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Unitary drivings of quantum systems are ubiquitous in experiments and applications of quantum
mechanics and the underlying energetic aspects, particularly relevant in quantum thermodynamics,
are receiving growing attention. We investigate energetic advantages in unitary driving obtained
from initial non-thermal states. We introduce the non-cyclic ergotropy to quantify the energetic
gains, from which coherent (coherence-based) and incoherent (population-based) contributions are
identified. In particular, initial quantum coherences appear to be always beneficial whereas non-
passive population distributions not systematically. Additionally, these energetic gains are accessible
only through non-adiabatic dynamics, contrasting with the usual optimality of adiabatic dynamics
for initial thermal states. Finally, following frameworks established in the context of shortcut-to-
adiabaticity, the energetic cost related to the implementation of the optimal drives are analysed
and, in most situations, are found to be smaller than the energetic cost associated with shortcut-
to-adiabaticity. We treat explicitly the example of a two-level system and show that energetic ad-
vantages increase with larger initial coherences, illustrating the interplay between initial coherences
and the ability of the dynamics to consume and use coherences.

Introduction.—Most quantum experiments and quan-
tum technologies require manipulation of quantum sys-
tems’ Hamiltonian. Among the infinite variety of driv-
ings realizing the desired Hamiltonian transformation,
the least energy-consuming ones are of high interest for
energy controled applications, like in thermodynamics
but soon in quantum information processing and com-
putation [1, 2]. These least energy-consuming unitary
evolutions are commonly associated with the well-known
family of adiabatic drives. The traditional criterion for
adiabaticity relies on the slow variation of the driving
with respect to the velocity of the system’s evolution [3]
(see also [4–6] for recent reformulation and extension).
The energetic aspects and the origin of non-adiabaticity
-the breakdown of adiabaticity- were recently shown to
stem from the non-commutativity of the time dependent
Hamiltonian [7–9], giving rise to generation of quantum
coherences and consequently extra energetic costs [10] as
well as irreversible work [11–13]. Such manifestations of
quantum friction [7–9] can be circumvented using tech-
niques like shortcut-to-adiabaticity [14–17], widely ap-
plied in theoretic and experimental thermodynamics [18–
23, 25], adiabatic quantum computing [26], experimental
state engineering [27], and quantum information process-
ing [28].

Nevertheless, the above considerations and results are
valid for initial thermal states. Here, we focus on initial
non-thermal states and the energetic consequences for
driving operations. We show that non-adiabatic drives
become energetically optimal, highlighting the ongoing
interplay between the initial coherences contained in
the system and the capacity of the drive to consume
coherences. We introduce the concept of non-cyclic
ergotropy to quantify the corresponding energetic gains.
We also investigate the energetic cost required for the

implementation of the optimal drives. Compared to
shortcut-to-adiabaticity techniques, we show explicitly in
an example with a two-level system that non-adiabatic
drives combined with initial non-thermal states can
bring higher energetic gains simultaneously with lower
energetic costs.

Let us consider the operation consisting in driving a
quantum system S from an initial Hamiltonian Hi to a
final one Hf , with their respective eigenvalues and eigen-
vectors denoted by exn and |exn⟩, for x = i, f , in increas-
ing order, exn+1 ≥ exn. We start the analysis by one of
the central quantity of the problem: Ef := Tr(ρfHf ),
the energy of the final state ρf , reached at the end of
the driving. For a given arbitrary initial state ρi of ini-
tial energy Ei := Tr(ρiHi), there is an infinite variety
of driving Hamiltonians H(t) satisfying H(ti) = Hi and
H(tf ) = Hf , leading to an infinity of different final en-
ergy. Independently of whether the driving operation
injects energy in S (Ef ≥ Ei) or extracts energy from
S (Ef ≤ Ei), the optimal drive, which is in fact not
unique, has to minimise Ef , so that it minimises the en-
ergetic costs or maximises the energetic gains of the op-
eration. Therefore, our first aim is to find the minimum
Ẽf := minU∈UTr(UρiU

†Hf ), where U is the ensemble
of unitary operations generated by drives H(t) satisfy-
ing H(ti) = Hi and H(tf ) = Hf . As we will see in the
following, U is indeed simply equal to the ensemble of
all unitary transformations – in other words, any uni-
tary transformation can be expressed as a unitary trans-
formation generated by a time dependent Hamiltonian
satisfying H(ti) = Hi and H(tf ) = Hf .

Since all unitarily accessible final states have neces-
sarily the same entropy as ρi, one might first think of
Ẽf as the smallest energy over the ensemble of states of
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same entropy as ρi. Then, given that the state of small-
est energy at fixed entropy is a thermal state, one would
conclude that Ẽf corresponds to the energy of (ρi)

th
f ,

the thermal state with respect to Hf of same entropy as
ρi. However, reminding that unitary evolutions conserve
eigenvalues, (ρi)

th
f cannot in general be reached unitar-

ily, unless the eigenvalues rn of the initial state ρi are
equal to the populations of a thermal state of Hf , as
highlighted in [29]. Therefore, the state of lower energy
which is always achievable through unitary operations is

not (ρi)
th
f but (̃ρi)f , a state diagonal in the eigenbasis of

Hf with eigenvalues equal to rn,

(̃ρi)f :=
∑
n

rn|efn⟩⟨efn|, (1)

where rn+1 ≤ rn. The associated minimal difference of
energy is

−Enc := Tr
[
(̃ρi)fHf

]
−Tr(ρiHi) =

∑
n

rne
f
n −Tr(ρiHi).

(2)
The state in (1) belongs to the family of passive states

[30, 31], defined as follows. For a given Hamiltonian
H =

∑
n en|en⟩⟨en|, where the energies are ordered in

increasing order, en+1 ≥ en, a state ρ is said to be pas-
sive with respect to H if: (i) it is diagonal in the en-
ergy eigenbasis {|en⟩}n; (ii) it has decreasing populations,
pn+1 = ⟨en+1|ρ|en+1⟩ ≤ pn = ⟨en|ρ|en⟩. The violation of
any of these two conditions leads to two different types
of non-passivity: non-passivity stemming from popula-
tions when (ii) is not fulfilled, and non-passivity stem-
ming from coherences when (i) is not fulfilled. These
different physical origins of non-passivity will be used in
the next paragraph. Of course, it is also possible to have
non-passivity stemming from both populations and co-
herences when neither (i) nor (ii) is fulfilled. Finally, a
famous example of passive states is the thermal states.

In the context of cyclic work extraction, where the
aim is to extract as much work as possible from a
quantum state ρ through time-dependent driving under
the cyclic constraint H(ti) = H(tf ) = H, it was shown
in pioneering studies [29, 32] that no work can be
cyclically extracted from passive states with respect
to H. For states which are not passive, the maximal
amount of cyclically extractable work is called ergotropy.
Contrarily to what one could have expected, the er-
gotropy is not directly related to the minimal energy
difference −Enc – the relevant quantity in our problem.
We call the quantity Enc the non-cyclic ergotropy since
it is related to non-cyclic operations Hi ̸= Hf . In
particular, contrasting with the ergotropy, the non-cyclic
ergotropy can be positive or negative. When positive, it
represents the maximal energy extractable from ρi while
realising the driving from Hi to Hf . When negative,
its absolute value represents the minimal energy needed
to take the system from Hi to Hf when starting from
ρi. Additionally, passive states with respect to Hi are
not always the states of smallest non-cyclic ergotropy,

as shown in the following (neither are the passive states
with respect to Hf ). Before continuing, a small note
on the notations: σ̃ denotes the passive state of same
entropy as σ (also called the passive state of σ) with

respect to Hi. (̃σ)f denotes the passive state of σ with
respect to Hf .

