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Abstract. We extend known results on chordal graphs and distance-hereditary graphs to much
larger graph classes by using only a common metric property of these graphs. Specifically, a graph is
called a;-metric (i € N) if it satisfies the following a;-metric property for every vertices u, w, v and
x: if a shortest path between u and w and a shortest path between x and v share a terminal edge vw,
then d(u, ) > d(u,v) + d(v, x) — i. Roughly, gluing together any two shortest paths along a common
terminal edge may not necessarily result in a shortest path but yields a “near-shortest” path with
defect at most 4. It is known that ao-metric graphs are exactly ptolemaic graphs, and that chordal
graphs and distance-hereditary graphs are a;-metric for ¢ = 1 and ¢ = 2, respectively. We show that
an additive O(7)-approximation of the radius, of the diameter, and in fact of all vertex eccentricities
of an a;-metric graph can be computed in total linear time. Our strongest results are obtained for
ai-metric graphs, for which we prove that a central vertex can be computed in subquadratic time,
and even better in linear time for so-called (a1, A)-metric graphs (a superclass of chordal graphs and
of plane triangulations with inner vertices of degree at least 7). The latter answers a question raised
in (Dragan, IPL, 2020). Our algorithms follow from new results on centers and metric intervals of
a;-metric graphs. In particular, we prove that the diameter of the center is at most 3¢ + 2 (at most
3, if 4 = 1). The latter partly answers a question raised in (Yushmanov & Chepoi, Mathematical
Problems in Cybernetics, 1991).

Keywords: metric graph classes; chordal graphs; a;-metric; radius; diameter; vertex eccentricity; ec-
centricity approximating trees; approximation algorithms.

1 Introduction

Fuclidean spaces have the following nice property: if the geodesic between u and w contains v,
and the geodesic between v and x contains w, then their union must be the geodesic between
uw and z. In 1991, Chepoi and Yushmanov introduced a;-metric properties (i € ), as a way to
quantify by how much a graph is close to satisfy this above requirement [54] (see also [14, 15] for
earlier use of aj-metric property). All graphs G = (V, E) occurring in this paper are connected,
finite, unweighted, undirected, loopless and without multiple edges. The length of a path between
two vertices u and v is the number of edges in the path. The distance dg(u,v) is the length of
a shortest path connecting v and v in G. The interval Ig(u,v) between u and v consists of all
vertices on shortest (u,v)-paths, that is, it consists of all vertices (metrically) between u and v:
Ig(u,v) = {z € V : dg(u,x) + dg(z,v) = dg(u,v)}. Let also I&(u,v) = Ig(u,v) \ {u,v}. If no
confusion arises, we will omit subindex G.

a;-metric property: if v € I(u,w) and w € I(v, x) are adjacent, then
d(u,z) > d(u,v) +d(v,z) —i =d(u,v) + 1 + d(w, x) — 1.

Roughly, gluing together any two shortest paths along a common terminal edge may not necessar-
ily result in a shortest path (unlike in the Euclidean space) but yields a “near-shortest” path with
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defect at most i. A graph is called a;-metric if it satisfies the «;-metric property. a;-Metric graphs
were investigated in [14, 15, 54]. In particular, it is known that ap-metric graphs are exactly the
distance-hereditary chordal graphs, also known as ptolemaic graphs [46]. Furthermore, aq-metric
graphs contain all chordal graphs [14] and all plane triangulations with inner vertices of degree at
least 7 [32]. aa-Metric graphs contain all distance-hereditary graphs [54] and, even more strongly,
all HHD-free graphs [18]. Evidently, every graph is an a;-metric graph for some i. Chepoi and
Yushmanov in [54] also provided a characterization of all a;-metric graphs: They are exactly the
graphs where all disks are convex and the graph VV6+ * from Fig. 1 is forbidden as an isometric
subgraph (see [54] or Theorem 5). This nice characterization was heavily used in [4] in order to
characterize J-hyperbolic graphs with § < 1/2.

The eccentricity ec(v) of a vertex v in G is defined by max,cy dg(u,v), i.e., it is the distance
to a most distant vertex. The diameter of a graph is the maximum over the eccentricities of all
vertices: diam(G) = max,ey eq(u) = maxy yev dg(u, v). The radius of a graph is the minimum
over the eccentricities of all vertices: rad(G) = min,ey eg(u). The center C(G) of a graph G is the
set of its vertices with minimum eccentricity, i.e., C(G) = {u € V : eq(u) = rad(G)}. Each vertex
from C(G) is called a central vertex. In this paper, we investigate the radius, diameter, and all
eccentricities computation problems in «;-metric graphs. Understanding the eccentricity function
of a graph and being able to efficiently compute or estimate the diameter, the radius, and all vertex
eccentricities is of great importance. For example, in the analysis of social networks (e.g., citation
networks or recommendation networks), biological systems (e.g., protein interaction networks),
computer networks (e.g., the Internet or peer-to-peer networks), transportation networks (e.g.,
public transportation or road networks), etc., the eccentricity of a vertex is used in order to
measure its importance in the network: the eccentricity centrality index of v [47] is defined as
ﬁ. Furthermore, the problem of finding a central vertex is one of the most famous facility
location problems in Operation Research and in Location Science. In [54], the following nice
relation between the diameter and the radius of an «;-metric graph G was established: diam(G) >
2rad(G) — i — 1. Recall that for every graph G, diam(G) < 2rad(G) holds. Authors of [54] also
raised a question! whether the diameter of the center of an «a;-metric graph can be bounded
by a linear function of i. It is known that the diameters of the centers of chordal graphs or of
distance-hereditary graphs are at most 3 [15, 54].

Related work on computing or estimating the radius, diameter, or all eccentricities.
A naive algorithm which runs a BFS from each vertex to compute its eccentricity and then (in
order to compute the radius, the diameter and a central vertex) picks the smallest and the largest
eccentricities and a vertex with smallest eccentricity has running time O(nm) on an n-vertex m-
edge graph. Interestingly, this naive algorithm is conditionally optimal for general graphs as well as
for some restricted families of graphs [1, 6, 20, 50] since, under plausible complexity assumptions,
neither the diameter nor the radius can be computed in truly subquadratic time (i.e., in O(n%m?)
time, for some positive a,b such that a + b < 2) on those graphs. Already for split graphs (a
subclass of chordal graphs), computing the diameter is roughly equivalent to DISJOINT SETS,
a.k.a., the monochromatic ORTHOGONAL VECTOR problem [17]. Under the Strong Exponential-
Time Hypothesis (SETH), we cannot solve DISJOINT SETS in truly subquadratic time, and so
neither we can compute the diameter of split graphs in truly subquadratic time [6].

In a quest to break this quadratic barrier (in the size n + m of the input), there has been
a long line of work presenting more efficient algorithms for computing the diameter and/or the

! Tt is conjectured in [54] that diam(C(G)) < i+ 2 for every a;-metric graph G.



radius, or even better all eccentricities, on some special graph classes, by exploiting their geometric
and tree-like representations and/or some forbidden pattern (e.g., excluding a minor [41], or a
family of induced subgraphs). For example, faster algorithms for all eccentricities computation are
known for distance-hereditary graphs [12,23,29, 33|, outerplanar graphs [43], planar graphs [9,
44), graphs with bounded tree-width [1,8,41] and, more generally, graphs with bounded clique-
width [12,38]. Linear-time algorithms for computing all eccentricities are also known for interval
graphs [34, 48]. Some recent works have further studied which properties of interval graphs could
imply on their own faster algorithms for diameter and all eccentricities computation. Efficient
algorithms for these problems have been found for AT-free graphs [36], directed path graphs [10],
strongly chordal graphs [21], dually chordal graphs [7,22], Helly graphs and graphs of bounded
Helly number [28,39, 40]. See also [37]. Chordal graphs are another well-known generalization of
interval graphs. Although the diameter of a split graph can unlikely be computed in subquadratic
time, there is an elegant linear-time algorithm for computing the radius and a central vertex of a
chordal graph [16]. However, until this work there has been little insight about how to extend this
nice result to larger graph classes (a notable exception being the work in [18]). This intriguing
question is partly addressed in our paper.

