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Abstract

A T-hypersurface is a combinatorial hypersurface of the real locus of a projective toric
variety Y . It is constructed from a primitive triangulation K of a moment polytope P

of Y and a 0-cochain ε on K with coefficients in the field with two elements F2, called a
sign distribution. O. Viro showed that when K is convex the T-hypersurface is ambiantly
isotopic to a real algebraic hypersurface of Y . A. Renaudineau and K. Shaw gave upper
bounds on the Betti numbers of T-hypersurfaces in terms of the Hodge numbers of a
generic section of the ample line bundle L associated with the moment polytope. In
particular, the number of connected components of a T-hypersurface cannot exceed the
geometric genus of a generic section of L plus one. In this article we investigate wether this
upper bound is attainable. We are able to characterise the couples (K; ε) leading to T-
hypersurfaces realising the Renaudineau-Shaw upper bound on the number of connected
omponents. This theorem generalises B. Haas’ theorem for T-curves. In contrast with
this results we find that the upper bound is not always attainable on every primitive
triangulations. For some of those on which it is not attainable we provide a sharper upper
bound. Finally we use our characterisation to show that there always exist a triangulation
and a sign distribution on the standard simplex that reach the Renaudineau-Shaw upper
bound. We also study the growth of the expected number of connected components of a
T-hypersurface as we dilate the moment polytope by d (i.e. we tensorise the line bundle
d-times with itself) and show that it is always of the order of dn where n is the dimension
of P .
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Introduction

This article is about the first page of the Renaudineau-Shaw spectral sequence of T -hypersurfaces.
In particular we compute explicitly its boundary operators. These computations lead us to a
generalisation of B. Haas’ theorem1. This result is a characterisation of the triangulations and
sign distributions that produce T-hypersurfaces having a maximal number of connected com-
ponents with respect to the Renaudineau-Shaw inequality2. Recall that for all T-hypersurfaces
RXε, A. Renaudineau and K. Shaw showed the following upper bound:

dimH0(RXε;F2) ≤ 1 + hn−1,0(X) , (1)

where hn−1,0(X) is the number of interior lattice points of P the moment polytope of the
ambiant toric variety. In the following we will say that RXε has a maximal number of connected
components when the upper bound (1) is achieved. In order to state our result we define the
notion of ρ-uniformity for primitive triangulations. It is a technical property involving the
relative parities of the coordinates of the vertices of two maximal simplices of the triangulation
sharing a face of codimension 1.

Theorem 4.15 (Generalised Haas Theorem). Let P be a non-singular polytope of t∗(R) en-
dowed with a primitive triangulation K. For all sign distributions ε, the T-hypersurface RXε

has a maximal number of connected components if and only if:

1. The triangulation K is ρ-uniform;

2. The homological “inclusion” H1(RXε;F2) → H1(RP ;F2) is onto whenever n > 2;

3. The sign distribution ε satisfies:

D2ε = ρ in Hn−1(K;B1K;N) . (2)

4. For all simplices σn−2 of B1K not contained in B0K, (ap(σn−2);σn−2)ε vanishes.

A 2-dimensional triangulation is always ρ-uniform, hence this new hypothesis (relatively to
Haas’ statement) is automatically satisfied for T-curves. However it is not always the case in
dimension bigger than 3. We can also note that since all T -surfaces on the same triangulation
share the same Euler characteristic3 a T-surface is maximal as a real variety if and only if
it has a maximal number of connected components with respect to the Renaudineau-Shaw
inequality. In addition we define a number κ(K) which measure the defect of ρ-uniformity of
the triangulation K and use this quantity to refine the Renaudineau-Shaw inequality on the
number of connected components of RXε.

Proposition 4.22. Let K be a primitive triangulation of a non-singular polytope. For all
sign distributions ε ∈ C0(K;F2) the rank of M0,n−2(ε) is always at least equal to κ(K). As a
consequence we have the following upper bound:

dimH0(RXε;F2) ≤ 1 + dimH0,n−1(X;F2)− κ(K) . (3)
1c.f. [Haa97] or [RS23] Theorem 7.5 p.977.
2c.f. [RS23] Theorem 1.4 p.947.
3c.f. [Ber10].
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Moreover we use our computations to determine the asymptotic growth of the expected
number of connected components of RXε when one choses the sign distribution uniformly at
random and considers dilatations of the moment polytope. More precisely we consider P a
non-singular lattice polytope and (Kd)d≥1 a sequence of primitive triangulations of the dilates
dP . Then we show that if ε is chosen uniformly at random in C0(Kd;F2) we have the following
property.

Proposition 4.25. For all sequences (Kd)d≥1 of primitive triangulations of (dP )d≥1 we have:

1 ≥ lim sup
d→+∞

E
[

b0(RXε(d))

1 + hn−1,0(X(d))

]
≥ lim inf

d→+∞
E
[

b0(RXε(d))

1 + hn−1,0(X(d))

]
> 0 .

Recall that hn−1,0(X(d)) = volZ(P )dn + o(dn).

To conclude we provide examples of triangulations of the standard simplices and sign dis-
tributions for which the Renaudineau-Shaw upper bound is achieved. To do so we found
inspiration in the construction of maximal T-surfaces in P3 by I. Itenberg, [Ite97].

Theorem 0.1. For all n ≥ 2, and all d ≥ 1, the Itenberg-Viro triangulation IV n
d is simply

integrable. In particular, the Harnack distribution:

hn(x1, ..., xn) :=
∑
i<j

xixj ,

produces a projective T-hypersurfaces made of hn−1,0(X) spheres bounding disjoint balls and
another connected component that intersects every toric divisors of Pn.
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1 T-hypersurfaces and Tools to Study Them

In this first section we set some notations, remind some definitions and introduce the construc-
tion of T-hypersurfaces and their Renaudineau-Shaw spectral sequence.

Simplicial Complexes and Cellular Homology We recall that a finite simplicial complex
K is the data of a set of vertices V and a set of simplices S of subsets of V that contains every
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singletons of V and is closed under the operation of taking non-empty4 subsets. The latter
condition means that if σ belongs to S and τ is a non-empty subset of σ then it also belongs to
S. The dimension of a simplex σ of K is by definition one less than its number of elements. We
will never mention the sets V or S but, for all non-negative integer p, we will denote σp ∈ K to
indicate that σp is a p-dimensional simplex of K (also called a p-simplex of K). Also we will
make no difference between a vertex v and the 0-simplex {v} it defines.

Every finite simplicial complex defines a regular CW-complex5 called is geometric realisation.
Let C be the convex hull of the vertices of K in the real vector space freely spanned by said
vertices. The geometric realisation of K is the union of all the faces of K generated by the
vertices of the simplices of K. This is an embedding of the set of simplices of K into the lattice
of faces of C, we will not really make a difference between the abstract complex K and its
geometric realisation. We indicate by σp ≤ σq that σp is a face of σq, i.e. that the former
is included in the latter when seen as a set. The cells of the geometric realisation of K are
thought to be open hence the simplex σp = {v0; ...; vp} correspond to:{

p∑
k=0

tkvk
∣∣ ∀0 ≤ k ≤ p, tk > 0, and

p∑
k=0

tk = 1

}
.

The star of a simplex σp is the reunion of all the simplices of which it is a face. Its link (denoted
by lk(σp;K)) is the reunion of all the faces σq of the members of its star whose closure σ̄q has
empty intersection with σ̄p. These concepts extends to regular CW-complexes.

(a) The open star of a vertex v.

v

(b) The link of the vertex v.

Figure 1: An open star and a link.

Definition 1.1. A ∆-complex is a regular CW-complex in which every closed cell is isomorphic
(as a CW-complex) to a simplex.

Definition 1.2 (Barycentric and Cubical Subdivision). Let K be a finite ∆-complex. Its
barycentric subdivision, sometimes denoted SdK is the simplicial complex:

– whose vertices are the simplices of K;

– whose simplices are the set of simplices {σp0 < · · · < σpk} of K that can be totally ordered
by adjacency.

4We adopt this convention as we will never have to consider the empty simplex.
5A CW-complex in which the pair made of a cell and its closure is homeomorphic to an open ball in its

closure.
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The geometric realisation of SdK is a regular subdivision of K. The cubical subdivision of
K is a regular CW-complex subdivision of K that is coarser than its barycentric subdivision.
An open cell of this subdivision is indexed by a pair of simplices [σp;σq] where σp is a face of
σq. This particular cell has dimension q − p and is the reunion of the barycentric simplices
{σp0 < · · · < σpk} for which σp0 is σp and σpk is σq. Every closed k-dimensional cubical cell has
the combinatorics of a k-dimensional cube triangulated into k! simplices of dimension k.

(a) The barycentric subdivision of a triangle. (b) The cubical subdivision of a triangle.

Figure 2: Subdivisions of a triangle.

Definition 1.3 (Cellular Cosheaves and Cellular Sheaves). Let E be a regular CW-complex,
and denote by CellE the category whose objects are the cells of E and whose morphisms
corresponds to adjacency, i.e. there is exactly one morphism ep → eq if ep is a face of eq and
none otherwise. A cellular cosheaf (resp. sheaf ) on E is a contravariant (resp. covariant)
functor:

F : CellE → Vect.fF2
,

where Vect.fF2
is the category of finite dimensional vector spaces over F2. If ep ≤ eq are two

cells of E and v is a vector of F (eq) we will denote by v
∣∣eq
ep

its image in F (ep) by the morphism
F (ep → eq) called the extension morphism (we use a similar notation in the case of sheaves).
A morphism f between two cosheaves (or two sheaves) on E is a natural transformation. The
kernel, image, and cokernel of f are formed “cell-wise”.

When E is the cubical subdivision of a ∆-complex K we might call a cellular cosheaf on
E a cubical cosheaf on K. Such an object is an assignment of a F2-vector space to every pair
of adjacent simplices σp ≤ σq that is covariant in the first coordinate and contravariant in the
second.

Definition 1.4. Let E be a regular CW-complex, F be a cellular cosheaf on E and k be a
non-negative integer. The space of cellular k-chains with value in F is the vector space:

Ck(E;F ) :=
⊕
ek∈E

F (ek).

A typical vector of this space is written c =
∑

ek∈E vek ⊗ ek where vek belongs to F (ek) for all
cells ek. We might denote the coefficient vek by ⟨c; ek⟩. When F is a cubical cosheaf on the
∆-complex K we denote Ck(E;F ), where E is the cubical subdivision of K, by Ωk(K;F ). This
vector space has a canonical decomposition:

Ωk(K;F ) :=
⊕

q−p=k

Ωp,q(K;F ), (4)
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where Ωp,q(K;F ) is the direct sum over all adjacent pairs of simplices σp ≤ σq of the vector
spaces F (σp;σq). The vector spaces

(
Ck(E;F )

)
k≥0

form a chain complex for the following
boundary operator ∂:

∀ek+1 ∈ E, ∀v ∈ F (ek+1), ∂
(
v ⊗ ek+1

)
:=

∑
ek≤ek+1

v
∣∣ek+1

ek
⊗ ek.

The homology of F is then defined as the homology
(
Hk(E;F )

)
k≥0

of this complex. We note
that a morphism of cosheaves induces a morphism of chain complexes.

Notations. Let σp be a simplex of a ∆-complex K, we denote by χσp the characteristic cochain
of σp. This is the p-cochain with value in F2 whose value is 1 on σp and 0 elsewhere.

Remark 1.5. For a more thorough exposition of the theory of cellular sheaves and cosheaves
one can look at [KS10] (under the name constructible sheaves), [She85], or even [Che23a] where
we discuss dihomologic cosheaves, a generalisation of cubical cosheaves. However we can still
note that:

1. Whenever E ′ is a subcomplex of E we can define relative homology with coefficients in
F by the usual quotient of chain complexes;

2. Definition 1.4 can be dualised for a cellular sheaf. This defines cellular cohomology with
coefficients in a cellular sheaf;

3. The decomposition (4) makes
(
Ωk(K;F ); ∂

)
k≥0

into the total complex of a bicomplex.
For all p, q, the boundary ∂ maps Ωp,q in Ωp,q−1 ⊕ Ωp+1,q;

4. Assuming that E ′ is a regular subdivision of the regular CW-complex E there is a natural
subdivision functor from the category of cosheaves on E to the cosheaves on E ′. It
associates to F the precomposition F ◦ S where S : CellE ′ → CellE is the increasing
map that takes a cell of E ′ to the unique cell of E that contains it. This procedure always
induces a quasi-ismorphism:(

Ck(E;F )
)
k≥0

−→
(
Ck(E

′;F ◦ S)
)
k≥0

v ⊗ ek 7−→
∑

(e′)k⊂ek

v ⊗ (e′)k.

Non-Singular Polytopes, Primitive Triangulations, and Tropical Cosheaves. In the
whole article t∗(Z) will denote a free Abelian group of rank n ≥ 1. For every commutative ring
R, t∗(R) denotes the associated free module t∗(Z) ⊗Z R. t(Z) denotes the dual lattice of the
dual vector space t(R). We say that a sub-vector space W ⊂ t∗(R) is rational if there exists a
sub-module M ⊂ t∗(Z) satisfying M ⊗Z R = W . In this case we denote by W (Z) the lattice
W ∩ t∗(Z), and for every commutative ring R, by W (R) the free module W (Z)⊗Z R. We say
that an affine sub-space A of t∗(R) is rational if its tangent space TA is.

Definition 1.6. A non-singular polytope of t∗(R) is a simple6 convexe polytope P whose
vertices lie in the lattice7 t∗(Z) and such that for every vertex V of P the group

∑
E≥V TE(Z),

6A polytope P is simple if every face of codimension k of P is the intersection of k faces of codimension 1.
7We say that P is integral.
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where the E’s are the edges of P containing V , is the full lattice t∗(Z). A primitive triangulation
K of P is a decomposition of P into integral simplices of minimal integral volume8, i.e. 1

n!
.

(a) The cube is non-singular. (b) The octahedron is not sim-
ple.

(c) This triangle is simple but
singular.

Figure 3: Examples of integer polytopes.

Remark 1.7. With this definition a non-singular polytope P has necessarily dimension n. Also
a polytope P is non-singular if and only if its associated projective toric variety is smooth9 and
the action of the torus Hom(t∗(Z);C×) is effective. The toric variety of a polytope is smooth if
and only if the latter is non-singular in the affine space it spans.

Definition 1.8. Let P be a non-singular poly-
tope of t∗(R) endowed with a primitive trian-
gulation K. The dual hypersurface X of K is
the sub-complex of the cubical subdivision of
K made of all the cubes [σp;σq] for which p is
at lest 1. See Figure 4 for instance.

Figure 4: A dual hypersurface.

Definition 1.9 (Contraction). Let V be a finite dimensional vector space over a field F, and
k, l ∈ N be integers. For all α ∈

∧l V ∗ and v ∈
∧l+k V the contraction α · v is the only element

of
∧k V satisfying:

β(α · v) = (β ∧ α)(v),

for all β ∈
∧k V ∗.

Definition 1.10. Let V be a finite dimensional F2-vector space. Let k be the dimension of
V . We denote by [V ] the unique generator of the line

∧k V . Whenever V is a subspace of W
we see [V ] as a k-vector of W . In particular, if K is a primitive subdivision of a non-singular
polytope P of t∗(R), we denote, for all simplices σk of K, by ω(σk) the element of

∧k t∗(F2)

given by [Tσk(F2)].

Definition 1.11 (Tropical Cosheaves). Let P be a non-singular polytope of t∗(R) endowed
with a primitive triangulation K. We give some of the cosheaves of tropical homology given by
I. Itenberg, L. Katzarkov, G. Mikhalkin, and I. Zharkov10 :

8The Lebesgue mesure normalised so that a parallelogram on a basis of the lattice t∗(Z) has volume 1.
9c.f. [Ful93], §2.1 Local Properties of Toric Varieties pp.28-31.

10c.f. [IKMZ19].
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1. The sedentarity cosheaf Sed : for a simplex σp of K the group Sed(σp) is given by:

Sed(σp) :=
{
v ∈ t(F2) | α(v) = 0, ∀α ∈ (TQ ∩ t∗(Z))

}
,

where Q is the smallest face of P containing the relative interior11 of σp. If σp ≤ σq the
extension morphism Sed(σq) → Sed(σp) is the inclusion. It is defined on K, we denote its
cubical subdivision by the same symbol, hence for all σp ≤ σq, Sed(σp;σq) is by definition
Sed(σq);

2. The cosheaf F P
1 , defined as the quotient: F P

1 := t(F2) /Sed, where t(F2) is understood as
the constant cosheaf. We also denote its subdivisions by the same symbol;

3. The cosheaves F P
p , for all p ∈ N, are the exterior powers of F P

1 : F P
p :=

∧p F P
1 . In

particular F P
0 is the constant cosheaf F2;

4. The cosheaves12 FX
p , for all p ∈ N, defined as the sub-cosheaf of F P

p whose groups are,
for all σk ≤ σl:

FX
p (σk;σk) := ker

(
f : F P

p (σk;σl) → F P
p−k(σ

k;σl)
)
,

where f is the contraction against ω(σk) : the generator of
∧k Tσk(F2). We have the

relation : FX
k (σp;σq) =

∑
σ1≤σp FX

k (σ1;σq) =
∑

σ1≤σp

∧k FX
1 (σ1;σq). See Figure 5 for an

example. The morphisms between these groups are given by quotient maps and inclusions.
Note that even though FX

k is defined on the whole cubical subdivision of K, its support13

is contained in X. We denote its inclusion in F P
p by ip : F

X
p ⊂ F P

p .

