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Energetic advantages of non-adiabatic drives combined with non-thermal quantum
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University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4001, South Africa, and
National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, 4001, South Africa
(Dated: April 24, 2023)

Unitary drivings of quantum systems are ubiquitous in experiments and applications of quantum
mechanics and the underlying energetic aspects, particularly relevant in quantum thermodynamics,
are receiving growing attention. We investigate energetic advantages in unitary driving obtained
from initial non-thermal states. We introduce the non-cyclic ergotropy to quantify the energetic
gains, from which coherent (coherence-based) and incoherent (population-based) contributions are
identified. In particular, initial quantum coherences appear to be always beneficial whereas non-
passive population distributions not systematically. Additionally, these energetic gains are accessible
only through non-adiabatic dynamics, contrasting with the usual optimality of adiabatic dynamics
for initial thermal states. Finally, following frameworks established in the context of shortcut-to-
adiabaticity, the energetic cost related to the implementation of the optimal drives are analysed
and, in most situations, are found to be smaller than the energetic cost associated with shortcut-
to-adiabaticity. We treat explicitly the example of a two-level system and show that energetic ad-
vantages increase with larger initial coherences, illustrating the interplay between initial coherences

and the ability of the dynamics to consume and use coherences.

Introduction—Most quantum experiments and quan-
tum technologies require manipulation of quantum sys-
tems’ Hamiltonian. Among the infinite variety of driv-
ings realizing the desired Hamiltonian transformation,
the least energy-consuming ones are of high interest for
energy controled applications, like in thermodynamics
but soon in quantum information processing and com-
putation [1, 2]. These least energy-consuming unitary
evolutions are commonly associated with the well-known
family of adiabatic drives. The traditional criterion for
adiabaticity relies on the slow variation of the driving
with respect to the velocity of the system’s evolution [3]
(see also [4-6] for recent reformulation and extension).
The energetic aspects and the origin of non-adiabaticity
-the breakdown of adiabaticity- were recently shown to
stem from the non-commutativity of the time dependent
Hamiltonian [7-9], giving rise to generation of quantum
coherences and consequently extra energetic costs [10] as
well as irreversible work [11-13]. Such manifestations of
quantum friction [7T-9] can be circumvented using tech-
niques like shortcut-to-adiabaticity [14-17], widely ap-
plied in theoretic and experimental thermodynamics [18—
23, 25], adiabatic quantum computing [26], experimental
state engineering [27], and quantum information process-
ing [28].

Nevertheless, the above considerations and results are
valid for initial thermal states. Here, we focus on initial
non-thermal states and the energetic consequences for
driving operations. We show that non-adiabatic drives
become energetically optimal, highlighting the ongoing
interplay between the initial coherences contained in
the system and the capacity of the drive to consume
coherences. We introduce the concept of non-cyclic
ergotropy to quantify the corresponding energetic gains.
We also investigate the energetic cost required for the

implementation of the optimal drives. Compared to
shortcut-to-adiabaticity techniques, we show explicitly in
an example with a two-level system that non-adiabatic
drives combined with initial non-thermal states can
bring higher energetic gains simultaneously with lower
energetic costs.

Let us consider the operation consisting in driving a
quantum system S from an initial Hamiltonian H; to a
final one H¢, with their respective eigenvalues and eigen-
vectors denoted by e and |eZ), for x = i, f, in increas-
ing order, e} | > er. We start the analysis by one of
the central quantity of the problem: E; := Tr(psHy),
the energy of the final state p¢, reached at the end of
the driving. For a given arbitrary initial state p; of ini-
tial energy E; := Tr(p;H;), there is an infinite variety
of driving Hamiltonians H (t) satisfying H(t;) = H; and
H(t;) = Hy, leading to an infinity of different final en-
ergy. Independently of whether the driving operation
injects energy in S (Ey > E;) or extracts energy from
S (Ef < E;), the optimal drive, which is in fact not
unique, has to minimise ¢, so that it minimises the en-
ergetic costs or maximises the energetic gains of the op-
eration. Therefore, our first aim is to find the minimum
E; := mingeyTr(Up;UTHy), where U is the ensemble
of unitary operations generated by drives H(t) satisfy-
ing H(t;) = H; and H(ty) = Hy. As we will see in the
following, U is indeed simply equal to the ensemble of
all unitary transformations — in other words, any uni-
tary transformation can be expressed as a unitary trans-
formation generated by a time dependent Hamiltonian
satisfying H(t;) = H; and H(ty) = Hy.

Since all unitarily accessible final states have neces-
sarily the same entropy as p;, one might first think of
E; as the smallest energy over the ensemble of states of



same entropy as p;. Then, given that the state of small-
est energy at fixed entropy is a thermal state, one would
conclude that Ey corresponds to the energy of (pi)}h,
the thermal state with respect to Hy of same entropy as
pi. However, reminding that unitary evolutions conserve
eigenvalues, (pi)}h cannot in general be reached unitar-
ily, unless the eigenvalues r,, of the initial state p; are
equal to the populations of a thermal state of Hy, as
highlighted in [29]. Therefore, the state of lower energy
which is always achievable through unitary operations is

not (pi)tfh but (/p:) #» a state diagonal in the eigenbasis of
H with eigenvalues equal to 7,

(p); =Y ralel)el], (1)

where 7,11 < 7,. The associated minimal difference of
energy is

—&ne i=Tr [(fr?)fo} —Tr(piH;) = mei{t = Tr(piH;).
' (2)

The state in (1) belongs to the family of passive states
[30, 31], defined as follows. For a given Hamiltonian
H = )", enlen)(en|, where the energies are ordered in
increasing order, e, 11 > e,, a state p is said to be pas-
sive with respect to H if: (i) it is diagonal in the en-
ergy eigenbasis {|e,) }; (ii) it has decreasing populations,
Prt1 = (ent1lplent1) < pn = (en|plen). The violation of
any of these two conditions leads to two different types
of mon-passivity: non-passivity stemming from popula-
tions when (ii) is not fulfilled, and non-passivity stem-
ming from coherences when (i) is not fulfilled. These
different physical origins of non-passivity will be used in
the next paragraph. Of course, it is also possible to have
non-passivity stemming from both populations and co-
herences when neither (i) nor (ii) is fulfilled. Finally, a
famous example of passive states is the thermal states.

