We prove that
∥Aωn(E)∥2 ≤ C1 and that ∥Aωn(E) − Aωn(E

′)∥2 ≤ C2|E − E ′| by applying respectively Lem-

mas 2.7 and 2.8 to each column of the transfer matrix, which is a solution of D
(N)
0 ψ + (Vω −

E)ψ = 0 (cf. Lemmas 6.2.3 and 6.2.5 of [6]). We get the estimates with the external power
as in Lemma 6.2.6 of [6]: (2.20) directly comes from the fact that, for all invertible matrix M ,
∥ΛNM∥ ≤ ∥M∥N , while the proof of (2.21) uses that, for all invertible matrices M1 and M2,

∥ΛNM1 − ΛNM2∥ ≤ ∥M1 −M2∥
(
∥M1∥N−1 + ∥M1∥N−2∥M2∥+ · · ·+ ∥M2∥N−1

)
.

This concludes the proof of (2.20) and (2.21) and thus of Theorem 2.1.

2.3. Hölder continuity of the integrated density of states. We prove in this section
Theorem 2.3. The link between the Lyapunov exponents and the integrated density of states
is given by the following Thouless formula, similar to [35, Proposition 5.2] and [7, Theorem 3].

Proposition 2.9. Let F and F0 be the integrated densities of states, respectively of {Dω}ω∈Ω
and D

(N)
0 , and γ1, . . . , γN be the Lyapunov exponents of {Dω}ω∈Ω. Then, there exists a ∈ R

such that, for every almost-every E ∈ R,

(2.25)
N∑
i=1

γi(E) = −a+
∫
R
log

∣∣∣∣E − t

t− i

∣∣∣∣ d(F − F0)(t).
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Moreover, if I ⊂ R is an interval on which E 7→ (γ1 + . . .+ γN)(E) is continuous then (2.25)
holds for every E ∈ I.

Note that, since the spectrum of D
(N)
0 is purely absolutely continuous with multiplicity 2N

on the whole real line, all its Lyapunov exponents are identically zero for real energies (cf. [13,
Corollary VII.3.4]). That is why they do not appear in the formulas. The integrated density of

states F0 of the free Dirac operator D
(N)
0 can be explicitly computed. Indeeed, the eigenvalues

of D
(N)
0 restricted to [−ℓL, ℓL] with Dirichlet boundary conditions are the (kℓL)k∈Z, each of

them with multiplicity N . As a consequence, F0(E) = NE/π.
The following lemma, which has been proven in the case N = 1 in [35], holds in fact for all

N . It makes it possible to control the difference F (E)− F0(E).

Lemma 2.10 ([35], Lemma 5.3). There exists a constant C, depending only on ∥Vω∥∞, such
that for all E ∈ R, we have

(2.26) |F (E)− F0(E)| ≤ C.

The next step towards the Thouless formula is to introduce a tool named Kotani w-function.
We use it in the way it has been introduced by Sadel and Schulz-Baldes for Dirac operators
in [29, Section 5]. The first step is to introduced the so-called Weyl-Titchmarsh matrix.
Existence and uniqueness of this matrix are proven in [29, Theorem 2].

Definition 2.11. Let z ∈ C\R. Then, there exists a unique Mω(z) ∈ MN(C), called the
Weyl-Titchmarsh matrix such that the space of solutions of Dωψ = zψ which are square-
integrable on (0,+∞) is spanned by the solutions whose value in 0 is one of the column of(

IN
Mω(z)

)
.

In order to be able to use the results of Sadel and Schulz-Baldes, we need to have an R-
ergodic operator, which is a priori stronger than being Z-ergodic. Nevertheless, in [20], Kirsch
proves that, given a Z-ergodic operator Hω, we can construct an R-ergodic operator Hω, on
a wider probability space, with, for each ω, Hω is unitarily equivalent to Hω for some ω. We
apply in our setting Kirsch’s suspension procedure. Therefore, we introduce a new expectation
E which must here be understood as both expectation on Ω and average value on [0, ℓ] for the
potentials.

As in [29], we introduce a block decomposition for the potential:

Vω =:

(
Pω Rω

R∗ω Qω

)
.

The w function is defined on C \ R (with values in C) as follows:

(2.27) w(z) := −E [tr(Rω +Mω(z)(Qω − z))] .

This function will provide us a link between the Lyapunov exponent and the integrated density
of states through the Green’s function. We recall that the Green’s function G(z, ·, ·) is the
integral kernel of the resolvent (Dω − z)−1. We start by the following theorem of Sadel and
Schulz-Baldes, which links the Green’s function and the Lyapunov exponent. Here G(z) :=
G(z, x, x), and we drop the dependence in x since we take the expectation E.

Theorem 2.12 ([29], Theorem 5). Let Im(z) ̸= 0. Then,

(1)
∑N

i=1 γi(z) = −Re(w(z)).
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(2) ∂zw(z) = E(tr G(z)).

Once we have this, proving Proposition 2.9 can be done as in [35, Section 5] (which considers
the case N = 1) and [7, Section 4.2] (which considers Schrödinger operators for general N).
As a consequence, we give here only the main steps of the proof and let the interested reader
refer to the cited papers for details. We first establish a relation between the density of states
measure ν and the Green’s function.

Lemma 2.13 ([35], Lemma 5.5,[7], Proposition 9). Let z ∈ C\R. Then,

E(tr(G(z))) =
∫
R

dν(E)

E − z
.

This together with the second point of Theorem 2.12 give a relation between the imaginary
part of the w function and the integrated density of states.

Lemma 2.14 ([35], Lemma 5.6, [7], Proposition 10). There exists c ∈ R such that, for all
E ∈ R, we have

(2.28) lim
a→0+

Im (w(E + ia)− w0(E + ia)) = π(F (E)− F0(E)) + c.

We have an analogous result for the real part of w.

Lemma 2.15. For Lebesgue-almost every E in R, we have :

(2.29) lim
a→0+

Re (w(E + ia)− w0(E + ia)) = −(γ1 + . . .+ γN)(E).

Moreover, if I ⊂ R is an interval on which E 7→ −(γ1+ . . .+γN)(E) is continuous then (2.29)
holds for every E ∈ I.

We can thus conclude the proof of Proposition 2.9 with the arguments of [7] and [35]. We
then use the Hilbert transformation as in [7] and [35] to get, through the Thouless formula
proven in Proposition 2.9, the Hölder regularity of the integrated density of states from the
one of the sum of the N positive Lyapunov exponents. This achieve the proof of Theorem 2.3.

2.4. Multiscale analysis and localization. In this last subsection, we explain how we can
apply the multiscale analysis to get Anderson and dynamical localization in our setting.

2.4.1. Conditions for the multiscale analysis. We state here the hypotheses and the theorems
on the multiscale analysis. We follow the presentation of the lecture notes [22]. Then, we
explain how we can apply them to our case. In the following paragraphs, {Hω}ω∈Ω will be
any self-adjoint random ergodic operator on L2(R,C2N).

The first property gives the possibility to use generalized eigenfunctions.
Let H := L2(R, dx;C2N). Given ν > 1/4, we put, for x ∈ R, ⟨x⟩ :=

√
1 + x2 and we define

the weighted spaces H± as
H± := L2(R, ⟨x⟩±4νdx;C2N).

We define a duality map between H+ and H− by the following sesquilinear form, where
ϕ1 ∈ H+ and ϕ2 ∈ H−:

⟨ϕ1, ϕ2⟩H+,H− :=

∫
ϕ̄1(x) · ϕ2(x)dx.

We set T to be the self-adjoint operator on H given by multiplication by the function ⟨x⟩2ν ;
note that T−1 is bounded.
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Property (SGEE). We say that an ergodic random operator {Hω}ω∈Ω satisfies the strong
property of generalized eigenfunction expansion (SGEE) in some open interval I if, for some
ν > 1/4,

(1) The set

Domω
+ := {ϕ ∈ Dom(Hω) ∩H+;Hωϕ ∈ H+}

is dense in H+ and is an operator core for Hω with probability one.
(2) There exists a bounded, continuous function f on R, strictly positive on the spectrum

of Hω, such that

E
{
[tr(T−1f(Hω)Πω(I)T

−1)]2
}
<∞,

Πω being the spectral projection associated with Hω.

Definition 2.16. Ameasurable function ψ : R → C2N is said to be a generalized eigenfunction
of Hω with generalized eigenvalue E if ψ ∈ H−\{0} and

⟨Hωϕ, ψ⟩H+,H− = E⟨ϕ, ψ⟩H+,H− , for all ϕ ∈ Domω
+.

As explained in [22], when (SGEE) holds, a generalized eigenfunction which is in H is a
bona fide eigenfunction. Moreover, if µω is the spectral measure for the restriction of Hω to
the Hilbert space Eω(I)H, then µω-almost every E is a generalized eigenvalue of Hω.
The following properties are about finite volume operators, restricted to intervals of the

form ΛL(x) := [x− ℓL, x+ ℓL].

Definition 2.17. We say that an ergodic random family of operators {Hω}ω∈Ω is standard if
for each x ∈ Z, L ∈ N there is a measurable map H·,x,L from Ω to self-adjoint operators on
L2(ΛL(x),C2N) such that

U(y)Hω,x,LU(−y) = Hτy(ω),x+y,L

where τ and U define the ergodicity:

U(y)HωU(y)
∗ = Hτy(ω).

We can then define Rω,x,L(z) := (Hω,x,L − z)−1 as the resolvent of Hω,x,L and Πω,x,L(·) as
its spectral projection.

We now enumerate the properties which are needed for multiscale analysis to be performed,
yielding thus various localization properties.

Definition 2.18. An event is said to be based in a box ΛL(x) if it is determined by conditions
on the finite volume operators (Hω,x,L)ω∈Ω.

Property (IAD). Events based in disjoint boxes are independent.

The following properties are to hold in a fixed open interval I. We will denote by χx,L the
characteristic function of ΛL(x) and χx := χx,1. We also denote by Γx,L the characteristic
function of the union of two regions near the boundary of ΛL(x): [x− ℓ(L− 1), x− ℓ(L− 3)]∪
[x+ ℓ(L− 3), x+ ℓ(L− 1)].

Property (SLI). For any compact interval J ⊂ I there exists a finite constant κJ such that,
given L, l′, l′′ ∈ 2N, x, y, y′ ∈ Z with Λl′′(y) ⊂ Λl′−3(y

′) ⊂ ΛL−6(x), then, for P-almost every
ω, if E ∈ J with E /∈ σ(Hω,x,L) ∪ σ(Hω,y′,l′) we have

(2.30) ∥Γx,LRω,x,L(E)χy,l′′∥ ⩽ κJ∥Γy′,l′Rω,y′,l′(E)χy,l′′∥∥Γx,LRω,x,L(E)Γy′,l′∥.
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Property (EDI). For any compact interval J ⊂ I there exists a finite constant κ̃J such that
for P-almost every ω, given a generalized eigenfunction ψ of Hω with generalized eigenvalue
E ∈ J , we have, for any x ∈ Z and L ∈ 2N with E /∈ σ(Hω,x,L), that

∥χxψ∥ ⩽ κ̃J∥Γx,LRω,x,L(E)χx∥∥Γx,Lψ∥.

Property (NE). For any compact interval J ⊂ I there exists a finite constant CJ such that,
for all x ∈ Z and L ∈ 2N,

E (tr (Πω,x,L(J))) ⩽ CJL.

Property (W). For every β ∈ (0, 1) and every σ > 0, there exists L0 ∈ N and α > 0 such
that

(2.31) P(dist(E, σ(Hω,x,L)) ≤ e−σL
β

) ≤ e−αL
β

for all E ∈ I, x ∈ Z and L ≥ L0.

This Wegner estimate is not exactly similar to the one stated in [22], but it is possible to
use this version for multiscale analysis, as explained in [12] and [22, Remark 4.6].

The last property depends on several parameters: θ > 1, E0 ∈ R and L0 ∈ 6N.

Property (ILSE(θ, E0, L0)).

(2.32) P
{∥∥Γ0,L0Rω,0,L0(E0)χ0,L0/3

∥∥ ⩽
1

Lθ0

}
> 1− 1

841
.

These properties are the hypotheses of the bootstrap multiscale analysis.

