

Simulation and AI, two complementary tools for NDE4.0

Pierre Calmon, Stéphane Leberre, Christophe Reboud, Roberto Miorelli, Olivier Mesnil

▶ To cite this version:

Pierre Calmon, Stéphane Leberre, Christophe Reboud, Roberto Miorelli, Olivier Mesnil. Simulation and AI, two complementary tools for NDE4.0. International Conference on NDE4.0, Oct 2022, Berlin, Germany. hal-04520718

HAL Id: hal-04520718

https://hal.science/hal-04520718

Submitted on 25 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

Simulation and AI, two complementary tools for NDE4.0

October, 26th 2022, NDE4.0 Conference, Berlin

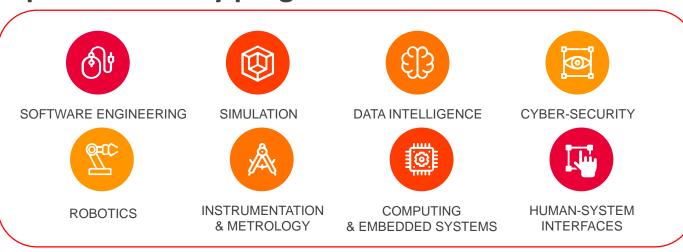
P. Calmon, S. Leberre, C. Reboud, R. Miorelli, O. Mesnil

NDE & SHM @ CEA LIST

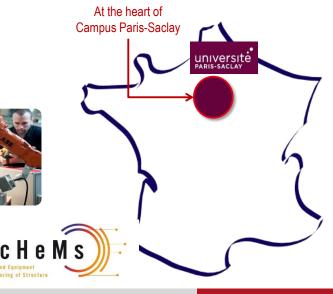
CEA: French Atomic and Alternative Energy Commission-Public Research Organization

CEA LIST: The Digital Technology Institute of CEA Tech

Expertise and key programs



- 80 permanent people, 20 PhD students
- Simulation, imaging, AI, instrumentation
- Partenarial research and technological transfer
- Innovation platforms



SIMULATION & AI, TWO COMPLEMENTARY TOOLS FOR NDE4.0

OUTLINE

- Key Idea: Simulation and AI are complementary tools for the innovation in NDE technologies
- Illustration on various recent and on progress works at CEA List.
 - Simulation as a data provider for Al
 - Simulation as a facilitator of AI design and implementation
 - Al as a mean to augment simulation capabilities
 - Introduction to new CIVA Data Science module

NDE SIMULATION AND CIVA PLATFORM

MAIN APPLICATIONS OF SIMULATION

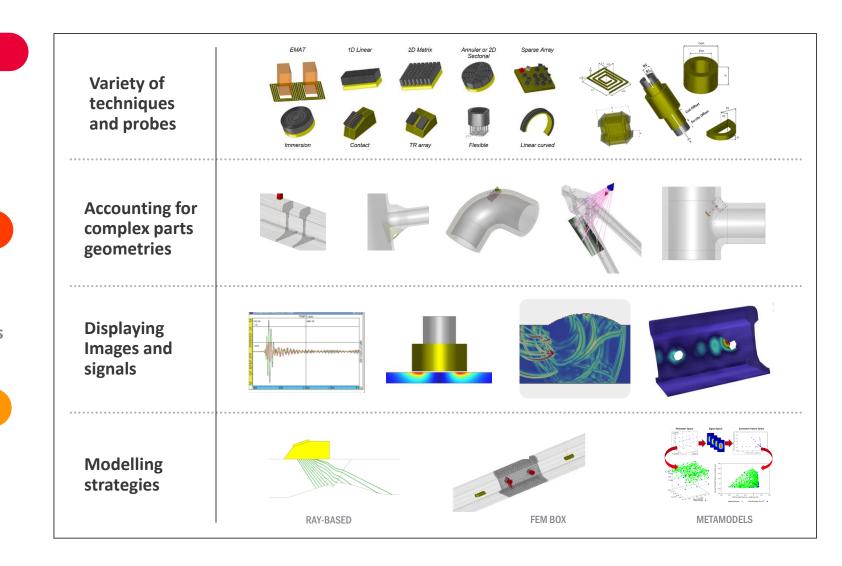
- Probe design and inspection optimization
- Interpretation of results, diagnostics
- Performance demonstration, POD
- Data provider