In the context of cyclic work extraction, where the
aim is to extract as much work as possible from a
quantum state p through time-dependent driving under
the cyclic constraint H(t;) = H(t;) = H, it was shown
in pioneering studies [29, 32] that no work can be
cyclically extracted from passive states with respect
to H. For states which are not passive, the maximal
amount of cyclically extractable work is called ergotropy.
Contrarily to what one could have expected, the er-
gotropy is not directly related to the minimal energy
difference —&,. — the relevant quantity in our problem.
We call the quantity &, the non-cyclic ergotropy since
it is related to non-cyclic operations H; # Hy. In
particular, contrasting with the ergotropy, the non-cyclic
ergotropy can be positive or negative. When positive, it
represents the maximal energy extractable from p; while
realising the driving from H; to Hy. When negative,
its absolute value represents the minimal energy needed
to take the system from H; to H; when starting from
p;. Additionally, passive states with respect to H; are
not always the states of smallest non-cyclic ergotropy,

as shown in the following (neither are the passive states
with respect to Hy). Before continuing, a small note
on the notations: & denotes the passive state of same
entropy as o (also called the passive state of o) with

respect to H;. (o), denotes the passive state of o with
respect to Hy.

Necessity of incoherent and coherent non-adiabatic
transformations.—It should be emphasised that any dy-
namics leading to a final passive state is necessarily non-
adiabatic if and only if the initial state is a non-passive
state with respect to H;, contrasting with the usual adia-
batic dynamics required for initial thermal states [10-13].
This can be easily seen by writing the initial state in its
diagonal form.

Furthermore, we notice that there are two kinds of non-
adiabatic transformations: the incoherent ones, which
generate transitions between different initial and final en-
ergy levels but do not generates coherences in the eigen-
basis of Hy, and the coherent ones, which do generate
coherences in the eigenbasis of Hy. This finds an inter-
esting parallel with the type of non-passive features —
with respect to H; — initially present in p;. If the ini-
tial state contains non-passive features stemming only
from populations, non-adiabatic evolutions yielding (p;) f
are incoherent (see Appendix A). Alternatively, if the
non-passivity of p; is coherence-based, evolutions yield-
ing (p;); are necessarily coherent non-adiabatic. This
highlights the interplay between coherences contained in
p; and the ability of the evolution to consume and use
coherences.

This difference in the nature of the required
transformation is mirrored in &..: the non-cyclic
ergotropy can be decomposed in a sum of an in-
coherent, a passive and a coherent contributions,
Ene = Eine 4 grpas 4 geoh - The incoherent contribution
can be defined as £ := Tr(p;H;) — Tr p;, H;|, where
Pilp = donlehlpilel)|el)(el] is the “diagonal cut” of

pi and p;, its associated passive state with respect
to H;. The passive contribution can be identified as
Ers = Trpj,Hi| — Tr [(pi‘D)fo] where (Pi\p)f

is the passive state of p;, with respect to Hy. Fi-
nally, the coherent contribution can be identified as

b = Tr [(pi‘D)fo] — Tr [(Ap;)fo]. Additional
technical details can be found in Appendix A. This
extends similar considerations presented in [12, 33] on

ergotropy.

Energetic gains.—We are now in position of evaluating
the energetic advantages in driving operations provided
by non-passivity. These advantages are given by the
amount of energy gained (or saved) thanks to the use of
the best strategy starting from a non-thermal state com-
pared to the best strategy starting from a thermal state
of same energy. As detailed in the following, such en-
ergy gain is directly given by the difference of non-cyclic



ergotropies between the initial thermal and non-thermal
states.

More precisely, for an initial thermal state, it is well-
known, as mentioned in the introduction, that energeti-
cally optimal drives are either adiabatic (quasi-static), or
use shortcut-to-adiabaticity techniques [14-17]. Then,
from the initial thermal state pf" = > pih|ef)(ek],
where p;“hn = Z e Pen 7 .= Tr(e M) and B plays
the role of the inveis\ejemperature, such drives yield the
final passive state (pt*) ¢+ given by (1) substituting r,, by

pghn Note that (pih) ¢ is generally not a thermal state if
the energy spectrum of Hy is not “proportional” to the
one of H;. The non-cyclic ergotropy, applicable also for
initial thermal states, is reached by these optimal drives

and is given by (2) Ene = Tr(pPH;) — Tr [( h) Hf} =
S, pit (el — el).

Thus, the non-cyclic ergotropy difference, representing
the energy difference between the best strategies starting
either from a thermal state p* or from a non-thermal p;
of same energy, is given by

P —

Ay :=Tr (1), Hf} =T [(p0)  Hy
= Z (Pl — e (3)

Is A&, always positive? Quite surprisingly, the an-
swer is no, contrasting with cyclic ergotropy. It means
that, some thermal states have a larger non-cyclic er-
gotropy than some non-passive states of same energy, or
in other words, more work can be extracted non-cyclicly
from some thermal states than from some non-passive
states of same energy. We provide explicit examples in
Appendix B.

A general condition guaranteeing the positivity of A&,
is given by the property of majorization. We recall that
for any two density operators p and o, p majorizes o
when [29, 34]

k k
dDora=d s (4)
n=1 n=1

for all ¥ > 1, where r, and s, are respectively the
eigenvalues of p and o, in decreasing order. Then, the
positivity of A&, is guaranteed when p; majorizes pi,
which can be seen using summation by part [29], A&, =
3P —ra)ed = Spsn (el iy —el) Tosi (ra—plh) > 0.

In partlcular this implies that coherence-based
non-passivity always lead to positive A&, while this is
not true for population-based non-passivity. This unex-
pected difference stems from the passive contribution to
A&, which is zero for coherence-based non-passivity
whereas it can take any sign -and in particular the neg-

ative one- for population-based non-passivity, Appendix
A3.

We mention briefly an alternative figure of merit
quantifying the energetic advantages stemming from
the optimal driving itself. It simply consists in the
energy gained or saved by applying an optimal drive to
a given initial state p; instead of applying an adiabatic
drive or a shortcut-to-adiabaticity. It is given by

Gy, = T { [UaapUly = (00)| Hy b = S0k = r)ed,
where U,q denotes the unitary transformation generated
by the adiabatic drive or shortcut-to-adiabaticity and
P, = (el |p;|e!,) are the populations in the initial energy
eigenbasis. This quantity corresponds to the cyclic
ergotropy of the state UadpiUld (and therefore also of
pi) with respect to Hy, and thus is always positive
by contrast with AE&,.. Note that for initial states
with non-passivity stemming from coherences, as in the
examples considered below, we have A&, = G),.