Since the exact diameter or radius computation in subquadratic time is impossible (unless the
SETH is false) even for simple families of graphs (in case of the diameter, even for split graphs),
a large volume of work was also devoted to approximation algorithms. It is known [13] that the
diameter of any graph with n vertices and m edges can be approximated within a multiplicative
factor of 3/2 in O(m?3/?) time. Furthermore, unless the SETH is false, no O(n?~¢) time algorithm
can achieve an approximation factor better than 3/2 in sparse graphs [50] and no O(m?/2~¢)
time algorithm can achieve an approximation factor better than 5/3 [3]. The eccentricities of all
vertices of any graph can be approximated within a factor of 5/3 in O(m3/2) time [13] and, under
the SETH, no O(n?~¢) time algorithm can achieve better than 5/3 approximation in sparse
graphs [1] and no O(m3/2=¢) time algorithm can achieve an approximation factor better than
9/5 [3]. Authors of [3] also show that no near-linear time algorithm can achieve a better than
2 approximation for the eccentricities and provide an algorithm that approximates eccentricities
within a 24¢ factor in O(m /€) time for any 0 < € < 1. On planar graphs, there is an approximation
scheme with near linear running time [52]. Authors of [13] additionally address a more challenging
question of obtaining an additive c-approximation for the diameter diam(G) of a graph G, i.e., an
estimate D such that diam(G) — ¢ < D < diam(G). A simple O(mn'~¢) time algorithm achieves
an additive n®-approximation and, for any € > 0, getting an additive n®-approximation algorithm
for the diameter running in O(n?~¢) time for any € > 2¢ would falsify the SETH.

Much better additive approximations can be achieved for graphs with bounded (metric) pa-
rameters, including chordal graphs, HHD-free graphs, k-chordal graphs, and more generally all
d-hyperbolic graphs (see [10, 11,16, 19, 20, 24, 25,29-31, 34]). For example, a vertex furthest from
an arbitrary vertex has eccentricity at least diam(G) — 2 for chordal graphs [16] and at least
diam(G) — | k/2] for k-chordal graphs [11]. Hence, the diameter in those graphs can be approx-
imated within a small additive error in linear time by a BFS. In fact, the last vertex visited by
a LexBFS has eccentricity at least diam(G) — 1 for chordal graphs [34] as well as for HHD-free
graphs [24]. Thus, although the existence of a subquadratic algorithm for computing the exact di-
ameter of a chordal graph would falsify the SETH, a vertex with eccentricity at least diam(G)—1
can be found in linear time by a LexBFS. Later, those results were generalized to all J-hyperbolic
graphs [19, 20, 30, 31]. Note that chordal graphs and distance-hereditary graphs are 1-hyperbolic,
while k-chordal graphs are |k/2]/2-hyperbolic [53]. Gromov [45] defines §-hyperbolic graphs via



a simple 4-point condition: for any four vertices u,v,w, x, the two largest of the three distance
sums d(u,v) + d(w, z), d(u,w) + d(v,x), and d(u,x) + d(v,w) differ by at most 2§ > 0. Such
graphs have become of recent interest due to the empirically established presence of a small hy-
perbolicity in many real-world networks. For every d-hyperbolic graph, a vertex furthest from
an arbitrary vertex has eccentricity at least diam(G) — 26 [19]. Furthermore, for any m-edge
d-hyperbolic graph G, a vertex with eccentricity at most rad(G) + 26 can be found in O(dm)
time and a vertex with eccentricity at most rad(G) + 30 can be found in O(m) time [19, 20, 30,
31]. Three approximation schemes for all eccentricities were presented in [30]: an approximate
eccentricity function é, constructible in O(dm) time, which satisfies e(v) — 20 < é(v) < e(v), for
all v € V, and two spanning trees 7', one constructible in O(dm) time and the other in O(m)
time, which satisfy eq(v) < er(v) < eg(v) + 46 + 1 and eg(v) < ep(v) < eq(v) + 60, for all
v € V, respectively. Our results of Section 2 and Section 3 (and some results of [54]) show that
a;-metric graphs behave like d-hyperbolic graphs. In a forthcoming paper [27], indeed we show
that the hyperbolicity 0 of an «;-metric graph depends linearly on i. However, the constants in
our Theorems 1-4 are better than those that can be obtained by combining the hyperbolicity
result of [27] with the algorithmic results of [19,20, 30] on radii, diameters and all eccentricities
of d-hyperbolic graphs. In [27], we also introduce a natural generalization of an «;-metric, which
we call a (A, u)-bow metric: namely, if two shortest paths P(u,w) and P(v,x) share a common
shortest subpath P(v,w) of length more than A (that is, they overlap by more than A), then
the distance between w and z is at least d(u,v) + d(v,w) + d(w, z) — p. 6-Hyperbolic graphs are
(6,20)-bow metric and a;-metric graphs are (0, 7)-bow metric.

(a1, A)-Metric graphs form an important subclass of both «j-metric graphs and weakly
bridged graphs, and they contain all chordal graphs and all plane triangulations with inner
vertices of degree at least 7. In [32], it was shown that every (aj, A)-metric graph admits an
eccentricity 2-approximating spanning tree, i.e., a spanning tree 1" such that ep(v) — eg(v) < 2
for every vertex v. As a result, for a chordal graph, an additive 2-approximation of all eccentrici-
ties can be computed in linear time [25]. Finding similar results for general aq-metric graphs was
left as an open problem in [32].

Our Contribution. We prove several new results on metric intervals, eccentricity function, and
centers in «;-metric graphs, and their algorithmic applications, thus answering open questions
in the literature [25,32,54]. To list our contributions, we need to introduce on our way some
additional notations and terminology.

Section 2 is devoted to general a;-metric graphs (¢ > 0). The set Sk(u,v) = {z € I(u,v) :
d(u,z) = k} is called a slice of the interval I(u,v) where 0 < k < d(u,v). An interval I(u,v) is
said to be A-thin if d(z,y) < X for all z,y € Sk(u,v), 0 < k < d(u,v). The smallest integer A
for which all intervals of G are A-thin is called the interval thinness of G. We show first that, in
aj-metric graphs G, the intervals are (7 + 1)-thin.

The disk of radius r and center v is defined as {u € V : d(u,v) < r}, and denoted by
D(v,r). Sometimes, D(v,r) is called the r-neighborhood of v. In particular, N[v] = D(v,1) and
N(v) = Nv] \ {v} denote the closed and open neighbourhoods of a vertex v, respectively. More
generally, for any vertex-subset S and a vertex u, we define d(u,S) = min,es d(u,v), D(S,r) =
Uves D(v,7), N[S] = D(S,1) and N(S) = N[S]\ S. We say that a set of vertices S C V of a
graph G = (V, E) is d*-convex if for every two vertices z,y € S with d(z,y) > k > 0, the entire
interval I(x,y) is in S. For k < 2, this definition coincides with the usual definition of convex sets
in graphs [5,14,51]: S is convex if for every z,y € S, the interval I(x,y) is also in S. Clearly, the



intersection of two d*-convex sets is also d*-convex. We show that, in o;-metric graphs G, the
disks (and, hence, the centers C(G)) are d*~!-convex. The main result of Section 2.1 states that
the diameter of the center C(G) of G is at most 3i 4 2, thus answering a question raised in [54].

Let F(v) be the set of all vertices of G that are most distant from v. A pair z, y is called a pair
of mutually distant vertices if eg(x) = eq(y) = da(z,y), i.e., x € Fg(y),y € Fg(x). In Section 2.2,
we show that a vertex x that is most distant from an arbitrary vertex z has eccentricity at least
diam(G) — 3i — 2. Furthermore, a middle vertex ¢ of any shortest path between z and y € F(x)
has eccentricity at most rad(G) + 4i + (i 4+ 1)/2 + 2, and a middle vertex ¢* of any shortest path
between any two mutually distant vertices has eccentricity at most rad(G) + 2i + 1. Additionally,
all central vertices of G are within a small distance from ¢ and ¢*, namely, C(G) C D(c*, 4i + 3)
and C(G) C D(c,4i+ (i +1)/2+2). Hence, an additive O(i)-approximation of the radius and of
the diameter of an a;-metric graph G with m edges can be computed in O(m) time. In Section
2.3, we present three approximation algorithms for all eccentricities: an O(im) time eccentricity
approximation é(v) based on the distances from any vertex to two mutually distant vertices, which
satisfies e(v) — 3i — 2 < é(v) < e(v) for all v € V, and two spanning trees T', one constructible
in O(im) time and the other in O(m) time, which satisfy eq(v) < er(v) < eg(v) + 4i + 3 and
ec(v) <ep(v) < eg(v)+ Ti+ 5, respectively. Hence, an additive O(i)-approximation of all vertex
eccentricities of an a;-metric graph G with m edges can be computed in O(m) time.