Definition 2.19. Given E ∈ R, x ∈ Z and L ∈ 6N with E /∈ σ(Hω,x,L), we say that the box
ΛL(x) is (ω,m,E)-regular for a given m > 0 if

(2.33)
∥∥Γx,LRω,x,L(E)χx,L/3

∥∥ ⩽ e−mL.

In the following, we denote

[L]3N = sup{n ∈ 3N|n ⩽ L}.

Definition 2.20. For x, y ∈ Z, L ∈ 3N, m > 0 and I ⊂ R an interval, we denote

R(m,L, I, x, y) = {ω; for every E ′ ∈ I either ΛL(x) or ΛL(y) is (ω,m,E
′)-regular.} .

The multiscale analysis region ΣMSA for {Hω}ω∈Ω is the set of E ∈ Σ for which there exists
some open interval I ∋ E such that, given any ζ, 0 < ζ < 1 and α, 1 < α < ζ−1, there is a
length scale L0 ∈ 3N and a mass m > 0 so if we set Lk+1 = [Lαk ]3N, k = 0, 1, . . ., we have

P {R(m,Lk, I, x, y)} ⩾ 1− e−L
ζ
k

for all k ∈ N, x, y ∈ Zd with |x− y| > Lk.

Theorem 2.21 (Multiscale analysis - Theorem 5.4 p136 of [22]). Let {Hω}ω∈Ω be a standard
ergodic random operator with (IAD) and properties (SLI), (NE) and (W) fulfilled in an open
interval I and let Σ be the almost sure spectrum of {Hω}ω∈Ω. Given θ > 1, for each E ∈ I
there exists a finite scale Lθ(E) = Lθ(E) > 0 bounded on compact subintervals of I such that,
if for a given E0 ∈ Σ∩ I we have (ILSE)(θ, E0, L0) at some scale L0 ∈ 3N with L0 > Lθ(E0),
then E0 ∈ ΣMSA.
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Theorem 2.22 (Localization - Theorem 6.1 p139 of [22]). Let {Hω}ω∈Ω be a standard ergodic
operator with (IAD) and properties (SGEE) and (EDI) in an open interval I. Then, {Hω}ω∈Ω
exhibits both dynamical and Anderson localization on ΣMSA ∩ I.

We can summarize in the following figure, the ingredients of a proof of localization using
multiscale analysis.

(2.34) (IAD) + (SLI) + (NE) + (W) + (ILSE)︸ ︷︷ ︸
⇓

(MSA) + (SGEE) + (EDI)︸ ︷︷ ︸
⇓︷ ︸︸ ︷

(AL) + (DL)

These theorems make it possible to prove Theorem 1.9 and Theorem 1.10, by applying the
multiscale analysis to the random family of operators {Dω}ω∈Ω defined by (1.2).

2.4.2. The Wegner estimate. We begin with the Wegner estimate: we will get it from the
regularity of the integrated density of states. The proof is a straightforward adaptation of
what we have already done in [8] and [35]. As a consequence, we only give a sketch of it.

We prove the following proposition.

Proposition 2.23. Let I be a compact interval included in an open interval Ĩ on which
Assumption (L(N)) holds or on which Assumption (L(N−1)) holds and γN is identically 0.
Then (W) is satisfied on I.

If I is such an interval, we know from the previous sections that (2.3) is satisfied on I. This
implies the following lemma. It is proven in [35] in the case N = 1, but its generalization to
higher N is straightforward.

Lemma 2.24 ([35], Lemma 6.16). There exists ρ > 0 and C <∞ such that, for every E ∈ I
and every ϵ > 0, we have for L ≥ L0

P{There exists E ′ ∈ (E − ϵ, E + ϵ) and ϕ ∈ Dom
(
D(L)
ω

)
, ∥ϕ∥ = 1, such that

(D(L)
ω − E ′)ϕ = 0, |ϕ↓(−ℓL)|2 + |ϕ↓(ℓL)|2 ≤ ϵ2} ≤ CLϵρ.

(2.35)

Moreover, hypotheses of Proposition 2.23 also implies Lemma 3 of [8], which is a priori
only applicable random Schrödinger operators, but can also be applied to our setting since
its proof only consists of algebraic manipulations of transfer matrices.

Lemma 2.25 ([8], Lemma 3). For all p = 1, . . . , N , there exist ξ1 > 0, δ > 0 and n1 ∈ N
such that, for every E ∈ I, n ≥ n1 and x ∈ ΛpC2N with ∥x∥ = 1, we have

(2.36) E
(
∥ΛpΦE(n, ω)x∥−δ

)
≤ e−ξ1n.

From these two lemmas, it is possible to prove Proposition 2.23 following line by line the
arguments of [8, Section 5] or [35, Section 6.2].
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2.4.3. The Initial Length Scale Estimate. The last ingredient in order to apply a multiscale
analysis scheme to our models is an ILSE which allows to start the induction proof. We denote
by ΛL the interval ΛL(0). We will prove an estimate stronger that (2.32), namely that there
exists L0 ∈ 3N and C, c, δ > 0 such that, for all L ≥ L0 and all E ∈ I,

(2.37) P
{∥∥Γ0,LRω,0,L(E0)χ0,L/3

∥∥ ⩽ e−δL
}
≥ 1− Ce−cL.

As in most previous works, we will use the fact that the resolvent of the restricted operator
has an integral kernel. We prove as in Equation (6.11) of [35] that the resolvent Rω,0,L(E) has
an integral kernel, i.e. there exists a function Gω

ΛL
such that for all ψ in L2(ΛL) and almost

every y ∈ ΛL

(2.38) (D(L)
ω − E)

∫ ℓL

−ℓL
Gω

ΛL
(E, x, y)ψ(x)dx = ψ(y).

Note that [35] provides an explicit formula for this integral kernel, but we will not use it here.
We know from the Schur test that

(2.39)
∥∥Γ0,LRω,0,L(E)χ0,L/3

∥∥ ≤ L sup
x,y∈ΛL

|Γ0,L(y)G
ω
ΛL
(E, x, y)χ0,L/3(x)|.

Our goal is therefore to bound |Gω
ΛL
(E, x, y)| for x and y respectively in the support of χ0,L/3

and Γ0,L, with probability exponentially close to 1.
To this purpose, we give an explicit formula for Gω

ΛL
at these points. For E ∈ I, we consider

the two functions Φ± =

(
Φ↑

±

Φ↓
±

)
with values in M2N,N(C), satisfying DωΦ± = EΦ± with

(2.40) Φ−(−ℓL) =
(

0
IN

)
and Φ+(ℓL) =

(
0
IN

)
.

Lemma 2.26. Let ω ∈ Ω and let x, y ∈ ΛL. Assume that Φ↑+(x), Φ
↓
+(x), Φ

↑
−(x), and Φ↓−(x)

are invertible as well as Φ↓+(x)Φ
↑
+(x)

−1−Φ↓−(x)Φ
↑
−(x)

−1 and Φ↑+(x)Φ
↓
+(x)

−1−Φ↑−(x)Φ
↓
−(x)

−1.

The Green kernel of D
(L)
ω is given by

(2.41) Gω
ΛL
(E, x, y) =

{
Φ+(y)α+(x) for x ≤ y
Φ−(y)α−(x) for x > y

where

(2.42) α+(x) :=
(
Φ↑

+(x)−1(Φ↓
+(x)Φ↑

+(x)−1−Φ↓
−(x)Φ↑

−(x)−1)
−1
,Φ↓

+(x)−1(Φ↑
−(x)Φ↓

−(x)−1−Φ↑
+(x)Φ↓

+(x)−1)
−1
)

and

(2.43) α−(x) :=
(
Φ↑

−(x)−1(Φ↓
+(x)Φ↑

+(x)−1−Φ↓
−(x)Φ↑

−(x)−1)
−1
,Φ↓

−(x)−1(Φ↑
−(x)Φ↓

−(x)−1−Φ↑
+(x)Φ↓

+(x)−1)
−1
)

Proof. By definition, (2.38) has to be satisfied for all ψ ∈ L2(ΛL) and almost all x ∈ ΛL.
We compute this expression explicitly, assuming that Gω

ΛL
has the form given by (2.41) with

α± = (α←± , α
→
± ). Using the fact that (D

(L)
ω − E)Φ± = 0, we find that for all x ∈ ΛL

(2.44)

(
ϕ↑+(x)α

←
+ (x)− ϕ↑−(x)α

←
− (x) ϕ↑+(x)α

→
+ (x)− ϕ↑−(x)α

→
− (x)

ϕ↓+(x)α
←
+ (x)− ϕ↓−(x)α

←
− (x) ϕ↓+(x)α

→
+ (x)− ϕ↓−(x)α

→
− (x)

)
=

(
0 −IN
IN 0

)
Assuming the invertibility conditions given in the statement of the lemma, we can solve this
linear system explicitly, which gives the expressions (2.42) and (2.43). □
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We now introduce two events on which we will be able to bound the integral kernel. Their
probability will be controlled by either Proposition 2.28 or Proposition 2.30. In order to
estimate blocks of the products of transfer matrices as in [24], we introduce, given a vector
subspace F of C2N , the orthogonal projection onto F πF : C2N → F and we set

π∗F :
F → C2N

x 7→ x
.

For any integer n ∈ [−L/3, L/3], any T ∈ M2N(C) and any vector subspace F ⊂ C2N , we
define

ΩF
ϵ [T ] :=

{
max
1≤p≤N

(∣∣∣∣ 1

ℓ|n− L|
log sp (T )− γp(E)

∣∣∣∣+(2.45) ∣∣∣∣ 1

ℓ|n− L|
log sp (Tπ

∗
F )− γp(E)

∣∣∣∣) ≤ ϵ

100N

}
.

where sp(·) denotes the p-th singular value of the considered matrix. Let

(2.46) F+ :=
{
( u0 ) |u ∈ CN

}
⊂ C2N and F− :=

{
( 0
v ) |v ∈ CN

}
⊂ C2N

and for any n ∈ Z,

(2.47) Fn :=
{
( uv ) ∈ C2N

∣∣ u = −Φ↓+(ℓn)(Φ
↑
+(ℓn))

−1v
}
.

Then, set
(2.48)
Ωϵ(n) := ΩFn

ϵ [(T ℓnℓL (E))
∗] ∩ ΩF+

ϵ [(T ℓnℓL (E))
∗] ∩ ΩF+

ϵ [T ℓnℓL (E)] ∩ ΩF−
ϵ [(T ℓnℓL (E))

∗] ∩ ΩF−
ϵ [T ℓnℓL (E)].

Note that if the transfer matrices are in Sp∗N(C), the vector subspace Fn is J-Lagrangian, i.e.
it is orthogonal to itself for J and of dimension N . If the transfer matrices are in SpON(R), Fn
is (J, S)-Lagrangian, i.e. it is orthogonal to itself for J and for S and it is of dimension N . Also
note that F+ and F− are always J-Lagrangian, but they are not (J, S)-Lagrangian. To bypass

this difficulty in the case of N = 2d even, we write F+ = F
(+)
+ ⊕ F

(−)
+ and F− = F

(+)
− ⊕ F

(−)
−

where,
(2.49)

F
(±)
+ :=




x1
±x1
...
xd
±xd
0
...
0

 ; (x1, . . . , xd) ∈ Cd

 and F
(±)
− :=




0
...
0
x1
±x1
...
xd
±xd

 ; (x1, . . . , xd) ∈ Cd


.

Then all the F
(±)
± are (J, S)-Lagrangian.

One then define the event

Ω̃ϵ(n) := ΩFx
ϵ [(T ℓnℓL (E))

∗] ∩ Ω
F

(+)
+
ϵ [(T ℓnℓL (E))

∗] ∩ Ω
F

(+)
+
ϵ [T ℓnℓL (E)] ∩ Ω

F
(−)
+
ϵ [(T ℓnℓL (E))

∗] ∩ Ω
F

(−)
+
ϵ [T ℓnℓL (E)]

∩ Ω
F

(+)
−
ϵ [(T ℓnℓL (E))

∗] ∩ Ω
F

(+)
−
ϵ [T ℓnℓL (E)] ∩ Ω

F
(−)
−
ϵ [(T ℓnℓL (E))

∗] ∩ Ω
F

(−)
−
ϵ [T ℓnℓL (E)].(2.50)

We can control ||Gω
ΛL
(E, x, y)|| on these two events.
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Proposition 2.27. Let I ⊂ R a compact interval on which for every E ∈ I, infE∈I γN(E) > 0.
Assume either that

(1) ∀E ∈ I, G(E) ∈ Sp∗N(C) and ω ∈ Ωϵ := ∩n∈[−L/3,L/3]Ωϵ(n) or

(2) ∀E ∈ I, G(E) ∈ SpON(R), N is even and ω ∈ Ω̃ϵ := ∩n∈[−L/3,L/3]Ω̃ϵ(n).