Necessity of incoherent and coherent non-adiabatic
transformations.—It should be emphasised that any dy-
namics leading to a final passive state is necessarily non-
adiabatic if and only if the initial state is a non-passive
state with respect to Hi, contrasting with the usual adia-
batic dynamics required for initial thermal states [10–13].
This can be easily seen by writing the initial state in its
diagonal form.

Furthermore, we notice that there are two kinds of non-
adiabatic transformations: the incoherent ones, which
generate transitions between different initial and final en-
ergy levels but do not generates coherences in the eigen-
basis of Hf , and the coherent ones, which do generate
coherences in the eigenbasis of Hf . This finds an inter-
esting parallel with the type of non-passive features –
with respect to Hi – initially present in ρi. If the ini-
tial state contains non-passive features stemming only

from populations, non-adiabatic evolutions yielding (̃ρi)f
are incoherent (see Appendix A). Alternatively, if the
non-passivity of ρi is coherence-based, evolutions yield-

ing (̃ρi)f are necessarily coherent non-adiabatic. This
highlights the interplay between coherences contained in
ρi and the ability of the evolution to consume and use
coherences.

This difference in the nature of the required
transformation is mirrored in Enc: the non-cyclic
ergotropy can be decomposed in a sum of an in-
coherent, a passive and a coherent contributions,
Enc = E inc

nc + Epas
nc + Ecoh

nc . The incoherent contribution
can be defined as E inc

nc := Tr(ρiHi) − Tr
[
ρ̃i|DHi

]
, where

ρi|D :=
∑
n⟨ein|ρi|ein⟩|ein⟩⟨ein| is the “diagonal cut” of

ρi and ρ̃i|D its associated passive state with respect
to Hi. The passive contribution can be identified as

Epas
nc := Tr

[
ρ̃i|DHi

]
− Tr

[
(̃ρi|D )fHf

]
where (̃ρi|D )f

is the passive state of ρi|D with respect to Hf . Fi-
nally, the coherent contribution can be identified as

Ecoh
nc = Tr

[
(̃ρi|D )fHf

]
− Tr

[
(̃ρi)fHf

]
. Additional

technical details can be found in Appendix A. This
extends similar considerations presented in [12, 33] on
ergotropy.

Energetic gains.—We are now in position of evaluating
the energetic advantages in driving operations provided
by non-passivity. These advantages are given by the
amount of energy gained (or saved) thanks to the use of
the best strategy starting from a non-thermal state com-
pared to the best strategy starting from a thermal state
of same energy. As detailed in the following, such en-
ergy gain is directly given by the difference of non-cyclic
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ergotropies between the initial thermal and non-thermal
states.

More precisely, for an initial thermal state, it is well-
known, as mentioned in the introduction, that energeti-
cally optimal drives are either adiabatic (quasi-static), or
use shortcut-to-adiabaticity techniques [14–17]. Then,
from the initial thermal state ρthi =

∑
n p

th
i,n|ein⟩⟨ein|,

where pthi,n := Z−1e−βe
i
n , Z := Tr(e−βHi) and β plays

the role of the inverse temperature, such drives yield the

final passive state (̃ρthi )f , given by (1) substituting rn by

pthi,n. Note that (̃ρthi )f is generally not a thermal state if

the energy spectrum of Hf is not “proportional” to the
one of Hi. The non-cyclic ergotropy, applicable also for
initial thermal states, is reached by these optimal drives

and is given by (2) Enc = Tr(ρthi Hi) − Tr
[
(̃ρthi )fHf

]
=∑

n p
th
i,n(e

i
n − efn).

Thus, the non-cyclic ergotropy difference, representing
the energy difference between the best strategies starting
either from a thermal state ρthi or from a non-thermal ρi
of same energy, is given by

∆Enc := Tr
[
(̃ρthi )fHf

]
− Tr

[
(̃ρi)fHf

]
=
∑
n

(pthi,n − rn)e
f
n. (3)

Is ∆Enc always positive? Quite surprisingly, the an-
swer is no, contrasting with cyclic ergotropy. It means
that, some thermal states have a larger non-cyclic er-
gotropy than some non-passive states of same energy, or
in other words, more work can be extracted non-cyclicly
from some thermal states than from some non-passive
states of same energy. We provide explicit examples in
Appendix B.

A general condition guaranteeing the positivity of ∆Enc
is given by the property of majorization. We recall that
for any two density operators ρ and σ, ρ majorizes σ
when [29, 34]

k∑
n=1

rn ≥
k∑

n=1

sn (4)

for all k ≥ 1, where rn and sn are respectively the
eigenvalues of ρ and σ, in decreasing order. Then, the
positivity of ∆Enc is guaranteed when ρi majorizes ρthi ,
which can be seen using summation by part [29], ∆Enc =∑
n(p

th
i,n−rn)efn =

∑
k≥1(e

f
k+1−e

f
k)
∑k
n=1(rn−pthi,n) ≥ 0.

In particular, this implies that coherence-based
non-passivity always lead to positive ∆Enc, while this is
not true for population-based non-passivity. This unex-
pected difference stems from the passive contribution to
∆Enc, which is zero for coherence-based non-passivity
whereas it can take any sign -and in particular the neg-
ative one- for population-based non-passivity, Appendix
A 3.

We mention briefly an alternative figure of merit
quantifying the energetic advantages stemming from
the optimal driving itself. It simply consists in the
energy gained or saved by applying an optimal drive to
a given initial state ρi instead of applying an adiabatic
drive or a shortcut-to-adiabaticity. It is given by

Gρi := Tr
{[
UadρiU

†
ad − (̃ρi)f

]
Hf

}
=
∑
n(p

i
n − rn)e

f
n,

where Uad denotes the unitary transformation generated
by the adiabatic drive or shortcut-to-adiabaticity and
pin := ⟨ein|ρi|ein⟩ are the populations in the initial energy
eigenbasis. This quantity corresponds to the cyclic

ergotropy of the state UadρiU
†
ad (and therefore also of

ρi) with respect to Hf , and thus is always positive
by contrast with ∆Enc. Note that for initial states
with non-passivity stemming from coherences, as in the
examples considered below, we have ∆Enc = Gρi .