Section 3 is devoted to aj-metric graphs. The eccentricity function e(v) of a graph G is said
to be unimodal, if for every non-central vertex v of G there is a neighbor v € N(v) such that
e(u) < e(v) (that is, every local minimum of the eccentricity function is a global minimum).
We show in Section 3.1 that the eccentricity function on «j-metric graphs is almost unimodal
in the sense that the only non-central vertices that violate the unimodality (that is, do not have
a neighbor with smaller eccentricity) must have their eccentricity equal to rad(G) + 1 and their
distance from C(G) must be 2. In other words, every local minimum of the eccentricity function
on an «jp-metric graph G is a global minimum or is at distance 2 from a global minimum. Such
behavior of the eccentricity function was observed earlier in chordal graphs [32], in distance-
hereditary graphs [29] and in all (o, A)-metric graphs [32] (note also that in Helly graphs the
eccentricity function is unimodal [21]). This almost unimodality of the eccentricity function turns
out to be very useful in locating a vertex with eccentricity at most rad(G)+1 in a gradient descent
fashion. In Section 3.2, using the convexity of the center C(G) of an a;-metric graph G, we show
that the diameter of C'(G) is at most 3. This generalizes known results for chordal graphs [15] and
for (a1, A)-metric graphs [32]. In Section 3.3, we present a local-search algorithm for finding a
central vertex of an arbitrary aj-metric graph in subquadratic time. Our algorithm even achieves
linear runtime on (aq, A)-metric graphs, thus answering an open question from [32]. In Section
3.4, we show how to approximate efficiently all vertex eccentricities in a;-metric graphs.

2 General case of a;-metric graphs for arbitrary < > 0

First we present an auxiliary lemma.

Lemma 1. Let G be an «;-metric graph, and let u,v,x,y be vertices such that x € I(u,v),
d(u,z) = d(u,y), and d(v,y) < d(v,z) + k. Then, d(z,y) < k+1i+ 2.

Proof. Set v = i + k + 2, and suppose for the sake of contradiction d(x,y) > v. Without loss
of generality, k is the minimum value for which a counter-example can be found. We may also



assume, without loss of generality, that d(u,z) is minimized. Let 2’ € N(x) N I(z,u) and let
y' € N(y) N I(y,u). Observe that d(u,z’) = d(u,y’), ' € I(u,v) and d(v,y’) < d(v,y) +1 <
d(z,v)+ 14k = d(2',v) + k. Therefore, by minimality of d(u, z), we have d(2’,y’) < v (otherwise,
we could replace x,y with 2/, y"). Now, there are two cases to be considered:

<
<

— Case d(y',2') < d(y/,z). We also have d(v,z) < d(v,2’). Since G is an «;-metric graph, it
implies d(v,y’) > d(v,z) + 1 4+ d(«',y') — i. Then, d(z',y) < i —1+d(v,y') — d(v,x) =
i+d(v,y) —dv,2') <i+ k. However, v < d(z,y) — 1 <d(z,y)+1<i+k+1=v—1.

— Case d(y',2') > d(y',x). Then, d(z,y) < 1 +d(z,y) < 1+d(2,y) < v+ 1. It implies
dz,y) = v+ 1, dz,y) = d@',y) = v, and ¢ € I(x,y) N N(y). In particular, d(z,y’) <
d(z,y). Furthermore, we claim that we have d(v,y) < d(v,y’). Indeed, suppose for the sake
of contradiction d(v,y") < d(v,y). In this situation, d(v,y’) < d(u,y’) + d(v,y) — d(u,y") <
d(u,y) —1+d(v,y) —d(u,y) < d(u,z) —14+d(v,z) +k—d(u,z’) = d(u,v) —d(u,2') + k—1=
d(v,2') + k — 1. By minimality of k, we obtain d(2’,y) <i+(k—1)+2=i4+k+1<v,and a
contradiction arises. Therefore, as claimed, d(v,y) < d(v,%’). Since G is an a;-metric graph,
it implies d(x,v) > d(z,y') + 1+ d(y,v) —i = d(z,y) + d(y,v) —i. But then, v = d(z,y) — 1 <
d(z,v) —d(y,v) +i—1<i—1.

In both cases, we derive a contradiction. ad
Lemma, 1 is helpful in proving that in a;-metric graphs the intervals are rather thin.
Lemma 2. If G is an «;-metric graph, then its interval thinness is at most i + 1.

Proof. Let u,v,z,y € V be such that z,y € I(u,v), and d(u,z) = d(u,y). Suppose for the sake
of contradiction d(z,y) > i + 1. By Lemma 1 (applied for £k = 0), we have d(z,y) = i + 2.
We further assume, without loss of generality, that d(u,x) is minimized. In particular, let 2’ €
N(z)NI(u,z), ¥ € N(y)NI(u,y). By minimality of d(u,x) we have d(z’,y’) < i+1. We claim that
d(«’,y) > i+ 2. Indeed, if it were not the case, then d(z’,y) < d(z,y) and so, since we also have
d(v,z) < d(v,z"), we would obtain d(y,v) > d(y,x) +d(z,v) —i = d(z,v) +2 > d(z,v) = d(y,v),
getting a contradiction. This proves as claimed that d(z',y) > i + 2. It implies d(z/,y’) > i + 1,
and so d(2',y’) = i + 1. However, in this situation, d(2/,vy") < d(2/,y) and d(v,y) < d(v,y’). As
a result, d(v,2") > d(v,y') +d(2',y") — i = d(v,y') + 1 > d(v,y) = d(v,2’), and a contradiction
arises. a

2.1 Centers of a;-metric graphs

In this subsection we show that the diameter of the center of an a;-metric graph is at most
3i + 2, hereby providing an answer to a question raised in [54] whether the diameter of the center
of an «;-metric graph can be bounded by a linear function of i. In [54], the following relation
between the diameter and the radius of an a;-metric graph G was proven: 2rad(G) > diam(G) >
2rad(G) — i — 1.

First we show that all disks (and hence the center C(G)) of an a;-metric graph G is d*~!-
convex.

Lemma 3. Every disk of an a;-metric graph G is d*~'-convex. In particular, the center C(G)
of an oy-metric graph G is d*~!-convex.



Proof. Since C(G) = N{D(v,rad(G)) : v € V}, it suffices to prove the d*~!-convexity of an
arbitrary disk. Let v, x,y € V be such that z,y € D(v,r) for some r > 0 but I(x,y) € D(v,r). Let
ag € I(z,y)\D(v,r) be such that d(zx, a,) is maximized, and let b, € N(az)NI(az,y) be arbitrary.
Note that b, € D(x,r) by maximality of d(x, a,). In particular, d(v,b,) < d(v,a;). We also have
d(z,ay) < d(x,bs) because az, b, € I(x,y). Since G is an a;-metric graph, r > d(v, z) > d(v, ag)+
d(az,x)—i =r+1+d(az,x)—i. Therefore, d(az,z) < i—1. Now, let ay € I(x,y)\ D(v,r) be such
that d(y, ay) is maximized. We prove as before d(a,,y) < i—1. Furthermore, d(ay, y) > d(as,y) by
maximality of d(ay,y). As a result, d(z,y) = d(z,a;) + d(az,y) < d(z,a,) +d(ay,y) <2i—2. O

Next auxiliary lemma is crucial in obtaining many results of this section.

Lemma 4. Let G be an aj-metric graph. For any x,y,v € V and any integer k € {0, ...,d(z,y)},
there is a vertex ¢ € Si(x,y) such that d(v,c) < max{d(v,z),d(v,y)} — min{d(z,c),d(y,c)} +1
and d(v,c¢) < max{d(v,x),d(v,y)} + /2. For an arbitrary vertex z € I(x,y), we have d(z,v) <
max{d(x,v),d(y,v)} —min{d(z, 2),d(y, 2) } + 21+ 1 and d(z,v) < max{d(z,v),d(y,v)} +3i/2+1.
Furthermore, e(z) < max{e(z), e(y)} —min{d(x, 2),d(y, )} +2i+ 1 and e(z) < max{e(x),e(y)}+
3i/2 4+ 1 when v € F(z).