Let us choose ϵ ∈
(
0, infE∈I

γN (E)
3

)
. Then, there exists C > 0 such that, for L large enough,

for all E ∈ I, x ∈ suppχ0,L/3 and y ∈ suppΓ0,L,

(2.51) ||Gω
ΛL
(E, x, y)|| ≤ Ce−2(γN (E)− 7

4
ϵ)ℓL.

Proof. We give a complete proof in case (1). Then at the end we will explain the slight
differences in the proof when we assume that we are in case (2).

We will prove the proposition only for y in [ℓL − 3ℓ, ℓL − ℓ]. The proof for y in [−ℓL +
ℓ,−ℓL + 3ℓ] is similar. Since, in this case, x < y, the Green kernel will be given by the first
line of (2.41).

We begin with proving that on Ωϵ, for all x ∈ [−ℓL/3, ℓL/3], the matrices Φ↑+(x) and Φ↓+(x)
are invertible and we estimate their inverse. It corresponds to bounding from below their
N -th singular value.The reader who is not familiar with inequalities on singular values can
refer to Chapter 3 of [18].

By definition (recall (1.5)), for any x in ΛL,(
Φ↑+(x)

Φ↓+(x)

)
= T xℓL(E)

(
0
IN

)
.

We write the singular value decomposition of T xℓL(E):

(2.52) T xℓL(E) = U (x)Σ(x)V (x),

where U (x) and V (x) are unitary and, since we have a symplectic matrix, we can write Σ(x) =(
Σ

(x)
+ 0

0 Σ
(x)
−

)
with Σ

(x)
+ = diag(s1(T

x
ℓL), . . . , sN(T

x
ℓL)) and Σ

(x)
− = diag(1/s1(T

x
ℓL), . . . , 1/sN(T

x
ℓL))

with s1(T
x
ℓL) ≥ · · · ≥ sN(T

x
ℓL) ≥ 1. We can write a block decomposition for U (x) and V (x):

U (x) =

(
U

(x)
11 U

(x)
12

U
(x)
21 U

(x)
22

)
and V (x) =

(
V

(x)
11 V

(x)
12

V
(x)
21 V

(x)
22

)
. We have then

(
Φ↑+(x)

Φ↓+(x)

)
=

(
U

(x)
11 Σ

(x)
+ V

(x)
12 + U

(x)
12 Σ

(x)
− V

(x)
22

U
(x)
21 Σ

(x)
+ V

(x)
12 + U

(x)
22 Σ

(x)
− V

(x)
22

)
.

As a consequence, we can write that

sN

(
Φ↑+(x)

)
≥ sN

(
U

(x)
11 Σ

(x)
+ V

(x)
12

)
− ∥U (x)

12 Σ
(x)
− V

(x)
22 ∥(2.53)

≥ sN

(
U

(x)
11

)
sN

(
Σ

(x)
+

)
sN

(
V

(x)
12

)
− ∥Σ(x)

− ∥,(2.54)

where we used in the last line that the blocks U
(x)
ij , V

(x)
ij have norm less than 1.

We now estimate sN

(
Σ

(x)
+

)
, which is also ∥Σ(x)

− ∥−1, on the event Ωϵ. Let n be the unique

integer such that x ∈ [(n− 1)ℓ, nℓ). We first remark that, for all p = 1, . . . , 2N ,

(2.55) sp (T
x
ℓL) ≥ sp

(
T ℓnℓL
)
s2N (T xℓn) = sp

(
T ℓnℓL
)
∥T xℓn∥−1.
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But we know from Lemma 2.7 that there exists a constant C > 0, independent of E, x, ω
and L, such that ∥T xℓn∥ ≤ C. As a consequence, sp (T

x
ℓL) ≥ C−1sp

(
T ℓnℓL
)
. Consequently, on the

event Ωϵ(n), sN (T xℓL) ≥ C−1e(γN (E)−ϵ)ℓ|n−L| and ∥Σ(x)
− ∥ ≤ Ce−(γN (E)−ϵ)ℓ|n−L|, so

(2.56) sN

(
Φ↑+(x)

)
≥ C−1e(γN (E)−ϵ)ℓ|n−L|sN

(
U

(x)
11

)
sN

(
V

(x)
12

)
− Ce−(γN (E)−ϵ)ℓ|n−L|

and, similarly,

(2.57) sN

(
Φ↓+(x)

)
≥ C−1e(γN (E)−ϵ)ℓ|n−L|sN

(
U

(x)
21

)
sN

(
V

(x)
12

)
− Ce−(γN (E)−ϵ)ℓ|n−L|.

We are left with controlling sN

(
U

(x)
11

)
, sN

(
U

(x)
21

)
and sN

(
V

(x)
12

)
. Recalling the nota-

tion introduced in (2.46), we have that U
(x)
11 = π∗F+

U (x)πF+ , U
(x)
21 = π∗F−

U (x)πF+ and V
(x)
12 =

π∗F+
V (x)πF− . Since the sets F+ and F− as defined in (2.46) are J-Lagrangian, we can prove as

in Claim 3.4 and Remark 3.5 of [24] that, on Ωϵ(n), we have for L large enough (depending
only on ϵ and ℓ)

(2.58) sN

(
V

(x)
12

)
≥ e−

ϵ
25
ℓ|n−L|, sN

(
U

(x)
21

)
≥ e−

ϵ
25
ℓ|n−L| and sN

(
U

(x)
11

)
≥ e−

ϵ
25
ℓ|n−L|.

More precisely, the first inequality corresponds to the event ΩF−
ϵ [T ℓnℓL (E)], the second to the

event ΩF−
ϵ [(T ℓnℓL (E))

∗] and the third to ΩF+
ϵ [(T ℓnℓL (E))

∗].
As a consequence, on Ωϵ(n),

(2.59) sN

(
Φ↑↓+ (x)

)
≥ C−1e(γN (E)− 27ϵ

25
)ℓ|n−L| − Ce−(γN (E)−ϵ)ℓ|n−L|.

For L large enough (depending here again only on C, ϵ and ℓ), one gets on Ωϵ(n), using that
|n− L| ≥ 2L/3,

(2.60) sN

(
Φ↑↓+ (x)

)
≥ e(γN (E)−2ϵ) 2ℓL

3 > 0.

In particular, Φ↑+(x) and Φ↓+(x) are invertible.

The next step to be able to apply Lemma 2.26 is to prove that Φ↓+(x)Φ
↑
+(x)

−1−Φ↓−(x)Φ
↑
−(x)

−1

and Φ↑+(x)Φ
↓
+(x)

−1−Φ↑−(x)Φ
↓
−(x)

−1 are invertible. By (2.40), Φ↓+(x)Φ
↑
+(x)

−1 = (T xℓL)22((T
x
ℓL)12)

−1

and Φ↓−(x)Φ
↑
−(x)

−1 = (T x−ℓL)22((T
x
−ℓL)12)

−1. It does not exactly correspond to the blocks in-
volved in X+ and X− in Equation (33) of [24] since we did not use the same boundary
conditions, but we will be able to carry on the same proof as [24]. Since the sets Fn, F+ and
F− are J-Lagrangian, we prove as in Equation (33) of [24] that there exists C > 0 such that
on Ωϵ(n)

(2.61) sN

(
Φ↓+(x)Φ

↑
+(x)

−1 − Φ↓−(x)Φ
↑
−(x)

−1
)
≥ C−1e−

ϵ
2
ℓL

as well as the same result for Φ↑+(x)Φ
↓
+(x)

−1 − Φ↑−(x)Φ
↓
−(x)

−1. Note that the constant C > 0
appears as we estimate the N -th singular value of the matrix at point x by its value at n
its integer part and the norm of the difference which is bounded in L times sN(U21) which is

lower bounded by an exponentially small term. Note also that in the proof appears sN

(
V

(x)
11

)
which is controlled on ΩF+

ϵ [T ℓnℓL (E)].
Consequently, these two matrices are invertible and the norm of their inverse is smaller than

Ce
ϵ
2
ℓL.
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Finally, we remark that, for y ∈ [ℓL− 3ℓ, ℓL− ℓ], we have by Lemma 2.7,

(2.62) ||Φ↑+(y)||2 + ||Φ↓+(y)||2 ≤ N exp

(
2

∫ ℓL

y

|Vω(t)|dt
)

≤ C,

with C independent of E, ω and L.
Together with (2.60) and (2.61), it gives that on Ωϵ

(2.63) ||Gω
ΛL
(E, x, y)|| ≤ Ce−2(γN (E)− 7

4
ϵ)ℓL,

which concludes the proof of the proposition under the assumptions of Theorem 1.9.
Now let us briefly explain how to adapt the proof when we are in case (2). First, remark that

if the transfer matrices are in SpON(R), then Fn is a (J, S)-Lagrangian since it depends on the

transfer matrices through two of their blocks. Moreover, all the F
(±)
± are (J, S)-Lagrangian.

Since, π∗F+
= π∗

F
(+)
+

+ π∗
F

(−)
+

, one has inequalities such as :

(2.64)

sN(U
(x)
11 ) = sN(πF+U

(x)π∗F+
) = sN(πF+U

(x)π∗
F

(+)
+

+πF+U
(x)π∗

F
(−)
+

) ≥ sd(πF+U
(x)π∗

F
(+)
+

) ≥ e−
ϵ
25
ℓ|n−L|.

The first inequality comes from the fact that all the singular values are of multiplicity 2
using the decomposition (4) of Proposition A.1 hence sd(πF+U

(x)π∗
F

(+)
+

) is the 2d-th singular

value of πF+U
(x)π∗

F
(+)
+

. The second inequality comes from the fact that F
(+)
+ is a subspace of

F+ for which we can use Claim 3.4 and Remark 3.5 of [24]. The same kind of inequalities allow

to obtain a lower bound for sN(U
(x)
21 −Φ↓+(x)(Φ

↑
+(x))

−1U
(x)
11 ) which is needed to obtain a lower

bound as (2.61) under the assumptions of case (2). Having in mind these specific properties
when the transfer matrices are in SpON(R), one proves (2.51) in this case, the same way as it
was done when they are in Sp∗N(C). □

In order to estimate the probability of Ωϵ and Ω̃ϵ, we prove a Large Deviation Property for
the singular values of the products of transfer matrices. We need to do this separately for
Sp∗N(C) and SpON(R).

Proposition 2.28. We fix a compact interval I ⊂ R. We assume that for every E ∈ I:

(1) the Furstenberg group G(E) is included in Sp∗N(C) ;
(2) for every p ∈ {1, . . . , N}, G(E) is J-Lp-strongly irreducible.

Then for all ϵ > 0 and all E ∈ I, there exist C(ϵ, E) > 0 and c(ϵ, E) > 0 such that, for all
p ∈ {1, . . . , N}, any J-Lagrangian subspace F and all integers m,n,

(2.65) P
({∣∣∣∣ 1

ℓ(n−m)
log sp

(
T ℓnℓm(E)

)
− γp(E)

∣∣∣∣ ≥ ϵ

})
≤ C(ϵ, E)e−c(ϵ,E)ℓ|n−m|

and

(2.66) P
({∣∣∣∣ 1

ℓ(n−m)
log sp

(
T ℓnℓm(E)π

∗
F

)
− γp(E)

∣∣∣∣ ≥ ϵ

})
≤ C(ϵ, E)e−c(ϵ,E)ℓ|n−m|.

Remark 2.29. The constants C(ϵ, E) and c(ϵ, E) depend a priori on E and ϵ but they can be
taken uniform in ϵ as it tends to 0 and uniform in E on the compact interval I. This is one
of the reasons why we need to take the interval I compact.
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Proof. First of all, recall that Sp∗N(C) can be identified to Sp2N(R) using the following appli-
cation which split the real and imaginery parts of the matrices in M2N(C):

M2N(C) → M4N(R)
A+ iB 7→

(
A −B
B A

)
.