For all integers p, q ≥ 0 we will denote by Hp,q(P ;F2) (resp. Hp,q(X;F2)) the q-th homology
group of F P

p (resp. FX
p ) and by ip,q : Hp,q(X;F2) → Hp,q(P ;F2) the morphism induced by the

inclusion ip. We will denote their dual vector spaces by lifting the indices.

0

0

Z∂x
/
Z∂x = 0

Z∂x

0

0 = Z(∂x − ∂y)
/
Z(∂x − ∂y)

Z(∂x − ∂y)

Z2

Figure 5: A triangle and the groups associated by FX
1 to some of its cubical cells.

11i.e. the interior of σp in the affine space it spans.
12This definition is different from the usual one but is equivalent in the case of primitive triangulations. Such

a triangulation K has θ(K) = 1, c.f. [Che23a] Definition 3.5.
13i.e. the union of the closed cubes carrying non-trivial groups.
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T-Hypersurfaces. These objects are combinatorial hypersurfaces of the real loci of smooth
projective toric varieties. They naturally arise as topological description of the hypersurfaces
obtained by primitive patchworks of Viro14. They are dual complexes of a particular kind of
closed 1-cochains on a ∆-complex structure of the real loci of smooth projective toric varieties.

Definition 1.12. Let K be a ∆-complex of pure dimension n ≥ 1 and ζ be a closed 1-cochain
of K with values in F2. The dual complex of ζ is the sub-complex of the cubical subdivision
of K made of all the cubes [σp;σq] whose first simplex σp is contains an edge σ1 on which the
value of ζ is 1.

(a) The edges on which ζ equals 1. (b) The dual complex of ζ.

Figure 6: Examples of dual complex.

Definition 1.13. Let P be a non-singular polytope of t∗(R) and Y denote its toric variety.
The moment map15 µ : Y (R) → P induces an homeomorphism between P and the quotient of
Y (R) by the action of the unitary real torus Hom(t∗(Z); {±1}) ∼= t(F2). The moment map is
split and admits 2n sections called the quadrants. One of these quadrants is distinguished. It
is made of all the points with non-negative coordinates16, we call it the positive quadrant. As
a results Y (R) is homeomorphic to the quotient space of P × t(F2) by the equivalence relation:
(x; v) is equivalent to (y;w) if and only if x equals y and v−w belongs to the stabilisator of any
point in the orbit of x. The stabilisator of a point in the t(F2)-orbit x ∈ P is given by Sed(x)17.
This description endows Y (R) with a structure of regular CW-complex that we denote by RP .
Any closed cell of this cellular structure is a lift of a face of P . If Q is a face of P , the set of
cells of RP lifting Q is canonically in bijection with t(F2)

/
Sed(Q) . We denote by | · | : RP → P

the cellular map induced the moment map.

(a) A primitive simplex P . (b) The gluings of the four
copies of P .

(c) The CW-complex RP .

Figure 7: The CW-complex structure of the real projective plane induced by the moment map.
14c.f. [Vir06] or [Ris93].
15c.f. [Ful93], §4.2 Moment map pp.81-83.
16c.f. ibid., §The manifold with corners pp.78-80.
17The orthogonal of TQ(F2) with Q the face of P that contains x in its relative interior.
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Definition 1.14. Let P be a non-singular polytope of t∗(R) and K be a primitive triangulation
of P . We denote by RK the subdivision of RP induced by K, and | · | : RK → K the induced
cellular map. Let σp be a simplex of K. Each lift18 σp

R of σp in RK is uniquely represented by
an element of t(F2)

/
Sed(σp) = F P

1 (σ) that we call the argument of σp, and denote by arg(σp
R).

More generally the procedure K 7→ RK applies to any regular subdivision of P . In particular
if E is the cubical subdivision of K then RE is the cubical subdivision of RK and |[σp

R;σ
q
R]| is

[|σp
R|; |σ

q
R|] and arg[σp

R;σ
q
R] equals arg(σq

R).

Definition 1.15. Let P be a non-singular polytope of t∗(R) and K be a primitive triangulation
of P with dual hypersurface X. We denote by ωRX the closed 1-cochain defined by the formula:

∀σ1
R ∈ RK, ωRX(σ

1
R) := ω

(
|σ1

R|
)(

arg(σ1
R)
)
.

Figure 8: The edges of RK on which ωRX is 1.

Definition 1.16. Let P be a non-singular polytope of t∗(R), K be a primitive triangulation
of P with dual hypersurface X, and ε be a 0-cochain of K. We denote by |ε|∗ the pullback of
ε by the cellular map | · |. The T-hypersurface defined by ε is the dual complex of d|ε|∗ + ωRX

in RK. We denote it by RXε. We note that |RXε| is precisely X.

0 0 0 0 0 0

0 1 0 1 0

0 0 0 0

0 1 0

0 0

0

(a) Une distribution de signe sur une subdivi-
sion convexe du triangle de taille 5.

(b) Le patchwork combinatoire associé.

Figure 9: Le patchwork combinatoire d’une quintique plane maximale.

18i.e. |σp
R| = σp.
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Proposition 1.17 (E. Brugallé, L. López de Medrano, and J. Rau, Proposition 4.11 p.26,
[BLdMR22]). For all non-singular polytopes P , all primitive triangulations K of P and all sign
distributions ε, the T-hypersurface RXε is PL-smooth.

The Renaudineau-Shaw Spectral Sequence. Since RP and RXε can be respectively
folded on P and X by | · | whose fibers are discrete, we can compute the cellular homology of
RP and RXε with coefficients in F2 as the homology of cosheaves on P and X respectively.
Using inclusion and subdivision we can see these cosheaves as cubical cosheaves on K.

Definition 1.18. Let P be a non-singular polytope of t∗(R), K be a primitive triangulation of P
with dual hypersurface X, and ε be a 0-cochain of K. Let KRP be the cosheaf that associates to
every cube of K the vector space freely generated by its lifts in RK. This cosheaf is canonically
isomorphic to the cosheaf of group algebras F2[F

P
1 ] and hence as canonical structure of cosheaf

of algebras. Now we denote by Argε the cosheaf of sets that associates to a cube of K its set of
lifts in RK that belong to RXε. We denote by KRXε the sub-cosheaf of KRP spanned by Argε.

Remark 1.19. In [RS23], A. Renaudineau and K. Shaw called KRXε the sign cosheaf of RXε

and denoted it Sε. They also called Argε the real phase structure of RXε and dented it E .

Notations. Let G be an Abelian group, in the group algebra F2[G] we denote the generator
associated to the element g by xg.

Remark 1.20. We can note that if V is a finite dimensional vector space over F2 then F2[V ]

is a local ring with maximal ideal the kernel of the augmentation map F2[V ] → F2 that sends
all elements xv to 1. Every element not in the kernel of the augmentation is its own inverse.

Proposition 1.21 (A. Renaudineau and K. Shaw, Proposition 3.17 of p.964, [RS23]). The
chain complexes

(
Ωk(RK;F2)

)
k≥0

and
(
Ωk(K;KRP )

)
k≥0

are canonically isomorphic. Moreover
this isomorphism sends the sub-complex

(
Ck(RXε;F2)

)
k≥0

to
(
Ωk(K;KRXε)

)
k≥0

.

This isomorphism sends 1 ⊗ [σp
R;σ

q
R] to [σp

R;σ
q
R] ⊗

[
|σp

R|; |σ
q
R|
]

or equivalently to xarg(σq
R) ⊗[

|σp
R|; |σ

q
R|
]
.

Definition 1.22. Let P be a non-singular polytope of t∗(R), K be a primitive triangulation of
P with dual hypersurface X, and ε be a 0-cochain of K. The decreasing filtration

(
KRP

(p)

)
0≤p≤n

is defined by the iterated powers of its maximal ideal. We denote by
(
KRXε

(p)

)
0≤p≤n

the induced
filtration of KRXε . We denote by

(
Er

p,q(RP )
)
p,q,r≥0

and
(
Er

p,q(RXε)
)
p,q,r≥0

the respective spectral
sequences. The inclusion i : KRXε → KRP induces a morphism of spectral sequences

(
irp,q :

Er
p,q(RXε) → Er

p,q(RP )
)
p,q,r≥0

.

Proposition 1.23 (Lemma 4.8 and Proposition 4.10, [RS23] and Proposition 4.22, [Che23b]).
Let p ≥ 0 be an integer. There is a unique surjective morphism of cosheaves bvp : KRP

(p) → F P
p

that sends an element
∑

w∈W xw to [W ], for every p-dimensional subspace W of F P
1 . Its kernel

is KRP
(p+1) and it sends KRXε

(p) onto FX
p . We call them the Borel-Viro morphisms. For all p, q ≥ 0
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they induce the following commutative square:

E1
p,q(RP ) Hp,q(P ;F2)

E1
p,q(RXε) Hp,q(X;F2)

bvp,q

∼=

bvp,q

∼=

i1p,q ip,q (5)

Hence in what follows we shall always identify
(
E1

p,q(RP )
)
p,q≥0

and
(
E1

p,q(RXε)
)
p,q≥0

with(
Hp,q(P ;F2)

)
p,q≥0

and
(
Hp,q(X;F2)

)
p,q≥0

respectively, using the Borel-Viro isomorphisms.

Remark 1.24. Let σa ≤ σb be two simplices of K, and v0, ..., vp ∈ F P
1 (σa;σb), we have:

bvp

(
xv0

p∏
i=1

(1 + xvi)

)
=

p∧
i=1

vi.

2 Differential Geometry of Primitive Complexes

Shellings. In this paragraph we provide the definitions and basic properties of shellings of
simplicial complexes.

Definition 2.1. Let K be a finite simplicial complex of dimension n ∈ N. The polynomial fK

is given by the formula:

fK(X) =
n+1∑
i=0

fi−1(K)Xn+1−i,

where fi(K) is the number of i-simplices of K.

Definition 2.2. A shelling of a finite simplicial complex K of pure dimension n ∈ N, is a
numbering of its maximal simplices σn

0 , ...σ
n
k such that, for all integers 0 ≤ i ≤ k − 1, the inter-

section of σn
i+1 with the previous simplices ∪j≤iσ

n
i is a non-empty union of faces of codimension

1 of σn
i+1. Let 0 ≤ i ≤ k, we call the order of σn

i , the number of its faces of codimension 1 that
belong to the previous simplices. For all 0 ≤ j ≤ n + 1, we denote by hj(K) the number of
simplices of order j of the shelling. Moreover, we define the polynomial hK by the formula:

hK(X) =
n+1∑
j=0

hj(K)Xn+1−j.

A simplicial complex that admits a shelling is called shellable.

The polynomial hK of a shellable simplicial complex K does not depend on the particular
shelling used to compute it. This property is a corollary of the following formula.

Proposition 2.3 ([Zie95], p.249). Let K be a shellable simplicial complex. We have the fol-
lowing identity:

hK(X) = fK(X − 1). (6)

The relation (6) implies that h0(K) equals f−1(K), i.e. 1, and also that hn+1(K) equals
fK(−1), i.e. (−1)n+1 + (−1)nχ(|K|) (the Euler characteristic of |K|).
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Proposition 2.4 ([Bjö84], Proposition 4.3 p.12). Let K be a shellable simplicial complex of
dimension n in which every (n− 1)-simplex is contained in at most two n-simplices. Then:

1. If every (n− 1)-simplex is contained in exactly two n-simplices, the geometric realisation
of K is homeomorphic to a sphere;

2. If there is a (n− 1)-simplex contained in exactly one n-simplex, the geometric realisation
of K is homeomorphic to a ball.

In particular, in the first case hn+1(K) equals 1 and in the second 0.

Lemma 2.5. Let K be an n-dimensional shellable simplicial complex in which every (n − 1)-
simplex is contained in at most two n-simplices. Let σn

0 , ..., σ
n
k be a shelling of K. For all

0 ≤ i ≤ k, we denote by τi the intersection of all the codimension 1 faces of σn
i along which it

intersects the previous simplices. For all 0 ≤ i ≤ k, the star of τi in K is contained in ∪j≤iσ
n
j .

In other words, when we add the simplex σn
i we complete the star of τi.

Proof. Let 0 ≤ i ≤ k. The link of τi is a pure (n− 1− dim(τi))-dimensional simplicial complex
in which every simplex of codimension 1 is contained in at most two maximal simplices. The
shelling of K induces a shelling of the link lk(τi;K). The proof of Lemma 8.7 p.237 of [Zie95]
is directly adaptable from the case of a vertex to the case of a simplex of higher dimension.
By definition of τi, this shelling has a simplex of order n− dim(τi), i.e. dim lk(τi;K) + 1. This
is lk(τi;σn

i ). Hence, by Proposition 2.4, this link must be a sphere. Thus, every simplex of
codimension one of this link belongs to exactly two maximal simplices. The shelling of the link
can be reversed to find another shelling of the link. This would be Lemma 8.10 p.240 of [Zie95]
if we were considering boundary of simplicial polytopes. However, its proof only uses the fact
that every simplex of codimension one belongs to two maximal simplices, hence it is directly
transposable to our case. Reversing the order changes the order of every maximal simplex by
the involution x 7→ dim lk(τi;K) + 1− x. Therefore, the simplex of order dim lk(τi;K) + 1 has
to be the last for the simplex of order 0 is always the first. Therefore, when we add σn

i we
complete the link of τi, hence its star.

Differential Geometry. Some concepts of differential geometry are adaptable to the discrete
context of simplicial complexes primitively embedded in affine spaces. We give the definitions
of this framework.

Definition 2.6. We call a primitive complex in t∗(R), a purely n-dimensional piecewise-affinely
embedded simplicial complex K ⊂ t∗(R) whose simplices are primitive, i.e. of minimal integral
volume. The boundary of K is the sub-complex of simplices contained in exactly one maximal
simplex of K. We denote it by ∂K.

Definition 2.7. Let K be primitive complex in t∗(R). The F2-normal cosheaf N of K is
defined for all simplices σp by the formula:

N(σp) := (Tσp)⊥ (F2) ,
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with extension morphisms given by inclusions. Likewise, the F2-cotangent cosheaf T ∗ of K is
defined for all simplices σp by the formula:

T ∗(σp) := T ∗σp(F2) ,

with extension morphisms given by the quotient morphisms. We have the following exact
sequence of cosheaves:

0 → N → [K; t(F2)] → T ∗ → 0 ,

where [K; t(F2)] denotes the constant cosheaf on K with value t(F2).

Definition 2.8. Let K be primitive complex in t∗(R) and σp be a simplex of K. We denote
by ω(σp) ∈

∧p t∗(F2) the generator of the line
∧p Tσp(F2). If σ1 is an edge of K with vertices

α and β then ω(σ1) is the reduction modulo 2 of β − α.

Proposition 2.9. The cochain [σp 7→ ω(σp)] ∈ Cp(K;
∧p t∗(F2)) is closed.

Proof. If p equals 0 then by definition [σ0 7→ ω(σ0)] is constant to 1. It is closed. Now let p ≥ 1

be an integer, σp be a simplex of K, and β be a vertex of σp. Since K is primitive, ω(σp) is
given by the following formula:

ω(σp) =
∧

α∈lk(β;σp)(0)

(α− β) =
∧

α∈lk(β;σp)(0)

α +
∑

α∈lk(β;σp)(0)

β ∧
∧

α′∈lk(β;σp)(0)

α′ ̸=α

α′

=
∑

σp−1≤σp

∧
α∈(σp−1)(0)

α .

If we denote by λ the cochain [σp−1 7→
∧

α∈(σp−1)(0) α], the cochain ω is the differential of λ.
Hence, it is closed.

Proposition 2.10. Let K be a primitive complex in t∗(R). For all simplices σp ∈ K and all
vertices α of σp the set {β − α : β vertex of lk(α;σp)} is, up to ordering, a basis of Tσp(Z).
Moreover for all q ∈ N, the morphism:

zqσp :
∧q t(F2) −→ Zq(σp;F2)

v 7−→
[
σq 7→ (ω(σq))(v)

]
,

fits in the short exact sequence:

0 → N(σp) ∧
q−1∧

t(F2) →
q∧
t(F2)

zq
σp−→ Zq(σp;F2) → 0.