MAIN CHALLENGES

- Multi physics modelling
- Complexity of materials, defects, probes...
- Rapidity and easiness: A tool for NDT engineers
- Confidence and assistance to the operator

SCIENTIFIC STRATEGIES

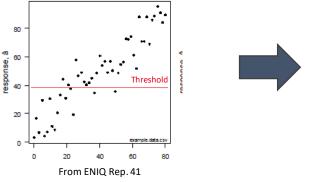
- Hybrid modelling: Ray-based, FEM, SIE, etc...
- Data driven models: Metamodels
- Automatization of set-ups (meshing)
- Experimental validation



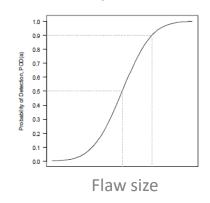
SIMULATION + AI: METAMODELS for MAPOD

Probability of detection: Accounting for uncertainties and variability

Scattering of NDE results



Probability of detection



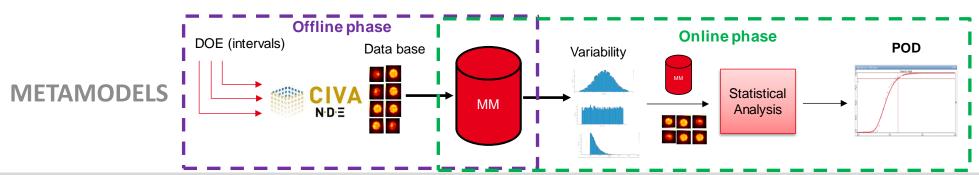
Statistical analysis framework in reference documents: MIL-HDBK-1823A, ENIQ-R41, ...

MAPOD:

Use of simulation to capture the variability of the influential parameters and provide numerical data for the estimation of POD.

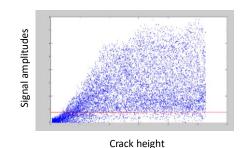
Requires the development of surrogate models (metamodels) :

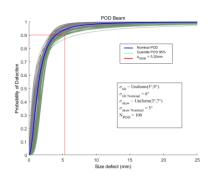
Machine learning on simulated databases



Example (Manual UT):

Thanks to the metamodel 100 000 computations for one POD: 1-5 s on a PC





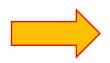
AI + SIMULATION for DIAGNOSTICS

Artificial Intelligence raises high expectations :

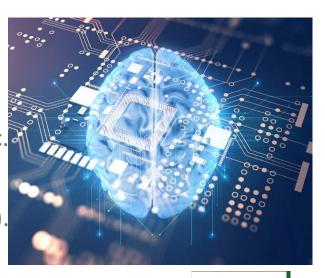
- For the **automation of data analysis operations** (flag of data for review in case of huge volumes of data, possibly application of detection criteria in "easy" cases, etc.
- **For the assistance to the expert** in a diagnostic or a process of making decision: detection or even defect characterization (identification, localization and/or sizing).

But several challenges in NDE and amongst them:

- Availability of representative databases for training of algorithms (not so many flaw!)
- Variability of influential parameters and operational conditions
- Robustness, assessment and qualification methodology
- Operational implementation (embedded AI)



Simulation as a data provider for training of ML algorithms



June 2021: ENIQ RP N°13

NUGENIA

April 2021 :

EASA Concept paper Feb 2022 : ASTM E3327/E3327M-21

AI TRAINED BY SIMULATION - A FIRST EXAMPLE

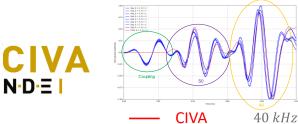
Context: Guided Wave SHM of composite structures

CIVA-SHM module

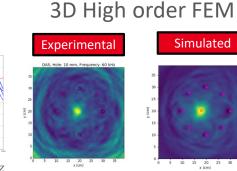
Objective: Develop a Machine learning trained by simulation to locate and size defect from guided waves images.