Proof. Let z € Si(x,y), for some k € {0,...,d(x,y)}, and ¢ be a vertex of Si(z,y) closest to v.
By Lemma 2, d(c,z) < i+ 1.

Consider a neighbor ¢ of ¢ on a shortest path from ¢ to v. We have d(z, ¢) < d(z, ) or d(y,c¢) <
d(y, ) since otherwise, when d(x,c) > d(x,c') and d(y,c) > d(y,c'), ¢ must belong to Sk(x,y)
and a contradiction with the choice of ¢ arises. Without loss of generality, assume d(z, ¢) < d(z, ).
Then ¢ € I(z,c), and we can apply «;-metric property to z,¢, ;v and get d(x,v) > d(x,c) +
d(e,v) —1i, ie., d(e,v) < d(z,v) —d(z,c) +i < max{d(z,v),d(y,v)} — min{d(z, ¢),d(y,c)} +i. By
adding also the triangle inequality d(c,v) < d(v,z) + d(z,c) to d(c,v) < d(z,v) — d(z,c) + i, we
get d(c,v) < d(z,v) +i/2 < max{d(z,v),d(y,v)} +i/2.

For arbitrary z € Si(z,y), as d(z,¢) <i+1,d(z,c) = d(x, z), d(y,c) = d(y, z), we get d(z,v) <
d(z,c)+d(c,v) <i+14+d(x,v)—d(z,c)+i < max{d(z,v),d(y,v)} —min{d(z, z),d(y, z) } +2i +1
and d(z,v) < d(z,¢) +d(c,v) < i+ 14 d(z,v)+i/2 < max{d(z,v),d(y,v)} +i+i/2 + 1.
Applying both inequalities to the case in which v is furthest from z, we get e(z) = d(z,v) <
max{e(z),e(y)} — min{d(x, z),d(y,2)} + 2 + 1 and e(z) < max{e(x),e(y)} +i+ /2 + 1. O

Lemma 4 has an immediate corollary.

Corollary 1. Let G be an «j;-metric graph. Any vertices x,y € V and ¢ € I(x,y) satisfy e(c) <
max{e(x),e(y)}+3i/2+1. However, if d(x,y) > 4i+2, then any vertex ¢ € I(x,y) with d(x,c) >
2i+1 and d(y, ') > 2i+1 satisfies e(¢') < max{e(x),e(y)}. Furthermore, if d(x,y) > 4i+ 3 then
any vertex ¢ € I(xz,y) with d(xz,c) > 2i+1 and d(y, ) > 2i+1 satisfies e(d) < max{e(x),e(y)}.

Proof. By Lemma 4, e(c) < max{e(z),e(y)} + 3i/2 + 1. Suppose that d(z,y) > 4i + 2 and
consider any vertex ¢’ € I(z,y) satisfying d(z,c’) > 2i 4+ 1 and d(¢/,y) > 2i + 1. By Lemma 4,
e(d) < max{e(x),e(y)} — min{d(x,),d(y, )} + 2i + 1. Hence, e(¢’) < max{e(z),e(y)}.
Suppose now that d(x,y) > 4i + 3, i.e., d(z,y) > 4i + 4. Consider any vertex ¢ € I(z,y)
satisfying d(x,d) > 2i + 1 and d(¢,y) > 2i + 1. By Lemma 4, e(¢/) < max{e(x),e(y)} —
min{d(z,),d(y, ')} + 2i + 1. Hence, e(c’) < max{e(z),e(y)}. O

Using Corollary 1 one can easily prove that the diameter of the center C(G) of an «a;-metric
graph G is at most 4¢ + 3. Below we show that the bound can be improved.



Theorem 1. If G is an a;-metric graph, then diam(C(G)) < 3i + 2.

Proof. Let us write r = rad(G) in what follows. Suppose by contradiction diam(C(G)) > 3i + 2.
Since C(G) is d*~!-convex, every diametral path of C(G) must be fully in C(G). In particular,
there exist x,y € C(G) such that d(z,y) = 3i + 3 and I(z,y) C C(G). Furthermore, for every
u € V such that max{d(u, z),d(u,y)} < r, we obtain I(x,y) C D(u,r — 1) because the latter disk
is also d?*~!-convex. Therefore, for every z € I(x,y), we must have F(z) C F(z) U F(y).
Let ab be an edge on a shortest xy-path such that d(a,z) < d(b,z). Assume F(b) € F(a).
Let v € F(b) \ F(a) be arbitrary. Since G is an «;-metric graph, d(v,y) > d(v,b) + d(b,y) — i
r + (d(b,y) — ). Therefore, d(b,y) < i. In the same way, if F(a) € F(b), then d(a,z) < i. By
induction, we get F(z) C F(x) (F(z) C F(y), respectively) for every z € I(x,y) such that
d(y,z) > i+ 1 (d(z,z) > i+ 1, respectively). In particular, for every ¢ such that i + 1 < ¢ <
d(xz,y) —i—1, we must have F(z) C F(x)N F(y) for every z € Si(x,y).
Note that the above properties are true not only for z,y € C(G) with d(z,y) = 3i + 3 but
also for every o',y € C(G) with d(z,y) > 2i — 1, as d*~!-convexity argument can still be used.
Let ¢ € I(z,y) be such that F(c) C F(x) N F(y) and k := |F(c)| is minimized. We claim
that k& < |F(z) N F(y)|. Indeed, let v € F(z) N F(y) be arbitrary. By Lemma 4, some vertex
¢y € Sit1(x,y) satisfies d(cy,v) < r — 1. Then, F(c,) C (F(z)NF(y)) \ {v}, and k < |F(cy)| <
|F'(z)NF(y)|—1 by minimality of ¢. Then, let y. € I(x,y) be such that F(y.)NF(x)NF(y) C F(c)
and d(z,y.) is maximized (such a vertex must exist because ¢ € I(z,y) satisfies that condition).
We have y. # y because F(z) N F(y) € F(c). Therefore, the maximality of d(x,y.) implies the
existence of some v € (F(x) N F(y)) \ F(c) such that d(v,y.) = r — 1. Since G is an «;-metric
graph, d(v,y) > d(v,yc) + d(yYe,y) —i =71+ (d(ye,y) —i — 1). As a result, d(y.,y) <1i+ 1.
Then, for every z € Si+1(z,yc), since we have d(z,y.) = d(z,y) —i — 1 — d(ye,y) > d(z,y) —
2i —2 =141, we obtain F(z) C F(z) N F(y) N F(y.) € F(c). By minimality of k, F(z) = F(c).
However, let v € F(c) be arbitrary. By Lemma 4, there exists some ¢ € S;11(x,y.) such that
d(c’,v) < r — 1, thus contradicting F(c’) = F(c). 0

2.2 Approximating radii and diameters of a;-metric graphs

In this subsection, we show that a vertex with eccentricity at most rad(G) + O(i) and a vertex
with eccentricity at least diam(G) — O(i) of an a;-metric graph G can be found in (almost) linear
time.

First we show that a middle vertex of any shortest path between two mutually distant vertices
has eccentricity at most rad(G) + 2i + 1. Furthermore, the distance between any two mutually
distant vertices is at least diam(G) — 3i — 2.

Lemma 5. Let G be an a;-metric graph, x,y be a pair of mutually distant vertices of G and z be
a middle vertex of an arbitrary shortest path connecting x and y. Then, e(z) < rad(G) + 2i + 1.

Furthermore, there is a vertex ¢ in S| q(.y) /2| (7, y) with e(c) < rad(G) + .

Proof. Let r = rad(G) and k = |d(z,y)/2]. We need to show that for every vertex z € Si(z,y),
e(z) < r+2i+1 holds. It will be sufficient to show that for a specially chosen vertex ¢ € Si(z,y),
we have e(c) < r+ . Then, since for any two vertices u,v € Sk(x,y), d(u,v) <i+1 (see Lemma
2), we will get e(z) < d(z,¢) +e(c) <r+2i+1.

Consider in Sg(z,y) vertices ¢ with smallest eccentricity and among all those vertices pick
that one whose |F'(c)| is as small as possible. Let v € F'(¢) be a most distant vertex from ¢ and



consider a neighbor ¢t of ¢ on a shortest path from ¢ to v. As x,y is a pair of mutually distant
vertices, we have d(x,y) > d(z,v) and d(z,y) > d(y,v). We know also that d(c,x) < d(c,y) < r
as d(z,y) < 2r.