Moreover, for all pairs σp ≤ σr and all vectors v ∈
∧q t(F2) the restriction of zqσr(v) to σp is

zqσp(v).

Proof. The first statement is a direct consequence of the primitivity of the simplices of K.
The morphism z0σ0 is an isomorphism, zqσ0 is null for all q > 0, and N(σp) equals t(F2). The
proposition is true for p = 0. Let σp be a simplex of K of positive dimension, and q ≥ 0 be
an integer. Proposition 2.9 ensures us that zqσp is well defined with Zq(σp;F2) as target space.
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Let β be a vertex of σp and let us label σq
1, ..., σ

q
k, with k being

(
p
q

)
, the q-simplices of σp that

contain β. The first statement implies that {ω(σq
1), ..., ω(σ

q
k)} is a basis of

∧q Tσp(F2). Let ζ

be a q-cocyle of σp. We define v to be the unique vector of
∧q t(F2)/(

∧q Tσp(F2))
⊥ satisfying:

ω(σq
i )(v) = ζ(σq

i ) ,

for all 1 ≤ i ≤ k. Let σq be a simplex of σp that does not contain β. The boundary of β ∗ σq is
made of σq and σq

i1
, ..., σq

iq+1
. Since both ω and ζ are closed we have:

ω(σq)(v) =

q+1∑
j=1

ω(σq
ij
)(v) =

q+1∑
j=1

ζ(σq
ij
) = ζ(σq) .

Hence, for any lift v of v in
∧q t(F2), zqσp(v) equals ζ, and zqσp is surjective. Moreover, the kernel

of zqσp is (
∧q Tσp(F2))

⊥. This vector space has codimension
(
p
q

)
and contains N(σp)∧

∧q−1 t(F2).
Using a basis of t(F2) whose (n− p) first vectors belong to N(σp), we find that the latter space
has dimension

(
n
q

)
−
(
p
q

)
. Therefore, they must be equal. The last statement of the proposition

is a direct consequence of the definition of zqσp .

Proposition 2.11. Let K be primitive complex in t∗(R) and σn be a maximal simplex of K.
For all vertices α of σn, we denote by eσn(α) the generator of the line N(lk(α;σn)). For all
vertices α of σn the collection {eσn(β) : β ∈ lk(α;σp)(0)} is the dual basis of the reduction modulo
2 of {β − α : β ∈ lk(α;σp)(0)}. Moreover, we have the relation:∑

α∈(σn)(0)

eσn(α) = 0 .

In addition, for all simplices σp ≤ σn, the set {eσn(α) : α ∈ lk(σp;σn)(0)} is a basis of the vector
space N(σp). Also, for all simplices σp ≤ σn, with p ≥ 1, and all vertices α ∈ σn, the interior
product ιeσn (α)ω(σ

p) vanishes if α is not a vertex of σp and equals ω(lk(α;σp)) when α belongs
to σp.

Proof. Let σn be a simplex of K and α, β be distinct vertices of σn. If β′ ∈ σn is different
from α and β, then, by definition, (β′ − α)(eσn(β)) must vanish for the edge [β′;α] belongs to
lk(β;σn). The number (β − α)(eσn(β)) must be 1, for otherwise eσn(β) would vanish. Indeed,
{β − α : β ∈ lk(α;σp)(0)} is a basis of t∗(Z), hence its reduction modulo 2 is a basis of t∗(F2).
It follows that {eσn(β) : β ∈ lk(α;σp)(0)} is the dual basis of {β − α (mod 2) : β ∈ lk(α;σp)(0)}.
Moreover, it implies that for any two vertices β, β′ of σn, we have:

(β − β′)

 ∑
α∈(σn)(0)

eσn(α)

 = (β − β′)(eσn(β) + eσn(β′)) = 1 + 1 = 0 .

Therefore, the vector
∑

α∈(σn)(0) eσn(α) is 0. We also deduce that, for all pairs σp ≤ σn, the
set {eσn(α) : α ∈ lk(σp;σn)(0)} is a linearly independent family of N(σp). Since its cardi-
nality is (n − p) it must be a basis. As a consequence if α ∈ σn is not a vertex of σp,
with p ≥ 1, then ιeσn (α)ω(σ

p) vanishes. If on the contrary α is a vertex of σp, then ω(σp)
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equals ω(lk(α;σp)) ∧ (α− β) for any other vertex β of σp. It follows that ιeσn (α)ω(σ
p) equals

(α− β)(eσn(α))ω(lk(α;σp)), i.e. ω(lk(α;σp)).

Remark 2.12. Using Proposition 2.10 and Proposition 2.11, we find, for all simplices σn of K
and all vertices β of σn, that the image of eσn(β) by z1σn is the exact cocycle dχβ

19. Moreover,
every form α ∈ t∗(F2) equals

∑
β∈σn α(eσn(β))β.

Proposition 2.13. Let K be primitive complex in t∗(R) and σn−1 be an interior simplex of
K, i.e. bounding two maximal simplices σn

+ and σn
−. For all vertices α ∈ σn−1 we denote by

ρσn−1(α) the difference eσn
+
(α) − eσn

−
(α). This vector lies on the line N(σn−1) and we denote

by |ρσn−1(α)| ∈ F2 the associated number. Moreover, if α± denotes the vertex of σn
± opposite to

σn−1 then:
α+ − α− =

∑
β∈σn−1

|ρσn−1(β)|β (mod 2) .

Proof. Let α be a vertex of σn−1 and σ1 be an edge of σn−1. Following Remark 2.12, we have:

ω(σ1)
(
ρσn−1(α)

)
= ω(σ1)

(
eσn

+
(α)− eσn

−
(α)
)
= 2dχα(σ

1) = 0 .

Since {ω(σ1) : σ1 ≤ σn−1} spans Tσn−1(F2), the vector ρσn−1(α) belongs to the normal line
N(σn−1). By Proposition 2.11, eσn

+
(α+) equals eσn

−
(α−). They are the generator [N(σn−1)] of

N(σn−1). Hence, for any vertex β ∈ σn−1, we have:

(α+ − α−)[N(σn−1)] = (α+ − β)[N(σn−1)] + (α− − β)[N(σn−1)]

= (α+ − β)(eσn
+
(α+)) + (α− − β)(eσn

−
(α−))

= 1 + 1 = 0 .

And the form (α+ − α−) is tangent to σn−1 modulo 2. Therefore, by Proposition 2.11 and
Remark 2.12, we have the following formula:

α+ − α− =
∑

β∈σn−1

(α+ − α−)
(
eσn

+
(β)
)
β .

For all β ∈ σn−1, we have:

(α+ − α−)
(
eσn

+
(β)
)
= (α+ − β)

(
eσn

+
(β)
)
+ (β − α−)

(
eσn

+
(β)
)

= 1 + (β − α−)
(
eσn

−
(β)
)
+ (β − α−)

(
ρσn−1(β)

)
= 1 + 1 + |ρσn−1(β)|(β − α−)[N(σn−1)]

= |ρσn−1(β)| ,

since (β−α−)[N(σn−1)] equals 1. Indeed, the opposite would imply that [N(σn−1)] is zero.

Proposition 2.14. For all interior simplices σn−1 ∈ K we have:∑
α ∈(σn−1)(0)

ρσn−1(α) = 0 .

19Recall that χβ is the characteristic cochain of the vertex β. Its values are 1 on β and 0 elsewhere.
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Proof. Let σn
+ and σn

− be the two maximal simplices bounded by σn−1. By Proposition 2.11,
we have: ∑

α ∈(σn−1)(0)

ρσn−1(α) = eσn
+
(α+) + eσn

−
(α−) .

However, eσn
+
(α+) and eσn

−
(α−) both equal the generator of N(σn−1). Hence, the proposition

follows.

Definition 2.15. Let ε ∈ C0(K;F2). The first derivative Dε ∈ Hn(K; ∂K;T ∗) is defined for
all σn ∈ K by the formula:

Dεσn := (z1σn)−1(dε|σn) .

The following proposition, which is a direct consequence of Definition 2.15, justifies the
choice of terminology.

Proposition 2.16. For all ε ∈ C0(K;F2), all σn ∈ K and all vertices α, β ∈ σn we have:

ε(β) = ε(α) + Dεσn(β − α) .

Therefore, Dε vanishes if and only if ε is constant.

Definition 2.17. Let ε ∈ C0(K;F2). The second derivative D2ε ∈ Hn−1(K; ∂K;N) is defined
by the formula:

D2ε := ∂(Dε) ,

where ∂ denotes the connecting morphism Hn(K; ∂K;T ∗) → Hn−1(K; ∂K;N) of the homolog-
ical long exact sequence associated with the short exact sequence of cosheaves of Definition 2.7.

Remark 2.18. When the support of K is a closed ball the homological long exact sequence as-
sociated with the short exact sequence of cosheaves of Definition 2.7 splits around the dimension
n. It induces the following short exact sequence:

0 −→ Hn(K; ∂K; t(F2))︸ ︷︷ ︸
∼=t(F2)

−→ Hn(K; ∂K;T ∗)
∂−→ Hn−1(K; ∂K;N) −→ 0.

Because N vanishes on maximal simplices. We note that Hn−1(K; ∂K;N) is a group of cycles.

Proposition 2.19. Let σn−1 be an interior simplex bounding two maximal simplices σn
±, and

α± be the vertex of σn
± opposite to σn−1. The number D2εσn−1(α− − β) does not depend on the

choice of vertex β ∈ σn−1. It satisfies the following property:

ε(α+) = ε(α−) + Dεσn
+
(α+ − α−) + D2εσn−1(α− − β) .

Moreover, if |K| is homeomorphic to a ball, D2ε vanishes if and only if ε is affine.

Proof. Let β be a vertex of σn−1. We have:

ε(α+) + ε(α−) = Dεσn
+
(α+ + β) + Dεσn

−
(α− + β)

= Dεσn
+
(α+ + α−) + D2εσn−1(α− + β) .
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Hence ε(α+) equals ε(α−) + Dεσn
+
(α+ − α−) + D2εσn−1(α− − β) and D2εσn−1(α− − β) does not

depend on β. The cochain ε is represented in each n-simplex σn of K by an affine function of
t∗(F2) whose linear part is given by Dεσn . Using the exact sequence of Remark 2.18, we see
that if D2ε vanishes then this linear part is the same on every maximal simplices of K since K

is connected. Hence ε is globally given by an affine map.

Lemma 2.20. If the primitive complex K is shellable then both D and D2 are surjective.
Therefore, we have the exact sequences:

0 −→ F2 −→ C0(K;F2)
D−→ Hn(K; ∂K;T ∗) −→ 0 ,

and:
0 −→ Aff(t∗(F2)) −→ C0(K;F2)

D2

−→ Hn−1(K; ∂K;N) −→ 0 .

Proof. Let ε ∈ C0(K;F2) and σn be a maximal simplex of K. By Definition 2.15, we have the
following formula:

Dεσn =
∑
α∈σn

ε(α)eσn(α) .

Now, let σn−1 be an interior simplex of K. By Definition 2.17, we have:

D2εσn−1 =
(
ε(α+) + ε(α−)

)
[N(σn−1)] +

∑
α∈σn−1

ε(α)ρσn−1(α) ,

where α± ∗ σn−1 are the two n-simplices bounded by σn−1, and [N(σn−1)] is the generator of
N(σn−1). We can also write it as follows:

D2εσn−1 =
(
ε(α+) + ε(α−) +

∑
α∈σn−1

ε(α)|ρσn−1(α)|
)
[N(σn−1)] .

We will use this formula to show that when K is shellable, D2 is surjective. Let (σn
i )0≤i≤k be a

shelling of K, and c ∈ Hn−1(K; ∂K;N). We will construct a ε whose image by D2 is c. For all
0 ≤ i ≤ k, we denote by Ki the union ∪0≤j≤iK(σn

j ). For all interior simplices σn−1, we denote
by |⟨c ;σn−1⟩| ∈ F2 the unique number for which |⟨c ;σn−1⟩|[N(σn−1)] equals ⟨c ;σn−1⟩. We note
that K

(0)
i+1 equals K

(0)
i if the order of σn

i+1 is bigger than 1. Otherwise, K(0)
i+1 \K

(0)
i is reduced

to the vertex lk(Ki;Ki+1). It induces an order (αj)1≤j≤h1(K) on the vertices of K that do not
belong to σn

0 . For all 1 ≤ j ≤ h1(K), we denote by σn−1
j the simplex for which σn−1

j ∗ αj is the
simplex of order 1 at which αj appears. We also denote by α−

j the other vertex of the link of
σn−1
j in K. Now we inductively define ε by the following rule:

ε|σn
0
= 0

ε(αj) = |⟨c ;σn−1
j ⟩|+ ε(α−

j ) +
∑

α∈σn−1
j

ε(α)|ρσn−1
j

(α)| , ∀ 1 ≤ j ≤ h1(K) .

By construction, D2εσn−1
j

equals ⟨c ;σn−1
j ⟩ for all 1 ≤ j ≤ h1(K). We claim this is also true on

the other interior (n−1)-simplices of K. We will show by induction on 0 ≤ i ≤ k, that D2εσn−1

equals ⟨c ;σn−1⟩ for all interior (n− 1)-simplices of Ki. The assertion is true on K1 for σn
1 has
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order 1. Let us assume it true on Ki. The only interior (n − 1)-simplices of Ki+1 that were
not already interior in Ki are those contained in σn

i+1 that contain τi+1 (the intersection of the
contact faces of σn

i+1 with Ki). If ord(σn
i+1) is 1, then by construction the property is true on

Ki+1. If ord(σn
i+1) is bigger than 1, let us consider two (n − 1)-simplices σn−1

± that contain τi.
Since D2ε and c are cycles we have:

D2εσn−1
+

+ D2εσn−1
−

=
∑

σn−1≥σn−1
+ ∩σn−1

−
σn−1 ̸=σn−1

±

D2εσn−1 , (7)

and:
⟨c ;σn−1

+ ⟩+ ⟨c ;σn−1
− ⟩ =

∑
σn−1≥σn−1

+ ∩σn−1
−

σn−1 ̸=σn−1
±

⟨c ;σn−1⟩ . (8)

If σn−1 ∈ K contains σn−1
+ ∩ σn−1

− and is different from σn−1
+ and σn−1

− it cannot belong to σn
i+1

for σn−1
+ ∩ σn−1

− has codimension 2. Hence, by Lemma 2.5, it belongs to Ki. Thus, the right
hand sides of (7) and (8) are equal by recursion hypothesis. Therefore, we have the following
relation:

D2εσn−1
+

+ D2εσn−1
−

= ⟨c ;σn−1
+ ⟩+ ⟨c ;σn−1

− ⟩ . (9)

The vector [N(σn−1
+ )] is linearly independent from [N(σn−1

− )]. Thus (9) implies that D2εσn−1
±

equals ⟨c;σn−1
± ⟩ for D2εσn−1

±
and ⟨c;σn−1

± ⟩ belong to the line N(σn−1
± ).

Since K is embedded in a real vector space of the same dimension, its support can only be
homeomorphic20 to a ball. Hence, we have the exact sequence of Remark 2.18. From Propo-
sition 2.16, Proposition 2.19, and the surjectivity of D2, we have the following commutative
diagram with exact rows and columns:

0

0 Hn(K; ∂K; t(F2)) Hn(K; ∂K;T ∗) Hn−1(K; ∂K;N) 0

0 Aff(t∗(F2)) C0(K;F2) Hn−1(K; ∂K;N) 0

F2 F2

0 0

∂

D

D2

D id

from which derive the exact sequences of the lemma.

Definition 2.21. We define two enlargement of the boundary of K:

1. the sub-complex B0K of K made of all the simplices of K having all of their vertices in
∂K;

20c.f. Proposition 2.4.
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2. the sub-complex B1K of K made of the union of the closed simplices K(σp) of K for
which all of their vertices v ∈ K(σp) satisfy v ∈ ∂K or lk(v;σp) ∈ ∂K. See Figure 10 for
an example.

We note that B1K contains B0K and all the vertices of K. The simplices of B1K that do not
belong to B0K are joins of an interior vertex of K and a simplex of ∂K. For such a simplex σ

we denote by ap(σ) its interior vertex.

(a) The sub-complex B0K (in bold and
hatched).

(b) The sub-complex B1K (in bold and
hatched).

Figure 10: Examples of B0K and B1K.

Definition 2.22. Let σn−1 be an interior simplex of K. we denote by I(σn−1) the set of
vertices α of σn−1 that do not belong to ∂K and whose link lk(α;σn−1) is not contained in
∂K either. We say that K is ρ-uniform if for all interior simplices σn−1 ∈ K the restriction of
ρσn−1 to I(σn−1) is constant. In particular, because of Proposition 2.14, if dimK ≤ 2 then K

is ρ-uniform. If K is not ρ-uniform we say that K fails to be ρ-uniform at σn−1 if ρσn−1 is not
constant on I(σn−1). For all ρ-uniform complexes K, we denote by ρ ∈ Cn−1(K;B0K;N) the
chain whose value on σn−1 ∈ K \ B1K is ρσn−1(α) for any α ∈ I(σn−1), and whose value on
σn−1 ∈ B1K \ B0K is ρσn−1(ap(σn−1)).

