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COVARIANT RECONSTRUCTION OF FORMS FROM THEIR

INVARIANTS

THOMAS BOUCHET

Abstract. Let K be an algebraically closed field of characteristic 0 and f be a homogeneous
polynomial. We provide an explicit algorithm, which, given the invariants of a generic f under
the action of GLn(K) returns a polynomial in the orbit of f . We derive a specific algorithm
for the reconstruction of a generic non-hyperelliptic curve of genus 4 from its invariants, as
well as a direct reconstruction algorithm for generic non-hyperelliptic curves of genus 3 from
their Dixmier-Ohno invariants.

1. Introduction

Invariant theory is the study of algebraic expressions that remain unchanged under various
transformations, such as linear changes of variables. Covariants and contravariants stand as
central concepts in this discipline, offering powerful tools for analyzing the geometric proper-
ties of algebraic structures. Invariant theory has lots of applications extending across various
fields, including combinatorics, physics, and computer vision.

Historically, mathematicians interested in invariant theory were primarily concerned with
generating systems of invariants of certain invariant algebras of binary or ternary forms under
the action of the special linear group. More recently, people have started to become interested
with the reverse question: given a point in the space of invariants, is there an explicit way
to find a form in that orbit? This problem has a wide range of applications: finding rational
models of curves (in particular for CM curves [BS15; Kıl+18]), arithmetic statistics [LRRS14],
and also mechanical physics [OKDD17].

Let n, d > 0, and let K be an algebraically closed field. For any (n + 1)-dimensional K-
vector space W , we let Symd(W ∗) denote the space of (n + 1)-ary d-forms with coefficients

in K, which is of dimension
(
n+d
d

)
. Let K[Symd(W ∗)]SLn+1 denote the algebra of invariant

functions of Symd(W ∗) under the action of SLn+1. By a theorem of Nagata [Nag64], this
algebra is always finitely generated. We assume that a finite set of generators {Ij}j∈J of

K[Symd(W ∗)]SLn+1 is known (see Section 2.4).
Our problem is as follows: let f ∈ Symd(W ∗), and suppose given the orbit of f under

the action of GLn+1 as a set of values (Ij(f))j∈J . Is it possible to explicitly find an element

of f ′ ∈ Symd(W ∗) such that f is in the same orbit as f ′? Under mild conditions on f , we
positively address this question by giving what we call a reconstruction algorithm.

While certain cases are treated in the litterature, it seems that this problem had not been
approached in its full generality. Mestre [Mes91] presented an algorithm for reconstructing
binary forms of degree 6, while Noordsij [Noo22] more recently introduced an algorithm for
the reconstruction of binary forms of degree 5 in his master’s thesis. Their algorithms extend
to generic binary forms of even and odd degrees respectively. The case of hyperelliptic curves
of genus 3 (binary forms of degree 8) is covered by [LR12, Lemma 3.24] (even curves with
extra automorphisms). Lercier and al. [LRS20] tackled the case of plane quartics by reducing
it to the reconstruction of a space of binary forms. Notably, all these methods rely on formulas
derived from Clebsch’s work [Cle70].

In this paper, we present an algorithm for reconstruction based on the theory of covariants
(see Definition 4), linear algebra and classical tools of algebraic geometry, instead of relying
on the Clebsch formulas.

We find a way to characterize a generic form f with equations which coefficients are in-
variants, or fractions of invariants, in a bigger space (given by a Veronese morphism). These
results are contained in Theorem 1 and its Corollary 2. They rely on an identity which ensures
that any form can be recovered from its “projection” onto products of elements from a basis
of smaller degree (see Corollary 1).

Main result 1 (see Theorem 1). Let k, d, n > 0. Let K be an algebraically closed field of
characteristic 0 or p > kd. Let W be a K-vector space with basis w0, . . . , wn and dual basis
x0, . . . , xn. Let f ∈ Symkd(W ∗), and let r = dimK(Symd(W ∗)) − 1. We assume that there
exist q0, . . . , qr covariants of order d which are linearly independent at f . Let

φ : Pn −→ Pr

[x0 : · · · : xn] 7−→ [q0(f(x0, . . . , xn)) : · · · : qr(f(x0, . . . , xn))]
.
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There exists an explicit f̃ ∈ Symk(Symd(W ∗)) such that φ realizes an isomorphism

V (f) ≃ V (f̃) ∩ Im(φ).

Moreover, equations for f̃ and Im(φ) can be computed by specializing explicit invariants of
Symkd(W ∗) which depend only on q0, . . . , qr and the identity covariant.

From this result, we derive an explicit reconstruction algorithm.

Main result 2 (see Proposition 5). With the same assumptions, there exists a reconstruction
algorithm that, given a generic family (Ij(f))j∈J of generating invariants evaluated at f ,

returns f ′ ∈ Symkd(W ∗) which is GLn+1-equivalent to f .

The proof of Theorem 1 relies on Equation (3), which gives a decomposition of f on products
of a basis of covariants of a given degree.

The case d = 1 is of great interest and is treated in Remark 3. If d > 1, there exist quadratic
relations among the qi(f), which complicate the matter in practice.

Remains the question of seeing when the assumptions of Theorem 1 are satisfied.

Main result 3 (see Corollary 3). In characteristic 0, any smooth hypersurface of degree d > 2
without automorphisms can be reconstructed with our algorithm.

Note that the condition on the automorphism group is not a necessary one, as illustrated
in [CQ05] by the case of binary forms of degree 6 with automorphism group C2 which can
be reconstructed using Mestre’s algorithm with a different set of covariants than the generic
case.

Finally, in Section 5, we revisit the reconstruction of binary forms and plane quartics, and
extend this method to reconstruct non-hyperelliptic curves of genus 4. In these cases, the
formulas are remarkably simple.

Eventhough this algorithm works in all generality, there are very few instances where it
can be effectively applied. Indeed, generators of the rings of invariants K[Symd(W ∗)]SLn+1

are not known, except for small values of d and n. In addition, even in these cases, the size
of the intermediate computations or outputs may be a severe limitation.

We provide a magma [BCP97] package for the reconstruction of non-hyperelliptic curves
of genus 3 and 4 [Bou24]. To a generic tuple of Dixmier-Ohno invariants, the function
ReconstructionGenus3 returns a plane quartic with these invariants (up to some weighted
projective equivalence). Similarly, to a generic tuple of invariants of non-hyperelliptic genus 4
curves (see [Bou23]), the function ReconstructionGenus4 returns a quadratic form Q and a
cubic form E such that the non-hyperelliptic curve of genus 4 given by V (Q,E) ⊂ P3 has said
invariants. Both cases rk(Q) = 3, 4 are covered. The author will soon update the package
with a function to reconstruct generically hyperelliptic curves of genus 4.

2. Reconstruction

We introduce the building blocks of the paper and expose an identity which is valid in a
general setting. We then move on to invariant theory, and apply the previously established
results to prove the main theorem.

Let n, d > 0, and let K be an algebraically closed field. Let W be a K-vector space with
basis w0, . . . , wn, and let x0, . . . , xn ∈W ∗ denote its dual basis.

2.1. Preliminaries.
In this section, we introduce a bilinear operator D which is equivariant in some sense. This

operator can produce new covariants/contravariants from old ones (see Lemma 4).