If d(xz,c) < d(z,t) then ¢ € I(x,t). By the a;-metric property applied to z,c,t,v, we get
d(z,y) > d(xz,v) > d(z,c) + d(c,v) —i. That is, d(c,y) > d(c,v) — i and therefore e(c) = d(c,v) <
d(c,y) +1 < r+i. Similarly, if d(y, ¢) < d(y,t) then e(c) = d(c,v) < d(c,z) +4 < r+ 4 must hold.
So, in what follows, we may assume that d(z,c) > d(z,t) and d(y,c) > d(y,t), i.e., t € Sg(z,y)
must hold.

If e(t) = e(c) +1 then for every s € F(t), we have ¢ € I(t,s) and d(c, s) = d(c,v). If e(t) = e(c)
then, by the choice of ¢, there must exist a vertex s € F'(t)\ F(c) (as v € F(c)\ F(t)), and we have
c € I(t,s)and d(c,s) =d(c,v) — 1. In both cases, by the a;-metric property applied to ¢ € I(t, s)
and t € I(c,v), we get d(s,v) > d(s,c) +d(v,c) —i > 2d(c,v) —1 —i=2e(c) —1—1.

Now, since d(s,v) < diam(G) < 2r,if e(c) > r+i+ 1, we get 2r > d(s,v) > 2e(c) — 1 —1i >
2r+2i+2—4i—1=2r+4i+ 1> 2r, which is impossible.

This proves that e(c) < r + i and therefore e(z) < r 4 2i + 1 for every z € Sk(z,y). 0

Lemma 6. Let G be an a;-metric graph and x,y be a pair of mutually distant vertices of G.
Then, d(z,y) > 2rad(G) —4i—3 and d(x,y) > diam(G) — 3i — 2. Furthermore, any middle vertex
z of a shortest path between x and y satisfies e(z) < [d(z,y)/2] + 2i + 1.

Proof. Let z be a middle vertex of an arbitrary shortest path connecting z and y, and let v be
a vertex furthest from z. By Lemma 4, d(z,v) < max{d(x,v),d(y,v)} — min{d(z, 2),d(y,2)} +
2i + 1. Since z,y are two mutually distant vertices, d(x,y) > max{d(x,v),d(y,v)}. Hence, e(z) =
d(z,v) <d(z,y) — |d(z,y)/2] + 20 +1 = [d(x,y)/2] + 2i + 1. That is, d(z,y) > 2e(z) —4i — 3 >
2rad(G) — 4i — 3.

To prove d(z,y) > diam(G) — 3i — 2, consider a diametral pair of vertices u,v, i.e.,
with d(u,v) = diam(G), and let k = |d(x,y)/2|. By Lemma 4, there are vertices v',u’ €
Sk(z,y) such that d(v',v) < max{d(x,v),d(y,v)} — min{d(x,v’),d(y,v")} + i and d(v',u) <
max{d(x,u),d(y,u)} — min{d(z,u),d(y,uv")} + i. By the triangle inequality and Lemma 2,
diam(G) = d(u,v) < d(u,u")+d (v, v")+d(v',v) < (max{d(z,v),d(y,v)}—|d(z,y)/2]+i)+(i+1)+
(max{d(z,u), d(y, )} — [d(z,y)/2] +1) = max{d(z,v),d(y, v)} + max{d(z, u), d(y,u)} —d(z,y) +
3i + 2. Since, x,y are mutually distant vertices, d(z,y) > max{d(z,v),d(y,v)} and d(z,y) >
max{d(x,u),d(y,u)}. Hence, diam(G) < d(x,y) + d(z,y) — d(z,y) + 3i + 2 = d(x,y) + 3i + 2.
That is, d(x,y) > diam(G) — 3i — 2. O

For each vertex v € V'\ C(G) of a graph G we can define a parameter
loc(v) = min{d(v,z) : x € V,e(z) < e(v)}

and call it the locality of v. It shows how far from v a vertex with a smaller eccentricity than that
one of v exists. In a;-metric graphs, the locality of each vertex is at most ¢ + 1.

Lemma 7. Let G be an a;-metric graph. Then, for every vertex v in V' \ C(G), loc(v) < i+ 1.

Proof. Let x be a vertex with e(x) = e(v) — 1 closest to v. Consider a neighbor z of x on an
arbitrary shortest path from z to v. Necessarily, e(z) = e(x) + 1 = e(v). Consider a vertex
u € F(z). We have u € F(z) and = € I(z,u), z € I(x,v). By the a;-metric property, d(v,u) >
dv,z) + d(z,u) —i = d(v,x) — i+ e(x). As e(v) > d(v,u), we get e(v) > d(v,z) —i + e(x) =
dv,z) —i+e(v)—1, ie, dv,x) <i+ 1.

O



In a;-metric graphs, the difference between the eccentricity of a vertex v and the radius of G
shows how far vertex v can be from the center C(G) of G.

Lemma 8. Let G be an a;-metric graph and k be a positive integer. Then, for every vertex v of

G with e(v) <rad(G) + k, d(v,C(G)) < k+ 1.

Proof. Let = be a vertex from C(G) closest to v. Consider a neighbor z of  on an arbitrary
shortest path from z to v. Necessarily, e(z) = e(z) + 1 = rad(G) + 1. Consider a vertex u € F(z).
We have d(u,z) = rad(G) and = € I(z,u), z € I(z,v). By the a;-metric property, d(v,u) >
dv,z) + d(z,u) —i = d(v,z) — i + rad(G). As e(v) > d(v,u) and e(v) < rad(G) + k, we get
rad(G) + k > e(v) > d(v,z) — i+ rad(G), ie., d(v,z) <i+k. O

As an immediate corollary of Lemma 8 we get:
Corollary 2. Let G be an «;-metric graph. Then, for every vertex v of G,
d(v,C(G)) + rad(G) > e(v) > d(v,C(G)) + rad(G) — i.

Proof. The inequality e(v) < d(v, C(G))+rad(G) is true for any graph G and any vertex v by the
triangle inequality. If G is an «;-metric graph then, by Lemma 8, d(v, C(G)) < e(v) — rad(G) + 1.
O

So, in ay-metric graphs, to approximate the eccentricity of a vertex v up-to an additive one-
sided error i, one only needs to know rad(G) and the distance d(v, C(G)).

Now, instead of a pair of mutually distant vertices, we consider a vertex v furthest from an
arbitrary vertex. It turns out that its eccentricity is also close enough to diam(G). Furthermore,
a middle vertex of any shortest path between that vertex v and a vertex w furthest from v has
eccentricity at most rad(G) + O(7).

Lemma 9. Let G be an o;-metric graph and v be an arbitrary vertex. Then, for every u € F(v),

e(u) > 2rad(G) — 2i — diam(C(G)) > 2rad(G) — 5i — 2 > diam(G) — 5i — 2.

Proof. By Corollary 2, e(v) > d(v,C(G)) + rad(G) — i and e(u) > d(u,C(G)) 4+ rad(G) — i. Let
v/, u’ € C(QG) be vertices of C(G) closest to v and u, respectively. By the triangle inequality, e(v) =
d(v,u) < d(v,v") +d(v',u') + d(v/,u). Combining two inequalities for e(v), we get d(v, C(G)) +
rad(G) —i < e(v) < d(v,C(Q))+dW',u")+d(u, C(G)), i.e., d(u,C(G)) > rad(G) —i—d(v',u") >
rad(G) — i — diam(C(G)). Taking into account inequality e(u) > d(u,C(G)) + rad(G) — i and
Theorem 1, we have e(u) > 2rad(G)—2i—diam(C(G)) > 2rad(G)—5i—2 > diam(G)—5i—2. O

The latter inequality in Lemma 9 can be improved if we do not involve in the proof the
diameter of the center C(G) but relay on the interval thinness. We get the same bound as for
mutually distant vertices (see Lemma 6) on the eccentricity of a vertex most distant from an
arbitrary vertex.

Lemma 10. Let G be an aj-metric graph and u be an arbitrary vertex. Then, for everyv € F(u),
e(v) > diam(G) — 3i — 2.