Proposition 2.23. If K is ρ-uniform, the chain ρ is a cycle. It induces a homology class
denoted by the same symbol.

Proof. Let σn−2 be a simplex of K that does not belong to ∂K. If n equals 2 then ⟨∂ρ ;σ0⟩
is
∑

σ1≥σ0 ρσ1(σ0) since ρ is constant on σ1. This vector is zero by definition of ρσ1(σ0) as the
difference

∑
σ2≥σ1 eσ2(σ0). Now if n is bigger than 2, then either σn−2 belongs to B1K or not but

either way there is an interior vertex α of σn−2 for which ⟨∂ρ ;σn−2⟩ equals
∑

σn−1≥σn−2 ρσ1(α).
This vector vanishes for the same reason as in the case n = 2.

3 Computing the Renaudineau-Shaw Spectral Sequence

The aim of this section is to give an effective computation of the first page of the Renaudineau-
Shaw spectral sequence for T-hypersurfaces. This spectral sequence is derived from a filtration
of the cellular chain complex of the T-hypersurface RXε. A. Renaudineau and K. Shaw showed
that the groups of its first page are isomorphic to the tropical homology groups of the tropical
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counterpart X of RXε. We will compute here the boundary operators of this first page. To do
so, we will follow a usual path: in a first time we will lift a tropical homology class of X as a
relative cycle of RXε, then we will compute its boundary and reproject it as a tropical homology
class of X. To simplify this task we will reduce ourself to subspaces of tropical homology groups
made of classes having a suitable representing cycle. Following the computation of the boundary
of these lifts, we will finally display the obtained information in matrices and use their ranks
to express the dimensions of the groups of the second page of the sequence.

Lifting Tropical Cycles. Let P be a smooth n-dimensional polytope of t∗(R) endowed with
a primitive triangulation K. For all σp ∈ K, we choose w(σp) = w1(σ

p) ∧ ... ∧ wp(σ
p) a totally

decomposed p-vector of t(F2) satisfying ω(σp)(w(σp)) = 1.

Definition 3.1. Let 0 ≤ p ≤ n−1 be an integer. We define gp : Cp(K; ∂K;F2) → Hp,n−1−p(X;F2)

by the following formula. For all p-cochain γ we set:

gp(γ) =

 ∑
σp+1≤σn

d(γw)(σp+1)⊗ [σp+1;σn]

 . (10)

We can note that g0 is known to be an isomorphism. Indeed, since FX
0 is the constant

cosheaf F2, the group H0,n−1(X;F2) is the (usual) homology group of X with coefficients in F2.
The space X is homotopic to a wedge of (n − 1)-spheres, one for each interior vertex of K.
Let p be an interior vertex of K, the class g0(χp) is the fundamental class of the corresponding
sphere, which is the link of p in the barycentric subdivision of K.

Lemma 3.2. For all integers 0 ≤ p ≤ n− 1, the morphism gp does not depend on the choice of
w. Moreover its image is the kernel of morphism ip,n−1−p : Hp,n−1−p(X;F2) → Hp,n−1−p(P ;F2).

Proof. In a first time we can notice the cycle :

z =
∑

σp+1≤σn

d(γw)(σp+1)⊗ [σp+1;σn] ∈ Ωn−1−p(K;FX
p ) ,

is the boundary of the chain :

b =
∑

σp≤σn

γ(σp)w(σp)⊗ [σp;σn] ∈ Ωn−p(K;F P
p ) .

Hence it shows that the image of gp(γ) in the tropical homology of the toric variety P vanishes.
Also, should we choose another w, say w′, the chain :

b− b′ =
∑

σp≤σn

γ(σp)(w − w′)(σp)⊗ [σp;σn] ,

belongs to Ωn−p(K;FX
p ) since ω(σp)(w(σp) − w′(σp)) vanishes by hypothesises on w and w′.

Now the boundary of b− b′ is :

∂(b− b′) = z −
∑

σp+1≤σn

d(γw′)(σp+1)⊗ [σp+1;σn] .
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And the class gp(γ) does not depend on w. The fact that the image of gp is the kernel of
ip,n−1−p comes from Theorem 1 p.20 and Theorem 2 p.32 of [Che23a]. They assert that both
the tropical homology of P and X can be computed as the cohomology of cellular sheaves on
K. Let Q denote either P or X and define, as in the proof of aforementioned Theorem 2, the
cellular sheaves of local tropical homology:

GQ
p : σq 7→ Hn(K;K − σq;FQ

p ).

Then the inclusion ip : F
X
p → F P

p induces an inclusion jp : G
X
p → GP

p and we have a commuta-
tive diagram:

Hp,n−1−p(X;F2) Hp,n−1−p(P ;F2)

Hp+1
(
K;GX

p

)
Hp+1

(
K;GP

p

)∼=

ip,n−1−p

∼=

jp+1
p

The cokernel sheaf of jp is supported21 on the p-th skeleton of K and for all simplex σp,
coker(jp)(σp) is either F2 or 0, the latter occurring if and only if σp lies on the boundary of P .
Therefore the group of p-cocycles with coefficients in coker(jp) is precisely Cp(K; ∂K;F2) and
the exactness of the sequence:

Cp(K; ∂K;F2)
gp−→ Hp,n−1−p(X;F2) −→ Hp,n−1−p(P ;F2) −→ 0 ,

comes from the exactness of the sequence:

Hp(K; coker(jp))
d−→ Hp+1(K;LX

p ) −→ Hp+1(K;LP
p ) −→ 0 .

Remark 3.3. The morphism ip,n−1−p : Hp,n−1−p(X;F2) → Hp,n−1−p(P ;F2) is surjective. This
is a consequence of the Tropical Lefschetz Theorem22.

Lemma 3.4 (Origin). Let ε ∈ C0(K;F2) be a sign distribution, σp ≤ σp+1 ≤ σn be three sim-
plices of K, and W be a supplementary sub-space of N(ep) in t(F2). The point:

Oσn(ep) := Dεσn +
∑

σ0≤σp

eσn(σ0) ∈ t(F2) ,

satisfies Oσn(ep) +W ⊂ Argε(σp+1;σn).

Proof. Following Lemma 3.7 p.18 in [Che23b], the set Argε(σp+1;σn) is described as the fol-
lowing set {v ∈ t(F2) | z1σp+1(v) ̸= dε|σp+1}. By Definition 2.15, the image of the vector Dεσn by
z1σn is dε|σn . Hence, by Proposition 2.10, z1σp+1(Dεσn) equals dε|σp+1 . Let us denote by v the
vector:

v :=
∑

β vertex of σp

eσn(β) .

21c.f.[Che23a] Theorem 2 p.32, especially the end of the proof.
22c.f. [ARS21] Theorem 1.2 p.1349, [BLdMR22] Proposition 3.2 p.15, or [Che23a] Corollary 3 p.34.
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Proposition 2.11 ensures that z1σp+1(v) equals dχα where α is the vertex of σp+1 opposite to
σp. If σ1 is an edge of σp+1 that contains α then z1σp+1(Dεσn + v)(σ1) equals dε(σ1) + 1, and
Dεσn + v belongs to Argε(σp+1;σn). Let w ∈ t(F2) be a vector that does not belong to N(ep).
The restriction of z1σp+1(Dεσn +v+w) to σp is dε|σp +z1σp(w). Since w does not belong to N(ep),
z1σp(w) is different from zero and, consequently, Dεσn + v + w belongs to Argε(σp+1;σn).

Lemma 3.5 (Lift). Let ε ∈ C0(K;F2) be a sign distribution, 0 ≤ p ≤ n− 1 be an integer, and
γ be a cochain of Cp(K; ∂K;F2). The chain:

c :=
∑

σp+1≤σn

d

(
γ xOσn

p∏
i=1

(1 + xwi)

)
(σp+1)⊗ [σp+1;σn] ∈ Ωn−1−p

(
K;KRXε

(p)

)
,

has its boundary equal to:

∑
σp+1≤σn−1

d

(
γ Gσn−1

p∏
i=1

(1 + xwi)

)
(σp+1)⊗ [σp+1;σn−1] ,

where Gσn−1(σp) is null on the p-simplices of the boundary and otherwise equals
∑

σn≥σn−1 xOσn (σp).
This boundary belongs to Ωn−2−p

(
K;KRXε

(p+1)

)
and c represents the homology class gp(γ).

Proof. Let 0 ≤ p ≤ n − 1 be an integer. By definition,
(
E1

p,q(RXε)
)
q≥0

is the homology of
the p-th graded piece of the filtered cosheaf KRXε . By Proposition 4.22 p.29 in [Che23b], this
cosheaf is isomorphic to FX

p through bvX
p . Therefore, any homology class [c] ∈ Hp,q(X;F2) can

be represented by a relative cycle, i.e. a chain c ∈ Ωq(K;KRXε

(p) ) whose boundary belongs to
Ωq−1(K;KRXε

(p+1)). Let σp+1 ≤ σn be a pair of simplices of K, and O + ⟨v1, ..., vp⟩ be a p-affine
subspace of t(F2) contained in Argε(σp+1;σn). From Remark 1.24, we have:

bvX
p (σ

p+1;σn)

(
xO

p∏
i=1

(1 + xvi)

)
=

p∧
i=1

v .

Since ω(σp)(w(σp)) equals 1, for all σp ≤ σp+1, the vector space ⟨w1(σ
p), ..., wp(σ

p)⟩ is a sup-
plementary sub-space of N(σp) in t(F2). Using Lemma 3.4, it follows that the chain:

c :=
∑

σp+1≤σn

d

(
γ xOσn

p∏
i=1

(1 + xwi)

)
(σp+1)⊗ [σp+1;σn] ,

lifts the chain
∑

σp+1≤σn d (γw) (σp+1)⊗ [σp+1;σn]. Let σq ≤ σq+n−p−2 be a pair of simplices of
K. We have:〈

∂c ; [σq;σq+n−p−2]
〉
=

∑
σq−1≤σq

〈
c ; [σq−1;σq+n−p−2]

〉
+

∑
σq+n−p−2;σq+n−p−1

〈
c ; [σq;σq+n−p−1]

〉
.

If q is different from p+ 1 and p+ 2,
〈
∂c ; [σq ≤ σq+n−p−2]

〉
vanishes. For the remaining pieces

we have: 〈
∂c ; [σp+2;σn]

〉
=

∑
σp+1≤σp+2

d

(
γ xOσn

p∏
i=1

(1 + xwi)

)
(σp+1) = 0 ,
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and:

〈
∂c ; [σp+1;σn−1]

〉
=

∑
σn−1≤σn

d

(
γ xOσn

p∏
i=1

(1 + xwi)

)
(σp+1)

=
∑

σp≤σp+1

γ(σp)
∑

σn−1≤σn

(
xOσn (σp)

) p∏
i=1

(
1 + xwi(σ

p)
)

=
∑

σp≤σp+1

γ(σp)Gσn−1(σp)

p∏
i=1

(
1 + xwi(σ

p)
)

= d

(
γ Gσn−1

p∏
i=1

(1 + xwi)

)
(σp+1) ,

since γ vanishes on the boundary of K. Whenever we have a triple σp ≤ σp+1 ≤ σn−1 with σp not
contained in ∂K, there are two n-simplices σn

± adjacent to σn−1. In this case Argε(σp+1;σn−1)

equals Argε(σp+1;σn
±), and Oσn

±
+⟨w1(σ

p), ..., wp(σ
p)⟩ are two parallel affine sub-spaces contained

in this set. Therefore Gσn−1(σp)
∏p

i=1

(
1 + xwi(σ

p)
)

belongs to KRXε

(p+1)(σ
p+1;σn−1). Thus ∂c

belongs to Ωn−2−p

(
K;KRXε

(p+1)

)
.

Proposition 3.6. Let ε ∈ C0(K;F2) be a sign distribution on K, 0 ≤ p ≤ n− 1 be an integer,
and γ be a cochain of Cp(K; ∂K;F2). We have:

∂1
p,n−1−p g

p(γ) =

 ∑
σp+1≤σn−1

d
(
γw ∧ (D2εσn−1 + ρ p

σn−1)
)
(σp+1)⊗ [σp+1;σn−1]

 ,

where ρ p
σn−1 ∈ Cp(σn−1;N(σn−1)) is defined, for all σp ≤ σn−1, by the formula:

ρ p
σn−1(σ

p) :=
∑

α vertex of σp

ρσn−1(α) .

Proof. By Lemma 3.5, ∂1
p,n−1−p g

p(γ) is given by the formula: ∑
σp+1≤σn−1

bvX
p+1(σ

p+1;σn−1)

(
d

(
γ Gσn−1

p∏
i=1

(1 + xwi)

)
(σp+1)

)
⊗ [σp+1;σn]

 .

Let σp ≤ σp+1 ≤ σn−1 be a triple of simplices with σp not contained in ∂K. From Remark 1.24,
we have:

bvX
p+1(σ

p+1;σn−1)

(
Gσn−1(σp)

p∏
i=1

(
1 + xwi(σ

p)
))

=

 ∑
σn≥σn−1

Oσn(σp)

 ∧ w(σp)

=
(
D2εσn−1 + ρ p

σn−1(σ
p)
)
∧ w(σp) .
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Therefore we find that:

∂1
p,n−1−p g

p(γ) =

 ∑
σp+1≤σn−1

d
(
γw ∧ (D2εσn−1 + ρ p

σn−1)
)
(σp+1)⊗ [σp+1;σn−1]

 .

Intersection Matrices. We use the tropical intersection product to represent the boundary
operators of the first page as matrices and provide formulæfor the dimensions of the groups of
the second page that take into account that the morphisms gp are not surjective in general.

Definition 3.7. Let ε ∈ C0(K;F2) be a sign distribution, and σp and σq be two interior
simplices of K with p+ q = n− 2. We denote by (σp;σq)ε the number:

(σp;σq)ε := gp(χσp) · ∂1
q,p+1g

q(χσq) ∈ H0,0(X;F2) = F2 ,

where − · − denotes the tropical intersection product. For all integers p, q ≥ 0 for which
p+ q = n− 2, let Mp,q(ε) denote the matrix whose entries are given by the numbers

(
(σp;σq)ε

)
σp,σq∈K\∂K .

Definition 3.8. We assume that n = 2k + 1 is odd. We define the radical of X, denoted by
Rad(X), to be the radical of the intersection form restricted to the kernel of the morphism
ik,k : Hk,k(X;F2) → Hk,k(P ;F2). We denote by rad(X) the dimension of Rad(X).

Proposition 3.9. We assume that n = 2k + 1 is odd. Let ωX denote the Poincaré dual in P

of the fundamental class of X. The radical Rad(X) is generated by the classes ik,k(γ) ∩ [X] ∈
Hk,k(X;F2) for all γ ∈ Hk,k(P ;F2) for which γ ∪ ωX vanishes.

Proof. The Poincaré duality in X provides us with an isomorphism between the group Hk,k(X;F2)

and its dual Hk,k(X;F2). The orthogonal of ker(ik,k) is the image under this isomorphism of
im(ik,k) i.e. is spanned by the element of the form ik,k(γ) ∩ [X] where γ belongs to Hk,k(P ;F2).
If we denote by ωX the Poincaré dual in P of [X], we have:

ik,k
(
ik,k(γ) ∩ [X]

)
= (γ ∪ ωX) ∩ [P ] .

Therefore:

Rad(X) =
〈
ik,k(γ) ∩ [X] ∈ Hk,k(X;F2) : γ ∈ Hk,k(P ;F2) s.t. γ ∪ ωX = 0

〉
.

Proposition 3.10. Let ε ∈ C0(K;F2) be a sign distribution. For all p+ q = n− 2, Mp,q(ε) is
the transpose of Mq,p(ε). Moreover:

1. If n is even, the rank of Mp,q(ε) equals the rank of ∂1
q,n−1−q;

2. If n = 2k + 1 is odd, it is also the case except when (p, q) equals (k − 1, k) or (k, k − 1).
In the first case the rank of Mk−1,k(ε) equals the rank of the restriction of ∂1

k,k to the
kernel of i1k,k : E

1
k,k(RXε) → E1

k,k(RP ). In the second one, Mk,k−1(ε) equals the rank of
the composition of ∂1

k+1,k−1 with the projection of ker(i1k,k) to its quotient by Rad(X).
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Proof. Let σp, σq be two simplices of K satisfying p + q = n − 2, i.e. q = n − 1 − (p + 1). By
Definition 3.7 we have:

(σp;σq)ε = gp(χσp) · ∂1
n−1−(p+1),p+1g

q(χσq) .