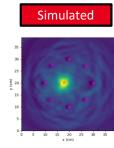
Guided wave SHM technique

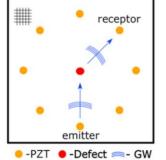
- Set of PZT sensors (~10-40 kHz) surrounding the inspected area
- Model-based imaging (DAS, Excitelet,...) of the residual signals

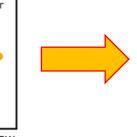


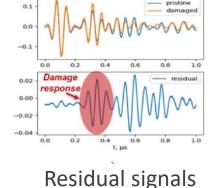
Signals in pristine

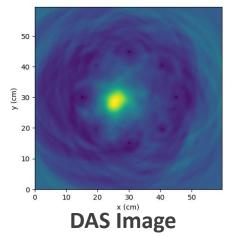










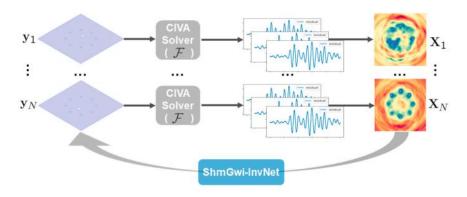


Experimental set-up

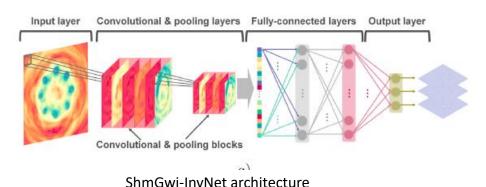
AI TRAINED BY SIMULATION - A FIRST EXAMPLE

Proof of concept on Al plate containing holes

Model-driven inversion scheme

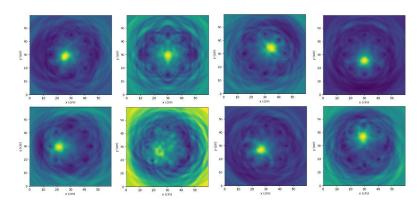


Design of a CNN architecture



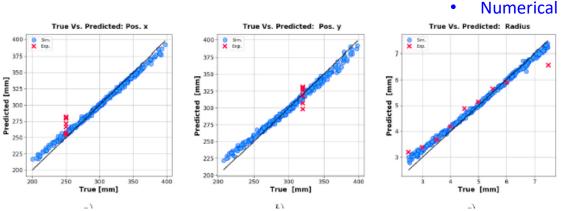
Miorelli, R., et al. "Defect sizing in guided wave imaging structural health monitoring using convolutional neural networks." *NDT & E International* 122 (2021): 102480.

 Creation of a training data set (LHS, 500 simulated images)



CIVA N·D·E I

Experiment



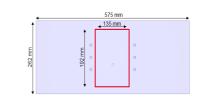
Fairly good results on location and size of holes (8 sizes 1 position)

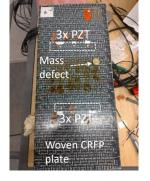
AI TRAINED BY SIMULATION - A FIRST EXAMPLE

Current study: To apply this concept to a real-life complex case (woven CFRP)

Challenge: Simulation being computationally very demanding

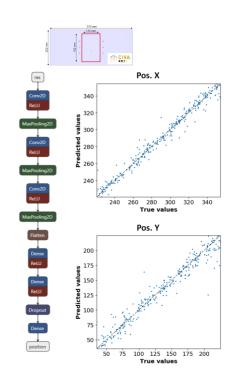
Lack of representative set of simulations.

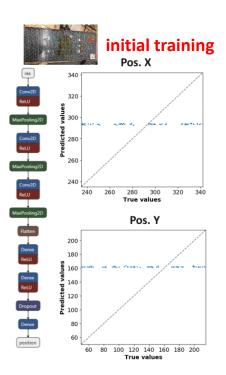


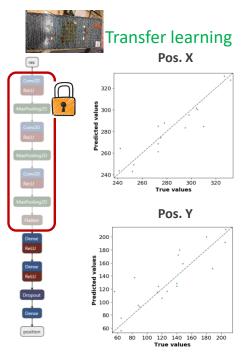


Investigated solution:

- The application of **transfer learning strategy**:
- Training on a large number of cheap-to-compute but unaccurate GW signals (simulation in Al plate)
- Training on a **small amount of highly accurate data** (3D FEM simulations in CFRP or experiments)
- Assumption: Sufficent similarity so that first layers can be transfered from Al to CFRP