In this identification, all the multiplicities of the Lyapunov exponents and the singular values
are doubled. Hence, we can use freely all the results concerning i.i.d. sequences of random
matrices in the real symplectic group.

Recall that for a symplectic matrixM ∈ Sp∗N(C), sp(M−1) = sp(M) for every p ∈ {1, . . . 2N}.
Hence one can assume that m ≤ n without loss of generality since (T ℓnℓm(E))

−1 = T ℓmℓn (E).
Let p ∈ {1, . . . , N}. As in the proof of Proposition 2.5, for each M ∈ SpN(R), we denote by

M̂ the matrix of GLk(R) such that

(2.67) M̂ij = ⟨fi,ΛpMfj⟩.

where k is the dimension of J-Lp and (f1, . . . , fk) is an orthonormal basis of J-Lp, with

f1 = e1 ∧ · · · ∧ ep. Let us now denote by Ĝ(E) the subgroup of GLk(R) which is generated

by the matrices M̂ for M ∈ G(E). Then, since G(E) is J-Lp-strongly irreducible, Ĝ(E) is
strongly irreducible. Hence, applying [5, Theorem A.V.6.2], one gets the existence of α > 0
such that for any ϵ > 0 and any x̄ ∈ P(J-Lp),
(2.68)

lim sup
|n−m|→+∞

1

ℓ|n−m|
log P

(∣∣∣∣ 1

ℓ|n−m|
log(||ΛpT ℓnℓm(E)x̄||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

)
≤ −α

and
(2.69)

lim sup
|n−m|→+∞

1

ℓ|n−m|
log P

(∣∣∣∣ 1

ℓ|n−m|
log(||ΛpT ℓnℓm(E)||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

)
≤ −α.

Indeed, since the function x 7→ V
(n)
ω (x) is uniformly bounded in x, n and ω, and since the

support of the common law of the transfer matrices is bounded, the assumption of finiteness
of the integral in [5, Theorem A.V.6.2] is satisfied.

Now, let us take F a J-Lagrangian subspace of C2N . Then,

||Λp(T ℓnℓm(E)π∗F )|| = sup
u1∧···∧up∈P(J-Lp)

ui∈F

||(ΛpT ℓnℓm(E))(u1 ∧ · · · ∧ up)||

= ||ΛpT ℓnℓm(E) ū||, for some ū ∈ P(J-Lp)

since the supremum is attained by compactness of P(J-Lp). Hence, (2.68) rewrites,
(2.70)

lim sup
|n−m|→+∞

1

ℓ|n−m|
log P

(∣∣∣∣ 1

ℓ|n−m|
log(||Λp(T ℓnℓm(E)π∗F )||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

)
≤ −α

for any J-Lagrangian F . Let, for n,m ∈ Z, p ∈ {1, . . . , N}, ϵ > 0 and F a J-Lagrangian,

An,m,p(ϵ, F ) =

{∣∣∣∣ 1

ℓ|n−m|
log(||Λp(T ℓnℓm(E)π∗F )||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

}
,
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An,m,p(ϵ) =

{∣∣∣∣ 1

ℓ|n−m|
log(||ΛpT ℓnℓm(E)||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

}
,

Bn,m,p(ϵ, F ) =

{∣∣∣∣ 1

ℓ|n−m|
(
log(||Λp(T ℓnℓm(E)π∗F )||)− log(||Λp−1(T ℓnℓm(E)π∗F )||)

)
− γp(E)

∣∣∣∣ > ϵ

}
and

Bn,m,p(ϵ) =

{∣∣∣∣ 1

ℓ|n−m|
(
log(||ΛpT ℓnℓm(E)||)− log(||Λp−1T ℓnℓm(E)||)

)
− γp(E)

∣∣∣∣ > ϵ

}
.

Then, one has

(2.71) Bn,m,p(2ϵ) ⊂ An,m,p(ϵ)∩An,m,p−1(ϵ) and Bn,m,p(2ϵ, F ) ⊂ An,m,p(ϵ, F )∩An,m,p−1(ϵ, F ).
Since for any p ∈ {1, . . . , N}, ||ΛpT ℓnℓm(E)|| = s1(T

ℓn
ℓm(E)) · · · sp(T ℓnℓm(E)), combining (2.71)

and (2.69) one gets (2.65). One also has, for any J-Lagrangian F , ||Λp(T ℓnℓm(E)π∗F )|| =
s1(T

ℓn
ℓm(E)π

∗
F ) · · · sp(T ℓnℓm(E)π∗F ). Hence, combining (2.71) and (2.70) one gets (2.66). This

achieves the proof. □

We then prove the counterpart of Proposition 2.28 in the case covered by Theorem 1.10.

Proposition 2.30. We fix a compact interval I ⊂ R. We assume that for every E ∈ I:

(1) the Furstenberg group G(E) is included in SpON(R) ;
(2) for every 2p ∈ {1, . . . , N}, G(E) is (J, S)-L2p-strongly irreducible.

Then for all ϵ > 0 and all E ∈ I, there exist C(ϵ, E) > 0 and c(ϵ, E) > 0 such that, for all
p ∈ {1, . . . , N}, any (J, S)-Lagrangian subspace F and all integers m,n,

(2.72) P
({∣∣∣∣ 1

ℓ|n−m|
log sp

(
T ℓnℓm(E)

)
− γp(E)

∣∣∣∣ ≥ ϵ

})
≤ C(ϵ, E)e−c(ϵ,E)ℓ|n−m|

and

(2.73) P
({∣∣∣∣ 1

ℓ|n−m|
log sp

(
T ℓnℓm(E)π

∗
F

)
− γp(E)

∣∣∣∣ ≥ ϵ

})
≤ C(ϵ, E)e−c(ϵ,E)ℓ|n−m|.

Proof. The proof is very similar to the proof of Proposition 2.28. First, we introduce G̃(E)
defined as in the proof of Proposition 2.5. Then, since G(E) is (J, S)-L2p-strongly irreducible,

Ĝ(E) is strongly irreducible and we can again apply [5, Theorem A.V.6.2] to get for each
2p ∈ {1, . . . , N}, the analogous of (2.69) for Λ2p instead of Λp and the same for (2.68) for any
x̄ ∈ P((J, S)-L2p). Hence, one gets (2.70) for any (J, S)-Lagrangian F and for 2p instead of p.
Then, one has, for any n,m ∈ Z, 2p ∈ {1, . . . , N}, ϵ > 0 and F a (J, S)-Lagrangian,
(2.74)
Bn,m,2p(2ϵ) ⊂ An,m,2p(ϵ) ∩ An,m,2p−2(ϵ) and Bn,m,2p(2ϵ, F ) ⊂ An,m,2p(ϵ, F ) ∩ An,m,2p−2(ϵ, F ).

One conclude as in the proof of Proposition 2.28 using that for each 2p ∈ {1, . . . , N} and
each (J, S)-Lagrangian F , s2p(T

ℓn
ℓm(E)) = s2p+1(T

ℓn
ℓm(E)), s2p(T

ℓn
ℓm(E)π

∗
F ) = s2p+1(T

ℓn
ℓm(E)π

∗
F )

and γ2p(E) = γ2p+1(E) since the transfer matrices are in SpON(R). □

Proof of the ILSE (2.37). Assume either the assumptions of Theorem 1.9 or those of Theorem
1.10. Applying Proposition 2.28 for the J-Lagrangian spaces Fn, F+ and F− one gets that
there exist C(ϵ, E) > 0 and c(ϵ, E) > 0 such that,

(2.75) ∀ϵ > 0, ∀n ∈ ΛL
3
, P (Ωϵ(n)) ≤ C(ϵ, E)e−c(ϵ,E)ℓ|n−L|
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from which we deduce, since there is only a finite number of real numbers nℓ in ΛL
3
, that there

exist C > 0 and c > 0 such that,

(2.76) ∀ϵ > 0, P (Ωϵ) ≤ Ce−c
4
3
ℓL

remembering that we can choose the constants C(ϵ, E) and c(ϵ, E) uniform in ϵ when it tends
to 0 and uniform in E ∈ I by compactness of I.

Applying Proposition 2.30 for the (J, S)-Lagrangian spaces Fn, F
±
+ and F±− one gets also

that there exist C > 0 and c > 0 such that,

(2.77) ∀ϵ > 0, P
(
Ω̃ϵ

)
≤ Ce−c

4
3
ℓL

Proposition 2.27 together with (2.39) and (2.76) or (2.77) (up to a passage to the comple-
mentary sets of Ωϵ and Ω̃ϵ) lead to (2.37) under either assumptions of Theorem 1.9 or Theorem
1.10. □

Proof of Theorem 1.9 and Theorem 1.10. In view of Theorems 2.21 and 2.22, proving The-
orem 1.9 and Theorem 1.10 reduces to prove all the hypotheses stated in Section 2.4.1 on
interval I. It is easy to see that the restriction of the operators to intervals with Dirichlet
boundary conditions makes {Dω}ω∈Ω a standard family of operators.
As in [35], we first remark that, for all families of operators of the form given by (1.2),

(SGEE), (SLI), (IAD) and (EDI) have already been proven in [3, Proof of Theorem 4.1] on R.
Similarly, (NE) is proven in the same paper, in the proof of Theorem 4.2. Even if there are
extra hypotheses in that paper, they are not used in the proof of these specific assumptions.
We already proven the Wegner estimate (W) under the hypotheses of Theorem 1.9 or Theorem
1.10.

Finally, we have have just proven in this Section the ILSE under both hypotheses of Theo-
rem 1.9 or Theorem 1.10, which achieves the proof of these two theorems. □

3. Application for potentials splitting in a sum of two Pauli matrices

The goal of this section is to establish the properties of Lyapunov exponents for the models
introduced in Section 1.4. We prove that the hypotheses of either Theorem 1.9, 1.10 or 1.12
are satisfied, which respectively leads to the localization and delocalization results given by
Theorem 1.11. The fact that the hypotheses of the localization criterion are satisfied depends
in fact not really on the family of measures µE, but only on the Furstenberg groups G(E).
Indeed, the Furstenberg group can be independent of E even if the measure µE depends on
E.
Therefore, our first task is to determine the Furstenberg groups in the five different cases.

Since all transfer matrices are symplectic and have real elements, G(E) is always included
in the real symplectic group SpN(R). In some of the cases, we can have more. Let ∆, the
tridiagonal matrix with 0 on the diagonal and 1 on the upper and lower diagonal.

Proposition 3.1. In all cases, G(E) ⊂ SpN(R). Moreover,

• in Case 1, G(E) ⊂ SON(R);
• in Case 5, if Vper = ∆, G(E) ⊂ SpON(R).

Proof. We have already proved in Section 1.2 that the Furstenberg group is always included
in SpN(R). In some of the cases defined in Table 1, we can prove stronger inclusions. First,
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we have that
d

dy
[(T yx (E))

∗T yx (E)] = (T yx (E))
∗[Vω + Vper, J ]T

y
x (E).

When Vω + Vper = σ0 ⊗ V0, i.e. in case 1, [Vω + Vper, J ] = 0 so (T yx (E))
∗T yx (E) = I2N for all x

and y: G(E) ⊂ SO2N(R).
If Vper = ∆, in Case 5, a direct computation shows that for any x, y ∈ R and any E ∈ R,

T yx (E) ∈ SpON(R) hence the result on G(E). □

This has already consequences on the Lyapunov exponents in some cases. We prove that
some Lyapunov exponents vanish.

Theorem 3.2. In Case 1, all Lyapunov exponents are identically 0.
In Case 5 for odd N and Vper = ∆, the lowest Lyapunov exponent γN is identically 0.

Proof. The fact that all Lyapunov exponents associated with a sequence of matrices included in
the compact group SO2N(R) are identically zero is a direct consequence of Proposition A.III.5.6
of [5].

The result for Case 5 when N is odd, is a consequence of Proposition 2.4 combined with
γp = −γ2N−p+1 for all p, which leads to γN = γN+1 = 0. □

From Theorems 3.2 and 1.12, we directly get the delocalization results in Theorem 1.11.
To get localization results, we need more information. In Section 3.1, we compute the

Furstenberg groups in the different case when ℓ is close to 0, which means that the system is
strongly disordered.