Let γ ∈ Hn−1−p,p(X;F2) denote the Poincaré dual23 of gp(χσp). By definition of the tropical
intersection product, we have:

(σp;σq)ε = γ
(
∂1
n−1−(p+1),p+1g

q(χσq)
)
= (dn−1−p,p

1 γ)
(
gq(χσq)

)
,

since (∂r
a,b)

∗ equals da+r,b−1
r by duality of the spectral sequences24. Following Theorem 4.27

p.32 and Proposition 1.6 p.9 of [Che23b], we find that dn−1−p,p
1 γ is the Poincaré dual of

∂1
p,n−1−pg

p(χσp). There is a sign in the aforementioned Proposition 1.6, however since we con-
sider F2-vector spaces we can discard it. Finally we have:

(σp;σq)ε = ∂1
p,n−1−pg

p(χσp) · gq(χσq) ,

which is equal to (σq;σp)ε since the intersection product is symmetric over F2. Now we assume
n even in a first time. The family {gq(χσq) : σq ∈ K \ ∂K} spans E1

q,n−1−q(RXε) and the family
{(gp(χσp) · −) : σp ∈ K \ ∂K} spans Eq+1,n−2−q

1 (RXε). As such the rank of Mp,q(ε) equals the
rank of ∂1

q,n−1−q. If now we assume n = 2k + 1 odd and that (p, q) is neither (k − 1, k) nor
(k, k − 1), the family:

{gq(χσq) : σq ∈ K \ ∂K} ,

still spans E1
q,n−1−q(RXε) and the family {(gp(χσp)·−) : σp ∈ K\∂K} still spans Eq+1,n−2−q

1 (RXε).
The rank of Mp,q(ε) is still equal to the rank of ∂1

q,n−1−q. For the two remaining cases we consider
the following commutative diagram with exact columns:

0

0 E1
k,k(RP ) 0

E1
k−1,k+1(RXε) E1

k,k(RXε) E1
k+1,k−1(RXε)

ker(i1k−1,k+1) ker(i1k,k) ker(i1k+1,k−1)

0 0 0

i1k−1,k+1

∂1
k−1,k+1

i1k,k

∂1
k,k

i1k+1,k−1

The vector family {gk(χσk) : σk ∈ K \ ∂K} spans the kernel ker(i1k,k) and the vector fam-
ily {(gk−1(χσk−1) · −) : σk−1 ∈ K \ ∂K} spans Ek+1,k−1

1 (RXε). Therefore the rank of Mk−1,k(ε)

equals the rank of the restriction of ∂1
k,k to the kernel ker(i1k,k). The family {(gk(χσk) ·−) : σk ∈

23c.f. [JRS18] Theorem 5.3 p.16.
24c.f. [Che23b] Definition 4.19 p.28, for the dual spectral sequence.
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K \ ∂K} spans the cokernel of ik,k1 and the family {gk−1(χσk−1) : σk−1 ∈ K \ ∂K} spans
E1

k−1,k+1(RXε). The cokernel of ik,k1 is the quotient of Ek,k
1 (RXε) by the orthogonal of ker(i1k,k).

Using the Poincaré duality, the latter quotient is isomorphic to the quotient of E1
k,k(RXε) by

the orthogonal of ker(i1k,k) with respect to the intersection product. Since ∂1
k,k takes values in

ker(i1k,k) the rank of Mk−1,k(ε) equals the rank of the composition of ∂1
k,k with the quotient

projection ker(i1k,k) → ker(i1k,k)
/
Rad(X) .

Proposition 3.11. Let ε ∈ C0(K;F2) be a sign distribution.

1. If n is even, then for all integers 0 ≤ p ≤ n− 1, we have:

dimE2
p,n−1−p(RXε) = dimHp,n−1−p(X;F2)− rkMn−2−p,p(ε)− rkMn−1−p,p−1(ε) .

2. If n = 2k + 1 is odd, then for all integers 0 ≤ p ≤ n − 1, different from k − 1, k, and
k + 1, we have:

dimE2
p,n−1−p(RXε) = dimHp,n−1−p(X;F2)− rkMn−2−p,p(ε)− rkMn−1−p,p−1(ε) .

In the other cases, we have:

dimE2
k−1,k+1(RXε) = dimHk−1,k+1(X;F2)− rkMk+1,k−2(ε)− rkMk,k−1(ε)− δ ,

dimE2
k+1,k−1(RXε) = dimHk+1,k−1(X;F2)− rkMk−2,k+1(ε)− rkMk−1,k(ε)− δ ,

and:
dimE2

k,k(RXε) = dimHk,k(X;F2)− rkMk−1,k(ε)− rkMk,k−1(ε)− 2δ .

where δ is the dimension of the cokernel of ik : Hk(RXε;F2) → Hk(RP ;F2). Moreover, δ
cannot exceed rad(X). We can also note that Hk(RXε;F2) is isomorphic to E2

k,k(RXε).

Proof. The first point is a consequence of the Rank Formula and Proposition 3.10. We assume
now that n = 2k + 1 is an odd integer. On the line {p + q = n − 1} we have the short exact
sequence of complexes:

0
(
ker(i1p,q); ∂

1
p,q

) (
E1

p,q(RXε); ∂
1
p,q

) (
E1

p,q(RP ); ∂1
p,q

)
0 .

The complex
(
E1

p,q(RP ); ∂1
p,q

)
p+q=n−1

has only one non-trivial group: E1
k,k(RP ). Therefore, the

associated long exact sequence splits into the following exact sequences:

0 → Hp,q(ker(i
1)) → E2

p,q(RXε) → 0 ,

for all p+ q = n− 1 different from (k, k) and (k + 1, k − 1). And the exact sequence:

0 Hk,k(ker(i
1)) E2

k,k(RXε) E1
k,k(P ) · · ·

· · · Hk+1,k−1(ker(i
1)) E2

k+1,k−1(RXε) 0 .

i2k,k

(11)
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The Rank Formula and Proposition 3.10 imply that, for all p + q = n − 1 except (k, k) and
(k − 1, k + 1), the dimension of Hp,q(ker(i

1)) is equal to:

dimE1
p,q(RXε)− rkMq−1,p(ε)− rkMq,p−1(ε) .

Moreover, if we write rk ∂1
k−1,k+1 = rkMk,k−1(ε) + δ, δ cannot exceed rad(X), and:

dimHk−1,k+1(ker(i
1)) = dimE1

k−1,k+1(RXε)− rkMk,k−1(ε)− δ − rkMk+1,k−2(ε) ,

and:

dimHk,k(ker(i
1)) = dimE1

k,k(RXε)− dimE1
k,k(RP )− rkMk−1,k(ε)− rkMk,k−1(ε)− δ .

It follows that if p+ q = n− 1 is different from (k+1, k− 1), (k, k), and (k− 1, k+1) we have:

dimE2
p,q(RXε) = dimE1

p,q(RXε)− rkMq−1,p(ε)− rkMq,p−1(ε)

= dimHp,q(X;F2)− rkMq−1,p(ε)− rkMq,p−1(ε) .

Using Theorem 4.27 p.32 of [Che23b] and Proposition 3.10 we find that:

dimE2
k−1,k+1(RXε) = dimE1

k−1,k+1(RXε)− rkMk,k−1(ε)− rkMk+1,k−2(ε)− δ

= dimHk−1,k+1(X;F2)− rkMk,k−1(ε)− rkMk+1,k−2(ε)− δ ,

and:

dimE2
k+1,k−1(RXε) = dimE1

k+1,k−1(RXε)− rkMk−1,k(ε)− rkMk−2,k+1(ε)− δ

= dimHk+1,k−1(X;F2)− rkMk−1,k(ε)− rkMk−2,k+1(ε)− δ .

From (11) we find the last formula:

dimE2
k,k(RXε) = dimHk,k(X;F2)− rkMk−1,k(ε)− rkMk,k−1(ε)− 2δ .

By Theorem 4.26 p.31 of [Che23b] the group E2
k,k(RXε) is isomorphic to Hk(RXε;F2). The map

i2k,k is conjugated to ik : Hk(RXε;F2) → Hk(RP ;F2). From (11) we find that the dimension of
the cokernel of i2k,k is δ.

4 The First and Last Boundaries

Twists of RXε In this paragraph we provide a geometric interpretation of the coefficients of
M0,n−1(ε).

Proposition 4.1. Let σn be a simplex of K. The lift σn
R of σn in RK, indexed by the vector

Dεσn is the only one avoided by RXε, i.e. the only lift for which σn
R ∩ RXε is empty. More

generally, if H is the hypersurface of σn dual to the cocycle ζ ∈ Z1(σn;F2), the only lift σn
R of

σn for which σn
R∩RXε corresponds to H is the one indexed by the vector Dεσn +v where z1σn(v)

equals ζ.
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Proof. Let σn
R be the lift of σn indexed by the vector Dεσn + v. The hypersurface σn

R ∩ RXε

is the dual hypersurface of the cocycle ζ : σ1 7→ dε(σ1) + ω(σ1)
(
Dεσn + v

)
. By Definition 2.15,

ω(σ1)
(
Dεσn) equals dε(σ1) for all edges σ1 of σn. Therefore, ζ equals z1σn(v).

Definition 4.2 (Twists). Let ε be a sign distribution on K, and σn−1 be an interior simplex
of K. For all vertices β of σn−1, we say that RXε is twisted along σn−1 in the direction of β if
D2εσn−1 is different from ρσn−1(β). The vector D2εσn−1 + ρσn−1(β) belongs to the line N(σn−1),
we denote by |D2εσn−1 + ρσn−1(β)| ∈ F2 the corresponding number.

Remark 4.3. Since both D2εσn−1 and ρσn−1(β) belong to the line N(σn−1), knowing if RXε

is twisted or not along a simplex in a given direction is a numerical question. The hy-
persurface RXε is twisted along σn−1 in the direction of β if and only if ε(α+) + ε(α−) +∑

α∈σn−1 ε(α)|ρσn−1(α)|+ |ρσn−1(β)| = 1, where σn−1 ∗α± are the two n-simplices of K adjacent
to σn−1.

Let σn−1 be an interior simplex of K. The set of directions in which RXε can be twisted
along σn−1 is strongly influenced by the geometry of K. The function ρσn−1 partitions the
vertices into two sets. The set of those on which the function vanishes and the set of the
others. For all sign distributions ε, the hypersurface RXε is then either twisted along σn−1 in
all the directions of the former set or in all the directions of the latter. Let S denote the closed
star of σn−1. Since σn−1 is interior it has exactly 2n different lifts in RK and so does S. A
lift of S is indexed by a vector v ∈ t(F2) and we denote it by Sv. The intersection of RXε

with Sv is the dual hypersurface of
[
σ1 7→ dε(σ1) + ω(σ1)(v)

]
. Using Proposition 2.10, we see

that the restrictions of these cocycles to σn−1 describe the whole set of cocycle Z1(σn−1;F2).
Therefore RXε intersects σn−1 in every possible way. By reflecting back all of the intersections
RXε ∩ Sv into S, we get a collection of 2n hypersurfaces of S (some could be empty). Exactly
2n − 2 of them intersect σn−1 and are connected. For the remaining two we have the following
alternative: one is empty and the other consists of two connected components that are “parallel”
to σn−1, or none of them is empty and each is a “parallel” copy of σn−1. Some examples are
depicted in Examples 4.5. Either way we have a collection of 2n connected hypersurfaces of S.
These hypersurfaces are naturally paired by their intersection with σn−1. We call the pair of
hypersurfaces that does not intersect σn−1 the parallel pair. Beside the parallel pair there are
also n distinguished pairs of hypersurfaces. For all vertices β of σn−1, there is exactly one pair
{H1(β);H2(β)} whose intersection with σn−1 separates β from the other vertices of σn−1.

Proposition 4.4. The hypersurface RXε is not twisted along σn−1 in the direction of β if and
only if one of the two hypersurfaces {H1(β);H2(β)} separates β from all the other vertices of
S.

Proof. Let σn
± denote the two n-simplices of S. Following Proposition 4.1, the lift of σn

± in
which the lift of β is separated from all the other vertices by RXε, is indexed by the vector
v± = Dεσn

±
+ eσn

±
(β). Indeed, z1σn

±
(eσn

±
(β)) equals dχβ. Let us denote by H± the hypersurface

of S corresponding to Sv± ∩ RXε. By construction H± belongs to {H1(β);H2(β)}. We have
two cases: either H+ equals H−, i.e. v+ equals v−, or H+ is different from H− and so are v+
and v−. In the first case H+ separates β from all the other vertices of S and v+ + v− vanishes,
i.e. D2εσn−1 equals ρσn−1(β). Hence RXε is not twisted along σn−1 in the direction of β. In the
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other case, RXε is twisted along σn−1 in the direction of β, and H± does not separate β from
lk(σn−1;σn

∓).

0 1

0 0

0 0

0 1

0 0

1 0

0 1

1 1

(a) The four different intersections of RXε

with the lifts of S.
(b) The four different intersections of RXε

with the lifts of S inside S.

Figure 11: The behavior of a curve RXε in the star of an edge along which it is untwisted.

0 1

1 0

0 0

1 1

0 0

0 0

0 1

1 1

(a) The four different intersections of RXε

with the lifts of S.
(b) The four different intersections of RXε

with the lifts of S inside S.

Figure 12: The behavior of a curve RXε in the star of an edge along which it is twisted.

Examples 4.5. 1. We assume that n equals 2, so that RXε is a curve. We consider an
interior edge σ1 of K. Following Proposition 2.14, the function ρσ1 is constant. Hence
RXε can either be twisted along σ1 in all the directions or in none. This corresponds to
the usual notion of twist25.

(a) In Figure 11a we depicted all the intersections of RXε with the star S of σ1. In this
case the curve RXε is not twisted along σ1. In Figure 11b, we represented all these
intersections in S. The two curves intersecting σ1 are represented disjoint, but in
reality they would meet “tangentially” at the middle of σ1.

(b) Figure 12 is the analogous of Figure 11 for a curve RXε, twisted along σ1. In
Figure 12b, the two curves intersecting σ1 meet “transversally” at the middle point
of σ1.

25c.f. [RS23], §7. Case of plane curves p.973.
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2. We assume now that n equals 3, so that RXε is a surface. Let σ2 be an interior triangle
of K. As we discussed earlier, the set of directions in which RXε can be twisted along σ2

is determined by the geometry of K. If we assume that the function ρσ2 vanishes, then
either RXε is twisted along σ2 in every direction or in none.

(a) In Figure 13, We depicted the intersections of a surface RXε, that is untwisted along
σ2, with all the lifts of the star S of σ2. Figure 14 represents the four pairs of surfaces
of S obtained by intersecting its lifts with RXε. In Figure 14b, Figure 14c, and Fig-
ure 14d, the pairs of surfaces are disjoint. In reality they would meet “tangentially”
along their common intersection with σ2.

(b) Now we consider a surface RXε that is twisted along σ2 in every direction. In
this example Figure 15 is the analogous of Figure 13. It represents the different
intersections of RXε with the lifts of S. Figure 16 represents the four pairs of surfaces
of S obtained by intersecting its lifts with RXε. In Figure 16b, Figure 16c, and
Figure 16d, the pairs of surfaces meet “transversally” along their common intersection
with σ2.

0 0

0

0

0

(a) Quadrant (0, 0, 0)

0 0

1

0

0

(b) Quadrant (1, 0, 0)

0 1

1

0

0

(c) Quadrant (1, 1, 0)

0 1

0

0

0

(d) Quadrant (0, 1, 0)

0 0

0

1

1

(e) Quadrant (0, 0, 1)

0 0

1

1

1

(f) Quadrant (1, 0, 1)

0 1

1

1

1

(g) Quadrant (1, 1, 1)

0 1

0

1

1

(h) Quadrant (0, 1, 1)

Figure 13: The eight intersections of RXε with the differents lifts of S. In this example t(F2)
is F3

2.
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(a) The parallel pair. (b) The pair of the first vertex.

(c) The pair of the second vertex. (d) The pair of the third vertex.

Figure 14: A representation of the four pairs of intersections of lifts of S with RXε.
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(a) Quadrant (0, 0, 0)
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(b) Quadrant (1, 0, 0)

0 1

1

1

0

(c) Quadrant (1, 1, 0)

0 1

0

1

0

(d) Quadrant (0, 1, 0)

0 0

0

0

1

(e) Quadrant (0, 0, 1)

0 0

1

0

1

(f) Quadrant (1, 0, 1)

0 1

1

0

1

(g) Quadrant (1, 1, 1)

0 1

0

0

1

(h) Quadrant (0, 1, 1)

Figure 15: The eight intersections of RXε with the different lifts of S.
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(a) The Parallel Pair. (b) The pair of the first vertex.

(c) The pair of the second vertex. (d) The pair of the third vertex.

Figure 16: A representation of the four pairs of intersections of lifts of S with RXε.