Upper bound and achievability.—The non-cyclic er-
gotropy is naturally upper bounded by

Ene = Tr(piH;) — Tr [(pNi)fo]
— Tr [(ps) ¥ Hy] (5)

where (pi)}h is the thermal state of Hy of same entropy
as p;, already introduced previously. We denote by f;
its inverse temperature. The ergotropy difference (3) is
therefore upper bounded by

< Tr(piH;)

Afpe < T (o) Hy | — Trl(pi) " Hy]
= 57185+ 8718 [0 o] (©)

where AS := S(pt*) — S(p;) is the difference of Von Neu-
mann entropy and is positive since pt" and p; have the
same energy. This upper bound is automatically sat-

urated when the final passive state (p;); is a thermal

state (and therefore equal to (pi)th). However, when

(pi); # (pl)f , the upper bound can still be saturated
asymptotically by using many copies of the non-thermal
state p;, see Appendix C. This relies on the theo-
rem shown in [32]. Similarly, G,, is upper bounded by

G, <Tr { [UadpiU;Ld — (pz)}h} Hf}7 which can be satu-

rated in the same conditions as Eq. (6) thanks to [32].

As a result, any non-thermal features is energetically
beneficial in the asymptotic limit of many copies,
whereas for a single copy, non-thermality and even non-
passivity are not sufficient to guarantee some energetic
benefits with respect to initial thermal states — only
majorization is sufficient.

Cost of driving—The remaining questions concern
the existence, the explicit form, and the associated
energetic cost of optimal drivings saturating the non-
cyclic ergotropy. For a given initial non-thermal state
pi = Do, Talri)(ri], we are looking for Hamiltonians
H(t) that generate the final unitary transformation R =



>, ei®nlef)(rl| with the constraints H(t;) = H; and
H(t;) = Hy at initial and final times ¢; and t;. The
phases ¢,, can be chosen freely if one assumes an experi-
mental setup able to control and adjust them, otherwise
they will be left random.

For arbitrary initial and final Hamiltonian H; and
H; we define Ho(t) := N\;(¢)H; + Ap(t)Hy, where A;(¢)
and Af(t) are real positive functions such that \;(¢;) =
Af(ty) =1 and A;(ty) = Af(t;) = 0. Besides these initial
and final conditions, A;(t) and Af(t) can be chosen freely,
in particular to suits experimental constraints.

One can show (Appendix D) that a family of driv-
ings reaching (p;); is of the form H(t) = Ho(t) + V (t)

with V(t) = —hf (t)Uo (t)xU{ (t). We introduced Uy (t) :=

_iq [t
e w7 Ji, duto(w) as the unitary transformation generated

by the original drive Hy(¢), T is the time-ordering oper-
ator, x := —iln [Ug (tf)R} represents a kind of “overlap”

between the aimed transformation R and the one actually
generated by the original drive Hy(t), and f(t) is a real
function which can be chosen freely besides the following
conditions f(t;) = f(t;) = f(ty) =0 and f(ty) = 1. This
also shows that the ensemble U/ introduced in the begin-
ning of the paper contains indeed all unitary evolutions
since the above reasoning can be repeated for any unitary

instead of R.

The additional driving V' (t) seems energetically cost-
less at first sight since it does not contribute explic-
itly to the total work, fttf duTr [pu L [Ho(u) + V(w)]] =
Tr(pyHy) — Tr(p;H;). Still, there is a intrinsic energetic
cost associated with the additional driving V' (¢). This
was pointed out in the context of shortcut-to-adiabaticity
[35-38] and captured by the time-averaged norm of the
additional Hamiltonian or instantaneous additional driv-
ing energy [39]. Note that the Hamiltonian norm is
also shown to be the relevant quantity to express en-
ergetic cost in extended Landauer principle [40]. Follow-
ing these energetic analysis, the energetic cost associated
with the additional drive V(t) is w := L [/ dt[|V(t)]],
where 7 :=ty —t; and ||V (¢)|| is the Frobenius norm of
V(t), equal to

1/2

(7)

V()] = [T [VeVie)]"? = alfo)] [T (o)

The relation defining x can be re-written as e’ =
S, €inlei) (| with ey = Ul(ts)lef).  Since
>, e9nleln)(ri| is a unitary matrix, it is diagonalis-
able in the form > e |u,)(u,|, with 6, € [-m;7]
and |uy) is the associated eigenvector. Then, a suit-
able choice is x = >, Onlun)(uy,|, implying ||V (1)|| =

: 1/2
af@1(S,02)"
(3,02)" 2 2 [1r at| f(t)]. Since [/ dt|f()] > 1, with
the inequality saturated when f(t) > 0 for all t € [t;; /],

, and an energetic cost equal to w =

FIG. 1. Top Panel: Plot of the energy gain A&, = Gy,
(texturised surface) and the energetic cost wmin (solid green
surface) both in unit of A fw, in function of the initial pop-
ulation p; € [0;1] and coherence |¢;| € [0;v/pi(1 — pi)]. We
assume a driving velocity slower than the free evolution, set-
ting 1/7 = Ayw/10, which allows one to convert A/7 in unit
of hAyw. Bottom Panel: Same plot with the upper bound
0.892% (yellow horizontal plane) and the lower bound 0.77%%
(green horizontal plane just below the yellow plane) of the
average energetic cost Wmin (when no experimental control of
the phases is available).

we have the following achievable lower bound

5 1/2
> Wmin 1= — 02 .
W > Winin = (Z ) (8)

The term (>, 0,21)1/ ? can depend on the choice of the
phases ¢,,. If we assume that we have experimentally
the full control of such phases, we can choose them in
1z, Otherwise, the phases
are random and we will simply average (3, 0%)1/ % over
all possible phases to obtain an average cost. Finally,

note that (Zn 9%)1/2 is upper bounded by 7v/d, where
d is the dimension of the system.

order to minimise (3, 62)

Hllustrative examples.— So far, we showed that non-
thermal features can be used to gain or save energy in
driving operations. On the other hand, we also saw that
there is an intrinsic energetic cost associated with op-
timal drives. Then, comes the following question: how
large the energetic gains and the intrinsic energetic costs
can be? We answer this question in two practical exam-



ples involving a two-level system. In the first example,
we analyse the situation where H; is proportional to Hy
and compare the energetic gains provided by quantum
coherences versus the energetic costs associated with the
optimal drives. In the second example, we consider the
more general situation where H; and Hy are not propor-
tional. Then, the bare dynamics Up(t) is not adiabatic
and shortcuts-to-adiabaticity are needed in order to reach

—_—

(pth) 7 when starting from a thermal state P, Thus,
in this second example, beyond evaluating the energetic
gains provided by quantum coherences, we also compare
the intrinsic energetic costs between the optimal drives
and shortcut-to-adiabaticity.