Upper bound and achievability.—The non-cyclic er-
gotropy is naturally upper bounded by

Enc = Tr(ρiHi)− Tr
[
(̃ρi)fHf

]
≤ Tr(ρiHi)− Tr

[
(ρi)

th
f Hf

]
(5)

where (ρi)
th
f is the thermal state of Hf of same entropy

as ρi, already introduced previously. We denote by βi
its inverse temperature. The ergotropy difference (3) is
therefore upper bounded by

∆Enc ≤ Tr
[
(̃ρthi )fHf

]
− Tr[(ρi)

th
f Hf ]

= β−1
i ∆S + β−1

i S
[
(̃ρthi )f |(ρi)

th
f

]
(6)

where ∆S := S(ρthi )−S(ρi) is the difference of Von Neu-
mann entropy and is positive since ρthi and ρi have the
same energy. This upper bound is automatically sat-

urated when the final passive state (̃ρi)f is a thermal

state (and therefore equal to (ρi)
th
f ). However, when

(̃ρi)f ̸= (ρi)
th
f , the upper bound can still be saturated

asymptotically by using many copies of the non-thermal
state ρi, see Appendix C. This relies on the theo-
rem shown in [32]. Similarly, Gρi is upper bounded by

Gρi ≤ Tr
{[
UadρiU

†
ad − (ρi)

th
f

]
Hf

}
, which can be satu-

rated in the same conditions as Eq. (6) thanks to [32].
As a result, any non-thermal features is energetically

beneficial in the asymptotic limit of many copies,
whereas for a single copy, non-thermality and even non-
passivity are not sufficient to guarantee some energetic
benefits with respect to initial thermal states – only
majorization is sufficient.

Cost of driving.—The remaining questions concern
the existence, the explicit form, and the associated
energetic cost of optimal drivings saturating the non-
cyclic ergotropy. For a given initial non-thermal state
ρi =

∑
n rn|rin⟩⟨rin|, we are looking for Hamiltonians

H(t) that generate the final unitary transformation R =



4∑
n e

iϕn |efn⟩⟨rin| with the constraints H(ti) = Hi and
H(tf ) = Hf at initial and final times ti and tf . The
phases ϕn can be chosen freely if one assumes an experi-
mental setup able to control and adjust them, otherwise
they will be left random.

For arbitrary initial and final Hamiltonian Hi and
Hf we define H0(t) := λi(t)Hi + λf (t)Hf , where λi(t)
and λf (t) are real positive functions such that λi(ti) =
λf (tf ) = 1 and λi(tf ) = λf (ti) = 0. Besides these initial
and final conditions, λi(t) and λf (t) can be chosen freely,
in particular to suits experimental constraints.

One can show (Appendix D) that a family of driv-

ings reaching (̃ρi)f is of the form H(t) = H0(t) + V (t)

with V (t) = −ℏḟ(t)U0(t)χU
†
0 (t). We introduced U0(t) :=

e
− i

ℏT
∫ t
ti
duH0(u) as the unitary transformation generated

by the original drive H0(t), T is the time-ordering oper-

ator, χ := −i ln
[
U†
0 (tf )R

]
represents a kind of “overlap”

between the aimed transformation R and the one actually
generated by the original drive H0(t), and f(t) is a real
function which can be chosen freely besides the following
conditions f(ti) = ḟ(ti) = ḟ(tf ) = 0 and f(tf ) = 1. This
also shows that the ensemble U introduced in the begin-
ning of the paper contains indeed all unitary evolutions
since the above reasoning can be repeated for any unitary
instead of R.

The additional driving V (t) seems energetically cost-
less at first sight since it does not contribute explic-

itly to the total work,
∫ tf
ti

duTr
[
ρu

d
du [H0(u) + V (u)]

]
=

Tr(ρfHf )− Tr(ρiHi). Still, there is a intrinsic energetic
cost associated with the additional driving V (t). This
was pointed out in the context of shortcut-to-adiabaticity
[35–38] and captured by the time-averaged norm of the
additional Hamiltonian or instantaneous additional driv-
ing energy [39]. Note that the Hamiltonian norm is
also shown to be the relevant quantity to express en-
ergetic cost in extended Landauer principle [40]. Follow-
ing these energetic analysis, the energetic cost associated

with the additional drive V (t) is w := 1
τ

∫ tf
ti
dt||V (t)||,

where τ := tf − ti and ||V (t)|| is the Frobenius norm of
V (t), equal to

||V (t)|| :=
[
Tr
[
V (t)V †(t)

]]1/2
= ℏ|ḟ(t)|

[
Tr
(
χχ†)]1/2 .

(7)

The relation defining χ can be re-written as eiχ =∑
n e

iϕn |ein′⟩⟨rin| with |ein′⟩ := U†
0 (tf )|efn⟩. Since∑

n e
iϕn |ein′⟩⟨rin| is a unitary matrix, it is diagonalis-

able in the form
∑
n e

iθn |un⟩⟨un|, with θn ∈ [−π;π[
and |un⟩ is the associated eigenvector. Then, a suit-
able choice is χ =

∑
n θn|un⟩⟨un|, implying ||V (t)|| =

ℏ|ḟ(t)|
(∑

n θ
2
n

)1/2
, and an energetic cost equal to w =(∑

n θ
2
n

)1/2 ℏ
τ

∫ tf
ti
dt|ḟ(t)|. Since

∫ tf
ti
dt|ḟ(t)| ≥ 1, with

the inequality saturated when ḟ(t) ≥ 0 for all t ∈ [ti; tf ],

FIG. 1. Top Panel: Plot of the energy gain ∆Enc = Gρi

(texturised surface) and the energetic cost wmin (solid green
surface) both in unit of ℏλfω, in function of the initial pop-

ulation pi ∈ [0; 1] and coherence |ci| ∈ [0;
√

pi(1− pi)]. We
assume a driving velocity slower than the free evolution, set-
ting 1/τ = λfω/10, which allows one to convert ℏ/τ in unit
of ℏλfω. Bottom Panel: Same plot with the upper bound
0.89 ℏπ

τ
(yellow horizontal plane) and the lower bound 0.77 ℏπ

τ
(green horizontal plane just below the yellow plane) of the
average energetic cost wmin (when no experimental control of
the phases is available).

we have the following achievable lower bound

w ≥ wmin :=
ℏ
τ

(∑
n

θ2n

)1/2

. (8)

The term
(∑

n θ
2
n

)1/2
can depend on the choice of the

phases ϕn. If we assume that we have experimentally
the full control of such phases, we can choose them in

order to minimise
(∑

n θ
2
n

)1/2
. Otherwise, the phases

are random and we will simply average
(∑

n θ
2
n

)1/2
over

all possible phases to obtain an average cost. Finally,

note that
(∑

n θ
2
n

)1/2
is upper bounded by π

√
d, where

d is the dimension of the system.

Illustrative examples.— So far, we showed that non-
thermal features can be used to gain or save energy in
driving operations. On the other hand, we also saw that
there is an intrinsic energetic cost associated with op-
timal drives. Then, comes the following question: how
large the energetic gains and the intrinsic energetic costs
can be? We answer this question in two practical exam-
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ples involving a two-level system. In the first example,
we analyse the situation where Hi is proportional to Hf

and compare the energetic gains provided by quantum
coherences versus the energetic costs associated with the
optimal drives. In the second example, we consider the
more general situation where Hi and Hf are not propor-
tional. Then, the bare dynamics U0(t) is not adiabatic
and shortcuts-to-adiabaticity are needed in order to reach

(̃ρthi )f when starting from a thermal state ρthi . Thus,

in this second example, beyond evaluating the energetic
gains provided by quantum coherences, we also compare
the intrinsic energetic costs between the optimal drives
and shortcut-to-adiabaticity.