Maximality of the number of connected component. We recall from Theorem 1.4
p.947 of [RS23] that the number of connected components of RXε cannot exceed the number
1 + hn−1,0(X). When a T-hypersurface achieves this upper bound we will say that it has a
maximal number of connected components. In this paragraph we compute the matrix M0,n−2(ε)

which leads us to a characterisation of T-hypersurfaces achieving this upper bound.

Notations. Let W be a p-dimensional sub-space of t(F2). We denote by [W ] ∈
∧p t(F2) the

generator of the line
∧pW .

Lemma 4.6. Let σp ≤ σq be a pair of simplices of K with p positive. We have the following
alternative:

– Either σq belongs to the boundary ∂K and FX
n−1(σ

p;σq) vanishes;

– Or σq is interior and we have the exact sequence:

C2(σ
p;F2) C1(σ

p;F2) FX
n−1(σ

p;σq) 0

c
∑

σ1≤σp

⟨c ;σ1⟩[N(σ1)]

∂ Υσp,σq

Moreover, if we have σp ≤ σr ≤ σq with σq interior, and c ∈ C1(σ
p;F2) then Υσr,σq(c) equals

Υσp,σq(c).
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Proof. If σq belongs to ∂K, then s := dim Sed(σq) is positive. If s is greater than 1, the vector
space

∧n−1 t(F2)
/
Sed(σq) vanishes. This latter vector space equals F P

n−1(σ
p;σq). It contains

FX
n−1(σ

p;σq) which must vanish as well. If s equals 1,
∧n−1 t(F2)

/
Sed(σq) is a line. Since ω(σp)

divides the generator of the dual line, the contraction against it is injective. Thus FX
n−1(σ

p;σq)

is also trivial. We assume now that σq is interior. For all σ1 ≤ σp, the (n − 1)-vector [N(σ1)]

is the generator of FX
n−1(σ

1;σq). Hence by the fourth point of Definition 1.11, the morphism
Υσp,σq is surjective. Let σ1 be an edge of σp. The vector [N(σ1)] equals ω(σ1) · [t(F2)]. However,
the cochain [σ1 7→ ω(σ1)] is closed, c.f. Proposition 2.9. Therefore,

[
σ1 7→ [N(σ1)]

]
is also

closed, and the image of ∂ is contained in the kernel of Υσp,σq . It follows from Proposition 2.11,
that for all vertices β of σp, the set

{
[N(σ1)] : σp ≥ σ1 ≥ β

}
is linearly independent. Hence, it

is a basis of FX
n−1(σ

p;σq), and this space has dimension p. The rank of the morphism ∂ equals
the codimension of the kernel of d : C1(σp;F2) → C2(σp;F2). However ker(d) has dimension
(p+ 1)− 1 = p. Therefore, the image of ∂ has codimension p and the sequence is exact. If we
have σp ≤ σr ≤ σq with σq interior, FX

n−1(σ
p;σq) is included in FX

n−1(σ
r;σq). The last statement

is then a direct consequence of the definition.

Lemma 4.7. Let γ be a cochain in C0(K; ∂K;F2) and
[∑

σn∈K w(σn)⊗ [σn;σn]
]
be a homology

class in Hn−1,0(X;F2). We have the formula:

g0(γ) ·

[∑
σn

w(σn)⊗ [σn;σn]

]
=
∑
σn∈K

 ∑
β∗σn−1=σn

γ(β)ω(σn−1)

(w(σn)
)
.

Proof. Let [w] denote the homology class
[∑

σn w(σn) ⊗ [σn;σn]
]
. The intersection product

g0(γ) · [w] equals ζ[w] where ζ ∈ Hn−1,0(X;F2) is the Poincaré dual of g0(γ), i.e. ζ ∩ [X] equals
g0(γ). Therefore, we will begin by finding a cycle ζ ∈ Z0Ω(K;F n−1

X ) whose cohomology class
is Poincaré dual to g0(γ). Let σp be an interior simplex of K. We denote by ζ(σp) the unique
form in F n−1

X (σp;σp) satisfying:

Υ∗
σp,σp(ζ(σp)) = dγ|σp ,

where Υ∗
σp,σp is the adjoint morphism of Υσp,σp from Lemma 4.6. For all simplices σp of the

boundary ∂K and all vertices of K, we set ζ(σp) to be 0. Then we have a well defined 0-cochain
ζ ∈ Ω0(K;F n−1

X ). Let us show that it is closed. Let σp ≤ σp+1 be an adjacent pair of simplices
of K. If σp is a vertex then F n−1

X (σp;σp+1) vanishes and so does dζ(σp;σp+1). We assume now
that p is positive. If σp+1 belongs to ∂K, so does σp, and dζ(σp;σp+1) vanishes. If σp belongs
to ∂K but σp+1 does not, dζ(σp;σp+1) equals the image ζ(σp+1)′ of ζ(σp+1) by the restriction
morphism F n−1

X (σp+1;σp+1) → F n−1
X (σp;σp+1). By Lemma 4.6, Υ∗

σp,σp+1(ζ(σp+1)′) equals dγ|σp .
However, the latter cocycle vanishes for γ is identically zero on ∂K. Since Υ∗

σp,σp+1 is injective,
it means that dζ(σp;σp+1) vanishes. If now both σp and σp+1 are interior simplices, then:

Υ∗
σp,σp+1

(
dζ(σp;σp+1)

)
= dγ|σp + dγ|σp = 0 .
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The cochain ζ is closed. We have:

ζ ∩
∑

σ1≤σn

[N(σ1)]⊗ [σ1;σn] =
∑

σ1≤σn

ζ(σ1)[N(σ1)]⊗ [σ1;σn]

=
∑

σ1≤σn

Υ∗
σ1,σn

(
ζ(σ1)

)
(σ1)⊗ [σ1;σn]

=
∑

σ1≤σn

dγ(σ1)⊗ [σ1;σn] .

The cohomology class of ζ is the Poincaré dual of g0(γ) for the fundamental class [X] is repre-
sented by the cycle

∑
σ1≤σn [N(σ1)]⊗ [σ1;σn]. Therefore, we have:

g0(γ) · [w] =
∑
σn∈K

ζ(σn)
(
w(σn)

)
.

To complete our proof we need to compute ζ(σn) for all simplices σn ∈ K. Let σ1 and σn−1

be two simplices of σn. The number ω(σn−1)[N(σ1)] equals the value of
(
ω(σn−1) ∧ ω(σ1)

)
on

[t(F2)] i.e. 1 if and only if σ1 is not contained in σn−1. Therefore, for all σ1 ≤ σn, we have: ∑
β∗σn−1=σn

γ(β)ω(σn−1)

 [N(σ1)] = dγ(σ1) ,

and the lemma follows.

Definition 4.8. Let σn−1 be an interior simplex of K, and σn ∈ K be adjacent to σn−1. For
all vertices α of σn−1 the vector eσn(α)

(
modN(σn−1)

)
does not depend on the choice of σn and

is denoted by eσn−1(α).

Proposition 4.9. Let ε be a sign distribution on K. Let β be an interior vertex of K and σn−2

be an interior simplex of K. We have the following alternative:

1. The intersection of the open stars of β and σn−2 is empty and (β ;σn−2)ε vanishes;

2. The join of β and σn−2 is an (n− 1)-simplex σn−1 of K and:

(β ;σn−2)ε [N(σn−1)] = D2εσn−1 + ρσn−1(β) ,

where [N(σn−1)] denotes the generator of the line N(σn−1);

3. The vertex β belongs to σn−2 and:

(β ;σn−2)ε [N(σn−2)] =
∑

σn−1≥σn−2

eσn−1(β) ∧
(
D2εσn−1 + ρσn−1(lk

(
σn−2;σn−1)

))
,

where [N(σn−2)] denotes the generator of the line
∧2N(σn−2).

Proof. Let σn−2 be an interior simplex of K. Following Proposition 3.6, the homology class
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∂1
n−2,1g

n−2(χn−2
σ ) is represented by the cycle:

c :=
∑

σn−1≥σn−2

w(σn−2) ∧
(
D2εσn−1 + ρn−2

σn−1(σ
n−2)

)
⊗ [σn−1;σn−1] .

Since σn−2 is interior, its link L in K is homeomorphic to a circle. We denote the vertices
of L by αi, for all i ∈ Z /kZ , in such a way that αi and αi+1 are the vertices of an edge of
L. For all i ∈ Z /kZ , we denote σn−2 ∗ αi by σn−1

i , and σn−2 ∗ αi ∗ αi+1 by σn
i,i+1. Following

Proposition 2.14, ρn−2

σn−1
i

(σn−2) equals ρσn−1
i

(αi) for all i ∈ Z /kZ . Then we can write:

c =
∑

i∈Z/kZ

w(σn−2) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

)
⊗ [σn−1

i ;σn−1
i ] .

Let us consider the chain of Ωn−1,n(K;FX
n−1) given by the formula:

b :=
∑

i∈Z/kZ

u(σn−2) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

)
⊗ [σn−1

i ;σn
i,i+1] .

By construction, if σp is a simplex of K that does not contain σn−2, then
〈
∂b ; [σp;σp]

〉
van-

ishes. For all i ∈ Z /kZ , both
〈
∂b ; [σn−1

i ;σn−1
i ]

〉
and

〈
∂b ; [σn

i,i+1;σ
n
i,i+1]

〉
equal

〈
c ; [σn−1

i ;σn−1
i ]

〉
.

Therefore, the cycle c is homologous to the cycle:

c′ :=
∑

i∈Z/kZ

w(σn−2) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

)
⊗ [σn

i,i+1;σ
n
i,i+1] .

Let β be an interior vertex of K. Following Lemma 4.7, we find that:

(β ;σn−2)ε = g0(χβ) · [c′]

=
∑

i∈Z/kZ
β∈σn

i,i+1

ω
(
lk(β;σn

i,i+1)
)(

w(σn−2) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

))
. (12)

It implies that (β;σn−2)ε vanishes whenever the open stars of β and σn−2 are disjoint. If now
the join of β and σn−2 is an (n− 1)-simplex of K, then β is αi for a certain i ∈ Z /kZ . In this
case we have:

(β ;σn−2)ε = ω
(
lk(αi;σ

n
i,i+1)

)(
w(σn−2) ∧

(
D2εσn−1

i
+ ρσn−1

i
(αi)

))
+ ω

(
lk(αi;σ

n
i−1,i)

)(
w(σn−2) ∧

(
D2εσn−1

i−1
+ ρσn−1

i−1
(αi−1)

))

= ω(σn−1
i+1 )

(
w(σn−2) ∧

(
D2εσn−1

i
+ ρσn−1

i
(αi)

))
+ ω(σn−1

i−1 )
(
w(σn−2) ∧

(
D2εσn−1

i−1
+ ρσn−1

i−1
(αi−1)

))
= |D2εσn−1

i
+ ρσn−1

i
(αi)| ,
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Because D2εσn−1
i−1

+ ρσn−1
i−1

(αi−1) belongs to N(σn−1
i−1 ), and ω(σn−1

i+1 )
(
w(σn−2) ∧ [N(σn−1

i )]
)

equals
1. Indeed, if α is a vertex of σn−2, we have:

ω(σn−1
i+1 )

(
w(σn−2) ∧ [N(σn−1

i )]
)
= ω(σn−2) ∧ (αi+1 − α)

(
w(σn−2) ∧ [N(σn−1

i )]
)

= (αi+1 − α)
(
[N(σn−1

i )]
)
= 1 ,

since the vanishing of (αi+1−α)
(
[N(σn−1

i )]
)

would imply the nullity of [N(σn−1
i )]. If we assume

now β to be a vertex of σn−2, the formula (12) implies that:

(β ;σn−2)ε =
∑

i∈Z/kZ

ω
(
lk(β;σn

i,i+1)
)(

w(σn−2) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

))
.

The contraction ω
(
lk(β;σn

i,i+1)
)
· [t(F2)] equals the vector eσn

i,i+1
(β). Therefore, we have:

(β ;σn−2)ε[t(F2)] = w(σn−2) ∧
∑

i∈Z/kZ

eσn
i,i+1

(β) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

)
.

If n equals 2, then w(σn−2) equals 1 by definition and we have established the last formula. Now
we assume that n is at least equal to 3. Let σ1 be an edge of σn−2. The number ω(σ1)(eσn

i,i+1
(β))

equals 1 if and only if β belongs to σ1, c.f. Proposition 2.11. In particular it does not depend
on i. The number ω(σ1)(D2εσn−1

i
+ ρσn−1

i
(αi)) is 0 for all i ∈ Z /kZ for σ1 is contained in σn−1

i

and D2εσn−1
i

+ ρσn−1
i

(αi) belongs to N(σn−1
i ). Using these computations we find that:

ω(σ1) ·
∑

i∈Z/kZ

eσn
i,i+1

(β) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

)
= dχβ(σ

1)
∑

i∈Z/kZ

D2εσn−1
i

+ ρσn−1
i

(αi) = 0 ,

and that the vector
∑

i∈Z/kZ eσn
i,i+1

(β) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

)
belongs to the line

∧2N(σn−2).
Since u(σn−2) is the volume element of a supplementary sub-space of N(σn−2) we finally find
the formula:

(β ;σn−2)ε[N(σn−2)] =
∑

i∈Z/kZ

eσn
i,i+1

(β) ∧
(
D2εσn−1

i
+ ρσn−1

i
(αi)

)
.

Proposition 4.10. For all interior vertices β of K and all simplices σn−2 ≥ β we have:∑
σn−1≥σn−2

eσn−1(β) ∧ ρσn−1(β) =
∑

σn−1≥σn−2

eσn−1(β) ∧ ρσn−1

(
lk(σn−2;σn−1)

)
.

Proof. We will establish this formula by using a particular sign distribution: the characteristic
cochain χβ of the vertex β. On one hand we have:

D2χβ =
∑

β∈σn−1

ρσn−1(β)⊗ σn−1 .
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Using the formulæ of Proposition 4.9, we have for all σn−2 containing β:

(β ;σn−2)χβ
[N(σn−2)] =

∑
σn−1≥σn−2

eσn−1(β) ∧
(
ρσn−1(β) + ρσn−1

(
lk(σn−2;σn−1)

))
.

On the other hand, we have:

(β ;σn−2)χβ
= gn−2(χσn−2) · ∂1

0,n−1g
0(χβ),

However the tropical homology class g0(χβ) can be lifted as a (n− 1)-homology class of RXχβ
:

the fundamental class of the small sphere surrounding β in the positive quadrant of RK. This
small sphere is isotopic to the link of β in K. As a consequence ∂1

0,n−1g
0(χβ) vanishes. Therefore,

we have: ∑
σn−1≥σn−2

eσn−1(β) ∧
(
ρσn−1(β) + ρσn−1

(
lk(σn−2;σn−1)

))
= 0 .

Proposition 4.11. For all sign distributions ε on K, all interior vertices β of K, and all
simplices σn−2 ≥ β we have:

(β ;σn−2)ε [N(σn−2)] =
∑

σn−1≥σn−2

eσn−1(β) ∧
(
D2εσn−1 + ρσn−1(β)

)
.

Proof. This is a direct consequence of Proposition 4.9 and Proposition 4.10.

Proposition 4.12. We assume n to be equal to 2. For all interior vertices β of K, the number
(β; β)ε equals the parity of the number of edges of K, adjacent to β, along which RXε is twisted.
In other words, we have:

(β ; β)ε =
∑
σ1≥β

|D2εσ1 + ρσ1| .

Proof. Let σ2 be a triangle of K and σ1 be an edge of σ2. For all vertices β of σ2, the set
{eσ2(β); [N(σ1)]} forms a basis of t(F2). Hence eσ2(β)∧ [N(σ1)] equals [t(F2)]. Moreover for all
interior vertex β of K, [N(β)] equals [t(F2)]. Therefore, Proposition 4.11 implies the formula
of the proposition.

Remark 4.13. When n is greater than 3 the formula of Proposition 4.11, can also be interpreted
as a number of twists in the direction of β along the (n− 1)-simplices of its star. However, this
time some twists must be counted and some must not. For instance, if β is an interior vertex
and σn−2 contains β, (β;σn−2)ε equals the number of twists of RXε in the direction of β along
the (n− 1)-simplices of K for which w(σn−2) ∧ eσn−1(β) ∧ [N(σn−1)] equals [t(F2)]. The set of
twists we are counting may depend on the choice of the decomposed vectors w(σn−2). However,
the count itself, will not.

Definition 4.14. Let RXε be a T-hypersurface of RP . The rank of RXε, denoted by ℓ(RXε),
is the biggest integer ℓ ≥ 0 for which the homological “inclusions” Hk(RXε;F2) → Hk(RP ;F2)

are onto for all 0 ≤ k ≤ ℓ.
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Theorem 4.15 (Generalised Haas Theorem). Let P be a non-singular polytope of t∗(R) en-
dowed with a primitive triangulation K. For all sign distributions ε, the T-hypersurface RXε

has a maximal number of connected components if and only if:

1. The triangulation K is ρ-uniform;

2. The number ℓ(RXε) is at least equal to min(n− 2; 1);

3. The sign distribution ε satisfies:

D2ε = ρ in Hn−1(K;B1K;N) . (13)

4. For all simplices σn−2 of B1K not contained in B0K, (ap(σn−2);σn−2)ε vanishes.

Proof. Using Theorem 4.26 p.31 in [Che23b], we have the short exact sequence:

0 −→ E∞
0,0(RXε) −→ H0(RXε;F2) −→ E∞

n−1,0(RXε) −→ 0 .