Definition 1. We extend the natural pairing W ×W ∗ → K to the K-bilinear map

D : K[w0, . . . , wn]×K[x0, . . . , xn] −→ K[x0, . . . , xn]

(wα0
0 · · ·wαn

n , P ) 7−→ ∂αP
∂xα0

0 · · · ∂xαn
n

,

where α =
∑

i αi.

One can also define D : K[x0, . . . , xn] ×K[w0, . . . , wn] → K[w0, . . . , wn] in a similar way.
The order of the arguments resolves any ambiguity. The bilinear map D is classically called the
“apolarity bilinear form” [Dol12; ER93], and gives an isomorphism Symd(W ∗) ≃ Symd(W )∗.

This map can be used to tackle the Waring problem for forms [ER93]. The Waring problem
consists, given a form f ∈ Symd(W ∗), in finding the minimal number of linear forms such
that f can be written the sum of the d-th powers of these linear forms. For example, a generic
ternary quintic can be written as the sum of 7 fifth powers [ER93, Corollary 4.3].
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Definition 2. Let d > 0. Let q0, . . . , qr be a basis of the K-vector space Symd(W ∗). We say
that q∗0, . . . , q

∗
r ∈ Symd(W ) is a dual basis for q0, . . . , qr, if for any 0 ≤ i, j ≤ r we have

D(q∗i , qj) = δi,j ,

where δi,j is the Kronecker symbol.

Lemma 1. Let p0, . . . , pr ∈ Symd(W ) and q0, . . . , qr ∈ Symd(W ∗). Then the matrix

Mp,q :=
(
D(pi, qj)

)
i,j

is invertible if and only if (pi)i and (qj)j are bases of their respective spaces.

Lemma 2. Let q0, . . . , qr be a basis of Symd(W ∗), and let q∗0, . . . , q
∗
r be its dual basis. Let bi

denote the i-th element of the canonical basis, for 0 ≤ i ≤ r. Let S be the change of basis
matrix from (bi)i to (qi)i. Then tS−1 is the change of basis matrix from (b∗i )i to (q∗i )i.

2.2. Main identity.
Let k, d, n > 0. We assume that char(K) > kd or char(K) = 0. Now, let W be a K-vector

space with basis w0, . . . , wn, and dual basis x0, . . . , xn. In this paragraph, we show how to
recover a form of degree kd from its “projection” onto elements of Symk(Symd(W )).

Definition 3. Let d ≥ 1, and α0, . . . αn ≥ 0 of sum d. We define the multinomial coefficient
associated to (αi)i as (

d

α0, . . . , αn

)
=

d!

α0! · · ·αn!
.

Lemma 3. For any integers α0, . . . , αn ≥ 0 of sum kd, we define

Jα =

{
(βi,j)1≤i≤k

0≤j≤n

∣∣∣∣∣ βi,j ≥ 0 ,
n∑

l=0

βi,l = d ,
k∑

l=1

βl,j = αj

}
.

We have the following equality:∑
(βi,j)∈Jα

(
d

β1,0, . . . , β1,n

)
· · ·

(
d

βk,0, . . . , βk,n

)
=

(
kd

α0, . . . , αn

)
. (1)

Proof. The coefficients of xα0
0 · · ·xαn

n in (x0+. . .+xn)
kd and in (x0+. . .+xn)

d · · · (x0+. . .+xn)d
are equal. By computing these numbers, we obtain Equation (1). □

We now prove a Taylor-like identity, which is at the heart of the algorithm.

Proposition 1. Let f ∈ Symkd(W ∗), let b0, . . . , br denote the canonical basis of Symd(W ∗),
and let b∗0, . . . , b

∗
r be its dual basis. Then we have

(kd)!

d!k
f =

∑
0≤i1,...,ik≤r

D(b∗i1 · · · b
∗
ik
, f)bi1 · · · bik . (2)

Proof. Since D is bilinear, we prove that statement only for monomials.
Let f = xα0

0 · · ·xαn
n ∈ Symkd(W ∗). We compute the right member of Equation (2):∑

0≤i1,...,ik≤r

D(b∗i1 · · · b
∗
ik
, f)bi1 · · · bik

=
∑

βi,j≥0
∀i,

∑n
j=0 βi,j=d

D

(
1

β1,0! · · ·βk,n!
w

∑k
i=1 βi,0

0 · · ·w
∑k

i=1 βi,n
n , f

)
x
∑k

i=1 βi,0

0 · · ·x
∑k

i=1 βi,n
n

=
∑

(βi,j)∈Jα

α0! · · ·αn!

β1,0! · · ·βk,n!
f

=
α0! · · ·αn!

d!k

∑
(βi,j)∈Jα

d!∏n
j=0 β1,j !

· · · d!∏n
j=0 βk,j !

f

=
α0! · · ·αn!

d!k

∑
(βi,j)∈Jα

(
d

β1,0, . . . , β1,n

)
· · ·

(
d

βk,0, . . . , βk,n

)
f

=
α0! · · ·αn!

d!k

(
kd

α0, . . . , αn

)
f

=
(kd)!

d!k
f .

Since char(K) > kd or char(K) = 0, all the operations above are legal. □

A somewhat similar computation is carried out in [ER93, Proposition 3.2].
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Remark 1. To avoid problems in positive characteristic, one might be tempted to use Hasse-
Schmidt derivatives [SH37] instead of partial derivatives. However, things do not unfold as
smoothly as one might expect, and the condition on the characteristic of K remains.

Corollary 1. Let f ∈ Symkd(W ∗), let q0 . . . , qr be a basis of Symd(W ∗), and let q∗0, . . . , q
∗
r

denote its dual basis. Then we have

(kd)!

d!k
f =

∑
0≤i1,...,ik≤r

D(q∗i1 · · · q
∗
ik
, f)qi1 · · · qik . (3)

Proof. We use Lemma 2 and Proposition 1 to compute the right hand side of Equation (3).
After some simplifications, we obtain the desired result. □

Let us introduce the Veronese embedding that maps [x0 : · · · : xn] to all monomials of total
degree d:

vn,d : Pn −→ Pr

[x0 : · · · : xn] 7−→ [xd0 : xd−1
0 x2 : · · · : xdn]

.

It is well-known that vn,d realizes an isomorphism of Pn onto its image, which is defined
by quadratic forms [Har92, Exercise 2.5]. Let X0, . . . , Xr denote coordinates for Pr. These
quadratic forms can be written as XiXj − XlXm for some well-chosen i, j, l and m (we can
have i = j or l = m). The number of such quadratic forms is

dim(Sym2(Symk(W ∗)))− dim(Sym2k(W ∗)) .

Let q0 . . . , qr be a basis of Symd(W ∗). It is clear that the morphism

φ : Pn −→ Pr

[x0 : · · · : xn] 7−→ [q0(x0, . . . , xn) : · · · : qr(x0, . . . , xn)]

is also an isomorphism of Pn onto its image, which is defined by quadratic forms. These
quadratic forms reflect the relations that exist among the qi’s.

Proposition 2. Let f ∈ Symkd(W ∗), let q0 . . . , qr be a basis of Symd(W ∗), and let q∗0, . . . , q
∗
r

be its dual basis. There exists an explicit f̃ ∈ Symk(Symd(W ∗)) such that

V (f) ≃ V (f̃) ∩ Im(φ).

Proof. Let

f̃ =
∑

0≤i1,...,ik≤r

D(q∗i1 · · · q
∗
ik
, f)Xi1 · · ·Xik .