Example 1.—We start by analysing the simple but
common situation of a two-level system driven by a drive
of the form H0(t) := λ(t)ℏω2 σz, which is naturally adi-
abatic since [H0(t), H0(t

′)] = 0 for all t and t′ [7, 8].
The time-dependent parameter takes the initial and fi-
nal positive value λ(ti) := λi and λ(tf ) := λf , and σz
denotes the z-Pauli matrix, with |1⟩ and |0⟩ the excited
and ground states, respectively. A general initial non-

thermal state is of the form ρi =

(
pi ci
c∗i 1− pi

)
in the ba-

sis {|1⟩, |0⟩}. The associated non-cyclic ergotropy is given
by (2) with the eigenvalues r1 and r0 functions of ci and
pi (expressions detailed in Appendix E). The minimum
energetic cost associated with the family of optimal driv-
ings V (t) is, according to the previous paragraph, given

by wmin =
√
2ℏ
τ arctanpi−r1r0−pi .

On the other hand, the initial thermal state of same
energy as ρi is simply ρthi = diag(pi, 1−pi), and the origi-
nal drive H0(t) is already adiabatic as commented above.
Then, the energetic gain provided by the coherences ci
is given by the non-cyclic ergotropy difference (3), which
gives here

∆Enc = ℏλfω
[√

(1/2− pi)
2
+ |ci|2 − 1/2 + pi

]
≥ 0,

and is also equal to the alternative figure of merit Gρi .
Fig. 1 (a) presents a plot of ∆Enc = Gρi and wmin as-

suming a driving velocity slower than the free evolution,
1/τ = λfω/10. One can see that the energetic gain is
always larger than the cost for large initial coherences,
as long as pi ≥ 0.025 (obtained numerically, not visible
on the figure). Note that, rigorously speaking, ∆Enc be-
comes ill-defined for pi ≥ 1/2 because then ρthi is not
anymore passive (negative temperature). Still, we can
use Gρi to consider the energetic gain beyond pi = 1/2.
Then, the sudden step in the driving cost at pi = 1/2
happens because at this point the populations become
inverted. This implies that, for ci = 0, optimal drives
must swap the two eigenstates |0⟩ and |1⟩, whose cost is
precisely πℏ

τ
√
2
. If the experimental setup does not offer

control of the phases ϕ1 and ϕ2, the average energetic
cost wmin takes value between 0.77π ℏ

τ and 0.89π ℏ
τ , dis-

played in Fig. 1 (b).
Example 2.—We consider now the same system but

(a)

(b)

(c)

FIG. 2. Plots of (a) wSTA (texturised surface) and wmin (blue
solid surface); (b) ∆Enc = Gρi (horizontal texturised plane)
and wmin (blue solid surface); and (c) ∆ESTA (lower blue
surface) and wSTA (upper yellow surface). All plots are in
unit of ℏω0 and in function of ω0τ and ω0τ

∗, for pi = 0.4 and
ci =

√
0.4× 0.6.

with Hi := 1
2ℏω0σz and Hf :=

ℏωf

2 σz +
ℏϵf
2 σx not

commuting, implying that H0(t) is necessarily non-
adiabatic. We focus on the following family of driv-
ing, H0(t) = 1

2ℏω(t)σz + 1
2ℏϵ(t)σx, with ω(ti) = ω0,

ϵ(ti) = 0, ω(tf ) = ωf , and ϵ(tf ) = ϵf . In order to
allow for analytic treatment of the dynamics, we as-
sume that the time-dependent frequencies are such that

µ := ω̇(t)ϵ(t)−ϵ̇(t)ω(t)
Ω3(t) is constant [8, 23], where Ω(t) :=√

ω2(t) + ϵ2(t). This includes for instance time depen-
dent frequencies of the form ω(t) = ω0 cos[π(t− ti)/2τ

∗]
and ϵ(t) = ω0 sin[π(t − ti)/2τ

∗], commonly used exper-
imentally [24]. Such choice implies µ = −π/(2ω0τ

∗),
ωf = ω0 cos[πτ/2τ

∗] and ϵf = ω0 sin[πτ/2τ
∗], whose

exact value will depend on one’s choice of τ∗. In par-
ticular, for ω0τ

∗ → ∞, the adiabatic parameter [23] µ
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goes to zero, indicating adiabaticity, while |µ| → ∞ for
ω0τ

∗ → 0, indicating strong non-adiabaticity.

Since H0(t) is non-adiabatic (at least for finite ω0τ),
optimal drives for initial thermal states ρthi use shortcut-
to-adiabaticity [18–23, 25]. It consists in adding an ex-
tra drive, like for instance the so-called counter-diabatic
drive VCD(t) [14–17], whose aim is to suppress generation
of coherences and level transitions. Then, for an initial
thermal state ρthi = pi|1⟩⟨1|+ (1− pi)|0⟩⟨0|, the addition
of the counter-diabatic drive VCD(t) yields the final pas-

sive state (̃ρthi )f := pi|ef1 ⟩⟨e
f
1 | + (1 − pi)|ef0 ⟩⟨e

f
0 | (which

happens to be also a thermal state since there is only two
energy levels), and reaches the non-cyclic ergotropy equal

to ESTA
nc = Ei−Tr

[
(̃ρthi )fHf

]
. The expression of VCD(t)

tailored for our problem is provided in Appendix F 2 (see
also [8, 23]) as well as the derivation of the associated
energetic cost wSTA according to the criteria discussed

above. We find wSTA = |µ|ℏΩ̄τ , with Ω̄ :=
∫ tf
ti
dtΩ(t).

It is also interesting to estimate how much energy
is indeed gained or saved thanks to the shortcut-to-
adiabaticity, and compare it to wSTA. This requires
to compute the energy of the final state ρf we would
obtain using only the bare drive H0(t). We obtain
Tr(ρfHf ) = Ωf (pf − 1/2), where Ωf := Ω(tf ) and

pf = ⟨ef1 |ρf |e
f
1 ⟩ is the population in the final excited

state (analytical expression provided in Appendix F).
Thus, the energetic gain associated with the counter-

adiabatic drive is ∆ESTA := Tr(ρfHf )−Tr
[
(̃ρthi )fHf

]
=

ℏΩf ( 12−pi)
µ2(1−νc)

1+µ2 , with νc := cos Ω̄
√
1 + µ2. Note that

the energetic gain ∆ESTA is positive only for initial pos-
itive temperature (pi ≤ 1/2). This is because thermal
states of negative temperature are non-passive, and then
shortcut-to-adiabaticity techniques stop being optimal.

We now focus on the non-cyclic ergotropy achieved

by an arbitrary non-passive state ρi =

(
pi ci
c∗i 1− pi

)
(in the initial eigenbasis). Using the family of opti-
mal drives V (t) we can achieve the optimal final state

(̃ρi)f = r1|ef1 ⟩⟨e
f
1 |+ r0|e

f
0 ⟩⟨e

f
0 |, with the expressions of r1

and r0 as in the example 1. The energetic gain with
respect to the performance of shortcut-to-adiabaticity
technique applied to initial thermal states is ∆Enc =

Enc − ESTA
nc = ℏΩf

[√
( 12 − pi)2 + |ci|2 − ( 12 − pi)

]
≥ 0,

same as in example 1, which is also equal to the alter-
native figure of merit Gρi . However, differently from the
example 1, one can now compare the energetic costs wSTA

and wmin, which provides a fairer comparison of perfor-
mances between initial thermal states and non-passive
states. The values taken by wmin now depends on some
phases like the phase of the initial coherence ci (see tech-
nical details in Appendix F 1). We find that wmin belongs

to the interval
√
2ℏ
τ |θ1,min−θ2,min| ≤ wmin ≤

√
2ℏ
τ π, where

θ1,min := arctan
√

pi−r1
r0−pi corresponds to the minimal ener-

getic cost in example 1 and θ2,min := arctan |µ|
√
1−νc√

2+µ2(1+νc)

is only due to the non-adiabaticity of U0(τ). Importantly,
if one has experimental control of the phases, the minimal

energetic cost
√
2ℏ
τ |θ1,min−θ2,min| can always be achieved.