FEzample 1.—We start by analysing the simple but
common situation of a two-level system driven by a drive
of the form Hy(t) := A(t)h§o., which is naturally adi-
abatic since [Hy(t), Ho(t')] = 0 for all ¢ and ¢ [7, §].
The time-dependent parameter takes the initial and fi-
nal positive value A(¢;) := \; and A(ty) := Ay, and o,
denotes the z-Pauli matrix, with |1) and |0) the excited
and ground states, respectively. A general initial non-
thermal state is of the form p; = f i 1 Elp> in the ba-

4 4
sis {|1),|0)}. The associated non-cyclic ergotropy is given
by (2) with the eigenvalues 1 and ro functions of ¢; and
p; (expressions detailed in Appendix E). The minimum
energetic cost associated with the family of optimal driv-
ings V (t) is, according to the previous paragraph, given
by Wmin = @ ;

On the other hand, the initial thermal state of same
energy as p; is simply pt* = diag(p;, 1—p;), and the origi-
nal drive Hy(t) is already adiabatic as commented above.
Then, the energetic gain provided by the coherences c¢;
is given by the non-cyclic ergotropy difference (3), which
gives here

arctan2="1
To—Pi

A& = ﬁ)\fw [\/(1/2 —pi)z + |Ci|2 — 1/2—|—pi >0,

and is also equal to the alternative figure of merit G, .

Fig. 1 (a) presents a plot of A&, = G, and Wiy as-
suming a driving velocity slower than the free evolution,
1/7 = Ajw/10. One can see that the energetic gain is
always larger than the cost for large initial coherences,
as long as p; > 0.025 (obtained numerically, not visible
on the figure). Note that, rigorously speaking, A&, . be-
comes ill-defined for p; > 1/2 because then pgh is not
anymore passive (negative temperature). Still, we can
use G, to consider the energetic gain beyond p; = 1/2.
Then, the sudden step in the driving cost at p; = 1/2
happens because at this point the populations become
inverted. This implies that, for ¢; = 0, optimal drives
must swap the two eigenstates |0) and |1), whose cost is
precisely T’r—h2 If the experimental setup does not offer
control of the phases ¢; and ¢s, the average energetic
cost Wmin takes value between 0.7771'% and O.897r’;i, dis-
played in Fig. 1 (b).

Ezample 2.—We consider now the same system but

FIG. 2. Plots of (a) wsra (texturised surface) and wmin (blue
solid surface); (b) A&ne = G,, (horizontal texturised plane)
and wmin (blue solid surface); and (c) AEST™ (lower blue
surface) and wsra (upper yellow surface). All plots are in
unit of Aiwg and in function of w7 and woe7*, for p; = 0.4 and

¢ =+/0.4 x0.6.

with H; = %hwoo. and Hy := h%az + h—;faz not

commuting, implying that Hy(t) is necessarily non-
adiabatic. We focus on the following family of driv-
ing, Ho(t) = $hw(t)o. + 1he(t)o,, with w(t;) = wo,
€(ti) = 0, w(ty) = wy, and €(ty) = €;. In order to
allow for analytic treatment of the dynamics, we as-
sume that the time-dependent frequencies are such that

o= %&mw(t) is constant [8, 23], where Q(t) :=

w?(t) + €2(t). This includes for instance time depen-

dent frequencies of the form w(t) = wq cos[n(t — t;)/27]
and €(t) = wpsin[r(t — t;)/27*], commonly used exper-
imentally [24]. Such choice implies p = —n/(2woT*),
wr = wocos[nT/27*] and €; = wpsin[rT/27*], whose
exact value will depend on one’s choice of 7*. In par-
ticular, for woT* — o0, the adiabatic parameter [23] p



goes to zero, indicating adiabaticity, while |u| — oo for
woT* — 0, indicating strong non-adiabaticity.

Since Hy(t) is non-adiabatic (at least for finite wo7),
optimal drives for initial thermal states pt® use shortcut-
to-adiabaticity [18-23, 25]. It consists in adding an ex-
tra drive, like for instance the so-called counter-diabatic
drive Vep(t) [14-17], whose aim is to suppress generation
of coherences and level transitions. Then, for an initial
thermal state ptt = p;|1)(1] + (1 — p;)|0)(0], the addition
of the counter-diabatic drive Vop(t) yields the final pas-

sive state (p;?h)f = pileD) e | + (1 — pi)led)(el| (which
happens to be also a thermal state since there is only two
energy levels), and reaches the non-cyclic ergotropy equal

0 ESTA — B _ Ty {(pgh)fo] The expression of Vop (1)

tailored for our problem is provided in Appendix F 2 (see
also [8, 23]) as well as the derivation of the associated
energetic cost wsta according to the criteria discubsed
above. We find wgra = |u\— with  := ftf dtQ(t

It is also interesting to estimate how much energy
is indeed gained or saved thanks to the shortcut-to-
adiabaticity, and compare it to wsta. This requires
to compute the energy of the final state py we would
obtain using only the bare drive Hy(t). We obtain
Tr(p;Hy) = Qp(ps — 1/2), where Qf = Q(t;) and
p; = (el|pslel) is the population in the final excited
state (analytical expression provided in Appendix F).
Thus, the energetic gain associated with the counter-

adiabatic drive is AESTA .= Tr(p, Hy)—Tr [(/p\gh/)fo} =

th(%—pi)‘ﬁl(ii;';c), with v, := cos Q4/1 + p2. Note that
the energetic gain AEST™ is positive only for initial pos-
itive temperature (p; < 1/2). This is because thermal
states of negative temperature are non-passive, and then
shortcut-to-adiabaticity techniques stop being optimal.