Then by Corollary 1, we have V (f̃(q0, . . . , qr)) = V (f), which concludes the proof. □

Proposition 3. Let

f̃ =
∑

0≤i1,...,ik≤r

D(q∗i1 · · · q
∗
ik
, f)Xi1 · · ·Xik ,

and let Q0, . . . , Qs be a set of quadratic forms which define Im(φ).

The knowledge of f̃ and the Qi’s allows to recover f ′ ∈ Symkd(W ∗) which is GLn+1-
equivalent to f .

Proof. Since the image of φ is defined by theQi’s, there exists a parametrization φ′ : Pn −→ Pr

of Im(φ) (we know there exists one, given by φ). Thus, since they have the same image, φ
and φ′ differ only from an automorphism of PGLn+1.

Let q′0(x0, . . . , xn), . . . , q
′
r(x0, . . . , xn) ∈ Symd(W ∗) be the coordinates of φ′. We obtain that

f̃(q′0(x0, . . . , xn), . . . , q
′
r(x0, . . . , xn)) is GLn+1-equivalent to f . □

2.3. Generalization.
Equation (3) can be extended to tensor spaces. Let W1, . . . ,Ws be finite-dimensional K-

vector spaces. Let Ds denote the composition of the operators D for W1, . . . ,Ws. In that
situation, a similar statement as Corollary 1 can be made.

Proposition 4. Let k, d1, . . . , ds > 0. Let f ∈ Symkd1(W ∗
1 ) ⊗ · · · ⊗ Symkds(W ∗

s ), and let

q0 . . . , qr be a basis of Symd1(W ∗
1 )⊗· · ·⊗Symds(W ∗

s ). Let q∗0, . . . , q
∗
r denote its dual basis with

respect to Ds (such a basis exists, and is unique). Then we have

(kd1)!

d1!k
· · · (kds)!

ds!k
f =

∑
0≤i1,...,ik≤r

Ds(q
∗
i1 · · · q

∗
ik
, f)Xi1 · · ·Xik , (4)

where X0, . . . , Xr are coordinates for Pr.
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This can be proven by induction on s, since D acts independently and successively on
the different spaces Wi. Hence, like in the previous subsection, one can find an explicit
isomorphism V (f) ≃ V (f̃) ∩ Im(φ), where

f̃ =
∑

0≤i1,...,ik≤r

Ds(q
∗
i1 · · · q

∗
ik
, f)qi1 · · · qik ,

and φ is the morphism which associates to points of
∏

i Pdim(Wi)−1 the qj ’s evaluated at this
point.

2.4. Invariant theory.
In this section, we introduce some basic notions of invariant theory, which include invariants

and covariants.
Let n, d > 0, and K be an algebraically closed field. Take W as a (n + 1)-dimensional K

vector space with basis w0, . . . , wn and dual basis x0, . . . , xn. Let G = SLn+1 or GLn+1. The
group G acts naturally on W by left multiplication

(g, v) 7→ gv ,

which induces a contragredient G-action on W ∗

(g, x) 7→ tg−1x,

where x is written in coordinates in the basis x0, . . . , xn.
These actions induce an action of G on Symd(W ) and Symd(W ∗). Moreover, we say that

f1, f2 ∈ Symd(W ∗) are G-equivalent if one can transform f1 into f2 with the action of an
element of G.

We letK[Symd(W ∗)]SLn+1 be the algebra of invariant functions on Symd(W ∗) for the action
of SLn+1.

Definition 4. Let k > 0 and r ≥ 0. A covariant (resp. contravariant) of Symk(W ∗) is an
SL(W )-equivariant homogeneous polynomial map

C : Symk(W ∗) → Symr(W ∗)

(resp. C : Symk(W ∗) → Symr(W ) ).

One calls r the order of C, and its degree is the degree of C as a homogeneous polynomial
map. In the special case r = 0, C is called an invariant. Moreover, the weight of a covariant
is defined to be the integer (kd− r)/(n+ 1) (resp. (kd+ r)/(n+ 1)).

There are multiple ways to find covariants/contravariants. Usually, one starts with a form
with coefficients given as indeterminates, and then apply equivariant transformations to it.
One such equivariant transformation is the Ω-process [Olv99], which gives rise to a differential
operator called the transvectant. The transvectant is traditionally used for the description of
the algebra of covariants/invariants of binary forms.

However, in general, it is not possible to determine all covariants and invariants through
repeated iterations of the transvectant. We refer the interested reader to [GK06], in which
the authors recall several ways to construct covariants and contravariants. We now show how
the apolar bilinear form D can be used to construct covariants and contravariants.

Definition 5. Let p be a contravariant of Symd(W ∗) and q a covariant of Symd(W ∗). We
define D(p, q) pointwise: [D(p, q)](f) = D(p(f), q(f)) for all f ∈ Symd(W ∗). We define D(q, p)
in a similar way.

Lemma 4. Let p be a contravariant of Symd(W ∗) and q a covariant of Symd(W ∗) of re-
spective orders rp, rq and degrees dp, dq. Then D(p, q) (resp. D(q, p)) is a covariant (resp.

contravariant) of Symd(W ∗) of order rq − rp (resp. rp − rq) and degree dp + dq.

Lemma 5. Let r = dimK(Symd(W ∗))−1, and l > 0. Let us assume that there exist q0, . . . , qr
covariants of order d of Syml(W ∗), which are generically linearly independent. Let S be the
change of basis matrix from the canonical basis (bi)i to (qi)i, and let ∆ be its determinant.
Clearly ∆ is a non-zero invariant of Syml(W ∗). Moreover, ∆tS−1 is a matrix whose columns
are contravariants, precisely the dual basis q∗0, . . . , q

∗
r multiplied by the invariant ∆.

2.5. Main theorem.
We have all the tools at our disposal to present the main results of this paper, Theorem 1

and its Corollary 2.

Theorem 1. Let k, d, n > 0. Let K be an algebraically closed field of characteristic 0 or
p > kd. Let W be a K-vector space with basis w0, . . . , wn and dual basis x0, . . . , xn. Let



6 THOMAS BOUCHET

f ∈ Symkd(W ∗), and let r = dimK(Symd(W ∗)) − 1. We assume that there exist q0, . . . , qr
covariants of order d which are linearly independent at f . Let

φ : Pn −→ Pr

[x0 : · · · : xn] 7−→ [q0(f(x0, . . . , xn)) : · · · : qr(f(x0, . . . , xn))]
.

There exists an explicit f̃ ∈ Symk(Symd(W ∗)) such that φ realizes an isomorphism

V (f) ≃ V (f̃) ∩ Im(φ).

Moreover, equations for f̃ and Im(φ) can be computed by specializing explicit invariants of
Symkd(W ∗) which depend only on q0, . . . , qr and the identity covariant.

Proof. Let ∆q∗0, . . . ,∆q
∗
r be the set of contravariants defined in Lemma 5 of Symkd(W ∗). By

assumption, they are linearly independent at f .
Let X0, . . . , Xr be coordinates for Pr. We define

f̃ =
∑

0≤i1,...,ik≤r

D(∆q∗i1 · · ·∆q
∗
ik
, Id)(f)Xi1 · · ·Xik ,

where Id is the identity covariant of Symkd(W ∗).
We use Proposition 2, applied to the basis of covariants q0(f), . . . , qr(f) and its dual basis

(up to ∆) ∆q∗0(f), . . . ,∆q
∗
r (f), and we obtain V (f) ≃ V (f̃) ∩ Im(φ).