In Fig. 2 (a), we compare these energetic costs pro-
viding a plot of wSTA for pi = 0.4 and wmin for pi = 0.4
and ci =

√
0.4× 0.6). We use the specific form of the

time dependent frequencies mentioned above, implying
Ω(t) = ω0, Ω = ω0τ , and wSTA = ℏπ

2τ∗ . Thus, the plots
are in unit of ℏω0 and in function of ω0τ

∗, directly re-
lated to the level of non-adiabaticity, and ω0τ , related to
how fast is the driving with respect to the free evolution
of the system. One can see that wmin is smaller than
wSTA for most values of ω0τ and ω0τ

∗. In particular,
while wSTA diverges for high non-adiabaticity, wmin re-
mains finite. However, wmin diverges for very fast drives.
Interestingly, one can show that this divergence of wmin

is only due to the contribution from θ1,min. In particular,
for ci = 0, wmin remains finite and strictly smaller that
wSTA, meaning that the driving V (t) is more performant
than shortcut-to-adiabaticity.

In Fig. 2 (b), we compare the energetic gain
∆Enc = Enc − ESTA

nc (also equal to Gρi) brought by
the optimal drives with its energetic cost wmin. In
Fig. 2 (c), we compare the energetic gain ∆ESTA

brought by shortcut-to-adiabaticity with its energetic
cost wSTA. One can see that the performances of the
optimal drives are significantly better than the perfor-
mances of shortcut-to-adiabaticity. Additional plots in
function of the more general parameters Ω and |µ| are
available in Appendix F 3, allowing us to conclude that
the above tendency remain valid in more general settings.

Conclusion.— We initiate the exploration of energetic
advantages in driving operations of quantum systems ob-
tained from non-thermal states. These energetic advan-
tages with respect to initial thermal states are captured
by the non-cyclic ergotropy, composed by the sum of a
coherent (coherence-based) contribution, an incoherent
(population-based) contribution and a passive contribu-
tion. A more specific figure of merit can be introduced,
Gρi , focusing on the energetic gain brought by the op-
timal drive itself. It was shown to be equal to the non-
cyclic ergotropy difference ∆Enc for coherence-based non-
passive states, as considered in the examples.

We saw that any non-thermal feature can bring en-
ergetic gains in the limit of many copies of the state.
By contrast, for single state, we show, relying on ma-
jorization properties, that only quantum coherences can
systematically bring energetic gains compared to ini-
tial thermal states. In particular, such gains are only
achieved by dynamics able to consume coherences, em-
phasising the interplay between the presence of coher-
ences and the ability to used them. It would be inter-
esting to see if this mechanism could be the underlying
phenomena behind the interferences effects enhancing the
performance of cyclic engines pointed out in [41], which
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would allow to extend its applications.
Additionally, the energetic costs associated with opti-

mal drives can be significantly smaller than the ones as-
sociated with shortcut-to-adiabaticity technics while en-
ergetic gains can be significantly larger. Future investiga-
tions should be conducted to analyse other systems and
potentially other criteria to evaluate the energetic costs
of drives [21].

All these energetic advantages rely on the availabil-
ity of non-thermal states. There are indeed many real-
istic situations producing non-thermal states, including
strong interaction with a thermal bath [42, 43], many-
body systems interacting with a common bath [44–50],
non-Markovian evolution [51, 52], and interaction with
several thermal baths at different temperatures [53].

Additional applications could be to explore questions
suggested by our approach, like the lower energetic cost
offered by the driving V (t) compared to shortcut-to-
adiabaticity, the tradeoff speed versus energetic cost of
usual (cyclic) work extraction, as well as non-cyclic work
extractions in quantum batteries. Finally, we anticipate
direct applications in quantum engines operating with
strong bath coupling [54–58] or with structured bath [59],
where it has been reported mostly negative effects from
the non-thermal properties and coherences naturally gen-
erated by these rich dynamics. A possible reason could
be that such resources have not been fully exploited. Our
results provide one possible direction.
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Appendix A: Incoherent and coherent non-adiabatic
transformations

1. Non-adiabatic transformations

Any evolution leading to a passive state with respect
to Hf is necessarily non-adiabatic if and only if the ini-
tial state is a non-passive state with respect to Hi. This
can be easily seen by writing the initial state in its di-
agonal form, ρi =

∑
n rn|rin⟩⟨rin|. The final state is pas-

sive if and only if the applied evolution U satisfies the
condition ⟨efn|U |rn′⟩ = δn,n′ , where δn,′n is the Kro-
necker delta. Then, if ρi is a passive state, we have
|rn′⟩ = |ein′⟩ for all n′, and the previous condition be-
comes ⟨efn|U |ein′⟩ = δn,n′ , which corresponds to an adi-
abatic transformation, or more precisely, to an “integral
or global” adiabatic transformation, a looser condition
than a dynamics which is adiabatic at all intermediate
times. By contrast, if ρi is not passive, it means there
exists at least one n such that |rin⟩ ≠ |ein⟩, implying

that there exists at least another index m ̸= n satis-
fying ⟨eim|rin⟩ ≠ 0. The condition for having a final pas-
sive state requires ⟨efn|U |rn⟩ = 1, implying in fine that
U contains the transition |efn⟩⟨eim|, so that U necessarily
realises a non-adiabatic transformation.

2. Coherent and incoherent contributions

Non-thermal and non-passive features have two dis-
tinguished contributions: one from populations and one
from coherences. It is possible to separate these two con-
tributions in the non-cyclic ergotropy, extending simi-
lar considerations presented in [33] on ergotropy. How-
ever, for non-cyclic ergotropy, it is convenient to in-
troduce a passive contribution, described in the follow-
ing. For an initial state ρi, we denote by ρi|D :=∑
n⟨ein|ρi|ein⟩|ein⟩⟨ein| the corresponding dephased state.

The incoherent contribution to the non-cyclic ergotropy
is E inc

nc := Tr(ρiHi) − Tr
[
ρ̃i|DHi

]
, where ρ̃i|D =∑

n p
i
σ(n)|e

i
n⟩⟨ein| is the passive state of ρi|D with respect

to Hi, with pin := ⟨ein|ρi|ein⟩ are the populations in the
initial energy basis, and σ(n) is a permutation of the
indices such that piσ(n+1) ≤ piσ(n). Obviously, in the

particular situation where the populations pin of ρi are
already in decreasing order we have ρ̃i|D = ρi|D and
the incoherent contribution is null since Tr(ρi|DHi) =
Tr(ρiHi). By defining the unitary transformation Uσ :=∑
n e

iψn |ein⟩⟨eiσ(n)|, where ψn is a phase factor, we obtain

ρ̃i|D = Uσρi|DU
†
σ =

(
UσρiU

†
σ

)
|D
. Alternatively, ρ̃i|D can

be defined as [33] ρ̃i|D = argminσ∈SincTr(σHi), where

S inc := {Uξρi|DU
†
ξ }Uξ∈U inc and U inc denotes the ensem-

ble of incoherent unitary transformations with respect to
the initial energy eigenbasis. Incoherent unitaries are of
the form

∑
n e

iΘn |ein⟩⟨eiξ(n)|, where ξ(n) is a permutation

of the indices and Θn a phase factor. Importantly, E inc
nc

is always positive.