We now focus on the non-cyclic ergotropy achieved

by an arbitrary non-passive state p; = (p i € )
¢ 1—p;

(in the initial eigenbasis). Using the family of opti-
mal drives V(¢) we can achieve the optimal final state
(,oz)f = rilefV(el|+rolel) (el ], with the expressions of rq
and 7o as in the example 1. The energetic gain with
respect to the performance of shortcut-to-adiabaticity
technique applied to initial thermal states is A&, =
Ene = ES = 1y [\/G —p2 + el = (3 —p0)] 2 0,
same as in example 1, which is also equal to the alter-
native figure of merit G,,. However, differently from the
example 1, one can now compare the energetic costs wgra
and wpin, which provides a fairer comparison of perfor-
mances between initial thermal states and non-passive
states. The values taken by wpyi, now depends on some
phases like the phase of the initial coherence ¢; (see tech-
nical details in Appendix F'1). We find that wy,i, belongs

<fh

to the interval fﬁ|91 min —02,min| < Wmin < 7, where

61, min = arctan p(‘) 71

— corresponds to the minimal ener-

lpVI—ve
V22 (1+ve)
is only due to the non-adiabaticity of Uy(7). Importantly,

if one has experimental control of the phases, the minimal
V2h

getic cost in example 1 and 02 i := arctan

energetic cost |61, min —62,min| can always be achieved.

In Fig. 2 (a), we compare these energetic costs pro-
viding a plot of wgta for p; = 0.4 and wp,;, for p; = 0.4
and ¢; = 1/0.4 x 0.6). We use the specific form of the
time dependent frequencies mentioned above, implying
Qt) = wo, Q = wor, and wgrs = 2'2”*. Thus, the plots
are in unit of Awg and in function of wy7*, directly re-
lated to the level of non-adiabaticity, and wy7, related to
how fast is the driving with respect to the free evolution
of the system. One can see that wp;, is smaller than
wgTa for most values of wor and wyr*. In particular,
while wgra diverges for high non-adiabaticity, wpyi, re-
mains finite. However, wy,;, diverges for very fast drives.
Interestingly, one can show that this divergence of wmin
is only due to the contribution from 61 yn. In particular,
for ¢; = 0, wpiy remains finite and strictly smaller that
wsTaA, meaning that the driving V(¢) is more performant
than shortcut-to-adiabaticity.

In Fig. 2 (b), we compare the energetic gain
Ape = Ene — ESTA (also equal to G,,) brought by
the optimal drives with its energetic cost wpin. In
Fig. 2 (c), we compare the energetic gain AESTA
brought by shortcut-to-adiabaticity with its energetic
cost wsta. One can see that the performances of the
optimal drives are significantly better than the perfor-
mances of shortcut-to-adiabaticity. Additional plots in
function of the more general parameters € and |u| are
available in Appendix F 3, allowing us to conclude that
the above tendency remain valid in more general settings.

Conclusion— We initiate the exploration of energetic
advantages in driving operations of quantum systems ob-
tained from non-thermal states. These energetic advan-
tages with respect to initial thermal states are captured
by the non-cyclic ergotropy, composed by the sum of a
coherent (coherence-based) contribution, an incoherent
(population-based) contribution and a passive contribu-
tion. A more specific figure of merit can be introduced,
G, , focusing on the energetic gain brought by the op-
timal drive itself. It was shown to be equal to the non-
cyclic ergotropy difference A&, for coherence-based non-
passive states, as considered in the examples.

We saw that any non-thermal feature can bring en-
ergetic gains in the limit of many copies of the state.
By contrast, for single state, we show, relying on ma-
jorization properties, that only quantum coherences can
systematically bring energetic gains compared to ini-
tial thermal states. In particular, such gains are only
achieved by dynamics able to consume coherences, em-
phasising the interplay between the presence of coher-
ences and the ability to used them. It would be inter-
esting to see if this mechanism could be the underlying
phenomena behind the interferences effects enhancing the
performance of cyclic engines pointed out in [41], which



would allow to extend its applications.

Additionally, the energetic costs associated with opti-
mal drives can be significantly smaller than the ones as-
sociated with shortcut-to-adiabaticity technics while en-
ergetic gains can be significantly larger. Future investiga-
tions should be conducted to analyse other systems and
potentially other criteria to evaluate the energetic costs
of drives [21].

All these energetic advantages rely on the availabil-
ity of non-thermal states. There are indeed many real-
istic situations producing non-thermal states, including
strong interaction with a thermal bath [42, 43|, many-
body systems interacting with a common bath [44-50],
non-Markovian evolution [51, 52], and interaction with
several thermal baths at different temperatures [53].

Additional applications could be to explore questions
suggested by our approach, like the lower energetic cost
offered by the driving V(t) compared to shortcut-to-
adiabaticity, the tradeoff speed versus energetic cost of
usual (cyclic) work extraction, as well as non-cyclic work
extractions in quantum batteries. Finally, we anticipate
direct applications in quantum engines operating with
strong bath coupling [54-58] or with structured bath [59],
where it has been reported mostly negative effects from
the non-thermal properties and coherences naturally gen-
erated by these rich dynamics. A possible reason could
be that such resources have not been fully exploited. Our
results provide one possible direction.
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Appendix A: Incoherent and coherent non-adiabatic
transformations

1. Non-adiabatic transformations

Any evolution leading to a passive state with respect
to Hy is necessarily non-adiabatic if and only if the ini-
tial state is a non-passive state with respect to H;. This
can be easily seen by writing the initial state in its di-
agonal form, p; = > ry|r%)(r%]. The final state is pas-
sive if and only if the applied evolution U satisfies the
condition (ef|U|rn/) = 6,0/, where 6, is the Kro-
necker delta. Then, if p; is a passive state, we have
|rns) = let,) for all n’, and the previous condition be-
comes (ef|Ulel,) = &, ./, which corresponds to an adi-
abatic transformation, or more precisely, to an “integral
or global” adiabatic transformation, a looser condition
than a dynamics which is adiabatic at all intermediate
times. By contrast, if p; is not passive, it means there
exists at least one n such that |ri) # |ef), implying

that there exists at least another index m = n satis-
fying (e |r%) # 0. The condition for having a final pas-
sive state requires (ef|U|r,) = 1, implying in fine that
U contains the transition |e/)(el, |, so that U necessarily
realises a non-adiabatic transformation.