Since E∞
0,0(RXε) is isomorphic to E1

0,0(RXε), itself isomorphic to H0,0(X;F2) it has dimension
1. Hence RXε has a maximal number of connected components if and only if E∞

n−1,0(RXε) is
isomorphic to E1

n−1,0(RXε). We are now going to distinguish three cases: n equals 2, n equals
3, and n is greater than 3. In a first time we assume that n is greater than 3. E∞

n−1,0(RXε) is
isomorphic to E1

n−1,0(RXε) if and only if the two following morphisms vanish:
∂1
n−2,1 : E

1
n−2,1(RXε) −→ E1

n−1,0(RXε)

∂n−2
1,1 : En−2

1,1 (RXε) −→ En−2
n−1,0(RXε).

By Theorem 4.30 p.34 in [Che23b] and duality ∂n−2
1,1 vanishes if and only if the morphism:

i1 : H1(RP ;F2) → H1(RXε;F2) ,

is injective. Since i0 : H0(RP ;F2) → H0(RXε;F2) is always injective, ∂n−2
1,1 vanishes if and only

if ℓ(RXε) is at least equal to 1. Since n is greater than 3, Proposition 3.10 ensures us that
∂1
n−2,1 vanishes if and only if M0,n−2(ε) does. The second point of Proposition 4.9 implies that

for M0,n−2(ε) to vanish we must have:

ρσn−1(β) = D2εσn−1 ,

for all interior simplices σn−1 of K, and all vertices β of σn−1 whose link lk(β;σn−1) is not
contained in the boundary. In particular, K must be ρ-uniform. Reciprocally, if K is ρ-uniform,
then we must have:

D2ε = ρ in Hn−1(K;B1K;N) .

Now if we suppose that K is ρ-uniform and ε is a solution of (13), M0,n−2(ε) vanishes if and only
if (β;σn−2)ε vanishes for all pairs of interior simplices β ≤ σn−2. We assume that we have such
a pair β ≤ σn−2 with σn−2 containing at least 2 interior vertices, one of them being β. If σn−1

contains σn−2 then, by hypothesis, the link of β in σn−1 contains at least one interior vertex of
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K. As a consequence of (13), D2εσn−1 equals ρσn−1(β). Hence (β;σn−2)ε vanishes. Therefore,
M0,n−2(ε) vanishes if and only if K is ρ-uniform, ε is a solution of (13), and for all simplices
σn−2 of B1K \ B0K, (ap(σn−2);σn−2)ε vanishes. When n is at most equal to 3, Theorem 4.26

p.31 of [Che23b] implies that the Renaudineau-Shaw spectral sequence of RXε degenerates at
the second page. Hence, in these cases RXε has a maximal number of connected components if
and only if E2

n−1,0(RXε) is isomorphic to E1
n−1,0(RXε). This latter condition is equivalent26 to

the vanishing of ∂1
n−1,0. Let n be equal to 2. Following Proposition 3.10, the vanishing of ∂1

1,0

is equivalent to the vanishing of M0,0(ε). We recall that every primitive triangulation of a two
dimensional polytope is ρ-uniform27. As in the preceding case, M0,0(ε) vanishes if and only if:

D2ε = ρ in H1(K;B1K;N) ,

and (β; β)ε vanishes for all β ∈ B1K \ B0K. Finally, the rank ℓ(RXε) being always at least
0, the condition ℓ(RXε) ≥ min(0, 1) is always satisfied. Only remains the case n equals 3.

Proposition 3.11 provides us with the formula:

dimE2
2,0(RXε) = dimE1

2,0(RXε)− rkM0,1(ε)− δ ,

where δ denotes the dimension of the cokernel of i1 : H1(RXε;F2) → H1(RP ;F2). Hence,
E2

2,0(RXε) is isomorphic to E1
2,0(RXε) if and only if both M0,1(ε) and δ vanish. The latter

condition is equivalent to ℓ(RXε) being at least equal to 1. The former, as in the case n > 3 is
equivalent to K being ρ-uniform and ε satisfying:

D2ε = ρ in H2(K;B1K;N) ,

and (ap(σ1);σ1)ε = 0 for all σ1 ∈ B1K \ B0K.

Remark 4.16. The case n equals 2 of Theorem 4.15 was already known and is due to B. Haas,
c.f. [Haa97], Theorem 7.3.0.10 p.70. Our generalisation can also be formulated in terms of
twists. Equation (13) forbids RXε to be twisted in certain directions along the (n−1)-simplices
of K \ B1K and the fourth condition of Theorem 4.15 imposes that the weighted count of the
twists of RXε around the (n−2)-simplices of B1K\B0K has to be even. The two first conditions
of the theorem are automatically satisfied for T-curves. Because of Proposition 4.39 p.38 of
[Che23b], the second condition is automatically satisfied when ι[ωX ] ≥ 1. The latter condition
only depends on the “degree” of X. For instance odd degree hypersurfaces in projective spaces
satisfy ι[ωX ] = n− 1.

In the remaining of this paragraph we tackle the question of knowing if every ρ-uniform
triangulation admits a sign distribution ε whose T-hypersurface RXε has a maximal number
of connected components.

Proposition 4.17. Let K be a ρ-uniform triangulation. Any solution ε of the following equa-
tion:

D2ε = ρ in Hn−1(K;B0K;N) , (14)
26c.f. [Che23b] Theorem 4.27 p.32.
27c.f. Proposition 2.14.
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yields a T-hypersurface RXε with the maximal number of connected components. Moreover, the
T-hypersurfaces constructed from the solutions of (14) are made of:

1. Exactly h0,n−1(X) spheres, bounding disjoint balls. None of them intersect the toric divi-
sors of RP ;

2. Another connected component that intersects all of the toric divisors of RP .

When (14) has a solution we say that K is simply integrable.

Proof. Let ε be a solution of (14) and β be an interior vertex of K. For all (n − 1)-simplices
adjacent to β, D2εσn−1 + ρσn−1(β) vanishes. It implies that the vector v := Dεσn + eσn(β)

does not depend on the choice of the n-simplex σn ≥ β we used to compute it. For all
σn ≥ β, the cocycle dε|σn + z1σn(v) equals dχβ|σn . Therefore, it follows from Proposition 4.1
that the intersection of RXε with the lift of the closed star of β corresponding to v consists of
a sphere confining the lift of β in its interior. Since RXε must intersect all the toric divisors
of RP in a non-empty set, RXε has at least 1 + card(K(0) \ ∂K(0)) connected component.
However, card(K(0) \∂K(0)) equals hn−1,0(X). Hence, RXε has a maximal number of connected
components and satisfies the description of the proposition.

Proposition 4.18. A shellable, ρ-uniform triangulation K of a non-singular polytope P is
simply integrable if and only if ∂ρ = 0 where ∂ denotes the connecting morphism:

∂ : Hn−1(K;B0K;N) → Hn−2(B0K; ∂K;N) ,

of the long exact sequence associated with the triple ∂K ⊂ B0K ⊂ K.

Proof. Let K be a ρ-uniform triangulation. If K is simply integrable, we consider ε a solution
of (14). In this case, the second derivative of ε belongs to Hn−1(K; ∂K;N) and equals ρ modulo
B0K. Since the kernel of ∂ is the image of Hn−1(K; ∂K;N) → Hn−1(K;B0K;N), ∂ρ has to
vanish. Reciprocally, if we assume K to be a ρ-uniform, shellable triangulation, then ∂ρ = 0

implies that ρ has a lift ρ in Hn−1(K; ∂K;N). Since K is shellable, Lemma 2.20 ensures that
we can find a sign distribution ε, whose second derivative equals ρ. By Proposition 4.17, any
such sign distribution yields a solution of (14).

T-curves. In what follows we assume n equal to 2. In this special case, Proposition 2.14
implies that there is a canonical class ρ ∈ H1(K; ∂K;N) that lifts the class ρ ∈ H1(K;B0K;N).
It is defined as follows:

ρ :=
∑

σ1 /∈∂K

ρσ1 ⊗ σ1 .

Theorem 4.19. The solutions of the equation:

D2ε = ρ in H1(K; ∂K;N) , (15)

consist of the images of the polynomial functions of degree 2 in C0(K;F2). As such, every
2-dimensional triangulation, even a non-shellable one, is simply integrable.
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Proof. Let h be a quadratic sign distribution. Now let β0 and β1 be the two vertices of an
interior edge of K, and [β0; β1;α±] the two triangles of K adjacent to [β0; β1]. Following
Proposition 2.19, affine maps are in the kernel of D2. Since h is quadratic, we can assume, to
compute D2h[β0;β1], that h is given by [(x; y) 7→ xy] where (x; y) are the affine coordinates in the
basis (β1 + β0;α+ + β0) with origin at β0. If (x−; y−) are the coordinates of the vector α− + β0,
then y− equals 1 for (β1 + β0;α− + β0) is also a basis of t∗(F2). Hence, we have:

α+ + α− = x−(β1 + β0) ,

and ρ[β0;β1] equals x−[N([β0; β1])] by Proposition 2.13. Let us write:

D2h[β0;β1] = |D2h[β0;β1]|
[
N
(
[β0; β1]

)]
.

Then, we have:

|D2h[β0;β1]| = x(α+)y(α+) + x−y− + y−
(
x(β0)y(β0) + x(β1)y(β1)

)
= 0× 1 + x− × 1 + x−(0× 0 + 1× 0)

= x− .

And D2h[β0;β1] equals ρ[β0;β1]. Now by Proposition 2.19, the kernel of D2 is exactly the space of
affine sign distributions, hence the theorem follows.

Remarks 4.20. 1. Since t∗(F2) has dimension 2 there is essentially one quadratic polyno-
mial function f : t∗(F2) → F2. It is a consequence of Fermat’s little theorem. Hence, all
the T-curves RXε obtained from a solution ε of (15) are reflections of one another;

2. I. Itenberg and O. Viro proved28 that a particular sign distribution always produces a
maximal curve of a given topological type for all convex triangulations of the standard
triangle of size d ≥ 1: {(x; y) ∈ R2

+ | x+ y ≤ d}. They named their sign distribution the
Harnack distribution. It is given by the formula ε(x; y) := 1 + (1 + x)(1 + y) (mod 2),
hence by a quadratic polynomial.

A sharper bound for the number of connected components. In this paragraph, we
provide an estimation of the maximal number of connected components of a T-hypersurface
constructed on a non-ρ-uniform triangulation.

Definition 4.21. Let K be a primitive triangulation of a non-singular polytope. The distance
between two simplices is the minimum of the graph length of their vertices in the 1-skeleton of
K. We denote by κ(K) the maximal number of (n − 1)-simplices of K at which it fails to be
ρ-uniform and that are all at distance at least 2 of each others.

Proposition 4.22. Let K be a primitive triangulation of a non-singular polytope. For all
sign distributions ε ∈ C0(K;F2) the rank of M0,n−2(ε) is always at least equal to κ(K). As a
consequence we have the following upper bound:

dimH0(RXε;F2) ≤ 1 + dimH0,n−1(X;F2)− κ(K) . (16)
28c.f. [IV96], Proposition p.24.
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Proof. Let σn−1
1 ,...,σn−1

k be simplices of K at which it fails to be ρ-uniform and that are all
at distance at least 2 of each others. Let ε be a sign distribution on K. Since K fails to be
ρ-uniform at the simplices σn−1

1 ,...,σn−1
k , we can find, for all 1 ≤ i ≤ k, two different interior

vertices αi, βi of σn−1
i for which ρσn−1

i
(αi) and ρσn−1

i
(βi) are different. Using Proposition 4.9, it

follows that either
(
αi ; lk(αi;σ

n−1
i )

)
ε
or
(
βi ; lk(βi;σ

n−1
i )

)
ε
equals 1. We assume that it happens

on αi, for all 1 ≤ i ≤ k. The matrix:((
αi; lk(αj;σ

n−1
j )

)
ε

)
1≤i,j≤k

,

is a sub-matrix of M0,n−2(ε) equal to the identity matrix of size k. Indeed for all i different from
j, αi and lk(αj;σ

n−1
j ) are at distance at least 2. Therefore, they cannot be both included in the

same simplex. Hence, the rank of M0,n−2(ε) is at least equal to k. Consequently, the rank of
M0,n−2(ε) is at least equal to κ(K), and the upper bound (16) follows from Proposition 3.11.

Asymptotic growth of the expected number of connected components. We assume
that we are given a smooth polytope P of t∗(R), and for every integer d ≥ 1, a primitive
triangulation Kd of its dilate dP . We denote by X(d) the dual hypersurface of Kd. By The-
orem 1.4 p.947 of [RS23], we know that for all ε ∈ C0(K(d);F2), the number of connected
components b0

(
RXε(d)

)
is less than 1 + hn−1,0

(
X(d)

)
, where hn−1,0

(
X(d)

)
is the dimension of

Hn−1,0

(
X(d);F2

)
. In this paragraph we give an idea of the growth of the number connected

components of a typical T-hypersurface as d grows to +∞. If we choose ε uniformly at random
in C0(K(d);F2), the number b0

(
RXε(d)

)
becomes a random variable. We denote by E[ξ] the

expected value of a random variable ξ.

Proposition 4.23. The asymptotic of hn−1,0
(
X(d)

)
is the following:

hn−1,0
(
X(d)

)
= volZ(P )dn + o(dn−1) ,

where volZ(P ) is the integeral volume of P . That is to say the Lebesgue measure of P , nor-
malised so that a parallelogram on a basis of t∗(Z) has volume 1.

Proof. The number hn−1,0
(
X(d)

)
equals the number of lattice points in the relative interior

of P . By Ehrhart-Macdonald reciprocity29 it equals (−1)nL(P ;−d), where L(P ;X) is the
Ehrhart polynomial30 of P . The polynomial L(P ;X) has degree n and its leading coefficient is
volZ(P ).

Proposition 4.24. Let P be a n-dimensional integral polytope of t∗(R) and (Kd)d≥1 be a se-
quence of primitive triangulations of (dP )d≥1. The function d 7→ f1(Kd) is a polynomial of
degree n.

Proof. Let d ≥ 1 be an integer. The number f1(Kd) is a linear combination of the h∗-vector of
dP . In particular there is a t∗(Z)-translation invariant valuation φ on the integral polytopes
of t∗(R) such that f1(Kd) equals φ(dP ) for all d ≥ 1. Theorem 5 p.121 of [McM77] implies
that d 7→ f1(Kd) is given by a polynomial of degree at most n. However, the number f1(Kd)

29c.f. [Mac71], Theorem 4.6 p.192.
30c.f. [Ehr62], pp.616-618.
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is not smaller than 1
2
f0(Kd) since no vertex is isolated. Hence, d 7→ f1(Kd) is of degree n for

d 7→ f0(Kd) = card
(
dP ∩ t∗(Z)

)
is polynomial of degree n.

Proposition 4.25. For all sequences (Kd)d≥1 of primitive triangulations of (dP )d≥1 we have:

1 ≥ lim sup
d→+∞

E
[

b0(RXε(d))

1 + hn−1,0(X(d))

]
≥ lim inf

d→+∞
E
[

b0(RXε(d))

1 + hn−1,0(X(d))

]
> 0 .

Proof. Let d ≥ 1 be an integer and β ∈ Kd be an interior vertex. We denote by Sβ the
subcomplex of cubical subdivision of Kd made of all the cubes indexed by the pairs of simplices
σp ≤ σq with p ≥ 1 and σp containing β. We also denote by Stβ the open star of β, and
ξβ the Bernoulli random variable whose value is 1 if and only if RXε(d) contains a lift of Sβ.
By Proposition 4.1 and Proposition 4.17 ξβ(ε) equals 1 if and only if the image of D2ε in
Hn−1(Kd(Stβ); ∂Kd(Stβ);N) equals ρ(β) =

∑
σn−1≥β ρσn−1(β) ⊗ σn−1. We have the following

commutative diagram with exact rows and columns:

0

0 C0(Kd;Kd(Stβ);F2)

0 Aff
(
t∗(F2)

)
C0(Kd;F2) Hn−1(Kd; ∂Kd;N)

0 Aff
(
t∗(F2)

)
C0(Kd(Stβ);F2) Hn−1(Kd(Stβ); ∂Kd(Stβ);N)

0 0

D2

D2

Hence, we have the following exact sequence:

0
C0(Kd;Kd(Stβ);F2)

⊕Aff
(
t∗(F2)

) C0(Kd;F2) Hn−1(Kd(Stβ); ∂Kd(Stβ);N) ,
D2

β

where D2
β is the composition D2◦|Kd(Stβ). Since D2

βχβ equals ρ(β) there is exactly 2n+1+f0(Kd)−f0(Kd(Stβ))

solutions to the equation D2
βε = ρ(β). Therefore the probability that ξβ equals 1 is 2n+1−f0(Kd(Stβ)).