Moreover, the coefficients of f̃ are invariants of f , by Lemma 4. Remains to see how to to
compute quadratic forms defining the image of φ with invariants.

The image of φ is defined by quadratic forms that reflect the relations between the qi(f)’s.
We note that the family (∆q∗i (f)∆q

∗
j (f))0≤i,j≤r generates the space Sym2d(W ), which means

that for any Q ∈ Sym2d(W ∗), we have

∀ 0 ≤ i, j ≤ r,D(∆q∗i (f)∆q
∗
j (f), Q) = 0 ⇐⇒ Q = 0.

Thus, one way to find a basis of quadratic relations for the qi(f)’s is to compute the right
kernel of the matrix of invariants (specialized at f)(

D(∆q∗i∆q
∗
j , qlqm)(f)

)
0≤i,j≤r
0≤l,m≤r

,

which is of size (r + 1)2 × (r + 1)2. □

Corollary 2. With the same assumptions, knowing the values of a generating set of invariants
at f is theoretically enough to recover a form f ′ ∈ Symkd(W ∗) which is GLn+1-equivalent to
f .

This follows from Proposition 3. However, it is hard to find a parametrization φ′ of the
image of φ in practice. We will see in the next section an algorithmic solution to this problem
for small values of r.

3. Reconstruction algorithm

In this section, we present a reconstruction algorithm, which, given a set of specialized
generating invariants of K[Symkd(W ∗)]SLn+1 , returns an element of Symkd(W ∗) with said in-
variants. We first give the ideas of this algorithm, and then show some possible improvements.

Let k, d, n > 0. LetW be a K-vector space with basis w0, . . . , wn and dual basis x0, . . . , xn.
Let f ∈ Symkd(W ∗), and let r = dimK(Symd(W ∗))−1. We assume that there exist q0, . . . , qr
covariants of order d which are linearly independent at f .

3.1. Algorithm.
We derive a reconstruction algorithm from Corollary 2.

Proposition 5. Let k, d, n > 0. Let K be an algebraically closed field of characteristic 0
or p > kd. Let W be a K-vector space with basis w0, . . . , wn and dual basis x0, . . . , xn. Let
f ∈ Symkd(W ∗), and let r = dimK(Symd(W ∗)) − 1. We assume that there exist q0, . . . , qr
covariants of order d which are linearly independent at f . Let (Ij)j∈J be a (finite) set of

generators of K[Symkd(W ∗)]SLn+1. Then there exists a reconstruction algorithm, which, given
(Ij(f))j∈J , returns a form f ′ ∈ Symkd(W ∗) which is GLn+1-equivalent to f .

We explain how to derive such an algorithm from Theorem 1. Here is a high-level description
to clarify our point:

(1) The first step (which is done only once for every set of covariants) consists in the
precalculation of a decomposition on a generating set of invariants of all the invariants
required for the computation of f̃ and the matrix

(
D(∆q∗i∆q

∗
j , qlqm)

)
.

(2) One can then specialize these formulas to a specific f by evaluating the decomposition
polynomials at the values of the generating set of invariants at f .
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(3) Finally, we can parametrize Im(φ) using the quadratic forms. Then, by evaluating f̃
on this parametrization, we recover f ′ ∈ Symkd(W ∗) which is GLn+1-equivalent to f .

The first step can be done using an evaluation-interpolation strategy, and the second step
is clear. At the end of the next paragraph, we discuss a strategy that we came up with to
solve the problem of parametrization for small r.

3.2. Improvements.
In order to make this algorithm run in practice, it is necessary to improve it.
First, we remark that if we choose q1, . . . , qr generically linearly independent covariants

of Symkd(W ∗) of degrees d1, . . . dr, their dual basis ∆q∗1, . . . ,∆q
∗
r of contravariants has high

degree: deg(∆q∗i ) = di +2
∑

j ̸=i dj . The coefficients of f̃ are of very high degree, thus finding
a decomposition of these invariants on a generating set of invariants is not doable in general.

To avoid this problem, we choose a set of covariants q and a set of contravariants p. We com-
pute a decomposition of the invariants of smaller degrees D(pi1 · · · pik , Id) and D(pipj , qlqm).
We use the following remark to see that it is easy to make the connection with Theorem 1.

Remark 2. Let Mp,q =
(
D(pi, qj)

)
i,j
. Then the basis (pi(f)

∗)i can be expressed using the

basis (qj(f))j , by the following formula:

(pi(f)
∗)i =M−1

p,q (qj(f))j ,

Hence, if we let

f̃p,q =
∑

0≤i1,...,ik≤r

D(pi1 · · · pik , f)Xi1 · · ·Xik ,

and

Qp,q =
(
D(pipj , qlqm)(f)

)
0≤i,j≤r
0≤l,m≤r

,

we have

f̃p,q(p0(f)
∗, . . . , pr(f)

∗) =
(kd)!

d!k
f,

and the quadratic relations between the pi(f)
∗ can be known by computing a basis of the

right kernel of Qp,q
tM−1

p,q .

To summarize, here is what need to be precomputed:

(1) The decomposition of D(pi, qj) for all 0 ≤ i, j ≤ r for the computation of the dual
basis of p by inverting Mp,q.

(2) The decomposition of D(pipj , qlqm) for all 0 ≤ i, j, l,m ≤ r for the computation of the
quadratic forms.

(3) The decomposition of D(pi1 · · · pik , f) for all 0 ≤ i1, . . . , ik ≤ r for the computation of

f̃ .

It consists in a total of (r+1)k+(r+1)4+(r+1)2 invariants, of degrees at most max(d2pd
2
q , d

k
p+

1), where dp (resp. dq) is the maximal degree of the contravariants (resp. covariants).

We now turn to the problem of the quadratic forms: by computing the right kernel of the
matrix Qp,q

tM−1
p,q , one recovers a basis in which the quadratic forms have no prescribed rank.

However, it is shown in [Har92] that the canonical quadratic forms which define the Veronese
embedding have rank 3 or 4. The problem of finding a quadratic form of prescribed rank as
a linear combination of a set of other quadratic forms is known to be a difficult problem.

Thus, we expose an algorithmic solution that works for small r. It is based on the fact that
we know a parametrization of the canonical Veronese embedding, hence we try to reduce to
the case where the quadratic forms are the ones defining the image of the canonical Veronese
embedding. In order to do so, we consider the matrix Qb∗,b where b denotes the canonical

basis of Symd(W ∗), and b∗ its dual basis. We now play with the matrix Qp(f),p(f)∗ to somehow
change it to Qb∗,b.

In fact, it is easy to see that if M is an (r+ 1)× (r+ 1) matrix with coefficients in K, and
that we have

QMp(f),tM−1p(f)∗ = (M ⊗M)Qp(f),p(f)∗(M ⊗M)−1 .

Thus, our algorithmic solution is to try and find an invertible matrix M such that

Qb∗,b(M ⊗M) = (M ⊗M)Qp(f),p(f)∗ . (5)

Then by changing p(f) into Mp(f), and p(f)∗ into tM−1p(f)∗, the quadratic relations we
obtain are the ones corresponding to the canonical embedding.