The second contribution is the passive one, defined

as Epas
nc := Tr

[
ρ̃i|DHi

]
− Tr

[
(̃ρi|D )fHf

]
with (̃ρi|D )f :=∑

n p
i
σ(n)|e

f
n⟩⟨efn| is the passive state of ρi|D with respect

to Hf . Note that (̃ρi|D )f is related to ρ̃i|D through

adiabatic transformations which are of the form Uad =∑
n e

iϕn |efn⟩⟨ein|. Additionally, Epas
nc can be positive or

negative.

The coherent contribution to the non-cyclic ergotropy

can be defined as Ecoh
nc = Tr

[
(̃ρi|D )fHf

]
−Tr

[
(̃ρi)fHf

]
.

Ecoh
nc is always positive since Tr

[
(̃ρi|D )fHf

]
=

Tr
[
UadUσρiU

†
σU

†
adHf

]
and (̃ρi)f is the passive state as-

sociated with ρi but also to UadUσρiU
†
σU

†
ad. A similar

expression as in [33] can be obtained for the coherent
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non-cyclic ergotropy:

Ecoh
nc = β−1

[
C(ρi) + S[(̃ρi|D )f |ρ

th
f (β)]− S[(̃ρi)f |ρ

th
f (β)]

]
(A1)

where ρthf (β) denotes a thermal state of the final Hamil-

tonian at arbitrary inverse temperature β, and C(ρi) =
S[ρi|D ] − S[ρi] is the amount of initial coherences mea-
sured with the relative entropy of coherence [60]. While

(̃ρi|D )f can be reached by incoherent non-adiabatic evo-

lutions, for instance UadUσ, (̃ρi)f can be reached only
via coherent non-adiabatic evolutions. It can be easily
seen by remembering that applying an incoherent non-
adiabatic evolution to an initial state containing coher-
ences necessarily yields a final state with coherences. Al-
ternatively, one can see it by noticing that an evolution
able to consume coherences is also able to generate co-
herences.

Finally, the three contributions add up to give the
non-cyclic ergotropy: Enc = E inc

nc +Epas
nc +Ecoh

nc . Note that
the passive contribution can alternatively be defined
before the incoherent one or after the coherent one.
This could in general change the respective value of each
contribution but without changing their nature.

3. Consequences for energetic gain

The above decomposition of Enc is insightful to under-
stand the difference between coherence and population-
based non-passivity. For coherence-based non-passivity,
the energetic gain, given by the difference of non-cyclic
ergotropy (Eq.3 of the main text), can be decomposed as

∆Enc = Enc(ρi)− Enc(ρthi )

= Epas
nc (ρi) + Ecoh

nc (ρi)− Epas
nc (ρthi ). (A2)

Since we assumed that ρi contains only coherence-based
non-passive features, the populations are the same as
the thermal state ρthi of same energy, and consequently
the passive contributions are also the same, Epas

nc (ρi) =
Epas
nc (ρthi ). Consequently,

∆Enc = Ecoh
nc (ρi) ≥ 0, (A3)

from which we conclude that coherences always bring en-
ergetic gains.

By contrast, for a population-based non-passive state,
the populations can be very different from the thermal
state of same energy, so that the passive contributions
can be very different too. Then, we have

∆Enc = Epas
nc (ρi) + E inc

nc (ρi)− Epas
nc (ρthi )

= ∆Epas
nc + E inc

nc (ρi), (A4)

which can be of any sign since ∆Epas
nc := Epas

nc (ρi) −
Epas
nc (ρthi ) can be positive or negative. This is illustrated

in the next section with three-level systems.

Appendix B: Larger non-cyclic work extraction from
passive states than from non-passive states

In this Appendix we provide explicit example that
for non-cyclic transformations, initial passive states can
yield a larger work extraction (for positive non-cyclic er-
gotropy) or require less driving energy (for negative non-
cyclic ergotropy) than non-passive states. We consider a
three-level system and a non-cyclic process with initial
Hamiltonian Hi =

∑3
n=1 e

i
n|ein⟩⟨ein| and the final Hamil-

tonian Hf =
∑3
n=1 e

f
n|efn⟩⟨efn|. Without loss of gener-

ality, we assume that ei1 = ef1 = 0 and ei3 = ef3 = 1,

which implies that ei2 and ef2 belong to the interval [0; 1].
As passive state, we consider a thermal state ρthi at in-
verse temperature β. We denote by pthn its initial pop-
ulations associated with the eigenvector |ein⟩. We are
looking for a non-passive state such that its non-cyclic
ergotropy is strictly smaller than the one of the thermal
state. Since we saw in the main text that initial coher-
ences always increase the non-cyclic ergotropy, we choose
a diagonal non-passive state ρi =

∑3
n=1 qi|ein⟩⟨ein|. In

other words, we need to find q1, q2, and q3 such that

Ẽf = q∗3 + q∗2e
f
2 > Tr

[
(̃ρthi )fHf

]
= pth3 + pth2 e

f
2 , remem-

bering that (̃ρthi )f is the final passive state associated

with ρthi . We introduced q∗3 := minn=1,2,3 qn and q∗2 is
the second smallest population.

One can show for instance that choosing ei2 such that
β(1 − ei2) ≪ 1, with q3 = pth3 + α, q2 = pth2 − α/ei2,
and q1 = 1 − q2 − q3, where α := e−ββ(ei2 − (ei2)

2)/3
guarantees q∗3 > pth3 . This implies that we can always

have Ẽf > Tr
[
(̃ρthi )fHf

]
by choosing ef2 small enough.

Explicitly, let us take β = 1 (in unit of kB) and ei2 =
0.9. With these values we obtain according to the above
choices pth1 ≃ 0.564, pth2 ≃ 0.229, pth3 ≃ 0.207, q1 ≃ 0.565,
q2 ≃ 0.217, and q3 ≃ 0.218. Thus, we have for the final
populations q∗3 − pth3 = q3− pth3 ≃ 0.00954 and pth2 − q∗2 =

pth2 − q3 = 0.0108, so that any value of ef2 smaller than

0.88 leads to Ẽf > Tr
[
(̃ρthi )fHf

]
.

Appendix C: Asymptotic achievability of the upper
bound Eq.(7)

The theorem shown in [32] states that for any state ρ
and for N going to infinity, there exists a unitary trans-
formation UN (not unique) such that

1

N
Tr
(
UN ⊗N ρU†

NHN

)
→

N→∞
Tr(ρthH), (C1)

where H can be an arbitrary Hamiltonian, HN :=∑N−1
k=0 ⊗kI ⊗ H ⊗N−k−1 I, I is the identity, and ρth is

the thermal state of same entropy as ρ associated with
the Hamiltonian H. Then, it implies the existence of
a unitary transformation mapping asymptotically well
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(in the sense stated above) ⊗Nρi to ⊗N (ρi)
th
f , remem-

bering that (ρi)
th
f denotes the thermal state with re-

spect to Hf of same entropy as ρi. In particular, it
also means that we can find a time dependent Hamilto-
nian HN (t) such that the generated unitary transforma-
tion realises this mapping with the additional constraints

HN (ti) =
∑N−1
k=0 ⊗kI ⊗ Hi ⊗N−k−1 I and HN (tf ) =∑N−1

k=0 ⊗kI⊗Hf ⊗N−k−1 I.