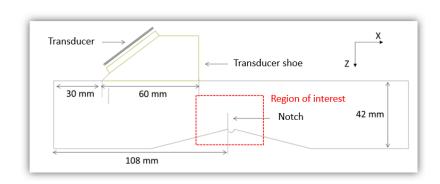
Transfer learning enables inversion accuracy based on a small subset of experimental measures available

AI TRAINED BY SIMULATION - A SECOND EXAMPLE

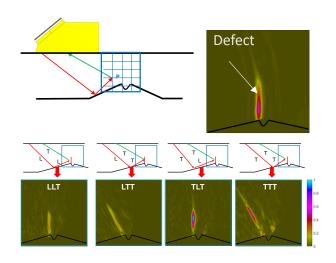
Sizing of defect detected by ultrasonic TFM imaging

Objective: Characterizing flaws (size and orientation) ultrasonic imaging (multimodal TFM) despite uncertain knowledge of the piece geometry and material acoustic celerity

That means to assist an expert facing images not directly interpretable (artifacts, erroneous locations, etc.)

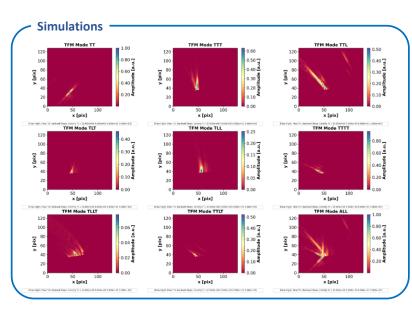


Configuration of interest OT 55°, 64 elts, 5 MHz



Multimodal TFM images

- Exploit the different acoustic paths
- Direct image of the defect
- Assume an accurate knowledge of TOF

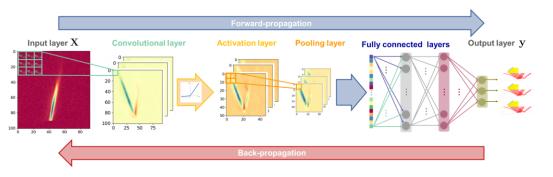


Simulation of TFM images reconstructed under uncertainties

AI TRAINED BY SIMULATION - A SECOND EXAMPLE

Sizing of defect detected by ultrasonic TFM imaging

Design of a CNN architecture

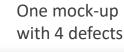


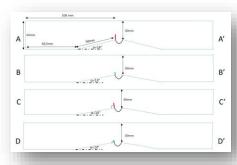
Creation of a training data set by CIVA

Dataset parameters							
Parameters	Var. Range						
Flaw height [mm]	[2.0,12.0]						
Flaw tilt [deg]	[-20, 0]						
Backwall slope [deg]*	[10, 18]						
Celerity T-waves [m/s]*	[3030, 3380]						

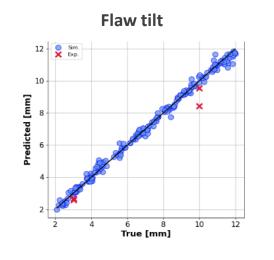
C Experiment

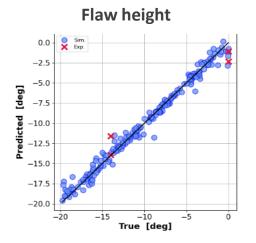
Numerical

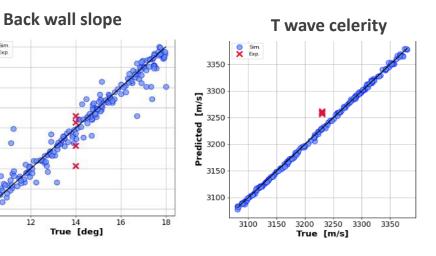




Inversion results







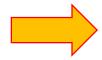
[6eb] 15

CONCEPTION AND EVALUATION OF A SIMULATION TRAINED AI BASED DIAGNOSTIC

The design of an AI for NDE Diagnostic requires:

- NDE expertise
- Access of machine learning techniques
- Tools to generate (if simulated) or import data base and tools to process data (extraction of relevant criteria, reduction of data)
- Tools and data to assess the performances of the diagnostic

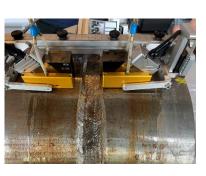
Beyond training of ML, **simulated database can be highly beneficial** at the different steps of the design of AI for diagnostic: Features engineering, deatures extraction, selection and evaluation of classifiers...