We know that Equation (5) has a solution, since p(f) and b∗ are both bases of Symd(W ).
The problem of finding a solution to Equation (5) can be solved by considering M as a

matrix of indeterminates. Then, we try to find a solution to the system of (r+ 1)4 quadratic
equations in (r+1)2 indeterminates given by Qb∗,b(M ⊗M)− (M ⊗M)Qp(f),p(f)∗ = 0. In our
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area of application, it can be done by doing Gröbner bases, and assigning arbitrary values to
some indeterminates.

Once a solution is known, one needs to update f̃(X) to g := f̃(tMX). Eventually, g(b) =
g(xd0, . . . , x

d
n) is GLn+1-equivalent to f .

Remark 3. In the case d = 1, we have r = n, so the morphism φ introduced in Section 2 is
just an automorphism of Pn. Hence, by choosing n + 1 contravariants of order d which are
linearly independent at f , we obtain

f̃ =
∑

0≤i1,...,ik≤r

D(pi1(f) · · · pik(f), f)Xi1 · · ·Xik .

Since

f̃(p0(f)
∗, . . . , pr(f)

∗) =
(kd)!

d!k
f ,

it is clear that f̃ and f are GLn+1-equivalent.
This fact is used to provide a new reconstruction algorithm for smooth plane quartics in

Section 5.2.

Remark 4. We note that in the opposite case k = 1, the situation is significantly worse:
eventhough the form f itself is a covariant, the number of invariants needed explodes, and
the step of parametrization of Im(φ) becomes unmanageable. As a result, in practice, we use
d = 1, 2 whenever possible.

4. Reconstruction of smooth hypersurfaces

Let K be an algebraically closed field of characteristic 0. Let k, d, n > 0. Let W be a
(n+ 1)-dimensional K-vector space, and let W ∗ denote its dual. In this paragraph, we show
that under mild assumptions on f ∈ Symkd(W ∗), there exist dimK(Symd(W ∗)) covariants of
Symkd(W ∗) which are linearly independent at f . We use the notion of stability defined in
Mumford’s GIT theory [MFK94]. One can find an exposure that suits our needs in [Dol03,
Chapters 8, 9].

Let us recall an important result, written in its original form.

Proposition 6 ([Dom08, Prop 3.1]). Let G be a linearly reductive group, X an affine G-
variety, and W a G-module. If for some x ∈ X having closed orbit the stabilizer Gx acts
trivially on W , then there exist s = dimK(W ) covariants F1, . . . , Fs ∈ CovG(X,W ) such that
F1(x), . . . , Fs(x) are linearly independent over K.

Proposition 7. For every stable f ∈ Symkd(W ∗) such that V (f) has trivial automorphism
group, the following statements are equivalent:

(1) There exist q0, . . . , qr covariants of order d which are linearly independent at f ,

(2) gcd

(
k,

(n+ 1)

gcd(n+ 1, d)

)
= 1.

Proof. Since the existence of covariants of order d of Symkd(W ∗) implies the second statement,
we only need to prove the converse.

We are going to apply Proposition 6 with G = SLn+1, X = Symkd(W ∗), and W =
Symd(W ∗). Since char(K) = 0, G is linearly reductive. However, this does not apply to
positive characteristic: SLn+1 is still reductive, but not linearly reductive.

It is known that the elements of the stable locus have closed orbit [Dol03, Chapter 8]. Now,
let f ∈ X such that V (f) has trivial automorphism group. It may happen that the subgroup
Gf of SLn+1 that fixes f is non trivial. In fact, it is easy to prove that

Gf = {λ Id | λkd = λn+1 = 1}.

We derive from this equality that Gf acts trivially on W = Symd(W ∗) if and only if for

all λ ∈ Gf , λ
d = 1. This is the case if and only if gcd(kd, n + 1) = gcd(d, n + 1), and this

condition can be rewritten as

gcd

(
k,

n+ 1

gcd(d, n+ 1)

)
= 1 .

In addition, we have

kdα− d

n+ 1
=

d

gcd(d, n+ 1)
· kα− 1

n+ 1

gcd(d, n+ 1)

.

In other words, for any order d for which covariants of Symkd(W ∗) might exist (meaning
for which the weight kdα−d

n+1 is an integer), there exist at least dimK(Symd(W ∗)) generically

linearly independent covariants of Symkd(W ∗).
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In that case, we can apply Proposition 6, which implies the existence of the desired covari-
ants. □

Corollary 3. We assume that kd ≥ 3 and that gcd

(
k,

(n+ 1)

gcd(n+ 1, d)

)
= 1. For any form

f ∈ Symkd(W ∗) such that V (f) is a smooth hypersurface with trivial automorphism group,
the reconstruction algorithm (Corollary 5) applies.

Proof. According to [Dol03, Theorem 10.1], any non-singular element of Symkd(W ∗) is stable.
Hence, by Proposition 7, there exist covariants that can be used to meet the requirements of
Corollary 5. □

Remark 5. Let Cd be the K[Symkd(W ∗)]SLn+1-module of covariants of order d. Since the
space of covariants is finitely generated, so is Cd. Let q0, . . . , ql be a generating family of Cd.
Now let f ∈ Symkd(W ∗) be stable such that V (f) has no automorphisms. Then there exist
r = dimK(Symd(W ∗)) covariants of order d which are linearly independent at f . Hence, there
must be r covariants in the set q0, . . . , ql which are linearly independent at f .

The point is that once we have at our disposal a generating set of covariants of a given
degree, any stable f ∈ Symkd(W ∗) such that V (f) has no automorphisms can be covariantly
reconstructed by using only a subset of these generating covariants. In practice, determining
such a set of covariants may be computationally hard, even infeasible. Their degrees are
not known, and depend on k, d and n. If the degrees of some of them are too high, the
precomputation part of the algorithm might prove impossible to do.

5. Examples

5.1. Binary forms.
We turn to the case of binary forms, for which reconstruction algorithms have been found

by Mestre [Mes91] and Noordsij [Noo22]. Let W be a 2-dimensional K-vector space with
basis w0, w1 and dual basis x0, x1.

Definition 6. Let f ∈ Symd(W ∗), g ∈ Syme(W ∗) for some d, e > 0. For all l > 0, we define
the l-th transvectant of f, g to be

(f, g)l =

l∑
i=0

(−1)i
(
l

i

)
∂lf

∂ix0∂l−ix1

∂lg

∂l−ix0∂ix1
.

Proposition 8. We define the linear function

τ : K[x0, x1] −→ K[w0, w1]

xi0x
j
1 7−→ (i+ j)!(−1)iwj

0w
i
1

.

Then for all C ∈ Symd(W ∗), C ′ ∈ Symd′(W ∗), we have:

D(τ(C), C ′) = (C,C ′)d.

Moreover, if C is a covariant of Symr(W ∗), then τ(C) is a contravariant of the same space.

A similar statement holds for its inverse map τ−1, which maps contravariants to covariants.
These functions make the connection between the transvectant operator for binary forms and
the operator D. Hence, if (qi)i is a family of covariants of order d of Symkd(W ∗) which are
generically linearly independent, (pi := τ(qi))i is a family of contravariants of order d of
Symkd(W ∗) which are generically linearly independent. Thus, one can use the families pi and
qj to reconstruct a generic element of Symkd(W ∗).

Remark 6. We note that τ is not exactly multiplicative. In fact, if q1, . . . , qk ∈ K[x0, x1]d,
we have

τ(q1) · · · τ(qk) =
d!k

(kd)!
τ(q1 · · · qk). (6)

We now detail the cases d = 1 and d = 2.
For odd k, the condition on the gcd of Proposition 7 can be satisfied with d = 1.