Appendix D: Optimal drivings

One can verify easily that the family of driving V (t)
given in the main text brings the initial state ρi to the
optimal final state ρ̃f . The complete transformation is
given by

U = e−iT
∫ tf
ti

dtH(t)

= e−iT
∫ tf
ti

dtH0(t)

×e−iT
∫ tf
ti

dte
iA

∫ t
ti

duH0(u)
V (t)e

−iT
∫ t
ti

duH0(u)

= e−iT
∫ tf
ti

dtH0(t)eiχ
∫ tf
ti

dtḟ(t)

= e−iT
∫ tf
ti

dtH0(t)eiχ[f(tf )−f(ti)]

=
∑
n

eiϕn |efn⟩⟨rin|, (D1)

where we used the definition of χ and the properties
f(ti) = 0 and f(tf ) = 1. It is then straightforward to
see that U brings ρi to the optimal final state.

Appendix E: Details on the energetic cost of driving
for two-level systems

The eigenvalues and eigenvectors associated with the

initial state ρi =

(
pi ci
c∗i 1− pi

)
are respectively

r1 =
1

2
−
√
(pi − 1/2)2 + |ci|2, (E1)

r0 =
1

2
+
√
(pi − 1/2)2 + |ci|2, (E2)

and

|r1⟩ =
√
r0 − pi
r0 − r1

|1⟩ − e−iψi

√
pi − r1
r0 − r1

|0⟩, (E3)

|r0⟩ = eiψi

√
pi − r1
r0 − r1

|1⟩+
√
r0 − pi
r0 − r1

|0⟩, (E4)

where ψi = arg(ci). The unitary evolution U0(t) is simply

given by U0(t) = e−iΛ
ω
2 σz , with Λ :=

∫ tf
t0
dtλ(t). Since

both Hi and Hf are proportional to σf , the initial and
final energy eigenstates are the same, namely |1⟩ and |0⟩.

As detailed in the main text, optimal drivings can be
obtained through the matrix χ which is itself given by

eiχ =
∑
n

eiϕnU†
0 (tf )|efn⟩⟨rin|

= eiϕ1eiΛ
ω
2 |1⟩⟨r1|+ eiϕ0e−iΛ

ω
2 |0⟩⟨r0|. (E5)

The associated eigenvalues are eiθ+ and eiθ− with

θ± =
ϕ0 + ϕ1

2
+ πκ(ϕ1 − ϕ0) (E6)

±arctan

√
r0 − r1

(r0 − pi) cos2 (ϕ1 − ϕ0)/2
− 1, (E7)

where κ(ϕ1 − ϕ0) is a function equal to 0 when cos(ϕ1 −
ϕ0) ≥ 0 and equal to 1 otherwise (explicitly, κ(ϕ1−ϕ0) =
Θ[− cos(ϕ1 − ϕ0)], where Θ is the Heaviside step func-
tion). Assuming one has full control of the phases, one
can achieve the following minimal energetic cost

wmin =

√
2

τ
arctan

√
pi − r1
r0 − pi

=

√
2

τ
arctan

(√
(1/2− pi)2 + |c|2 − (1/2− pi)√
(1/2− pi)2 + |c|2 + (1/2− pi)

)1/2

,

(E8)

by setting ϕ1 = ϕ0 = 0. By contrast, if one has no control
of the phases, their value for each realisation is random,
and the average cost is given by

w̄ :=
1

τ

1

4π2

∫ π

−π
dϕ1

∫ π

−π
dϕ2

√
θ2+ + θ2−. (E9)

The analytical expression is challenging to obtain, but

one can instead show that 1
4π2

∫ π
−π dϕ1

∫ π
−π dϕ2

√
θ2+ + θ2−

takes value within the interval [0.77π; 0.89π] depending
on the values of pi and ci.

Appendix F: Non-adiabatic dynamics

The time dependent Hamiltonian considered in the last
part of the paper is of the form

H0(t) =
1

2
ω(t)σz +

1

2
ϵ(t)σx, (F1)

and generates a non-adiabatic dynamics since
[H(t), H(t′)] ̸= 0 in general. Such kind of dynamics are
challenging to integrate. Still, analytical integrations
are possible when the Hamiltonian parameters are

such that µ := ω̇(t)ϵ(t)−ϵ̇(t)ω(t)
Ω3(t) is constant [8, 23]. A

simple way to integrate the dynamics is using a closed
set of orthogonal observables {Bk}0≤k≤3 forming a
basis of the Hilbert space. We use the same set as in
[8, 23], namely B0 = I, B1 = H0(t) = ω(t)Sz + ϵ(t)Sx,
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B1 = ϵ(t)Sz − ω(t)Sx, and B3 = Ω(t)Sy. In the Heisen-

berg picture Bi(t) := e
iA

∫ t
ti
duH0(u)Bie

−iT
∫ t
ti
duH0(u) the

dynamics is given by Ḃi(t) = i[H∗
0 (t), Bi(t)] +

∂
∂tBi(t),

where H∗
0 (t) := e

iA
∫ t
ti
duH0(u)H0e

−iT
∫ t
ti
duH0(u) and the

partial derivative denotes the derivative with respect to
the intrinsic time-dependence of the operator Bi. The

dynamics of the basis can be written in a matrix form

1

Ω
Ẋ(t) =

(
A+

Ω̇

Ω2
I

)
X(t) (F2)

where X(t) = {B1(t), B2(t), B3(t)}T is a three-
component column vector and

A =

 0 µ 0
−µ 0 1
0 −1 0

 (F3)

a 3×3-matrix. This can be integrated after diagonalising
A, yielding (see also [8, 23])

X(t) =
Ω(t)

(µ2 + 1)Ω(0)

 1 + µ2νc µνs
√
µ2 + 1 (1− νc)µ

−µνs
√
µ2 + 1 νc(µ

2 + 1) νs
√
µ2 + 1

µ(1− νc) −νs
√
µ2 + 1 µ2 + νc

X(0), (F4)

with νc := cos Ω̄
√

1 + µ2, νs := sin Ω̄
√
1 + µ2, and Ω̄ :=∫ tf

ti
dtΩ(t). Note that from Bi(t) we have directly the

expressions of Sz(t), Sy(t), and Sx(t), from which we ob-
tain the time dependent Bloch vector to reconstruct the

final state, ρf =

(
pf cf
c∗f 1− pf

)
in the basis {|ef1 ⟩, |e

f
0 ⟩}.

We obtain pf = 1
2(1+µ2) [2pi + µ2 − µ2νc(1 − 2pi)] and

cf = −µ(1−2pi)
2(1+µ2) sign(ϵf )[νs

√
1 + µ2− i(1− νc)]. The final

eigenstates are given by |ef1 ⟩ = [(ωf+Ωf )
2+ϵ2f ]

−1/2[(ωf+

Ωf )|1⟩ + ϵf |0⟩] and |ef0 ⟩ = [(ωf − Ωf )
2 + ϵ2f ]

−1/2[(ωf −
Ωf )|1⟩+ ϵf |0⟩].