2. Coherent and incoherent contributions

Non-thermal and non-passive features have two dis-
tinguished contributions: one from populations and one
from coherences. It is possible to separate these two con-
tributions in the non-cyclic ergotropy, extending simi-
lar considerations presented in [33] on ergotropy. How-
ever, for non-cyclic ergotropy, it is convenient to in-
troduce a passive contribution, described in the follow-
ing. For an initial state p;, we denote by p;, :=
o (el pilel ) |ed ) (€| the corresponding dephased state.
The incoherent contribution to the non-cyclic ergotropy
is & = Tr(p;H;) — Tr[p;j,Hi], where p;, =
>0 Pymyl€n) (en] is the passive state of p;), with respect
to H;, with pi := (el |pile}) are the populations in the
initial energy basis, and o(n) is a permutation of the
indices such that p? o (nt1) < p o(n)" Obviously, in the

particular situation where the populations pﬁl of p; are
already in decreasing order we have p;, = p;, and
the incoherent contribution is null since Tr(p; DH7;) =
Tr(piH;). By defining the unitary transformation U,

S, etnlel ) (el U(n |, where ¢y, is a phase factor, we obtaln

ﬁHD/ = Upz|DUa = (UUPZU;)‘
b(‘e defined as [33] p;, = argmlpgeslrlc Tr(cH;), where
S = {ngi|DUg}U£€umc and U denotes the ensem-
ble of incoherent unitary transformations with respect to

the initial energy eigenbasis. Incoherent unitaries are of
the form °  e%©n |en) (€g ()|, Where £(n) is a permutation

Alternatively, p;

[p

of the indices and ©,, a phase factor. Importantly, £1°
is always positive.
The second contribution is the passive one, defined

as EP2 = Tr [p”D ] —Tr {(pi‘D) Hf] with (pl‘D) =

don pff(n)|efl><efl| is the passive state of p;
to Hy. Note that (Pilp)f |, through

adiabatic tran‘sformations which are of the form U,qg =
>, ei®rlef) (el |.  Additionally, £P2 can be positive or
negative.

|p With respect

is related to p;

The coherent contribution to the non-cyclic ergotropy
can be defined as " = Tr [(pi‘D)fo} —Tr [(pi)fo}.
Eh is always positive since Tr {(pi\D) H f:|
Tr UadU[,piU;UgdHf} and @f is the passive state as-

sociated with p; but also to UadngiU;U;[d A similar
expression as in [33] can be obtained for the coherent



non-cyclic ergotropy:

—_~—

gt = B |Clpi) + Sllpa,) 1 (8)] = Sl(oi) ()]

(A1)

where pgch(ﬁ) denotes a thermal state of the final Hamil-
tonian at arbitrary inverse temperature 8, and C(p;) =
S[pi|,] — S[pi] is the amount of initial coherences mea-
sured with the relative entropy of coherence [60]. While

—_~—

(Pilp) f can be reached by incoherent non-adiabatic evo-

lutions, for instance U,qU,, (p;) ; can be reached only
via coherent non-adiabatic evolutions. It can be easily
seen by remembering that applying an incoherent non-
adiabatic evolution to an initial state containing coher-
ences necessarily yields a final state with coherences. Al-
ternatively, one can see it by noticing that an evolution
able to consume coherences is also able to generate co-
herences.

Finally, the three contributions add up to give the
non-cyclic ergotropy: &En. = £c 4 gras 4 gcoh Note that
the passive contribution can alternatively be defined
before the incoherent one or after the coherent one.
This could in general change the respective value of each
contribution but without changing their nature.

3. Consequences for energetic gain

The above decomposition of &, is insightful to under-
stand the difference between coherence and population-
based non-passivity. For coherence-based non-passivity,
the energetic gain, given by the difference of non-cyclic
ergotropy (Eq.3 of the main text), can be decomposed as

A(c/‘nc = nc(pi) - gnc (p;ﬁh)
= ER(pi) + Exet (pi) — ER(pP™).

Since we assumed that p; contains only coherence-based
non-passive features, the populations are the same as
the thermal state pgh of same energy, and consequently
the passive contributions are also the same, EP3(p;) =
Eras(pth) - Consequently,

nc
Agnc - gﬁgh(pz> Z Ou

(A2)

(A3)

from which we conclude that coherences always bring en-
ergetic gains.

By contrast, for a population-based non-passive state,
the populations can be very different from the thermal
state of same energy, so that the passive contributions
can be very different too. Then, we have

A&ne = ER5(pi) + 0" (pi) — ER(pi™)

= AERE + £, (pi), (Ad)

which can be of any sign since AEP?S := EP2S(p,;) —

EPas(pth) can be positive or negative. This is illustrated
in the next section with three-level systems.

Appendix B: Larger non-cyclic work extraction from
passive states than from non-passive states

In this Appendix we provide explicit example that
for non-cyclic transformations, initial passive states can
yield a larger work extraction (for positive non-cyclic er-
gotropy) or require less driving energy (for negative non-
cyclic ergotropy) than non-passive states. We consider a
three-level system and a non-cyclic process with initial
Hamiltonian H; = 3% _, ¢/ |ef,)(¢/ | and the final Hamil-
tonian Hy = Zizl eflef)(el|. Without loss of gener-
ality, we assume that e/ = e/ = 0 and e} = e] = 1,
which implies that e} and eJ belong to the interval [0; 1].
As passive state, we consider a thermal state pi® at in-
verse temperature 3. We denote by pt! its initial pop-
ulations associated with the eigenvector |ef). We are
looking for a non-passive state such that its non-cyclic
ergotropy is strictly smaller than the one of the thermal
state. Since we saw in the main text that initial coher-
ences always increase the non-cyclic er%otropy,lwe choose
a diagonal non-passive state p; = > _ ¢;le},)(e,]. In
other words, we need E(_)jnd q1, g2, and q3 such that
Ef = ¢ + qgsel > Tr [(pgh)fo} = piP 4 pihel | remem-

th

bering that (pi") ;s the final passive state associated

with pi'. We introduced ¢} := min,—123 ¢, and g¢; is
the second smallest population.

One can show for instance that choosing e} such that
B(1 —eb) < 1, with g3 = pi* + @, ¢ = P4 — a/ed,
and g1 = 1 — g2 — g3, where a = e PB(eh — (¢4)*)/3
guarantees g3 > pth. This implies that we can always
have Ef > Tr [(p;?h)fo} by choosing eg small enough.