Proof. Let x,y be a diametral pair of vertices of G, i.e., d(z,y) = diam(G). We will show that

max{d(v,z),d(v,y)} > diam(G)—3i—2, hereby getting e(v) > max{d(v, z),d(v,y)} > diam(G)—
3t — 2.
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Assume, by way of contradiction, that max{d(v,x),d(v,y)} < diam(G) — 3(i + 1). Let k =
|(d(z,y) —3(i+1))/2] and 2/, y" be vertices from Si(v,u) closest to x and y, respectively. Note
that, since d(u,v) = e(u) > rad(G) and k = | (diam(G)—3(i+1))/2] < |(2rad(G)—3(i+1))/2] <
rad(QG), k is smaller that d(v,u) and hence vertices z’, 3y’ exist. By Lemma 2, d(z',y’) <i+ 1.

Let d(v,y) < diam(G) — 3(i + 1) and consider a neighbor y” of ¥’ on a shortest path from
y toy. As " ¢ Si(v,u), d(v,y") > d(v,y') or d(u,y”) > d(u,y’). In the former case, by the
a;-metric property applied to v,y/,y",y, we get d(v,y) > d(v,y') + d(y',y) — i, ie., dy,y) <
dv,y)—d(v,y)+i < d(xz,y)—3(+1)— | (d(z,y)—3(i+1)) /2| +i = [(d(z,y)—3(i+1))/2]+i. In the
latter case (i.e., when d(u,y”) > d(u,y’)), by the a;-metric property applied to u,y’, 3", y, we get
d(u,y) > d(u,y')+d(y,y) —1, ie., dy,y) < d(u,y) —d(u,y") +i. We know that d(u,v) > d(u,y)
(as v € F(u)) and d(u,v) — d(u,y’) = d(v,y’). Hence, d(y',y) < d(v,y')+i=k+i < [(d(x,y) —
3(i +1))/2] 4 i. Thus, in either case, d(v/,y) < [(d(z,y) — 3(i + 1))/2] + .

By symmetry, also d(v,z) < diam(G) — 3(i + 1) implies d(2/, z) < [(d(z,y) —3(i+1))/2] + 1.
But then, by the triangle inequality, d(z,y) < d(z,2') + d(2',y') + d(v',y) < [(d(z,y) — 3(i +
1))/2]+i+i+ 1+ [(d(z,y) —3(i+1))/2] +¢ < d(x,y) — 1. The contradiction obtained shows
that max{d(v,z),d(v,y)} > diam(G) — 3i — 2 must hold. 0

Lemma 11. Let G be an «a;-metric graph, z € V, x € F(z), and y € F(z). Any vertex ¢ €
S\d(zy)/2) (T, y) satisfies e(c) < rad(G) +4i+ (i +1)/2+ 2 and e(c) < [d(z,y)/2] + 5i + 3.

Proof. Let v € F(c) be a furthest vertex from c. Since y € F(x), d(z,v) < d(x,y). If also
d(y,v) < d(z,y) then, by Lemma 4, e(c) = d(c,v) < max{d(v,x),d(v,y)} —min{d(x,c),d(y,c)} +
2i+ 1 <d(z,y) — |d(z,y)/2] +2i + 1 = [d(z,y)/2] + 2i + 1 < rad(G) + 2i + 1.

Let now d(y,v) > d(x,y) > d(z,v). Again, by Lemma 4, e(c) = d(c,v) < d(y,v)—|d(z,y)/2]+
2i 4+ 1. By Lemma 9, d(z,y) = e(z) > 2rad(G) — 5i — 2 > d(y,v) — 5i — 2. Therefore, e(c) <
d(y,v) — [ (2rad(G) —5i—2)/2] +2i+1 < 2rad(G) —rad(G) + 4i+ (i +1)/2+ 2 = rad(G) + 4i +
(i 4+1)/2 + 2. Also, by Lemma 10, d(z,y) = e(z) > diam(G) — 3i — 2 > d(y,v) — 3i — 2. Hence,
e(c) <d(y,v)— |d(z,y)/2] +2i+1 < d(z,y) +3i+2— |d(z,y) /2| +2i+ 1 = [d(z,y)/2] + i + 3.

O

Next we show that all central vertices are close to a middle vertex c¢ of a shortest path
between vertices x and y, provided that x is furthest from some vertex and that y is furthest
from z. Namely, D(c,4i + (i +1)/2 4 2) D C(G) holds.

Lemma 12. Let G be an o;-metric graph, and let z € V, x € F(z) and y € F(x). Let also ¢ be
a middle vertex of an arbitrary shortest path connecting x and y. Then, C(G) C D(c,4i + (i +

1)/2 +2).

Proof. Consider an arbitrary vertex u € C(G). By Lemma 4, d(c,u) < max{d(z,u),d(y,u)} —
min{d(z,c),d(y,c)} + 2i + 1. As e(u) = rad(G), max{d(z,u),d(y,u)} < rad(G) holds. Since ¢
is a middle vertex of a shortest path between x and y, min{d(z,c),d(y,c)} = |d(z,y)/2]. As
x € F(z), by Lemma 9, d(x,y) = e(z) > 2rad(G) —5i — 2. Hence, d(c,u) < rad(G) — | (2rad(G) —
5i—2)/2| +2i4+1<4i+ (i+1)/2+2. 0

A stronger result can be obtained for a middle vertex of a shortest path between two mutually
distant vertices.
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Lemma 13. Let G be an aj-metric graph and x,y be a pair of mutually distant vertices of G.
Let also ¢ be a middle vertex of an arbitrary shortest path connecting x and y. Then, C(G) C
D(c,4i+3).

Proof. The proof is analogous to that of Lemma 12. However, since x, y are mutually distant, by
Lemma 6, d(z,y) > 2rad(G) — 4i — 3. Hence, for any u € C(G), d(c,u) < rad(G) — | (2rad(G) —
4i—3)/2] +2i+1<4i+3. 0

There are several algorithmic implications of the results of this subsection. For an arbitrary
connected graph G with m edges and a given vertex z € V, a vertex = € F(z) most distant from
z can be found in linear (O(m)) time by a breadth-first-search BFS(z) started at z. A pair of
mutually distant vertices of an «a;-metric graph can be computed in O(im) total time as follows.
By Lemma 10, if x is a most distant vertex from an arbitrary vertex z and y is a most distant
vertex from z, then d(x,y) > diam(G) — 3i — 2. Hence, using at most O(i) breadth-first-searches,
one can generate a sequence of vertices x := v1,y := vo,vs,...v; wWith & < 3i + 4 such that each
v; is most distant from v;—1 (with vy = z) and vk, vk_1 are mutually distant vertices (the initial
value d(z,y) > diam(G) — 3i — 2 can be improved at most 3i + 2 times).

We summarize algorithmic results of this section in the following theorem.

Theorem 2. There is a linear (O(m)) time algorithm which finds vertices v and ¢ of an m-edge
aj-metric graph G such that e(v) > diam(G) — 3i — 2, e(c) < rad(G) +4i+ (i +1)/2 4+ 2 and
C(G) C D(c, 41+ (i +1)/2+ 2). Furthermore, there is an almost linear (O(im)) time algorithm
which finds a vertex ¢ of G such that e(c) < rad(G) +2i+ 1 and C(G) C D(c,4i + 3).

Corollary 3. An additive O(i)-approximation of the radius and of the diameter of an a;-metric
graph G with m edges can be computed in O(m) time.

2.3 Approximating all eccentricities in a;-metric graphs

In this subsection, we show that the eccentricities of all vertices of an a;-metric graph G can be
approximated with an additive one-sided error at most O(7) in (almost) linear total time.

Interestingly, the distances from any vertex v to two mutually distant vertices give a very
good estimation on the eccentricity of v.

Lemma 14. Let G be an aj-metric graph and x,y be a pair of mutually distant vertices of G.
Any vertex v € V' satisfies max{d(x,v),d(y,v)} < e(v) < max{d(z,v),d(y,v)} + 3i + 2.