Theorem 3.3. Recall the different cases given in Table 1. In case 1, G(E) is a subgroup of
SO2N(R). Moreover, there exists ℓC > 0 such that, for all ℓ ∈ (0, ℓC), there exists a compact
interval I(N, ℓ) such that for all E ∈ I(N, ℓ) \ {0},

• in cases 2, 3 and 4, G(E) = SpN(R).
• in Case 5, if Vper = ∆, G(E) = SpON(R).

We then get that the hypotheses of either Theorem 1.9 or Theorem 1.10 are satisfied.

Theorem 3.4. Fix ℓ < ℓC, for the ℓC introduced in Theorem 3.3. Then, for all E ∈
I(N, ℓ, V ) \ {0},

• in case 2, 3 or 4, G(E) is p-contracting and J-Lp-strongly irreducible for all p in
{1, . . . , N}.

• in case 5, if Vper = ∆, G(E) is 2p-contracting and (J, S)-L2p-strongly irreducible for
every 2p in {1, . . . , N}.

Proof. The case where G(E) = SpN(R) is treated in the proof of Proposition A.IV.3.5 of [5].
The remaining case is studied in section 3.2 of the present paper. □

Combining Theorems 3.4 and 1.9 or 1.10, we get the localization results of Theorem 1.11,
at least for Vper = ∆. We give the complete proof of Theorem 1.11 in Section 3.3.

3.1. Determination of the Furstenberg groups. In this section, we prove Theorem 3.3.
For models of the type introduced in Section 1.4, the common distribution of the Tω(n)(E)’s
is µE := (Tω(0)(E))∗ (ν) and we have the internal description of G(E):

(3.1) G(E) = < Tω(0)(E) ; ω(0) ∈ supp ν > for all E ∈ R.
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Since we consider potentials which are constant on each interval (nℓ, (n+ 1)ℓ), one has:

(3.2) ∀ℓ > 0, ∀n ∈ Z, ∀E ∈ R, Tω(n)(E) = exp (ℓXω(n)(E)) ,

where, using the decomposition (1.12)–(1.13),

∀E ∈ R, ∀n ∈ Z, Xω(n)(E) := J(Vper + Vω(n) − E)

=

(
−α1V̂per−β1V̂ω(n) E−(α0−α3)V̂per−(β0−β3)V̂ω(n)

−E+(α0+α3)V̂per+(β0+β3)V̂ω(n) α1V+β1V̂ω(n)

)
(3.3)

The explicit formula for transfer matrices, given in (3.2), is not easy to handle since it is a
matrix exponential in which the random parameters and the energy parameter are mixed. As
a consequence, we would like to determine the Furstenberg groups directly from the matrices
Xω(n)(E). This is possible when the disorder is large enough thanks to the following result
due to Breuillard and Gelander [11].

Theorem 3.5 ([11], Theorem 2.1). Let G be a real, connected, semisimple Lie group, whose
Lie algebra is g. Then, there is a neighborhood Õ of 1 in G, on which log = exp−1 is a
well defined diffeomorphism, such that g1, . . . , gm ∈ Õ generate a dense subgroup whenever
log g1, . . . , log gm generate g.

Note that this result holds only when we consider a finite number of generators. For any
(i, j) in {1, . . . , N} we denote by Eij the N -by-N matrix with a coefficient 1 in position (i, j)
and 0 everywhere else. For any P ∈ {0, 1}N , we denote by XJ(E) the matrix Xω(0)(E) for

V̂ω(0) =
∑

Pi=1Eii. Let us introduce

G{0,1}(E) :=< exp (ℓXP (E)) ; P ∈ {0, 1}N >⊂ G(E)

since {0, 1}N ⊂ supp ν. The group G{0,1}(E) has 2
N generators. We will use Theorem 3.5 to

prove that G{0,1}(E) is dense in SpN(R) or SpON(R), depending on the case. Together with
Proposition 3.1, it will conclude the proof of Theorem 3.3.

We first need to ensure that the groups SpN(R) and SpON(R) are connected and semisimple.
It is well-known that the symplectic group has these properties. In Appendix A, we prove
that they hold for the group SpON(R) as well.

We next prove that, under good conditions on E and ℓ, the transfer matrices are in an
appropriate neighborhood of the unit. We prove it in a general result holding for all operators

of the form given by (1.2) such that the potential V
(n)
ω is constant on [0, ℓ] and has values in

the space of real symmetric matrices.

Lemma 3.6. For all neighborhood O of 1 in SpN(R), there exists ℓC > 0, c1, c2 ∈ R and
d > 0 such that if ℓ < ℓC, then c1 − d

ℓ
< c2 +

d
ℓ
and Tω(0)(E) ∈ O for all ω(0) ∈ {0, 1}N and all

E ∈ [c1 − d
ℓ
, c2 +

d
ℓ
].

Note that we do not need to prove an analogous result for SpON(R) since, for any neigh-
borhood O of 1 in SpON(R), there exists a neighborhood O′ of 1 in SpN(R) such that
O = O′ ∩ SpON(R).

Proof. Given a neighborhood O of 1 in SpN(R), we set:

dlog O := sup{R > 0 | exp
[
B(0, R)

]
⊂ O},
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where B(0, R) is the closed ball, centered on 0 and of radius R > 0, for the topology induced
on the Lie algebra spN(R) by the matrix norm induced by the euclidean norm on R2N . Then,
Tω(0)(E) will be in O as soon as ℓ∥Xω(0)(E)∥ ≤ dlog O.

We remark that Xω(0)(E) = J−1(E − Vω(0)). Since J−1 is an orthogonal matrix, we have,

denoting by (λω
(0)

i )1≤i≤2N the eigenvalues of the symmetric matrix of Vω(0) ,

∥Xω(0)(E)∥ = ∥E − Vω(0)∥ = max
1≤i≤2N

|λω(0)

i − E|.

We want to find an interval of values of E on which ℓ∥Xω(0)(E)∥ < dlog O. In other words,
we want to characterize the set

I(ℓ,O) :=

{
E ∈ R, max

ω∈{0,1}N
max
1≤i≤N

|λωi − E| ≤ dlog O
ℓ

}
.

We see that

I(ℓ,O) =
⋂

ω∈{0,1}N

⋂
1≤i≤N

[
λωi −

dlog O
ℓ

, λωi +
dlog O
ℓ

]
.

We define
λmax := max

ω∈{0,1}N
max
1≤i≤N

λωi and λmin := min
ω∈{0,1}N

min
1≤i≤N

λωi .

If (λmax − λmin)/2 < dlog O/ℓ, then I(ℓ,O) = [λmax − dlog O/ℓ, λmin + dlog O/ℓ] which is a
nonempty interval. As a consequence, we have proved that if ℓ < ℓC := 2dlog O/(λmax − λmin),

then for all E ∈ I(ℓ,N) ℓ∥Xω(0)(E)∥ < dlog O. As a consequence, Tω(0)(E) = exp(ℓX
(0)
ω (E)) ∈

O. □

Finally, we prove that, in each case, the Lie algebra generated by the Xω(0)(E)’s corresponds
with the Lie algebra associated with the group appearing in Theorem 3.3. Let us denote, for
every E ∈ R,
(3.4) g(E) := Lie

{
XP (E); P ∈ {0, 1}N

}
.

We explicitly compute g(E) in the different cases described in Table 1. In order to state
the result, we introduce the following algebras:

• spN(R) is the algebra associated with the symplectic group SpN(R), it consists of all

matrices of the shape

(
A B
C −tA

)
, where B and C are symmetric.

• Let us introduce the operator s defined on MN(R) by (sM)ij = (−1)i−j+1Mji. We
define the Lie algebra

(3.5) spoN(R) :=
{(

A B
sB −tA

)
with sA = A,tB = B

}
.

This is the Lie algebra associated with the group SpON(R), as we prove in Appendix A.

We have the following result.

Proposition 3.7. Let us recall the 5 cases defined in Table 1 and assume that Vper = ∆.
Then, for all E ̸= 0,

• in cases 2, 3 and 4, g(E) = spN(R);
• in case 5, g(E) = spoN(R).

In the rest of the section, we prove this proposition in the different cases. We fix E ̸= 0.
We use the following lemma.
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Lemma 3.8. We introduce the following notations:

(3.6) Zij :=

(
0 Eij + Eji

Eij + Eji 0

)
Yij :=

(
0 Eij + Eji

−Eij − Eji 0

)
.

If some subalgebra g of spN(R) contains all the Zij’s and Yij’s for |i−j| ≤ 1 , then g = spN(R).

A proof of this result can be found in the proof of Lemma 1 of [8], even if it is not really
stated.

Case 2: potentials both on σ3. Recall that, according to Table 1, this case covers the case
where potentials are both on σ1 as well. We consider the family of matrices {XP (E)}P∈{0,1}N ,
as defined in (3.3), for α3 = β3 = 1 and all other coefficients equal to 0. We have

XP (E) =
(

0 E+∆+
∑

Pi=1 Eii

−E+∆+
∑

Pi=1 Eii 0

)
.

In view of Lemma 3.8, we will prove that, for such a family {XP (E)}P∈{0,1}N , all matrices

Zij and Yij for |i− j| ≤ 1 are in g(E). First, for any P, P ′ ∈ {0, 1}N ,

XP (E)−XP ′(E) =

(
0

∑
Pi=1 Eii−

∑
P ′
i
=1 Eii∑

Pi=1 Eii−
∑

P ′
i
=1 Eii 0

)
.

For all i ∈ {1, . . . , N}, we can choose P = (0, . . . , 1, . . . , 0) with the 1 in position i and
P ′ = (0, . . . , 0). We find that Zii is in g(E).

Then, we have that for all P ∈ {0, 1}N[
XP (E),

(
0 IN
IN 0

)]
= −2E

(
IN 0
0 −IN

)
.

Therefore, since E ̸= 0,

(
IN 0
0 −IN

)
∈ g(E). We can then see that for all i in {1, . . . , N}[

Xii,

(
IN 0
0 −IN

)]
= −2Yii,

and thus all the Yii are in g(E). We have thus that

{
(

0 D1
D2 0

)
, D1, D2 diagonal} ⊂ g(E).

Therefore,

XP (E)−
(

0 E+
∑

Pi=1 Eii

−E+
∑

Pi=1 Eii 0

)
= ( 0 ∆

∆ 0 ) ∈ g(E).

We compute, for i in {1, . . . , N},[(
0 ∆
∆ 0

)
, Yii

]
= −2

(
Bi 0
0 −Bi

)
,

where Bi := ∆Eii + Eii∆ = Ei,i−1 + Ei,i+1 + Ei−1,i + Ei+1,i with the convention that Eij = 0
if i or j is not in [1, N ]. We remark that

Span({Bi, i = 1, . . . , N − 1}) = Span({Ei,i+1 + Ei+1,i, i = 1, . . . , N − 1}),
which is the space of symmetric tridiagonal matrices with zeros on the diagonal

Now, for any i in {1, . . . , N − 1},[(
Ei,i+1 + Ei+1,i 0

0 −(Ei,i+1 + Ei+1,i)

)
,

(
0 IN
IN 0

)]
= 2Yi,i+1.
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As a consequence, all the Yij’s with |i− j| = 1 are in g(E). Last,[(
Ei,i+1 + Ei+1,i 0

0 −(Ei,i+1 + Ei+1,i)

)
,

(
0 IN

−IN 0

)]
= 2Zi,i+1.

We have that all the Zij’s with |i− j| = 1 are in g(E). With Lemma 3.8, this concludes the
proof that g(E) = spN(R)

Case 3: deterministic potential on σ0, random potential on σ3. Recall that, according to
Table 1, this covers as well the case with the deterministic potential on σ0 and the random
potential on σ1. We consider the family of matrices {XP (E)}P∈{0,1}N , as defined in (3.3), with
α0 = β3 = 1 and all the other coefficients equal to 0. In other words,

XP (E) =
(

0 E−∆+
∑

Pi=1 Eii

−E+∆+
∑

Pi=1 Eii 0

)
.

We prove that all the Zij’s and Yij’s, for |i− j| ≤ 1, are in g(E). First, we see that

(3.7) XP (E)−XP ′(E) =

(
0

∑
Pi=1 Eii−

∑
P ′
i
=1 Eii∑

Pi=1 Eii−
∑

P ′
i
=1 Eii 0

)
so, for all i, Zii ∈ g(E).

Then, (
0 E−∆

−E+∆ 0

)
∈ g(E).