Explicitly, let us take 8 = 1 (in unit of kg) and e} =
0.9. With these values we obtain according to the above
choices pit' ~ 0.564, pi ~ 0.229, pi* ~ 0.207, ¢; ~ 0.565,
g2 ~ 0.217, and g3 ~ 0.218. Thus, we have for the final
populations g5 — p§* = g3 — p§* ~ 0.00954 and pi* — g5 =
it — g3 = 0.0108, so that any value of eg smaller than

0.88 leads to E; > Tr {(pgh)fo}

Appendix C: Asymptotic achievability of the upper
bound Eq.(7)

The theorem shown in [32] states that for any state p
and for N going to infinity, there exists a unitary trans-
formation Uy (not unique) such that

1
~Tr (UN @V pU}vHN) o (™),

N (1)

where H can be an arbitrary Hamiltonian, Hy :=

V@M@ H @NF1 I Tis the identity, and pt is
the thermal state of same entropy as p associated with
the Hamiltonian H. Then, it implies the existence of
a unitary transformation mapping asymptotically well



(in the sense stated above) @~ p; to @ (p;)%, remem-

bering that (pl) denotes the thermal state with re-
spect to H; of same entropy as p;. In particular, it
also means that we can find a time dependent Hamilto-
nian Hy(t) such that the generated unitary transforma-
tion realises this mapping with the additional constraints

( ) SVl @M @ Hy @V R T and Hy(ty) =
o @F @ Hp @V —F-11L.

Appendix D: Optimal drivings

One can verify easily that the family of driving V(¢)
given in the main text brings the initial state p; to the
optimal final state p¢. The complete transformation is
given by

U — —iT [if atH(®)
_ i i dtHo(v)

. 't ; 't
Xeiin;:"f dte' It duHO(u)V(t)eilTjtqi duHo ()

_ T S dtHo(t) jix ST atf (o)
_ o= IT S dtHO®) fix(F(8)~ £ (24)]

= Yl
n

where we used the definition of y and the properties
f(t;) = 0 and f(ty) = 1. It is then straightforward to
see that U brings p; to the optimal final state.

(D1)

Appendix E: Details on the energetic cost of driving
for two-level systems

The eigenvalues and eigenvectors associated with the

L _(Pi G
initial state p; = ¢ 1—p;

3

7“125—\/(1?

are respectively

i — 1/2)% + ¢ ]2, (E1)

T0=*+\/ i = 1/2)? + |ei]?, (E2)
and
Di —ip; [Pi—T
= 1) —e i, [Z—"Li0), E3
= =y — ey BT, (63)

Doy, (m4)

. . —
[ro) = ey [ 1) +
ro —T1

o —T1

where ¢; = arg(c;). The unitary evolution Uy(t) is simply
given by Up(t) = e " 27= with A := fttof dtA(t). Since
both H; and Hy are proportional to oy, the initial and
final energy eigenstates are the same, namely |1) and |0).

As detailed in the main text, optimal drivings can be
obtained through the matrix x which is itself given by

o = el
— (it eiA% |1> <7,1| + ei¢0€7i1\% |O> <’r‘0|. (E5)

The associated eigenvalues are e?+ and e~ with

+
Hi = ¢0 D) ¢1 + Wli((bl - (]50) (EG)
To—"
tarctan -1, (E7
\/(7’0 — pi) cos?® (¢1 — ¢o) /2 (E7)
where k(¢1 — ¢p) is a function equal to 0 when cos(¢; —

¢o) > 0 and equal to 1 otherwise (explicitly, k(¢1 — o) =
O[— cos(¢1 — ¢o)], where © is the Heaviside step func-
tion). Assuming one has full control of the phases, one
can achieve the following minimal energetic cost

2 pi— 1
Wmin = ——arctan, /| ——
T To — Pi
1/2
_ V2 V(1/2 = pi)? + e — (1/2 — pi)
= —arctan ,
T VA/2=p)2+ e+ (1/2 —p;)
(E8)
by setting ¢1 = ¢9 = 0. By contrast, if one has no control

of the phases, their value for each realisation is random,
and the average cost is given by

= . 2 402,
The analytical expression is challenging to obtain, but

L7 dey [T _dgs /0% + 62

takes value within the mterval [0.777;0.897] depending
on the values of p; and c¢;.

one can instead show that

Appendix F: Non-adiabatic dynamics

The time dependent Hamiltonian considered in the last
part of the paper is of the form

Ho(t) = geo(t)o- + elt)oe, (F1)
and generates a non-adiabatic dynamics since
[H(t), H(t')] # 0 in general. Such kind of dynamics are
challenging to integrate. Still, analytical integrations
are possible when the Hamiltonian parameters are
such that p := %(te)(t)w(t) is constant [8, 23]. A
simple way to integrate the dynamics is using a closed
set of orthogonal observables {By}o<i<3z forming a
basis of the Hilbert space. We use the same set as in
[8, 23], namely By = I, By = Hy(t) = w(¢)S, + €(t) Sz,



By = €(t)S. — w(t)Ss, and By = Q(t)Sy. In the Heisen-
. t - t

berg picture B;(t) := e A dutlo(w) g o =iT [y dullo(w) 4y

dynamics is given by B;(t) = i[H(t), B;(t)] + 2 Bi(t),

where H(t) := Al dUHD(u)HOefin‘ti dullo() and the

partial derivative denotes the derivative with respect to

the intrinsic time-dependence of the operator B;. The
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dynamics of the basis can be written in a matrix form

1. Q
ﬁX(t) = <A + Q2H> X(t) (F2)
where X(t) = {Bi(t),Ba(t),Bs(t)}T is a three-
component column vector and
0 w O
A=|—-p 0 1 (F3)
0 -10

a 3 x 3-matrix. This can be integrated after diagonalising
A, yielding (see also [8, 23])

Q(t) L pPve g/t +1 (1 —vop
X(t) = (12 +1)Q(0) —pvsy/p? +1 Vc(,UQ +1) v V p? 411 X(0), (F4)

with v, := cos Q\/1 + u2, vg :=sin Qy/1 + u2, and Q :=
ftff dtQ(t). Note that from B;(t) we have directly the
expressions of S,(t), Sy(t), and S;(t), from which we ob-
tain the time dependent Bloch vector to reconstruct the

D c . .
final state, py = (c£ 1 —fpf) in the basis {|e{>, |eg>}.