Proof. The inequality e(v) > max{d(z,v),d(y,v)} holds for any three vertices by definition of ec-
centricity. To prove the upper bound on e(v) for any v € V, consider a furthest vertex u € F(v) and
let k = |d(x,y)/2|. Note that, as x and y are mutually distant, d(z,y) > max{d(x,u),d(y,u)}.
By Lemma 4, there are vertices v/, v’ € Si(z,y) such that d(v',v) < max{d(z,v),d(y,v)} —
min{d(z,v"),d(y,v")} + i and d(v',u) < max{d(z,u),d(y,u)} — min{d(z,u’),d(y,u)} + i. By
the triangle inequality and Lemma 2, e(v) = d(u,v) < d(u,u) + d(u/,v") + d(v',v) <
(masc{d(z,v), dly, 0)} — |d(,9)/2) + 1) + (i + 1) + (max{d(z, u), dy, u)} — |d(z,9)/2) +1)
max{d(x,v),d(y,v)} + max{d(z,u),d(y,u)} — d(z,y) + 3i + 2 < max{d(z,v),d(y,v)} + d(z,y) —
d(z,y) + 3i + 2 = max{d(z,v),d(y,v)} + 3i + 2. 0

By Lemma 14, we get the following left-sided additive approximations of all vertex eccen-
tricities. Let z,y be a pair of mutually distant vertices of G. For every vertex v € V, set
é(v) := max{d(z,v), d(y, v)}.
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Theorem 3. Let G be an a;-metric graph with m-edges. There is an algorithm which in total
almost linear (O(im)) time outputs for every vertex v € V an estimate é(v) of its eccentricity
e(v) such that e(v) —3i — 2 < é(v) < e(v).

If the minimum integer i for a graph G so that G is an «;-metric graph is known in advance,
then we can transform é into a right-sided additive (3i + 2)-approximation by setting é(v) :=
max{d(z,v),d(y,v)} + 3i + 2. Unfortunately, for a given graph to find the minimum ¢ such that
G is an o4-metric graph is not an easy problem. We observe that even checking whether a graph
is a1-metric is at least as hard as checking if a graph has an induced subgraph isomorphic to Cjy.
Indeed, take an arbitrary graph G and add a universal vertex to it. Let the resulting graph be
G’'. Then, G’ is an aj-metric graph if and only if G is Cy-free.

In what follows, we present two right-sided additive eccentricity approximation schemes for
all vertices, using a notion of eccentricity approximating spanning tree introduced in [49] and
investigated in [20, 25,30, 32, 35]. We get for m-edge a;-metric graphs a O(m) time right-sided
additive (97 4 5)-approximation and a O(im) time right-sided additive (47 + 2)-approximation.

A spanning tree T of a graph G is called an eccentricity k-approximating spanning tree if for
every vertex v of G er(v) < eg(v) + k holds [49]. All (aq,A)-metric graphs (including chordal
graphs and the underlying graphs of 7-systolic complexes) admit eccentricity 2-approximating
spanning trees [32]. An eccentricity 2-approximating spanning tree of a chordal graph can be
computed in linear time [25]. An eccentricity k-approximating spanning tree with minimum k&
can be found in O(nm) time for any n-vertex, m-edge graph G [35]. It is also known [20, 30] that
if G is a 0-hyperbolic graph, then G admits an eccentricity (40 + 1)-approximating spanning tree
constructible in O(dm) time and an eccentricity (66)-approximating spanning tree constructible
in O(m) time.

Lemma 15. Let G be an «a;-metric graph with m edges. If ¢ is a middle vertex of any shortest
path between a pair x,y of mutually distant vertices of G and T is a BFS(c)-tree of G, then,
for every vertex v of G, eq(v) < er(v) < eq(v) + 4i + 3. That is, G admits an eccentricity
(4i + 3)-approximating spanning tree constructible in O(im) time.

Proof. Let eq(v) (er(v)) be the eccentricity of v in G (in T, respectively). The eccentricity in T’
of any vertex v can only increase compared to its eccentricity in G. Hence, eg(v) < er(v). By the
triangle inequality and the fact that all graph distances from vertex ¢ are preserved in T, ep(v) <
dr(v,c)+er(c) = dag(v,c) +eq(c). We know that eq(v) > max{dg(y,v),dc(z,v)}. By Lemma 4,
also dg (v, ¢)—max{dg(y,v), dg(z,v)} < 2i+1—min{dg(y, ¢), dg(x, c)} holds. Since ¢ is a middle
vertex of a shortest path between z and y, necessarily min{dg(y, ¢), dg(z,c)} = |da(z,y)/2] and,
by Lemma 6, e (c) < [da(z,y)/2]+2i+ 1. Combining all these, we get er(v) —eg(v) < da(v,c)+
ec(c) —eq(v) < dg(v,c) — max{dg(y,v),dg(z,v)} + ec(c) < 2i + 1 — min{dg(y, ¢),dg(x,c)} +
eg(c) <2i+1—|dg(x,y)/2] +eq(c) < 2i+1—|dg(z,y)/2] + [da(x,y) /2] +2i+1 < 4i+3. O

Lemma 16. Let G be an a;-metric graph with m edges, and let z € V, x € F(z) and y € F(x).
If ¢ is a middle vertex of any shortest path between x and y and T is a BFS(c)-tree of G, then,
for every vertex v of G, eq(v) < er(v) < eq(v) + 7i + 5. That is, G admits an eccentricity
(7i + 5)-approzimating spanning tree constructible in O(m) time.

Proof. The proof follows the proof of Lemma 15 with one adjustment: replace the application
of Lemma 6 which yields eg(c) < [dg(x,y)/2] + 2i + 1 with Lemma 11 which yields eg(c) <
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[da(z,y)/2] +5i+3. Hence, er(v) —eq(v) < 2i+1—|dg(z,y)/2] + [da(z,y) /2] +5i+3 < Ti+5.
0

Note that the eccentricities of all vertices in any tree T'= (V,U) can be computed in O(|V])
total time. It is a folklore by now that for trees the following facts are true: (1) The center C(T)
of any tree T' consists of one vertex or two adjacent vertices; (2) The center C(T") and the radius
rad(T') of any tree T' can be found in linear time; (3) For every vertex v € V', er(v) = dr (v, C(T))+
rad(T). Hence, using BF'S(C(T)) on T one can compute dr(v, C(T)) for all v € V in total O(|V])
time. Adding now rad(T") to dr (v, C(T)), one gets er(v) for all v € V. Consequently, by Lemma 15
and Lemma 16, we get the following additive approximations for the vertex eccentricities in ;-
metric graphs.

Theorem 4. Let G be an a;-metric graph with m edges. There is an algorithm which in total
linear (O(m)) time outputs for every vertex v € V an estimate é(v) of its eccentricity e(v) such
that e(v) < é(v) < e(v) + 7i + 5. Furthermore, there is an algorithm which in total almost linear
(O(im)) time outputs for every vertex v € V an estimate é(v) of its eccentricity e(v) such that
e(v) < é(v) <e(v)+4i+ 3.

Corollary 4. An additive O(i)-approximation of all vertex eccentricities of an o;-metric graph
G with m edges can be computed in O(m) time.

3 Graphs with a;-metric

Now we concentrate on aj-metric graphs, which contain all chordal graphs and all plane trian-
gulations with inner vertices of degree at least 7 (see, e.g., [14,15,32,54]). For them we get much
sharper bounds. It is known that for a;-metric graphs the following relation between the diameter
and the radius holds: 2rad(G) > diam(G) > 2rad(G) — 2 [54].

First we recall some known results and give an auxiliary lemma.

Lemma 17 ([4]). Let G be an aj-metric graph. Let x,y,v,u be vertices of G such that v €
I(z,y), v € I(v,u), and x and v are adjacent. Then d(u,y) = d(u,x) + d(v,y) holds if and only
if there exist a neighbor ' of x in I(x,u) and a neighbor v' of v in I(v,y) with d(z',v") = 2; in
particular, ¥’ and v’ lie on a common shortest path of G between u and y.

Theorem 5 ([54]). G is an ai-metric graph if and only if all disks D(v,k) (ve V, k> 1) of G
are convex and G does not contain the graph W6++ from Fig. 1 as an isometric subgraph.

Fig. 1. Forbidden isometric subgraph W .

Lemma 18 ([51]). All disks D(v,k) (v € V, k > 1) of a graph G are convex if and only if for
every vertices x,y,z € V and v € I(x,y), d(v, z) < max{d(z, z),d(y, 2) }.
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Letting z to be from F'(v), we get:

Corollary 5. If all disks D(v,k) (v eV, k> 1) of a graph G are convex then for every vertices
z,y €V andv € I(x,y), e(v) < max{e(x),e(y)}.

Lemma 19 ([32]). Let G be an aj-metric graph and x be an arbitrary vertex with e(xz) >
rad(G) + 1. Then, for every vertex z € F(x) and every neighbor v of x in I(x,z), e(v) < e(x)
holds.