Corollary 4. Let f be a binary form of odd degree k ≥ 5 such that V (f) is smooth and has
no automorphisms (it is generically the case). Then there exist q0, q1 covariants of order 1
which are linearly independent at f . Moreover, if we let

f̃ =
k∑

i=0

(
qi0(f)q

k−i
1 (f), f

)
k
Xi

0X
k−i
1 ,

we obtain that f̃ is GL2-equivalent to f .
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Proof. This result is implied by Theorem 1. Indeed, if p0(f)
∗, . . . , pr(f)

∗ is the dual basis

of p0(f), . . . , pr(f), then f̃(p0(f)
∗, . . . , pr(f)

∗) = f . We observe that the constant (kd)!
d!k

of

Equation (3) cancels with the constant d!k

(kd)! of Equation (6). □

This statement is very similar to [Noo22, Theorem 3.10]. The only difference is that his

formula for f̃ is not written with transvectants. In addition, his theorem includes binary
forms of degree 5 with automorphisms, which are not all covered here.

However, for binary forms of even degree k, we have gcd

(
k,

2

gcd(1, 2)

)
= 2 ̸= 1. Thus,

binary forms of even degree do not have covariants of order 1, so we naturally turn to covariants
of order 2.

Corollary 5. Let f be a smooth binary form of even degree k ≥ 6 such that V (f) has no
automorphisms (it is generically the case). Then there exist 3 covariants q0, q1, q2 of order 2
which are linearly independent at f . Moreover, we have

V (f) ≃ V (Q, f̃),

where

f̃ =
∑

0≤i,j≤k
i+j≤k

(
qi0(f)q

j
1(f)q

k−i−j
2 (f), f

)
2k
Xi

0X
j
1X

k−i−j
2

Q =
∑

0≤i,j≤2

(qi, qj)2XiXj .

From Q and f̃ , one can recover f ′ ∈ Sym2k(W ∗) which is GL2-equivalent to f .

This is essentially Mestre’s approach. He exhibits an equation for this quadratic form Q
(this equation ). Then, by finding a point on V (Q), he parametrizes it, and by reinjecting in

f̃ , he obtains an element f ′ ∈ Symk(W ∗) which is GL2-equivalent to f .
Our method extends the existing algorithms to direct sums of binary spaces.

Proposition 9. Let s > 1, k1, . . . , ks > 0 and d = 1 or 2 such that if 2| gcd(k1, . . . , ks),
then d = 2. Let K be an algebraically closed field of characteristic 0 or p > dmax(ki). Let
W be a 2-dimensional K-vector space. Let W ′ = Symdk1(W ∗) ⊕ . . . ⊕ Symdks(W ∗), and let
f = (f1, . . . , fs) ∈ W ′ such that f is stable in W , and the intersection of the automorphism
groups of the V (fi) (inside PGL2) for all i is trivial. There are 2 cases:

(1) If d = 2, there exist 3 covariants q0, q1, q2 of order 2 of W ′ which are linearly inde-
pendent at f . For all 1 ≤ i ≤ s, let

f̃i =
∑

0≤l,m≤ki
l+m≤ki

(
ql0(f)q

m
1 (f)qki−l−m

2 (f), f
)
2ki
X l

0X
m
1 X

ki−l−m
2 ,

and

Q =
∑

0≤l,m≤2

(ql, qm)2XlXm.

Then the coefficients of Q and f̃i are invariants of W ′ for all i, and one can recover
f ′ = (f ′1, . . . , f

′
s) ∈ W ′ which is GL2-equivalent to f only from the data of Q and all

the f̃i.
(2) If d = 1, there exist 2 covariants q0, q1 of order 1 of W ′ which are linearly independent

at f . For all 1 ≤ i ≤ s, let

f̃i =
∑

0≤l≤ki

(
ql0(f)q

ki−l
1 (f), f

)
ki
X l

0X
ki−l
1 .

Then the coefficients of the f̃i’s are invariants of W ′, and f ′ = (f̃1, . . . , f̃s) ∈ W ′ is
GL2-equivalent to f

With this proposition and Corollaries 4 and 5, one can derive a reconstruction algorithm for
direct sums of binary spaces. The author is not aware of the existence of such an algorithm in
the litterature. Until now, the reconstruction algorithms of direct sums of binary spaces first
reconstructed a form of highest degree max(dki), and were able to reconstruct the other forms
using Groëbner bases and the mixed conditions on the invariants (see for example [LRS20]).

Example 1. Let W be a 2-dimensional K-vector space. Let W ′ := Sym6(W ∗)⊕ Sym4(W ∗),
and let f = (f6, f4) ∈W ′.
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We pick 3 covariants of W of order 2, and assume that they are linearly independent at f :

q0(f) = (f6, f4)4 ,

q1(f) = (f6, f
2
4 )6 ,

and q2(f) = (f26 , f
3
4 )11 .

We define

f̃6 =
∑

0≤i,j≤3
i+j≤3

(qi0q
j
1q

3−i−j
2 , f6)6X

i
0X

j
1X

3−i−j
2

f̃4 =
∑

0≤i,j≤2
i+j≤2

(qi0q
j
1q

2−i−j
2 , f4)4X

i
0X

j
1X

2−i−j
2

Q =
∑

0≤i,j≤k

(qi, qj)2XiXj .

Now let φ denote the Veronese embedding [x : y] 7−→ [q0(f) : q1(f) : q2(f)]. Its im-

age is defined by Q, and we find that f6 = f̃6(τ(q0(f))
∗, τ(q1(f))

∗, τ(q2(f))
∗) (resp. f4 =

f̃4(τ(q0(f))
∗, τ(q1(f))

∗, τ(q2(f))
∗)).

Finding a point on V (Q) allows us to parametrize V (Q). The evaluation of f̃6 and f̃4 on
this parametrization give (f ′6, f

′
4) ∈W ′ which is GL2-equivalent to f .

Moreover, Olive [Oli17, Theorem 8.3] proved that a minimal set of generating covariants of
order 2 ofW ′ (as aK[W ′]SL2-module) is generated by 68 elements. Hence, if the automorphism
group of V (f6) intersected with the automorphism group of V (f4) is trivial, and f belongs to
the stable locus ofW ′, there exist 3 covariants of order 2 ofW ′ which are linearly independent
at f by Proposition 6. These covariants can be taken in the generating set of 68 covariants,
by Remark 5.

5.2. Reconstruction of non-hyperelliptic curves of genus 3.
The canonical embedding of a non-hyperelliptic curve of genus 3 is given by a smooth,

irreducible plane quartic. The isomorphism classes of these curves are completely determined
by a set of invariants, called the Dixmier-Ohno invariants [Dix87; Ohn07]. In [LRS20], the
authors give an algorithm to reconstruct a generic plane quartic from the data of the Dixmier-
Ohno invariants. They use an exceptional isomorphism between SO3 and SL2/{±1} to reduce
to the known case of binary forms.

Their algorithm involves a construction over a quadratic extension of the field of definition
of the invariants. In addition, the authors make the generic assumption that I12 ̸= 0.

We present an algorithm that solves the problem of reconstruction of plane quartics from
the Dixmier-Ohno invariants in more generality. Indeed, the set of smooth plane quartics
with non-trivial automorphism group is of codimension 2.