Development of a new module of CIVA, **CIVA DS** in order to make AI more accessible to the NDE engineer and to use simulation as a facilitator. Compatibility both with simulated and experimental dataset.

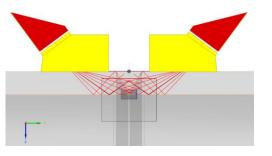
AN EXAMPLE OF STUDY ACHIEVED WITH CIVA DS

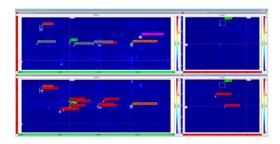
Use case



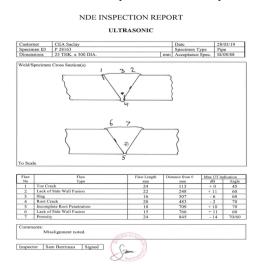
Weld inspection.

2 PA Probes: 5MHz 64 elements TFM-PWI, 43° to 79°, 6 angles





Inspection report provided by the expert



Défaut				ΔY -6dB	Y signal			Z signal	X signal
n°	date		signal(dB)	41 -00B	(max)	-6dB	-6dB	(max)	(max)
A	(B1)	Inner geometric echo	-8,9	6	98	96	102	25,49	0,59
1	-	Toe Crack	-7	19	120	116	135	50,03	-17,11
	(B2)	Toe Crack	-7	7	120	116	123	50,03	-17,11
	(B1)	Toe Crack	-10,4	16	124	119	135	49,59	-16,96
1	(B2)	WALL CRACK	-7,7	10	133	127	137	49,15	-17,11
2	(B2)	WALLCRACK	-5,7	7	250	246	253	35,78	6,05
В	(B2)	WALL CRACK	-10,2	5	272	270	275	33,42	5,01
С	(B2)	Potential defect	-9	7	308	303	310	22,26	-5,31
		Slag	-8,3	5	311	309	314	13,73	-1,62
3	(B1)	Slag	-8,3	4	311	309	313	13,73	-1,62
	(B2)	Slag	-9,6	4	312	310	314	10,94	1,77
	(B2)	Potential defect	-5,3	7	313	309	316	31,66	1,77
D	(B1)	Inner geometric echo	-10,6	4	339	337	341	24,17	2,65
E	(B2)	Potential defect	-9,4	6	347	344	350	23,14	-3,1
F	(B1)	Inner geometric echo	-10,9	4	465	462	466	24,46	0,74
G	(B2)	Potential defect	-3,6	5	493	491	496	19,17	0,29
4	(B1)	ROOT CRACK	-2,5	9	506	499	508	19,46	2,21
	(B2)	ROOT CRACK	-7,3	17	515	501	518	19,32	1,62
H	(B2)	Potential defect	-9,9	8	531	527	535	22,4	-5,16
	-	Incomplete Root Penetration	-0,6	15	706	703	718	21,08	0,88
5	(B2)	Incomplete Root Penetration	-0,6	14	706	703	717	21,08	0,88
	(B1)	Incomplete Root Penetration	-1,1	12	711	706	718	23,58	1,03
6	(B1)	Lack of Side Wall Fusion	-5,7	17	771	760	777	37,83	-7,37

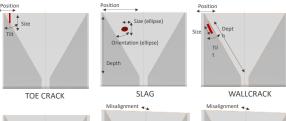
Detection and identification of indications (6 types of defects)

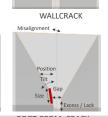
Objective of the study: To design an AI able to detect and categorize defects. Evaluation by comparison with the inspection report provided by an expert.