We have the following inequality:

b0(RXε(d)) ≥ 1 +
∑

β∈K\∂K

ξβ(ε) .

Which implies the following one:

E
[

b0(RXε(d))

1 + hn−1,0(X(d))

]
≥

1 +
∑

β∈K\∂K 2n+1−f0(Kd(Stβ))

1 + hn−1,0
(
X(d)

) .
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The number f0
(
Kd(Stβ)

)
equals the degree31 of the vertex β plus 1. Hence, the number∑

β∈K\∂K 2n+1−f0(Kd(Stβ)) equals 2n
∑

β∈K\∂K 2− deg β. By convexity of the function x 7→ 2−x,
we have:

2n
∑

β∈K\∂K

2−deg β ≥ 2nhn−1,0
(
X(d)

)
2
−

∑
β∈K\∂K deg β

hn−1,0(X(d)) ≥ hn−1,0
(
X(d)

)
2
n−2

f1(Kd)

hn−1,0(X(d)) .

The sequence
(

f1(Kd)
hn−1,0(X(d))

)
d≥1

converges toward a number c > 0 as d grows to +∞. Thus, the

lim. inf. is at least equal to 2n−2c > 0. Since E
[

b0(RXε(d))
1+hn−1,0(X(d))

]
is at most equal to 1 by A.

Renaudineau and K. Shaw’s inequality, the proposition follows.

A Discrete Dirichlet Problem for T-Curves. We finally remark that in the special case
of curves one can use the symmetry of M0,0(ε) to define a Laplacian type operator on the space
of 0-cochains of K. Doing so we can link the number of connected components of RXε to the
dimension of the space of harmonic cochains.

Definition 4.26. Let K be a primitive triangulation of the 2-dimensional polytope P and ε

be a sign distribution on K. We define the Laplacian ∆ε to be the following endomorphism of
C0(K; ∂K;F2):

∆ε : C
0(K; ∂K;F2) −→ C0(K; ∂K;F2)

f 7−→
[
β 7→

∑
α(β;α)εf(α)

]
.

This operator is symmetric with respect to the canonical scalar product of C0(K; ∂K;F2)

since the matrix M0,0(ε) is symmetric. Also, using Proposition 3.11, the number of connected
components of RXε is equal to 1 plus the dimension of the space of harmonic cochains ker(∆ε)

that vanish on the boundary.

5 Examples and Non-Examples

Let n and d be two positive integers. We recall that we denote the standard n-simplex of size
d by the symbol Pn

d . In this context t∗(R) is Rn, t∗(Z) is Zn, e1, ..., en is the canonical basis of
Rn and Pn

d is the convex hull of 0, de1, ..., den.

Regular Triangulations of F. Knudsen. In the third chapter of [KKMSD73], F. Knudsen
introduces a family of primitive convex triangulations of (Pn

d)n,d≥1 called regular triangulations.
For all n, d ≥ 1, the regular triangulation Rn

d of Pn
d is obtained by cutting Pn

d by the following
hyperplanes:

H i,j
k :=

{
j∑

l=i

xl = k

}
,

for all 1 ≤ i ≤ j ≤ n, and all 1 ≤ k ≤ d − 1. The Lemma 2.12 p.126 of [KKMSD73] implies
that Rn

d is never ρ-uniform when n is bigger than 2 and d is big enough.
31The number of edges adjacent to the vertex.
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Viro Triangulations. In Definition 5.3 p.43 in [Che23b] we described a method of construc-
tion of triangulations of Pn+1

d+1 from a triangulation of Pn+1
d and of Pn

d+1: If K is a triangulation
of Pn+1

d and L is a triangulation of Pn
d+1, K + L is the unique triangulation of Pn+1

d+1 for which:

1. The restriction of K + L to Pn+1
d+1 ∩ {xn+1 ≥ 1} is the translation of K;

2. For all integers 0 ≤ i ≤ n, the restriction of the triangulation K + L to the join of
simplices [en+1, en+1 + de1, ..., en+1 + dei] ∗ [(d+ 1)ei, ..., (d+ 1)en]„ is the join of the re-
striction of the translation of K to [en+1, en+1 + de1, ..., en+1 + dei] with the restriction of
L to [(d+ 1)ei, ..., (d+ 1)en].

If both K and L are primitive then so is K +L. By Proposition 5.5 p.44 of [Che23b] the same
holds for the convexity. Then we recursively defined the Viro triangulations (V n

d )n,d≥1 by the
formulæ: {

V n
1 = Pn

1 ∀n ≥ 1

V n+1
d+1 = V n+1

d + V n
d+1 ∀n, d ≥ 1 .

This process can be generalised. Let L = (Ld)d≥1 be a sequence of primitive triangulations
of (Pn

d)d≥1 we denote by (Vd(L))d≥1 the sequence of triangulations of (Pn+1
d )d≥1 defined by the

formulæ: {
V1(L) = Pn

1

Vd+1(L) = Vd(L) + Ld+1 ∀d ≥ 1 .

Proposition 5.1. Let L = (Ld)d≥1 be a sequence of primitive triangulations of (P2n
d )d≥1. Let

d be an even integer. If Ld has a 2n-simplex that contains only interior vertices, then VD(L) is
not ρ-uniform for all D ≥ d+ 1.

Proof. Let d be such an integer and σ2n be a 2n-simplex of Ld whose vertices are all interior.
Using Proposition 2.13, we see that Vd+1(L) does not fail to be ρ-uniform at σ2n if and only if
the two apices of the two (2n + 1)-simplices adjacent to σ2n are congruent modulo 2. Indeed,
since σ2n has an odd number of vertices, and

∑
β∈σ2n ρσ2n(β) vanishes, ρσ2n can only be constant

to 0. Now the two apices of the two (2n+1)-simplices adjacent to σ2n are 2e2n+1 and (d+1)e2n.
Since d is even they are not congruent and Vd+1(L) fails to be ρ-uniform at σ2n. Since all the
triangulations (VD(L))D≥d+1 contain Vd+1(L), they all fail to be ρ-uniform at σ2n.

Itenberg-Viro Triangulations In the last example we always perform the first subdivision
of the prism Pn+1

d+1 ∩ {0 ≤ xn+1 ≤ 1} in the same order. However, we can also reverse the order
of the joins.

Definition 5.2. If K is a triangulation of Pn+1
d and L is a triangulation of Pn

d+1 we define
K + (−1)L as the unique triangulation of Pn+1

d+1 for which:

1. The restriction of K + (−1)L to Pn+1
d+1 ∩ {xn+1 ≥ 1} is the translation of K;

2. For all integers 0 ≤ i ≤ n, the restriction of the triangulation K + (−1)L to the join of
simplices [en+1 + dei, ..., en+1 + den] ∗ [0, (d+ 1)e1, ..., (d+ 1)ei] is the join of the restric-
tion of the translation of K to [en+1 + dei, ..., en+1 + den] with the restriction of L to
[0, (d+ 1)e1, ..., (d+ 1)ei].
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As a direct consequence of the definition if both K and L are primitive then so is K+(−1)L.
The same holds for the convexity by a small adaptation of Proposition 5.5 p.44 in [Che23b].
For all n, d ≥ 1, let Trnd denote the set of primitive triangulations of Pn

d . For all subset I of
{0, ..., n} of cardinality (k + 1), there is a map πI : Trnd → Trkd that sends a triangulation K

to its restriction on the convex hull of {dei : i ∈ I}, where e0 = 0 and the order of the vertices
is preserved. Another direct consequence of the definition is that if K ∈ Trn+1

d , L ∈ Trnd+1,
and I ⊂ {0, ..., n} then πI∪{n+1}(K + (−1)ηL) equals πI∪{n+1}(K) + (−1)ηπI(L) for all η ∈ F2.
Following [Ite97], we define the Itenberg-Viro triangulations (IV n

d )n,d≥1 by the formulæ:


IV 1

d is the only primitive triangulation of P1
d

IV n
1 = Pn

1 ∀n ≥ 1

IV n+1
d+1 = IV n+1

d + (−1)dIV n
d+1 ∀n, d ≥ 1 .

An example of such triangulation is illustrated in Figure 17. As in the case of Viro triangulations
this process can be generalised from a sequence of primitive triangulations (Ld)d≥1 of (Pn

d)d≥1

to a sequence (IVd(L))d≥1 of triangulations of (Pn+1
d )d≥1 by the formulæ:{

IV1(L) = Pn+1
1

IVd+1(L) = Vd(L) + (−1)dLd+1 ∀d ≥ 1 .

Figure 17: The triangulation IV 2
4 .

Proposition 5.3. The triangulations Ld are ρ-uniform for all d ≥ 1 if and only if the trian-
gulations IVd(L) are ρ-uniform for all d ≥ 1.

Proof. Let K be a triangulation of Pn+1
d . We denote, for all 0 ≤ q ≤ n+1, the set of q-simplices

of K having at least one vertex in the interior K − ∂K by Aq(K). If L is a triangulation of
Pn
d+1, we denote, for all 0 ≤ q ≤ n + 1, by A±

q (K;L) the set of q-simplices of K + en+1 that
belong to Aq(K ±L) but not to Aq(K) + en+1. Let us denote by K the restriction of K to the
bottom face [0; de1; ...; den] of Pn+1

d . We have:

An(K + L) = (An(K) + en+1) ⨿ A+
n (K;L) ⨿

(
[An−1(K) + en+1] ∗ (d+ 1)en

)
.

Indeed, the n-simplices of An(K + L) that are neither translates of simplices of An(K) nor
in A+

n (K;L) come from joins of simplices of K with simplices of L. By construction the only
such simplices not having all of their vertices in ∂(K + L) belong to the subdivision of the
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join
(
en+1 + [0; de1; ...; den]

)
∗ (d+ 1)en. Since (d + 1)en belongs to ∂(K + L), the remaining

n-simplices are in the set
(
[An−1(K) + en+1] ∗ (d+ 1)en

)
. Likewise we have:

An(K − L) = (An(K) + en+1) ⨿ A−
n (K;L) ⨿

(
[An−1(K) + en+1] ∗ 0

)
.

Now let L′ be a triangulation of Pn
d+2. We have:

A−
n (K + L;L′) = (An(L) + en+1) ⨿

(
[An−1(L) + en+1] ∗ 2en+1

)
,

and:
A+

n (K − L;L′) = (An(L) + en+1) ⨿
(
[An−1(L) + en+1] ∗ (2en+1 + den)

)
.

Therefore, we have:

An(K + L− L′) = (An(K + L) + en+1) ⨿ A−
n (K + L;L′) ⨿

(
[An−1(L) + en+1] ∗ 0

)
= (An(K + L) + en+1) ⨿ (An(L) + en+1)

⨿
(
[An−1(L) + en+1] ∗ 2en+1

)
⨿
(
[An−1(L) + en+1] ∗ 0

)
,

and:

An(K − L+ L′) = (An(K − L) + en+1) ⨿ A+
n (K − L;L′)

⨿
(
[An−1(L) + en+1] ∗ (d+ 2)en

)
= (An(K − L) + en+1) ⨿ (An(L) + en+1)

⨿
(
[An−1(L) + en+1] ∗ (2en+1 + den)

)
⨿
(
[An−1(L) + en+1] ∗ (d+ 2)en

)
,

for K ± L equals L. If we assume K+L to be ρ-uniform, K+L−L′ is ρ-uniform as well if and
only if the simplices of (An(L) + en+1),

(
[An−1(L) + en+1] ∗ 2en+1

)
, and

(
[An−1(L) + en+1] ∗ 0

)
satisfy the requirement of Definition 2.22. Let σn be a simplex of the first set. It bounds the
two (n+ 1)-simplices σn ∗ 2en+1 and σn ∗ 0. By Proposition 2.13 we have:∑

α∈σn

|ρσn(α)|α = 2en+1 (mod 2) ,

and therefore, ρσn = 0. Now let σn−1 be a simplex of An−1(L)+en+1. It bounds two n-simplices
of L+en+1, σn

+ and σn
−, so σn−1∗2en+1 bounds the two (n+1)-simplices of K+L−L′, σn

+∗2en+1

and σn
− ∗ 2en+1. Let α± denote the vertex of σn

± opposite to σn−1. From Proposition 2.13, we
have: ∑

β∈σn

|ρσn−1∗2en+1
(β)|β = α+ − α− (mod 2) .

Since the difference α+−α− belongs the the hyperplane {xn+1 = 0}, the number |ρσn−1∗2en+1
(2en+1)|

vanishes and the restriction of |ρσn−1∗2en+1
| to σn−1 equals |ρLσn−1| (the function |ρ| of the tri-

angulation L). The vertex 2en+1 belongs to the boundary ∂(K + L − L′). It implies that
ρσn−1∗2en+1

is constant on the interior vertices I(σn−1 ∗ 2en+1) and meets the requirements of
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Definition 2.22 if and only if ρLσn−1 is constant on the interior32 vertices I(σn−1). The exact
same reasoning applies to the simplices of the third set [An−1(L) + en+1] ∗ 0 and we find that
K + L − L′ is ρ-uniform if and only if K and L are. We can also prove that K − L + L′ is
ρ-uniform if and only if K and L are by the same arguments. The only difference in this case is
the two apices with which we suspend the horizontal n-simplices σn of L. They are 2en+1+den
and (d + 2)en. Their difference is also 0 modulo 2 so ρσn vanishes as in the case K + L − L′.
The proposition follows from the construction of the triangulations (IVd(L))d≥1.

Remark 5.4. In the last proof we showed that if σn is a n-simplex of the triangulation IVd(L)

of Pn+1
d written as a link α ∗ σn−1 with σn−1 in a floor Lk then the numerical value |ρα∗σn−1(β)|

is zero for β = α and equals ρLk

σn−1(β) otherwise.

Proposition 5.5. For all n, d ≥ 1, for all ε ∈ C0(IV n
d ;F2), the number ℓ(RXε) is at least equal

to ⌊n−1
2
⌋.

Proof. This is Theorem 5.9 p.45 of [Che23b] for Itenberg-Viro triangulations. The crucial point
in the proof of this theorem was Proposition 5.8 of the same article: the fact that the restriction
of the Viro triangulation to the face opposite to 0 is still a Viro triangulation. However, the
same is true for the Itenberg-Viro triangulation, hence the proposition holds.

Theorem 5.6. For all n ≥ 2, and all d ≥ 1, the Itenberg-Viro triangulation IV n
d is simply

integrable. In particular, the Harnack distribution:

hn(x1, ..., xn) :=
∑
i<j

xixj ,

is a solution of (14).

Proof. We will prove, by recursion on n, that hn is a solution of (14) for all d ≥ 1. Theorem 4.19
ensures that the property is true for n = 2. Let us now assume that the property is true for
some n ≥ 2. Let 1 ≤ d ≤ D be two integers. The n-simplices of IV n+1

D \ B0IV
n+1
D that

have non-empty intersection with the horizontal hyperplane {xn+1 = D − d} are n-simplices of
IV n

d and cones over (n − 1)-simplices of IV n
d \ B0IV

n
d . If d is even the apices of the cones are

(D− d− 1)en+1 and (D− d+1)en+1. And if d is odd, they are (D− d− 1)en+1 +(d+1)en and
(D − d + 1)en+1 + (d − 1)en. Either way we showed33 that ρα∗σn−1 , with σn−1 ∈ IV n

d , is zero
on the apex α of the cone and that the numerical value of |ρα∗σn−1| equals the numerical value
|ρIV

n
d

σn−1| of IV n
d . As a consequence, |D2hn+1

α∗σn−1 | equals |D2(hn+1|IV n
d
)σn−1|. However, hn+1|IV n

d

only differs from hn by an affine function. Hence, by recursion hypothesis |D2(hn+1|IV n
d
)σn−1|

equals |ρIV
n
d

σn−1|, thus |D2hn+1
α∗σn−1| equals |ρα∗σn−1|. Now, if σn belongs to IV n

d , the two (n + 1)-
simplices of IV n+1

D that are adjacent to σn have their apices congruent modulo 2. It implies
that ρσn vanishes. These two (n+ 1)-simplices are identical modulo 2, and the value of hn+1 is
the same on the two apices since they have congruent coordinates. Hence, D2hn+1

σn vanishes as
well. Therefore, we proved that hn+1 is a solution of (14).

Remark 5.7. The hypersurface RXhn of RPn
d has a maximal number of connected components

but also intersects all the toric divisors of RPn
d along T-hypersurfaces that have a maximal

number of connected components.
32interior inside L i.e. in L− ∂L.
33c.f. Remark 5.4.
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