Theorem 2. LetW be a 3-dimensional K-vector space, and let f ∈ Sym4(W ∗) such that V (f)
is smooth and has no automorphisms. Then there exist 3 covariants of order 1 of Sym4(W ∗),
q0, q1, and q2 such that f can be covariantly reconstructed from q0, q1 and q2.

By Remark 5, finding a generating set of order 1 contravariants of Sym4(W ∗) is enough to
reconstruct all smooth non-hyperelliptic curves of genus 3 with no automorphisms. Presently,
the author does not know such a generating set. However, we give 3 contravariants of order
1 which are generically linearly independent, and allow to reconstruct generically.

The transvectant of ternary forms is defined as the determinant of the Ω-process [Olv99]
for ternary forms. It takes 3 arguments, and is denoted (·, ·, ·)l. Let ′ be the operator defined
in [GK06, End of page 6]. This operator allows to change covariants into contravariants,
and vice-versa. We now construct contravariants p0, p1, p2 by considering the covariants and
contravariants in Table 1.

By Remark 3,

f̃ =
∑

0≤i1,...,i4≤2

D(pi1 · · · pi4 , f)Xi1 · · ·Xi4

is GL3-equivalent to f .

For the precomputation phase, we need the decomposition of the invariants D(pi1 · · · pi4 , Id)
for all 0 ≤ i1 ≤ . . . ≤ i4 ≤ 2, for a total of 15 invariants. The degrees of the invari-
ants vary from 57 to 69, and their decomposition (calculated using a method of evaluation-
interpolation) took at most 1 day of computation. These decompositions are stored in [Bou24,
Decomposition genus3.m]. After this step of decomposition, the actual reconstruction algo-
rithm consists in specializing the invariants D(pi1 · · · pi4 , Id) to f . This step is very fast,
around 0.2 seconds in practice for reasonably sized entries.
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Example 2. Let

f =− 745x30x2 − 6705x20x1x2 − 75990x20x
2
2 − 1788x0x

3
1 − 36207x0x

2
1x2 − 571266x0x1x

2
2

− 1827336x0x
3
2 − 7152x41 − 123819x31x2 − 1834488x21x

2
2 + 950004x1x

3
2 − 631522x42

be a ternary quartic whose Dixmier-Ohno invariant I12 is 0 (this case is not covered by the
existing algorithm of [LRS20]). It defines a smooth non-hyperelliptic curve of genus 3, since
I27 ̸= 0. This equation was established using a work of Shioda [Shi93].

We compute its contravariants p0, p1, p2 as in Table 1. Up to scaling, we find

p0 =− 36028900960739935302662w0 + 2546868783781471003910w1

− 207634621252481717745w2,

p1 =− 167266167826007043607549539758w0 + 11957094310556682023883659540w1

− 996728625589442333471190105w2,

p2 =− 2137425487531362504044770w0 + 192739452116090004098632w1

− 4823065036939209106179w2.

We compute f̃ : its expression is too large to be displayed here, but its coefficient in x40 is

−151647765305065905238548582432828758523321832584926229590543175552953534711319971363994226800.

The other coefficients have similar sizes. This model is improvable: we use Elsenhans and
Stoll’s minimization algorithm of ternary forms [ES23], and obtain the minimized model

f ′ = 1428254x40 + 1615140x30x1 − 747384x30x2 + 1802304x20x
2
1 + 222606x20x1x2 + 4470x20x

2
2

+ 1489404x0x
3
1 + 337932x0x

2
1x2 + 26820x0x1x

2
2 + 745x0x

3
2 + 19668x41 + 1788x31x2.

A simple computation shows that the Dixmier-Ohno invariants of f ′ are the same as those
of f . Hence f ′ and f are GL3-equivalent.

5.3. Reconstruction of non-hyperelliptic curves of genus 4.
Let K be an algebraically closed field of characteristic 0. Let W be a 2-dimension K-vector

space. Let C be the canonical embedding in P3 of a (smooth, irreducible) non-hyperelliptic
curve of genus 4 defined over K. Then C is the complete intersection of a quadric and a cubic.
Let Q ∈ K[X,Y, Z, T ] be a homogeneous irreducible quadratic form, and E ∈ K[X,Y, Z, T ]
be a homogeneous irreducible cubic form such that they define C.

Since Q is irreducible, it must be of rank 3 or 4. We will here only treat the generic case,
which is the case of rank 4. The case of rank 3 reduces to the reconstruction of elements from
Sym6(W ∗) ⊕ Sym4(W ∗) (for more details, we refer the reader to [Bou23]), and this case is
treated in Example 1.

From now on, we assume that Q is in normal form Q = XT − Y Z. Let ψ : P1 × P1 −→ P3

be the Segre embedding, defined by ψ([x : y], [u : v]) = [xu : xv : yu : yv]. The pullback of the
cubic form E via ψ is E(xu, xv, yu, yv). It is a bicubic form f in the variables x, y and u, v.

In a previous article [Bou23], the author proved that two bicubic forms define isomorphic
curves if and only if they are GL2 × GL2 ⋊ Z/2Z-equivalent, where the groups GL2 act on
their respective sets of variables, and Z/2Z exchanges them.

Definition 7. Let r1, r2 ≥ 1 and l1, l2 ≥ 0. We define a covariant of Symr1(W ∗)⊗Symr2(W ∗)
to be a SL2 × SL2-equivariant homogeneous polynomial map

C : Symr1(W ∗)⊗ Symr2(W ∗) → Syml1(W ∗)⊗ Syml2(W ∗)

We call (l1, l2) the bi-order of C, and d its degree as a homogeneous polynomial map. As
before, in the case r = 0, C is called an invariant.

There exist covariants of Sym3(W ∗) ⊗ Sym3(W ∗) of bi-order (1, 1), which we can define
using a transvectant (for more details, see [Bou23]). This operator is SL2 × SL2-equivariant.
In addition, in our computations, it will also be Z/2Z-equivariant [Bou23, Proposition 4].

We shall denote the transvectant by (·, ·)l,m, or even (·, ·)l if l = m. Let D2 denote the
differential operator defined in Section 2.3 for s = 2. Like in the case of binary forms, there
is a link between D2 and the transvectant.

Proposition 10. Let τ2 be the linear function defined by

τ2 : K[x, y]⊗K[u, v] −→ K[x, y]⊗K[u, v]
xiyjulvm 7−→ (−1)i+l(i+ j)!(l +m)!xjyiumvl

.

Then for any, C ∈ Symd1(W ∗)⊗ Syme1(W ∗), C ′ ∈ Symd2(W ∗)⊗ Syme2(W ∗) we have:

D2(τ2(C), C
′) = (C,C ′)d1,e1 .

Moreover, if C is a covariant of Syml1(W ∗) ⊗ Syml2(W ∗), then τ2(C) is a contravariant of
the same space.
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Hence, the functions τ2 and τ−1
2 make the connection between the transvectant operator

and the operator D2 in the case of binary forms. In the spirit of Mestre, we choose to speak
only of covariants.

Theorem 3. Let f ∈ Sym3(W ∗) ⊗ Sym3(W ∗) such that the corresponding genus 4 curve is
smooth and has no automorphisms. There exist 4 covariants q0, q1, q2 and q3 of Sym3(W ∗)⊗
Sym3(W ∗) of bi-order (1, 1) which are linearly independent at f .