Taking the bracket, we find that for all i in {1, . . . , N},

(3.8)
[(

0 E−∆
−E+∆ 0

)
, Zii

]
=
(

2EEii−{Eii,∆} 0
0 −2EEii+{Eii,∆}

)
∈ g(E).

Recall that we have defined the matrix K =
∑N

i=1(−1)i+1Eii. We find that {K,∆} = 0. As
a consequence, since E ̸= 0, we find that

(3.9)
N∑
i=1

(−1)i+1
[(

0 E−∆
−E+∆ 0

)
, Zii

]
= 2E

(
K 0
0 −K

)
∈ g(E).

Taking another bracket, we find that, for all i ∈ {1, . . . , N},

(3.10)
[(

K 0
0 −K

)
,
(

0 Eii
Eii 0

)]
=
(

0 2(−1)i+1Eii

−2(−1)i+1Eii 0

)
= (−1)i+1Yii ∈ g(E).

On the other hand, we find that

(3.11) Θ :=
N∑
i=1

[(
0 E−∆

−E+∆ 0

)
, Zii

]
=
(
E−∆ 0

0 −E+∆

)
∈ g(E).

For i between 2 and N − 1,

(3.12)
1

2
[Θ, Zii] =

(
0 2EEii−{Eii,∆}

−2EEii+{Eii,∆} 0

)
= EYii + Yi,i+1 + Yi,i−1

and

(3.13)
1

2
[Θ, Z11] =

(
0 2EE11−{E11,∆}

−2EE11+{E11,∆} 0

)
= EY11 + Y12.

This, together with the fact that all Yii’s are in g(E), implies that, for all i = 1, . . . , N − 1,
Yi,i+1 ∈ g(E). Similarly, we prove, computing the commutators [Θ, Yii] that all Zi,i+1 are in
g(E). As a consequence, by Lemma 3.8, g(E) = spN(R).
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Case 4: deterministic potential on σ1, random potential on σ3. Recall that, according to
Table 1, this covers as well the case where the deterministic potential is on σ3 and the random
potential is on σ1. We consider the family of matrices {XP (E)}P∈{0,1}N , as defined in (3.3),
with α1 = β3 = 1 and all other coefficients equal to 0. As a consequence,

XP (E) =
( −∆ E+

∑
Pi=1 Eii

−E+
∑

Pi=1 Eii ∆

)
.

As in the previous cases, we will use Lemma 3.8 and only prove that all the Zij’s and Yij’s,
for |i− j| ≤ 1, are in g(E). First, we see that for all P, P ′

(3.14) XP (E)−XP ′(E) =
∑
Pi=1

Zii −
∑
P ′
i=1

Zii ∈ g(E)

so, for all i, Zii ∈ g(E).
Then,

XP (E)−
∑
Pi=1

Zii =
( −∆ E
−E ∆

)
∈ g(E).

Taking the bracket, we find that for all i in {1, . . . , N},

(3.15)
[( −∆ E
−E −∆

)
, Zii

]
=
(
−2EEii −{Eii,∆}
{Eii,∆} 2EEii

)
∈ g(E).

Similarly to the previous case, we can write

(3.16)
N∑
i=1

(−1)i+1
[(

0 E−∆
−E+∆ 0

)
, Xii

]
=
(
2EK 0
0 −2EK

)
∈ g(E).

Taking another bracket, we find that, for all i,

(3.17)
[(

K 0
0 −K

)
, Zii

]
= (−1)i+1Yii ∈ g(E).

This implies that Θ′ :=
(
−∆ 0
0 ∆

)
∈ g(E). We can conclude as in the previous case.

Case 5: deterministic potential on σ3, random potential on σ0. Recall that, according to
Table 1, this covers as well the case with the deterministic potential on σ1 and the random
potential on σ0. We consider the family of matrices {XP (E)}P∈{0,1}N , as defined in (3.3), with
α3 = β0 = 1 and all other coefficients equal to 0. We have

(3.18) XP (E) =
(

0 E+∆−
∑

Pi=1 Eii

−E+∆+
∑

Pi=1 Eii 0

)
Here, the Lie algebra g(E) will not be spN(R) but its subalgebra spoN(R). We have the
following result, similar to Lemma 3.8.

Lemma 3.9. We adopt the same notation as in Lemma 3.8. If some subalgebra g of spoN(R)
contains all the Yii’s as well as the Xij’s for |i− j| = 1 , then g = spoN(R).

Proof. We first remark that all the Yii’s as well as the Xij’s for |i− j| = 1 are in spoN(R). To
prove the other inclusion, let g be a subalgebra of spoN(R) which contains all these matrices.
Recall that a basis of {A ∈ MN(R) | sA = A} is given by {Eij + (−1)i−j+1Eji}1≤i≤j≤N and
one of {B ∈ MN(R) | tB = B} is given by {Eij + Eji}1≤i≤j≤N . We introduce, for every
i, j ∈ {1, . . . N}, the matrices

Vij =
(
Eij+(−1)i−j+1Eji 0

0 (−1)i−jEij−Eji

)
and Wij =

(
0 Eij+Eji

(−1)i−j+1(Eij+Eji) 0

)
.
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By (3.5), {Vij,Wij}1≤i≤j≤N is a basis of spoN(R). Hence, to prove Lemma 3.9, it suffices to
prove that g contains all the Vij’s and Wij’s for 1 ≤ i ≤ j ≤ N . A direct computation shows
that for every i, j, k, r ∈ {1, . . . , N},

[Vij,Wkr] = δjk

(
IN 0

0 (−1)k−jIN

)
Wir + δik(−1)i−j+1

(
IN 0

0 (−1)i+kIN

)
Wjr

+ δir(−1)i−j+1
(

IN 0
0 (−1)i−rIN

)
Wjk + δjr

(
IN 0
0 (−1)−j−rIN

)
Wik

= (−1)i−j+1(δikWjr + δirWjk) + δjkWir + δjrWik(3.19)

and if (−)ijkr = (−1)i−j+k−r+1,

[Wij,Wkr] = (−1)k−r+1
[
δjk

(
Eir+(−)ijkrEri 0

0 −((−)ijkrEir+Eri)

)
+ δjr

(
Eik+(−)ijkrEki 0

0 −((−)ijkrEik+Eki)

)
+δik

(
Ejr+(−)ijkrErj 0

0 −((−)ijkrEjr+Erj)

)
+ δir

(
Ejk+(−)ijkrEkj 0

0 −((−)ijkrEjk+Ekj)

)]
= (−1)k−r+1(δjkVir + δjrVik + δikVjr + δirVjk)(3.20)

where δij is the Kronecker’s symbol :

δij =

{
1 if i = j
0 if i ̸= j.

The hypothesis made on g implies that for every i ∈ {1, . . . , N}, Wii ∈ g and for |i− j| = 1,
Wij ∈ g. Let i ∈ {1, . . . , N}. Then, using (3.20), [Wii,Wi,i+1] = 2Vi,i+1 and Vi,i+1 ∈ g. This
proves that g contains all the Vij andWij for |i−j| = 1. Using (3.19), [Vi,i+1,Wi+1,i+2] = Wi,i+2

and Wi,i+2 ∈ g. Using (3.20) this implies that [Wii,Wi,i+2] = −2Vi,i+2 and Vi,i+2 ∈ g. Hence,
g contains all the Vij and Wij for |i− j| = 2. By induction, using (3.19) and (3.20), we prove
that g contains all the Vij and Wij for i ≤ j, hence spoN(R) ⊂ g and g = spoN(R). □

To compute g(E), we begin as usual by taking XP (E) − XP ′(E) to find that all the Yii’s
are in g(E). Then, (

0 ∆
∆ 0

)
∈ g(E).

This implies that [(
0 −∆
∆ 0

)
,

(
0 IN

−IN 0

)]
= −2

(
∆ 0
0 −∆

)
∈ g(E).

Taking commutators between this last matrix and the Yii’s, we find that all the Zij’s with
|i− j| = 1 are in g(E). □

3.2. p-contractivity and Lp-strong irreducibility. As we already explained, SpN(R) is
p-contracting and J-Lp-strongly irreducible for all p ∈ {1, . . . , N}. We prove here the corre-
sponding result for SpON(R). We prove a similar result for SpON(R).

Proposition 3.10. The group SpON(R) is 2p-contracting and (J, S)-L2p-strongly irreducible
for all p ∈ {1, . . . , N}.

Proof. According to [5, Proposition A.IV.2.1], a subset of GL2N(R) is 2p-contracting if there
exists in it a sequence (Mn) such that, if we denote by s1(Mn) ≥ · · · ≥ s2N(Mn) the singular
values of Mn, then limn→∞ s2p+1(Mn)/s2p(Mn) = 0. But, if we take a sequence t1 > · · · >
td > 0 and construct the matrix R as in Proposition A.1 (iv), then for all n ∈ N the singular
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values of Rn are, for p ≤ d, s2p−1(Mn) = s2p(Mn) = entp so the sequence satisfies the criterion:
SpON(R) is 2p-contracting.

Let us now prove that SpON(R) is L2p-strongly irreducible. Since SpON(R) is connected (see
Proposition A.1), according to [5, Exercise A.IV.2.9], we only have to prove that there exists
no proper subspace V of L2p such that (Λ2pM)(V ) ⊂ V for all M in SpON(R). Assume that
such a V exists and let us consider a matrix R as in Proposition A.1 (iv), with t1 > · · · > td.
We have in particular that (Λ2pR)(V ) ⊂ V . For f1 defined in (2.4), let us write the unique
decomposition f1 = v + v⊥ with v ∈ V and v⊥ ∈ V ⊥. Then,

(3.21) (Λ2pR)f1 = e2t1 · · · e2tpf1 = (Λ2pR)v + (Λ2pR)v⊥.

Since V is stable by Λ2pR and V ⊥ is stable by (Λ2pR)∗ = Λ2pR, (Λ2pR)v ∈ V and (Λ2pR)v⊥ ∈
V ⊥. By orthogonality, (Λ2pR)v = e2t1 · · · e2tpv. If v = 0 then f1 ∈ V ⊥. If v ̸= 0, v is an
eigenvector of Λ2pR associated with the eigenvalue e2t1 · · · e2tp . But, by construction of R, its
eigenspace associated with the eigenvalue e2t1 · · · e2tp is Span(f1). Hence, if v is an eigenvector
of Λ2pRn associated to the eigenvalue e2nt1 · · · e2ntp , then v ∈ Span(f1) and f1 ∈ V . Thus, we
proved that either f1 ∈ V or f1 ∈ V ⊥.

If f1 ∈ V , then by definition V = L2p. If f is orthogonal to V , then, for all v ∈ V
and M ∈ SpON(R), ⟨Λ2pMf1, v⟩ = ⟨f1,Λ2p(tM)v⟩ = 0 since tM is in SpON(R) as well.
Consequently, V = L⊥2p, which contradicts the hypothesis that V is proper. □

3.3. Proof of Theorem 1.11. The proof of Theorem 1.11 comes from the application of one
of the localization criteria or the delocalization criterion (i.e. Theorem 1.9, Theorem 1.10 or
Theorem 1.12) to {Dω}ω∈Ω for the particular choice of V = ∆, the tridiagonal matrix with 0
on the diagonal and 1 on the upper and lower diagonal.

Proof of Theorem 1.11. Once we obtained Theorem 1.11 for V = ∆ we apply the genericity
argument developed in [9] in the following way. We fix G ∈ {SpN(R), SpON(R)} and g ∈
{spN(R), spoN(R)} the corresponding Lie algebra. Both SpN(R) and SpON(R) are algebraic
groups. The use of Theorem 3.5 to obtain the separability of Lyapunov exponents leads us
to prove an algebraic property on a Lie algebra generated by a finite number of matrices.
Hence, the n-tuples of elements in G that do not generate a dense subgroup are contained
in a closed analytic subvariety which implies that we can perturb the interaction potential ∆
into a potential V while keeping the property that the Furstenberg group is equal to G for
any energy in an interval I(N, ℓ, V ) for ℓ ∈ (0, ℓC(N, V )). The transfer matrices are written
in exponential form,

Tω(0)(E) = exp(ℓXω(0)(E, V )),

where the Xω(0)(E, V ) are define in (3.3) and where we explicit the dependency in V of these
matrices since E and V are both important variables in the genericity argument. We denote
the family {Xω(0)(E, V )}ω(0)∈{0,1}N by X1(E, V ), . . . , X2N (E, V ). For k ∈ N∗, let

(3.22) Vk =
{
(X1, . . . , Xk) ∈ spN(R)k | (X1, . . . , Xk) does not generate g

}
.