We obtain py = (1+u )[2]?1 + p? MQVc(l — 2p;)] and

cr = 2((114_1’”)) sign(es)[vsv/1+ p? —i(1 —v.)]. The final
eigenstates are given by \el) [(wp+Qp)2+ f]’1/2[(wf+
Q)[1) + €[0)] and |ef) = [(wy — Q)* + eF]7/[(wy —

Qp)[1) + €710)]-

1. Energetic cost of the family of optimal drive

The minimal energetic cost of an optimal drive is given
by (see main text) Wrnin = L[Tryxx']Y/2, where y is such
that e’X = > ein|el 1) (r n| The expression of |r1) and
|ro) are the same as in (E3) and (E4) respectively. We
can derive the expression of |et/) and |ei/) (up to a phase
factor included in §,,) from the above expression of py,

J

n(l =)

—Vs V /’('2—1_1

1?4 ve

(

taking respectively |1)(1] and |0)(0| as initial state. We
obtain

lel/) = ae™"*[1) — 5|0) (F5)

leg/) = BI1) + ae'®= 5]0) (F6)

1

: 2 _
W[SIgn(S) (1+p2)(1+ve)
iv/1—v.) and 8 = \/ﬁsign(q)ﬂvl — Ve.

Combining with (F5) and (F6) with (E3) and (E4) we
have

in
Zn: e

with ae’®~ =

Sin n€71(5751 750)
cos pe—iC—€o—€1)

(F7)

D cos ne’s
sl = (5

in the initial energy eigenbasis {|1),[0)} with 7, ¢, and
§ are implicitly defined by the relations cos 77€< =

« /TO f; 151 4)@) _|_ ﬁ /p" Tl 7’(50 1LH) and blnfr}e =
By) ke —ay fRret ((€otoa=vi) reminding that 1;

is the argument of the initial coherence c¢;. As a result,
the eigenvalues of €?X are ¢+ and e~ with

0y =

1
5 — 1

% + 7”1(517 507 «, 77) =+ arctan

{a, [ P0=Pi co8( g
ro—T1

)

/24 60/2) + By B cos(u+ &/2 - £0/2)]
(F8)

where k(&1,&p, a,n) is a function equal to 0 when cosncos(¢ — &1/2 — &y/2) > 0, and equal to 1 otherwise. Assuming
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one has control of the phase £; and &y, the minimum energetic cost is

-1

2 —Di i — —pi)(pi —
Wiin = ——arctan, | | a2 o — P 52]) — & + 2B« \/<TO pj(p ) cos(1; + da) —1. (F9)
T To 1 To T1 To 1
[

Contrasting with the first situation where Hy(t) gener- are given by
ates an adiabatic transformation, the energetic cost after
minimisation over £ and £y depends on 1;, the initial (t) + w(t) Q(t) — w(t)
phase of the coherence ¢;, and on ¢, (which depends le1) = 2Q(¢) I+ 20(t) 0 (F12)
on the original dynamics Uy(tf)). Then, one can con-
sider again the same alternative. If experimentally one and
has control of these phases, meaning that they have well-
defined values which can be adjusted by some controls Q) — w(t Q) + w(t
on the experimental apparatus, then, the minimum en- leg) = — (Q)Q(t)()|1> + (Q)Q(t)()l()) (F13)

ergetic cost can be brought down to (for ¥; + ¢, = 0 if
erp > 0, and for ¥, + ¢ = 7 if €pp <0)

V2

Wmin = 7‘91,min - (Flo)
T

02,min | ’

with 61 min = arctan,/ %, contribution form the ini-
k2

18l _ lplVI-—ve

@ V2t (+ve)’
contribution from the original dynamics Uy(ts). Con-
versely, if one has no control over ; and ¢, the ener-
getic cost can take any value between @ 161, min — 02, min|

and @(el,min + 02,min)-

Finally, without any control one the phases & and &g
and therefore left random, the energetic cost takes values
between @wl,mm — 02 min| and Qw.

tial state, and 02 min = arctan arctan

2. Counterdiabatic driving and energetic cost

According to [14-17], for a given time dependent
Hamiltonian H (t), the counterdiabatic drive is given by

(F11)

where 7, := |e,)(en| are projectors onto the instanta-
neous eigenstates |e,) of H(t). The corresponding ener-
getic cost is given by the time average of the Hamiltonian

norm ||H(t)||. One obtains ||[H(t)|| = (X, (e.n|e'n>)1/2,
using the property (e,l|le,) = 0, where |e,) stands for
%\en) Recalling that we consider the family of driving

Hy(t) = #az + E(;) 0z, the instantaneous eigenstates

This leads to ||H (t)|| = 2O LOWE = |40(#), im-

plying that the energetic cost is wsta = |u|Q/7.

3. Some additional plots

We finally provides some plots additional to the one
presented in the main text. The following plots are in
function of the more general parameters 2 and |u|. In
Fig. 3 (a), we compare the energetic cost win and wsta
in unit of /7 and in function of the dimensionless pa-
rameters g € [0;4] and Q € [0;4], and setting p; = 0.4
and ¢; = v/0.4 x 0.6. One can see that wpy, is almost
always smaller than wgta. Additionally, for some ini-
tial non-passive states, the energetic cost wp, is zero,
meaning that the transformation Uy(ty) is already opti-
mal for these particular initial states. Without the phase
controls mentioned above, wpi, takes random values be-
tween @|0me — 02, min| and @ﬂ', so one could say
that on average the energetic costs wpin and wgra are
comparable for moderate values of ) and p. For large
values of these parameters, the wy;, is always smaller
than WSTA -

In Fig. 3 (b) we compare the energetic gain A
in unit of Af2; brought by shortcut-to-adiabaticity with
its energetic cost wgTa in unit of ii/7. Since these two
parameters are in principle independent, in order to be
able to plot these two functions on the same graph we
have to fixed a “conversion rate” of 1€y into h/7. We
choose 2y = 20/7. One can see that the energetic bal-
ance is negative for most parameter values. In Fig. 3
(c), using the same unit, we compare the energetic gain
Ane = Ene — gchA brought by the initial coherences
with the relative energetic cost wmyin — wgra, still assum-
ing Qy = 20/7. Overall, it seems that the performances
of the optimal drive are significantly better than the per-
formances of shortcut-to-adiabaticity.
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