Creation of data-base (simulation + exp)

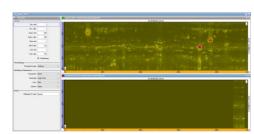
- Feature engineering
- Features extraction, reduction of data
- Design of a classifier

Simulations: variations of position and size for the 6 classes of defects





Training set for « no defect »: Import in CIVA DS from experimental files

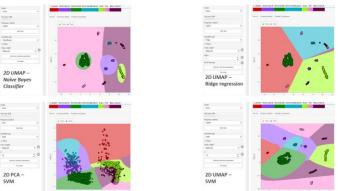


Evaluation on experimental data

AN EXAMPLE OF STUDY ACHIEVED WITH CIVA DS

Reduction of data + design of the classifier :

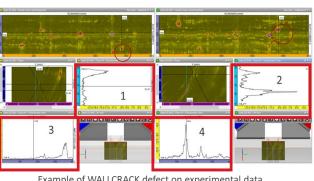
- Inspired by NDE expertize: choice to keep the 2 **echodynamic on TFM images** which should contain the « signature « of the defect
- Evaluation of different algorithms: Features extraction + classifier



Comparison ≠ extractions and classifiers

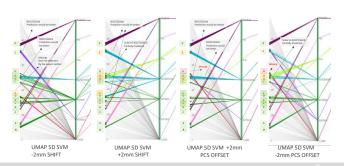
UMAP 5D for entire learning dataset

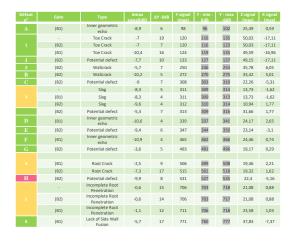
Confusion Matrix (SVM - UMAP 5D)



Final choice: UMAP 5D and SVM

Confrontation with experiment:





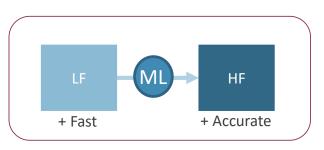
Convincing comparison with expert analysis:

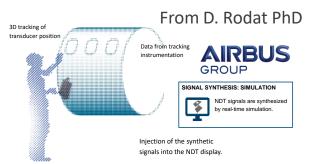
- All referenced defect are detected and correctly classified
- but one not referenced indication (H) is not detected

AI FOR SIMULATION

Current research directions

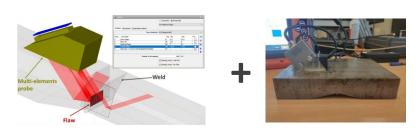
- There is no « perfect » model: Physics based models capture only a part of the reality.
- Multi-fidelity generative models can be built from low fidelity and high fidelity data
- Can be used to improve models:
 - Learn components not or incorrectly taken account by the model (noise, image texture) and make simulated and experimental data indistinguishable for an operator.
 - Possible application: Generation of realistic synthetic signals in representative on-site conditions for a more complete integration of **Human factors in POD studies**
 - To « augment » the capability (domain of application or accuracy) of simplified models (fast but unaccurate) by learning from high fidelity model (accurate but heavy).



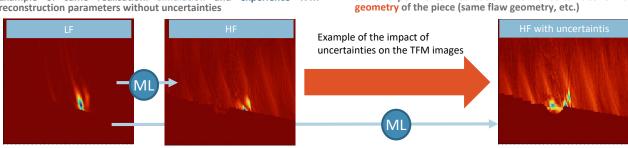


Operational simulation

Multimodal TFM + uncertainties



Example of same realisation: simulation and experience TFM reconstruction parameters without uncertainties



From G. Granados PhD works

Same experimental realisation with uncertainties on the

CONCLUSIONS & OUTLOOK

- NDE simulation and AI are definitely complementary: Simulation for AI & AI for simulation.
- General agreement on the generation by simulation of synthetic training data-sets.
- At this stage only proofs of concept which have to be validated/consolidated on a case by case basis
- Challenge: How to deal with the unavoidable gap between simulation and reality?
- Different solutions can be investigated:
 - -Increase the accuracy of forwards model eventually using AI (mixed physics-data driven models);
 - Increase the robustness of AI: Hybrid data-set, transfer learning, preprocessing of data ...
- Strong benefit expected to bring together in a same environment: NDE expertise, simulation data handling/analysis and AI tools.

Thank you for your attention