Since generating the algebra g is an algebraic condition of the type non-vanishing of a finite
family of determinants (finite because, for all m ∈ N∗, the ring R[T1, . . . , Tm] is Noetherian),
there exist Q1, . . . , Qrk ∈ R[gk] such that:

(3.23) Vk =
{
(X1, . . . , Xk) ∈ gk | Q1(X1, . . . , Xk) = 0, . . . , Qrk(X1, . . . , Xk) = 0

}
.
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Here, we identify R[gk] ≃ R[T1, . . . , Tk×dim g] where dim g = 2N2 + N for g = spN(R) and
dim g = N2 for g = spoN(R). Let E ∈ R and,

(3.24) V(E) = {V ∈ SN(R) | X1(E, V ), . . . , X2N (E, V ) does not generate g} .

We show that LebN(N+1)
2

(V(E)) = 0. Indeed, let

(3.25) fE :
SN(R) → g2

N

V 7→ (X1(E, V ), . . . , X2N (E, V ))
.

Then, fE is polynomial in the N(N+1)
2

coefficients defining V , and we have:

(3.26) V ∈ V(E) ⇔ (Q1 ◦ fE)(V ) = 0, . . . , (Qr
2N

◦ fE)(V ) = 0,

where each Qi ◦ fE is polynomial in the N(N+1)
2

coefficients defining V . But, we have shown
in Section 1.2 that in Cases 2, 3, 4 and 5 for N even, ∆ /∈ V(E). Therefore, there exists
i0 ∈ {1, . . . , r2N} such that (Qi0 ◦ fE)(∆) ̸= 0, and since the function Qi0 ◦ fE is polynomial
and not identically zero,

(3.27) LebN(N+1)
2

({V ∈ SN(R) | (Qi ◦ fE)(V ) = 0)}) = 0,

and, by inclusion,

(3.28) ∀E ∈ R, LebN(N+1)
2

(V(E)) = 0.

Finally, let V(g) = ∩E∈RV(E). Then V(g) has Lebesgue measure zero, and if V /∈ V(g), there
exists E0 ∈ R such that the family {X1(E0, V ), . . . , X2N (E0, V )} generates g. Therefore, there
exists i0 ∈ {1, . . . , r2N} such that (Qi0 ◦ f)(E0, V ) ̸= 0, where:

(3.29) f :
R× SN(R) → g2

N

(E, V ) 7→ (X1(E, V ), . . . , X2N (E, V ))
.

Now, for V fixed, E 7→ (Qi0 ◦ fE)(E, V ) is polynomial and not identically zero, so it has only
a finite set SV of zeros, and for all E ∈ R \ SV, {X1(E, V ), . . . , X2N (E, V )} does not generate
g.

Thus we have obtained that V(g) has Lebesgue measure zero, and if V /∈ V(g), there exists
SV ⊂ R finite such that for all E ∈ R \ SV, {X1(E, V ), . . . , X2N (E, V )} generates g.

From there, we finish the proof of Theorem 1.11. In Cases 2, 3, 4, we fix V ∈ SN(R) \
V(spN(R)) and apply Theorem 3.5, using the real number ℓC(N, V ) and the interval I(N, V, ℓ)
given by Lemma 3.6. Then we get that the hypotheses of Theorem 1.9 are satisfied for this V on
I(N, V, ℓ)\SV since G(E) = SpN(R) on this interval. In Case 5 we fix V ∈ SN(R) \V(spoN(R))
and we do the same as in Cases 2, 3, 4 to get that the hypotheses of Theorem 1.10 are satisfied
since G(E) = SpON(R) on the constructed interval. □

Remark 3.11. It is the algebraic nature of the objects involved that allows us to prove a
generic result in V and the finiteness of the set of critical energies. We can summarize the
ideas used simply by recalling that the set of zeros of a non-zero single-variable polynomial is
finite and that more generally, the set of zeros of a non-zero polynomial in several variables is
of Lebesgue measure zero.
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Appendix A. The group SpON(R)

In order to study the Lyapunov exponents associated with a sequence of i.i.d. matrices of
SpON(R), as defined by (1.10), we state here the most important properties of this group.

Proposition A.1. Let M ∈ SpON(R).
(1) tM ∈ SpON(R).
(2) If Mv = λv for v ∈ R2N and λ ∈ R, then tMJv = λ−1Jv, tMSv = λ−1Sv and

MJSv = λJSv.
(3) For all v ∈ R2N , the vectors v and JSv are orthogonal.

(4) For t ∈ R, we denote Bt :=

(
cosh t sinh t
sinh t cosh t

)
. If N is even, we denote N =: 2d and,

if N is odd, N =: 2d + 1. There exists U ∈ SO2N(R) ∩ SpON(R) and real numbers
t1 ≥ · · · ≥ td ≥ 0 such that, if we denote in the even case

R :=

(
diag(Bt1 , . . . , Btd) 0

0 diag(B−t1 , . . . , B−td)

)
,

in the odd case

R :=

(
diag(Bt1 , . . . , Btd , 1) 0

0 diag(B−t1 , . . . , B−td , 1)

)
,

then

(A.1) U tMM tU = R.

(5) There exists K, U ∈ SO2N(R)∩SpON(R) and a matrix R similar to the one introduced
above such that

(A.2) M = KRU.

(6) The group SpON(R) is pathwise connected.
(7) The Lie algebra of the Lie group SpON(R) is denoted by spoN(R) and is given by

spoN(R) :=
{(

A B
sB −tA

)
with sA = A,tB = B

}
where the operator s is defined on MN(R) by (sM)ij = (−1)i−j+1Mji.

(8) The group SpON(R) is semisimple.

Proof. (1) If we take the inverse of the relations defining SpON(R), we find, since S−1 = S
and J−1 = −J ,

M−1S(tM)−1 = S and M−1J(tM)−1 = J,

so (tM)−1 ∈ SpON(R), which implies that it is the case for tM as well, since SpON(R)
is a group.

(2) If Mv = λv, then λtMJv =t MJMv = Jv. The same argument is true if we replace
J by S. Combining these two results, we find the one with JS.

(3) Since JS =

(
0 −K
K 0

)
, for v =

(
v1
v2

)
, we have

v · JSv = −v1 ·Kv2 + v2 ·Kv1 = 0

since the matrix K is symmetric.
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(4) We first prove that tMM has an orthonormal basis of eigenvectors which can be written

(v1, . . . , vd, Jv1, . . . , Jvd, Sv1, . . . , Svd, JSv1, . . . , JSvd)

when N = 2d and

(v1, . . . , vd, vd+1, Jv1, . . . , Jvd, Jvd+1Sv1, . . . , Svd, JSv1, . . . , JSvd)

when N = 2d+ 1. To this purpose, we split the space R2N into 2 subspaces: V1 is the
eigenspace of tMM associated with the eigenvalue 1 and V0 = V ⊥1 .
Let us first consider V0: we prove by induction that its dimension is a multiple of

4 and that it has a basis of the desired form. If the dimension is 0, there is nothing
to prove. Otherwise, we take an eigenvector v1 of tMM , associated with its largest
eigenvalue et1 > 1 which has norm 1. We see by Point (2) that JSv is an eigenvector
associated with the same eigenvalue and, by Point (3), it is orthogonal to v1. It has
norm 1 as well. Since tMM is symmetric, Jv1 and Sv1 are by Point (2) eigenvectors
of it as well, associated with the eigenvalue e−t1 ̸= et1 . They both have norm 1,
are orthogonal to each other (since Jv1 = JSSv1), and orthogonal to v1 and JSv1
since the eigenspaces associated with different eigenvalues are orthogonal. Then, the
space spanned by the 4 vectors v1, Jv1, Sv1 and JSv1 has dimension 4 and has an
orthonormal basis of the desired form. We can now consider the orthogonal of the
space spanned by these 4 eigenvectors to apply the induction hypothesis.

We now consider the space V1. Note that this space is stable under S. Therefore,
V1 = V +

1 ⊕ V −1 , where the spaces V ±1 := {w ∈ V1, Sw = ±w}, are orthogonal. These 2
spaces are moreover isomorphic since, if w ∈ V +

1 , then Jw ∈ V −1 and vice versa. Let
us assume that dim(V1) ≥ 4, which implies that dim (V +

1 ) ≥ 2. We can consider two
orthogonal vectors w1, w2 ∈ V +

1 , both with norm 1. If we define vr+1 = (w1+Jw2)/
√
2,

we can see that the vectors vr+1, Jvr+1 = (Jw1−w2)/
√
2, Svr+1 = (w1−Jw2)/

√
2 and

JSvr+1 = (Jw1 + w2)/
√
2 are orthonormal. We can complete the basis by applying

the same process to the orthogonal of the space spanned by these 4 vectors in V1. If
N is even, the dimension of V1 is a multiple of 4 so we can construct the whole basis
in this way. If N is odd, we are left with a 2-dimensional subspace of V1, of which we
can take an orthonormal basis of the form (vd+1, Jvd+1).
We now construct the matrix U in the following way. For i = 1, . . . , d, we define

Uvi = 1/
√
2(e2i + e2i−1), UJvi = 1/

√
2(e2i+N + e2i−1+N), USvi = 1/

√
2(e2i − e2i−1)

and UJSvi = 1/
√
2(e2i+N − e2i−1+N). If N is odd, we define too Uvd+1 = eN and

UJvd+1 = e2N . We easily see that such a U is unitary. Moreover, by construc-
tion, U tMM tUe2i−1 = cosh tie2i−1 + sinh tie2i, U

tMM tUe2i = cosh tie2i + sinh tie2i−1,
U tMM tUe2i−1+N = cosh tie2i−1+N − sinh tie2i+N and U tMM tUe2i+N = cosh tie2i+N −
sinh tie2i−1+N , so U

tMM tU = R. We can explicitly compute that UJ tUei = eN+i and
UJ tUeN+i = −ei so UJ tU = J . Similarly, we prove that UStU = S so U ∈ SpON(R).

Since U is a symplectic matrix, its determinant is 1, so U ∈ SO2N(R).
(5) Let us use the previous point to write that there exists R, U such that U tMM tU = R2,

since R2 has the same shape as R with ti replaced by 2ti. If we set K = M tUR−1,
we see that K ∈ G, in particular it has determinant 1. Moreover, M = KRU and
tKK = R−1U tMM tUR−1 = 1.
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(6) Let us prove that the group SO2N(R)∩SpON(R) is pathwise connected. This, together
with the decomposition given by point (5), will imply that SpON(R) is pathwise con-
nected. To this purpose, we introduce the matrices

S ′ =

(
Ik 0
0 −Ik′

)
and J ′ =


0 −Ik/2 0 0
Ik/2 0 0 0
0 0 0 −Ik′/2
0 0 Ik′/2 0

 ,

where k = k′ = N when N is even and k = N +1 and k′ = N − 1 when N is odd. We
see that SO2N(R) ∩ SpON(R) is homeomorphic to SO2N(R) ∩G′5, where we have

G′5 =
{
M ∈ M2N(R),tMJ ′M = J ′,tMS ′M = S ′

}
.

Indeed, the matrices J and J ′ (resp. S and S ′) are unitarily equivalent since J ′ is
obtained from J by permutating rows and columns. Therefore, SpON(R) and SpON(R)′
are unitarily equivalent hence homeomorphic.

We take a matrix M =

(
A B
C D

)
∈ SO2N(R)∩G′5, where the blocks have respective

size k and k′. Since tMM = I2N ,

(A.3)


tAB +t CD = 0
tAA+t CC = Ik
tBB +t DD = Ik′

Similarly, since tMS ′M = S ′,
tAB −t CD = 0
tAA−t CC = Ik
tBB −t DD = −Ik′

These two series of equations imply that B = C = 0. We have then that A and D are
orthogonal matrices. Finally, the fact that tMJ ′M = J ′ implies that the two matrices
A and D are symplectic matrices. As a consequence, all matrix M ∈ SpON(R)′ ∩

SO2N(R) can be written

(
A 0
0 D

)
, where A,D ∈ Spk∗/2(R)∩SOk∗(R), k∗ being k or k′.