Now let

Q =
∑

0≤i,j≤3

(qi, qj)1XiXj

E =
∑

0≤i,j,l≤3

(qiqjql, f)3XiXjXl.

Then V (Q(f), E(f)) is isomorphic to V (f), and the coefficients of Q and E are invariants
for the action of SL2 × SL2 ⋊ Z/2Z.
Proof. The first part of the statement is an application of [Dom08, Prop 3.1]: SL2 × SL2 is a
linearly reductive group, Sym3(W ∗)⊗Sym3(W ∗) and Sym1(W ∗)⊗Sym1(W ∗) are irreducible
SL2×SL2-modules. With a proof similar to Proposition 7, we obtain the existence of linearly
independent covariants q0, q1, q2 and q3. It is easy to see that these covariants are also Z/2Z-
equivariant.

The second part is similar to Theorem 1, but written with the transvectant instead of D2.
The statement for D2 is treated in Section 2.3, and we obtain that

E(τ2(q0(f))
∗, τ2(q1(f))

∗, τ2(q2(f))
∗, τ2(q3(f))

∗) = f.

Now let us turn to Q. We know that

dim(Sym2(W ∗)⊗ Sym2(W ∗)) = 9 ,

and
dim(Sym2(Sym1(W ∗)⊗ Sym1(W ∗))) = 10 .

Hence there is exactly one quadratic relation between τ2(q0(f))
∗, τ2(q1(f))

∗, τ2(q2(f))
∗ and

τ2(q3(f))
∗. It is easy to check that Q(τ2(q0(f))

∗, . . . , τ2(q3(f))
∗) = 0, thus the quadratic

relation is given by the quadratic form Q(f).
We conclude that the morphism P1 × P1 −→ P3, which sends [x : y], [u, v] to [τ2(q0(f))

∗ :
τ2(q1(f))

∗ : τ2(q2(f))
∗ : τ2(q3(f))

∗] is an isomorphism from P1 × P1 to V (Q). Thus we find
that

V (f) ≃ V (Q(f), E(f)) .

Finally, the coefficients ofQ and E are specializations of invariants of Sym3(W ∗)⊗Sym3(W ∗)
for the action of SL2 × SL2 ⋊ Z/2Z. □

By Remark 5, finding a generating set of bi-order (1, 1) covariants of Sym3(W ∗)⊗Sym3(W ∗)
is enough to reconstruct all smooth non-hyperelliptic curves of genus 4 and rank 4 with no
automorphisms. Presently, the author does not know such a generating set.

However, we give in Table 2 a set of 4 covariants which allow to reconstruct generically.
Other potential covariants can be found in [Bou23, Table 1].

The covariants c31, c51,1, c51,2, c51,3 of Table 2 are generically linearly independent. The
degrees of the invariants involved in the coefficients of Q and E range between 6 and 16.
The author included all but one of these invariants in the basis of 65 invariants, so the phase
of precomputation is nearly trivial. The only one which does not belong to the basis is the
degree 8 invariant (c31, c51,3)1, and its decomposition is easy to find.

Hence this reconstruction algorithm takes very little time to run.

Example 3. Let C be the non-hyperelliptic genus 4 curve defined in P3 by the locus of

Q = XT − Y Z

,

E = X2Y +X2Z+X2T+XY 2+XY Z+XZ2+XZT+XT 2+Y 2Z+Y Z2+Y ZT+Y T 2+T 3.

Q is of rank 4, thus we pullback E to a bicubic form f in x, y and u, v. Then, we compute
its covariants c31, c51,1, c51,2 and c51,3.

c31 = −44xu− 17xv − 25yu− 17yv,

c51,1 = 9xu− 107xv − 88yu− 24yv,

c51,2 = −620xu− 1937xv − 1129yu+ 181yv,

c51,3 = 25889xu− 5563xv − 19056yu+ 1328yv.
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We can now compute the equations of Q and E:

Q = 646X2 − 6536XY − 130084XZ − 1923144XT − 19264Y 2 − 549500Y Z − 6275840Y T

− 4598186Z2 − 78659100ZT − 143255872T 2 ,

E =− 87337008X3 + 69815520X2Y − 3596033232X2Z + 178527014496X2T − 629045568XY 2

− 13790445696XY Z − 435571233408XY T − 147774846096XZ2 + 586163101824XZT

− 162711651196224XT 2 + 489595536Y 3 + 31071365856Y 2Z + 625393402416Y 2T

+ 676666128096Y Z2 + 20257026499008Y ZT + 246651902537904Y T 2 + 4187892749328Z3

+ 229585773241440Z2T + 1868504372517600ZT 2 + 47848070690492688T 3

The minimization of the coefficients of non-hyperelliptic curves of genus 4 with integer
coefficients is a joint work in progress with Andreas Pieper. For this curve, our minimization
algorithm returns in half a second the model

Q = X2 −XZ − 2Y Z + 2Z2 −XT − Y T − T 2

E =−XY 2 −X2Z + 3XY Z − 2Y 2Z + 2XZ2 + Z3 +X2T

+ 4XZT − 3Y ZT − 2Z2T + 3XT 2 − 6ZT 2 − 2T 3,

which is much nicer than the previous one.
As expected, the computation of the invariants of the reconstructed curve are equal (up to

weighted projective equivalence) to the original ones.

Remark 7. There are instances where the algorithm fails, because the automorphism group
of the curve is too big. Let

Q = X2 + Y 2 + Z2 + T 2 + (X + Y + Z + T )2,

and
E = X3 + Y 3 + Z3 + T 3 − (X + Y + Z + T )3.

Then V (Q,E) is a non-hyperelliptic curve of genus 4 (of rank 4), whose automorphism group
is S5, the biggest possible for a curve defined over C. The reconstruction algorithm fails, since
most of its invariants vanish. The author was not able to find a non-hyperelliptic curve of
genus 4 (of rank 4) with automorphisms which could be reconstructed using the 4 covariants
above.
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Appendix A. Covariant tables

Covariants Contravariants

σ = w4
2[(F

′,F′)4](w0/w2, w1/w2)

ψ = w6
2[((F

′,F′)2,F
′)4](w0/w2, w1/w2)

H = (F,F,F)2 ρ = D(F, ψ)

C4,4 = x42[(σ
′, σ′)4](x0/x2, x1/x2) c5,4 = D(F, σ2)

C5,2 = D(σ,H) c10,5 = (σ, ψ, c5,4)3

C8,5 = (F,H,C4,4)3 c12,3 = D(C8,5, σ
2)

C12,3 = D(ρ,C8,5) p0 = D(C12,3, ρ)

p1 = D(C12,3, c5,4)

p2 = D(C5,2, c12,3)

Table 1. Covariants (bold) and contravariants used to compute p0, p1 and p2

degree

order
1 2 3 4

1 f

2 h = (f, f)2 j = (f, f)1

3 c31 = (h, f)2
c33,1 = (j, f)2

c33,2 = (h, f)1

4

c42,1 = (h, h)1
c44,1 = (c33,2, f)1

c42,2 = (c31, f)1
c44,2 = ((j, f)1, f)2

c42,3 = (c33,2, f)2

5

c51,1 = (c42,2, f)2

c51,2 = (c44,1, f)3

c51,3 = (c44,2, f)3

Table 2. Several covariants of Sym3(W ∗)⊗ Sym3(W ∗)
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