1. Energetic cost of the family of optimal drive

The minimal energetic cost of an optimal drive is given
by (see main text) wmin = 1

τ [Trχχ
†]1/2, where χ is such

that eiχ =
∑
n e

iξn |ein′⟩⟨rin|. The expression of |r1⟩ and
|r0⟩ are the same as in (E3) and (E4) respectively. We
can derive the expression of |ei1′⟩ and |ei0′⟩ (up to a phase
factor included in ξn) from the above expression of ρf ,

taking respectively |1⟩⟨1| and |0⟩⟨0| as initial state. We
obtain

|ei1′⟩ = αe−iϕα |1⟩ − β|0⟩ (F5)

|ei0′⟩ = β|1⟩+ αeiϕαβ|0⟩ (F6)

with αeiϕα = 1√
2(1+µ2)

[sign(s)
√

(1 + µ2)(1 + νc) −

i
√
1− νc] and β = 1√

2(1+µ2)
sign(ϵf )µ

√
1− νc.

Combining with (F5) and (F6) with (E3) and (E4) we
have∑

n

eiϕn |ein′⟩⟨rin| =
(

cos ηeiζ sin ηe−i(δ−ξ1−ξ0)

− sin ηeiδ cos ηe−i(ζ−ξ0−ξ1)

)
(F7)

in the initial energy eigenbasis {|1⟩, |0⟩} with η, ζ, and
δ are implicitly defined by the relations cos ηeiζ =

α
√

r0−pi
r0−r1 e

i(ξ1−ϕα) + β
√

pi−r1
r0−r1 e

i(ξ0−ψi) and sin ηeiδ =

β
√

r0−pi
r0−r1 e

iξ1 − α
√

pi−r1
r0−r1 e

i(ξ0+ϕα−ψi), reminding that ψi

is the argument of the initial coherence ci. As a result,
the eigenvalues of eiχ are eiθ+ and eiθ− with

θ± =
ξ1 + ξ0

2
+ πκ(ξ1, ξ0, α, η)± arctan

√√√√ 1[
α
√

r0−pi
r0−r1 cos(ϕα − ξ1/2 + ξ0/2) + β

√
pi−r1
r0−r1 cos(ψi + ξ1/2− ξ0/2)

]2 − 1,

(F8)

where κ(ξ1, ξ0, α, η) is a function equal to 0 when cos η cos(ζ − ξ1/2− ξ0/2) ≥ 0, and equal to 1 otherwise. Assuming
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one has control of the phase ξ1 and ξ0, the minimum energetic cost is

wmin =

√
2

τ
arctan

√√√√[α2
r0 − pi
r0 − r1

+ β2
pi − r1
r0 − r1

+ 2βα

√
(r0 − pi)(pi − r1)

r0 − r1
cos(ψi + ϕα)

]−1

− 1. (F9)

Contrasting with the first situation where H0(t) gener-
ates an adiabatic transformation, the energetic cost after
minimisation over ξ1 and ξ0 depends on ψi, the initial
phase of the coherence ci, and on ϕα (which depends
on the original dynamics U0(tf )). Then, one can con-
sider again the same alternative. If experimentally one
has control of these phases, meaning that they have well-
defined values which can be adjusted by some controls
on the experimental apparatus, then, the minimum en-
ergetic cost can be brought down to (for ψi + ϕα = 0 if
ϵfµ ≥ 0, and for ψi + ϕα = π if ϵfµ ≤ 0)

wmin =

√
2

τ
|θ1,min − θ2,min|, (F10)

with θ1,min = arctan
√

pi−r1
r0−pi , contribution form the ini-

tial state, and θ2,min = arctan |β|
α = arctan |µ|

√
1−νc√

2+µ2(1+νc)
,

contribution from the original dynamics U0(tf ). Con-
versely, if one has no control over ψi and ϕα, the ener-

getic cost can take any value between
√
2
τ |θ1,min − θ2,min|

and
√
2
τ (θ1,min + θ2,min).

Finally, without any control one the phases ξ1 and ξ0
and therefore left random, the energetic cost takes values

between
√
2
τ |θ1,min − θ2,min| and

√
2
τ π.

2. Counterdiabatic driving and energetic cost

According to [14–17], for a given time dependent
Hamiltonian H(t), the counterdiabatic drive is given by

HCD =
∑
n

(
d

dt
πn

)
πn (F11)

where πn := |en⟩⟨en| are projectors onto the instanta-
neous eigenstates |en⟩ of H(t). The corresponding ener-
getic cost is given by the time average of the Hamiltonian

norm ||H(t)||. One obtains ||H(t)|| =
(∑

n
˙⟨en ˙|en⟩

)1/2
,

using the property ˙⟨en||en⟩ = 0, where ˙|en⟩ stands for
d
dt |en⟩. Recalling that we consider the family of driving

H0(t) = ω(t)
2 σz + ϵ(t)

2 σx, the instantaneous eigenstates

are given by

|e1⟩ =

√
Ω(t) + ω(t)

2Ω(t)
|1⟩+

√
Ω(t)− ω(t)

2Ω(t)
|0⟩ (F12)

and

|e0⟩ = −

√
Ω(t)− ω(t)

2Ω(t)
|1⟩+

√
Ω(t) + ω(t)

2Ω(t)
|0⟩. (F13)

This leads to ||H(t)|| = |ω̇(t)ϵ(t)−ω(t)ϵ̇(t)|
Ω2(t) = |µ|Ω(t), im-

plying that the energetic cost is wSTA = |µ|Ω̄/τ .

3. Some additional plots

We finally provides some plots additional to the one
presented in the main text. The following plots are in
function of the more general parameters Ω and |µ|. In
Fig. 3 (a), we compare the energetic cost wmin and wSTA

in unit of ℏ/τ and in function of the dimensionless pa-
rameters µ ∈ [0; 4] and Ω̄ ∈ [0; 4], and setting pi = 0.4
and ci =

√
0.4× 0.6. One can see that wmin is almost

always smaller than wSTA. Additionally, for some ini-
tial non-passive states, the energetic cost wmin is zero,
meaning that the transformation U0(tf ) is already opti-
mal for these particular initial states. Without the phase
controls mentioned above, wmin takes random values be-

tween
√
2ℏ
τ |θ1,min − θ2,min| and

√
2ℏ
τ π, so one could say

that on average the energetic costs wmin and wSTA are
comparable for moderate values of Ω̄ and µ. For large
values of these parameters, the wmin is always smaller
than wSTA.
In Fig. 3 (b) we compare the energetic gain ∆ESTA

in unit of ℏΩf brought by shortcut-to-adiabaticity with
its energetic cost wSTA in unit of ℏ/τ . Since these two
parameters are in principle independent, in order to be
able to plot these two functions on the same graph we
have to fixed a “conversion rate” of ℏΩf into ℏ/τ . We
choose Ωf = 20/τ . One can see that the energetic bal-
ance is negative for most parameter values. In Fig. 3
(c), using the same unit, we compare the energetic gain
∆Enc = Enc − ESTA

nc brought by the initial coherences
with the relative energetic cost wmin−wSTA, still assum-
ing Ωf = 20/τ . Overall, it seems that the performances
of the optimal drive are significantly better than the per-
formances of shortcut-to-adiabaticity.
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