One easily checks that all such matrices are in SpON(R)′ ∩ SO2N(R). But, for all k∗,
Spk∗/2(R)∩ SOk∗(R) is pathwise connected as an intersection of 2 pathwise connected
Lie groups so SpON(R)′ ∩ SO2N(R) is itself pathwise connected. For the pathwise
connectedness of SOk∗(R), see [2]. For the pathwise connectedness of the symplectic
group, one uses the fact that this group is generated by the symplectic transvections
(see [19], Lemma 1, p. 392) to construct a continuous path between any symplectic
matrix and the identity matrix.

(7) By differentiating both relations tMJM = J and tMSM = S one gets that the Lie
algebra of SpON(R) is the set{

M ∈ M2N(R) | tMJ + JM = 0 and tMS + SM = 0
}
⊂ spN(R).

If M = ( A B
C D ) ∈ M2N(R) satisfies tMJ + JM = 0 one already gets that M =

(
A B
C −tA

)
with A ∈ MN(R) tB = B and tC = C. For such a matrix M , we write the relation
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tMS + SM = 0:(
tA C
B −A

)(
K 0
0 K

)
+

(
K 0
0 K

)(
A B
C −tA

)
= 0.

Since B, C and K are symmetric matrices, it implies that tAK +KA = 0 and BK +
KC = 0. This is equivalent, by definitions of the matrix K and of the operator s, to
A = sA and C = sB.

(8) First, we remark that since the Lie algebra of the group SpON(R) is a sub Lie algebra of
the Lie algebra of the symplectic group, its Killing form is the restriction of the Killing
form of the Lie algebra of the symplectic group to the Lie algebra of SpON(R) given
by (X, Y ) 7→ 2(N + 1)Tr(XY ) on Lie(SpON(R)) × Lie(SpON(R)) (see [31]). Then,
a direct computation shows that this Killing form is non-degenerate, hence the Lie
algebra of SpON(R) is semisimple. Moreover, since the relationships defining SpON(R)
are polynomial in the matrix coefficients of its elements, the group SpON(R) is an
algebraic group (actually it is an algebraic subgroup of the symplectic group). Hence
using for example [31, Proposition 27.2.2], the semisimplicity of the Lie algebra of
SpON(R) imply the semisimplicity of SpON(R) as an algebraic group : the derived
group of SpON(R) is equal to SpON(R).

□

Remark A.2. The semisimplicity of SpON(R) implies that it is topologically perfect hence we
can apply to SpON(R) the result of Breuillard and Gelander, Theorem 3.5, as in the case of
the symplectic group.

Appendix B. Initial length-scale estimate for Schrödinger

In this Appendix we give the proper rate of exponential decay for the ILSE in the case
of quasi-one-dimensional operators of Schrödinger type. This corrects the statement and the
demonstration of [8, Proposition 5], changing the γ1(E) into a γN(E) in the exponential rate
of decay. Let (Ω,A,P) be a complete probability space. Recall that in [8] one considers, for
every ω ∈ Ω,

(B.1) Hω,ℓ = − d2

dx2
⊗ IN +

∑
n∈Z

V (n)
ω (x− ℓn),

acting on L2(R) ⊗ CN , where N ≥ 1 is an integer and ℓ > 0 is a real number. For every

n ∈ Z, the functions x 7→ V
(n)
ω (x) are symmetric matrix-valued functions, supported on [0, ℓ]

and bounded uniformly on x, n and ω. The sequence (V
(n)
ω )n∈Z is a sequence of i.i.d random

variables on Ω. We also assume that the potential x 7→
∑

n∈Z V
(n)
ω (x − ℓn) is such that

{Hω,ℓ}ω∈Ω is ℓZ-ergodic.
Recall that the localized operator Hω,x,ℓ is defined at Section 2.4. We also use all the other

notations introduced in Section 2.4.

Proposition B.1 (ILSE for Schrödinger). Let I ⊂ R be an open interval such that, for
every E ∈ I, the Furstenberg group associated with {Hω,ℓ}ω∈Ω is p-contracting and Lp-strongly
irreducible, for every p ∈ {1, . . . , N}. Let E ∈ I. For every ε > 0, there exist C, c > 0 and
L0 ∈ N such that, for every L ≥ L0,

(B.2) P
({

ΛL is (ω, γN(E)− ε, E)− regular
})

≥ 1− Ce−cℓL.
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To prove the correct ILSE for {Hω,ℓ}ω∈Ω, we follow the strategy of the proof of Proposition
2.27. The first step is to give an explicit formula for the Green kernel of Hω,0,ℓ in terms of the
solutions Φ± of Hω,ℓΦ± = EΦ± satisfying the same boundary conditions as in (2.40), which
differs from the formula given in [8, Eq. (67)].

Lemma B.2. Let ω ∈ Ω and let x, y ∈ ΛL. Assume that Φ+(x) and Φ−(x) are invertible as
well as Φ′+(x)Φ+(x)

−1 − Φ′−(x)Φ−(x)
−1. The Green kernel of Hω,0,ℓ is given by

(B.3) Gω
ΛL
(E, x, y) =

{
Φ+(y)(Φ+(x))

−1 (Φ′+(x)Φ+(x)
−1 − Φ′−(x)Φ−(x)

−1)−1 for x ≤ y

Φ−(y)(Φ−(x))
−1 (Φ′+(x)Φ+(x)

−1 − Φ′−(x)Φ−(x)
−1)−1 for x ≥ y

Proof. We would like to have

(B.4) Gω
ΛL
(E, x, y) =

{
Φ+(y)α+(x) for x ≤ y
Φ−(y)α−(x) for x ≥ y

In addition, we want Gω
ΛL

to be continuous, i.e. that for all x ∈ Λ

(B.5) Φ+(x)α+(x) = Φ−(x)α−(x).

By definition, we must have, for all ψ ∈ L2(Λ) and almost all x ∈ Λ,

(Hω,0,ℓ − E)

∫
Λ

Gω
ΛL
(E, x, y)ψ(x)dx = ψ(y).

Computing this expression explicitly and using the fact that (Hω,ℓ − E)Φ± = 0, we find that
for all x ∈ Λ

(B.6) −Φ+(x)α
′
+(x) + Φ−(x)α

′
−(x) = IN

The derivative of (B.5) combined with (B.6) implies that

(B.7) Φ′+(x)α+(x)− Φ′−(x)α−(x) = IN .

We can solve the system made of (B.5) and (B.7) to find that

(B.8)

{
α+(x) = (Φ+(x))

−1 (Φ′+(x)Φ+(x)
−1 − Φ′−(x)Φ−(x)

−1)−1
α−(x) = (Φ−(x))

−1 (Φ′+(x)Φ+(x)
−1 − Φ′−(x)Φ−(x)

−1)−1
which concludes the proof. □

Our goal is now to bound supx,y∈ΛL0
|Γ0,L0(x)G

ω
ΛL0

(E, x, y)χ0,L0/3(y)| with good probability.

To this purpose, for any integer n ∈ [−L/3, L/3], we consider the event Ωϵ(n) as defined in
(2.48) but for the sequence of transfer matrices associated with {Hω,ℓ}ω∈Ω. We also denote by
T yx the transfer matrix from x to y associated with {Hω,ℓ}ω∈Ω
Proposition B.3. On Ωϵ := ∩n∈[−L/3,L/3]Ωϵ(n), we have that, for all x ∈ [−ℓL/3, ℓL/3] and
all y ∈ [ℓL− ℓ, ℓL],

(B.9) ||Gω
ΛL
(E, x, y)|| ≤ Ce−2(γN (E)−ϵ)ℓL.

Proof. We begin with proving that on Ωϵ, for all x ∈ [−ℓL/3, ℓL/3], Φ+(x) is invertible and
we estimate its inverse. It corresponds to bounding from below its N -th singular value.

Let n be the unique integer such that x ∈ [nℓ, (n + 1)ℓ). We first remark that, for all
p = 1, . . . , 2N ,

(B.10) sp(T
x
ℓL) ≥ sp(T

ℓn
ℓL )s2N(T

x
ℓn) = sp(T

ℓn
ℓL )∥T xℓn∥−1,
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where the last equality comes from the fact that T xℓn is symplectic. But we know from[8,
Lemma 6] that there exists a constant C > 0, independent of x and ω, such that ∥T xℓn∥ ≤ C.
As a consequence, sp(T

x
ℓL) ≥ C−1sp(T

ℓn
ℓL ).

We have the following singular value decomposition:

(B.11) T xℓL(E) = UΣV,

where U and V are unitary and, since we have a symplectic matrix, we can write Σ =(
Σ+ 0
0 Σ−

)
with Σ+ = diag(s1, . . . , sN) and Σ− = diag(1/s1, . . . , 1/sN) with si ≥ 1 for every

i ∈ {1, . . . , N}. We can write a block decomposition for U and V : U =

(
U11 U12

U21 U22

)
and

V =

(
V11 V12
V21 V22

)
. We have then

Φ+(x) =
(
IN 0

)(Φ+(x)
Φ′+(x)

)
=
(
IN 0

)
T xℓL(E)

(
0
IN

)
= U11Σ+V12 + U12Σ−V22.

But since, on the one hand, the blocks Uij, Vij have norm less than 1 and, on the other hand,
on the event Ωϵ(n), ∥Σ−∥ ≤ Ce−(γN (E)−ϵ)ℓ|L−n|, we can write that

sN(Φ+(x)) ≥ sN(U11Σ+V12)− Ce−(γN (E)−ϵ)ℓ|L−n|

≥ sN(U11)sN(Σ+)sN(V12)− Ce−(γN (E)−ϵ)ℓ|L−n|.

Since sN(Σ+) ≥ C−1e(γN (E)−ϵ)ℓ|L−n| (on the event Ωϵ(n)), we are left with controlling sN(U11)
and sN(V12). We can prove as in Claim 3.4 and Remark 3.5 of [24] that, on Ωϵ(n),

(B.12) sN(V12) ≥ e−
ϵ
25
ℓ|L−n| and sN(U11) ≥ e−

ϵ
25
ℓ|L−n|.

As a consequence, on Ωϵ(n),

(B.13) |sN(Φ+(x))| ≥ C−1e(γN (E)− 27ϵ
25

)ℓ|L−n| − Ce−(γN (E)−ϵ)ℓ|L−n|

For L large enough, one gets on Ωϵ,

(B.14) |sN(Φ+(x))| ≥ e(γN (E)−2ϵ) 2ℓL
3 > 0.

In particular, Φ+(x) is invertible.
The next step to be able to apply Lemma B.2 is to prove that Φ′+(x)Φ+(x)

−1−Φ′−(x)Φ−(x)
−1

is invertible. We prove as in Equation (33) of [24] that

(B.15) sN(Φ
′
+(x)Φ+(x)

−1 − Φ′−(x)Φ−(x)
−1) ≥ e−

ϵ
2
ℓL

Then, we have by Lemma B.2 that

(B.16) Gω
ΛL
(E, x, y) = Φ+(y)(Φ+(x))

−1(Φ′+(x)Φ+(x)
−1 − Φ′−(x)Φ−(x)

−1)−1.

Finally, we remark that, for such a y, we have by Lemma 2.7,

(B.17) |Φ+(y)|2 ≤ N exp

(
2

∫ ℓL

y

|Vω(t)|dt
)

≤ C,

with C independent of ω and L.
Together with (B.17), (B.13) and (B.15), it gives that on Ωϵ

(B.18) ||Gω
ΛL
(E, x, y)|| ≤ Ce−2(γN (E)− 7

4
ϵ)ℓL.
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□

The last step is to estimate the probability of Ωϵ. Since the sequence of transfer matrices
of {Hω,ℓ}ω∈Ω and its Furstenberg group satisfy the hypothesis of Proposition 2.28, changing
Sp∗N(C) in SpN(R) (which the first step of the proof of Proposition 2.28), there exist C, c > 0
such that P(Ωϵ(n)) ≤ Ce−cℓ|n−L|. As a consequence,

(B.19) P(c(Ωϵ)) ≥ 1−
∑

n∈[−L/3,L/3]

Ce−cℓ|n−L| ≥ 1− C ′e−c
′ℓL

which prove the ILSE for {Hω,ℓ}ω∈Ω.
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