We will need also the following auxiliary lemma.

Lemma 20. Let G be an ay-metric graph. Then, for every shortest path P = (x1,...,x;) with
I <4 and a vertex u of G with d(u,z;) =k > 2 for alli € {1,...,1}, there exists a vertex u' at
distance 2 from each z; (i € {1,...,l}) and at distance k — 2 from u.

Proof. We prove by induction on [. If [ = 1, the statement is clearly correct. Assume now that
there is a vertex u’ that is at distance 2 from each z; (i € {1,...,l — 1}) and at distance k — 2
from u. Assume that d(u/,z;) is greater than 2, i.e., d(v/,2;) = 3. Consider a common neighbor
a of ' and ;1. We have ;1 € I(z;,a) and a € I(u,x;_1). Then, by the aj-metric property,
k = d(x;,u) > 14+ k —1 = k, and therefore, by Lemma 17, there must exist vertices b and ¢
such that bz, cb,ca € F and d(c,u) = k — 2. As d(c,u) = d(v',u) = k — 2 and d(u,a) = k — 1,
by convexity of disk D(u,k — 2), vertices v’ and ¢ must be adjacent. If ¢ is at distance 2 from
x1 then, by convexity of disk D(c,2), each vertex z; (1 <14 <) is at distance 2 from ¢, and we
are done. If ¢ is at distance 3 from z1, then from v’ € I(c,z1) and ¢ € I(v/, z;), by the a;j-metric
property, we get d(x1,x;) > 2+ 2 = 4, which is impossible since d(z1,z;) < 3. O

Corollary 6. Let G be an ai-metric graph. Then, for every edge xy € E and a vertex u € V
with d(u, z) = d(u,y) = k, either there is a common neighbor v’ of x and y at distance k—1 from
u or there exists a vertex u' at distance 2 from x and y and at distance k — 2 from u such that,
for every z € N(x) "N N(u') and w € N(y) N N(u'), the sequence (z,z,u',w,y) forms an induced
05 n G.

Proof. We may assume that k& > 2. By Lemma 20, there exists a vertex v’ at distance 2 from x
and y and at distance k — 2 from . Consider a common neighbor z of z and v’ and a common
neighbor w of y and . If 2y, wz ¢ E then, by distance requirements, either (z, z,w,y) induces
a C4 (which is impossible) or (z, z, v, w,y) induces a Cs. 0

3.1 The eccentricity function on a;-metric graphs is almost unimodal

The goal of this section is to prove the following theorem.

Theorem 6. Let G be an aj-metric graph and v be an arbitrary vertex of G. If

(1) e(v) >rad(G)+1 or
(i7) e(v) =rad(G) + 1 and diam(G) < 2rad(G) — 1,

then there must exist a neighbor w of v with e(w) < e(v).
If e(v) = rad(G) + k for some integer k > 0, then d(v,C(G)) < k+ 1.
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Fig. 2. Sharpness of the result of Theorem 6. (a) An aj-metric graph G with diam(G) = 2rad(G) —1 and a vertex
(topmost) with locality 2. (b) A chordal graph (and hence an a;-metric graph) G with diam(G) = 2rad(G) and
a vertex (topmost) with locality 2. The number next to each vertex indicates its eccentricity.

Theorem 6 says that if a vertex v with loc(v) > 1 exists in an «aj-metric graph G then
diam(G) > 2rad(G) — 1, e(v) = rad(G) + 1 and d(v,C(G)) = 2. That is, only in the case when
diam(G) € {2rad(G) — 1,2rad(G)}, the eccentricity function may fail to be unimodal and yet all
local minima of the eccentricity function are concentrated around the center C(G) of G (they are
at distance 2 from C'(G)). Two aj-metric graphs depicted in Fig. 2 show that this result is sharp.

We will split the proof of Theorem 6 into a series of lemmas of independent interest. By
Lemma 7, Lemma 8 and Corollary 2, we already know that every vertex v of an aj-metric graph
has locality at most 2, is at distance at most k£ + 1 from C(G), provided that its eccentricity e(v)
is at most rad(G) + k, and satisfies d(v, C(G)) +rad(G) > e(v) > d(v,C(G)) +rad(G) — 1. In the
following lemmas, two specific properties of aj-metric graphs stated in Lemma 17 and Theorem
5 are heavily used.

Lemma 21. Let G be an ay-metric graph and v be a vertex of G with loc(v) = 2. Then, e(v) <
rad(G) + 2. Furthermore, if e(v) = rad(G) + 2, then diam(G) = 2rad(G).

Proof. Let k := e(v) and x be a vertex with d(z,v) = 2 and e(x) = k — 1 such that |F(z)| is as
small as possible. Consider a common neighbor z of x and v and a vertex u € F(z). Necessarily,
e(z) = e(v) = e(x)+ 1 and u € F(z). We have x € I(z,u) and z € I(z,v). By the aj-metric
property, d(v,u) > d(v, z) + d(z,u) = d(u,z) + 1 = e(z) = k. As e(v) > d(v,u) > e(z) = e(v),
ie., k = d(v,u), by Lemma 17, there must exist vertices w and ¢ such that wv, wt,tx € E and
d(t,u) =d(u,x) — 1=k — 2.

If e(t) = e(x)+1 then for every s € F(t), we have x € I(t,s) and d(z,s) = k—1.If e(t) = e(x)
then, by the choice of z, there must exist a vertex s € F(t) \ F(x) (as u € F(x) \ F(t)), and we
have x € I(t,s) and d(z, s) = k—2. In both cases, by the a;-metric property applied to x € I(t, s)
and t € I(z,u), we get d(s,u) > d(s,z)+d(u,t) >k —2+k—2=2k—4.

Since d(s,u) < diam(G) < 2rad(G), we have k < rad(G) + 2 and if £k = rad(G) + 2 then
d(s,u) = diam(G) = 2rad(G). ]

Lemma 22. Let G be an ay-metric graph and v be a vertex of G with e(v) = rad(G) + 2. Then,
loc(v) = 1.

Proof. Assume, by way of contradiction, that loc(v) = 2. Then, by Lemma 8, d(v,C(G)) < 3.
However, since e(v) = rad(G) + 2, v cannot have a vertex from C(G) at distance 2 or less as that
would imply that a neighbor of v on a shortest path to C(G) has eccentricity at most rad(G) + 1,
contradicting with loc(v) = 2. Thus, d(v, C(G)) = 3.
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Let x be a vertex from C(G) closest to v and P = (z,2,y,v) be a shortest path between
x and v chosen in such a way that the neighbor y of v in P has |F(y)| as small as possible.
Necessarily, e(z) = rad(G) = e(z) — 1 and e(2) + 1 = e(y) = e(v) = rad(G) + 2. Consider a
vertex u € F(y). Since d(u,y) = rad(G) + 2, d(u,z) < rad(G) and d(u, z) < rad(G) + 1, we have
d(u,z) = rad(G) = d(u,z) — 1 = d(u,y) — 2, i.e., x € I(u, z). Applying the aj-metric property to
x € I(u,2) and z € I(z,v), we get d(v,u) > d(v, z) + d(z,u) = rad(G) + 2. By Lemma 17, there
exist vertices f,w,t such that fv, fz, fw,wt,tx € E and d(t,u) = rad(G) — 1. Notice that f #y
since d(u,y) = rad(G) + 2 and d(u, f) = rad(G) + 1. To avoid an induced Cy, vertices f and y
must be adjacent. As loc(v) = 2, we have also e(f) > e(v).

Now, we have f € Sy(z,v) and u € F(y) \ F(f). By the choice of y, there must exist a vertex
s which is in F'(f) but not in F(y). Hence, y € I(f,s). Since also f € I(y,u), by the aj-metric
property, d(u, s) > d(f,u) +d(s,y) > rad(G) + 1+ rad(G) + 1 = 2rad(G) + 2 > diam(G), which
is impossible. Thus, loc(v) = 1 must hold. 0

Lemma 23. Let G be an ay-metric graph. Let v, c, b, f,a,u, s be vertices of G such thatv,c, b, f,a
form an induced Cs, p = d(u, f) = d(v,u)—2 = d(c,u)—2 and g = d(s,b) = d(v,s)—2 = d(a, s)—2
(See Fig. 3). Then, either d(u,s) = p+q-+1 or there is a vertex h which is adjacent to all vertices
of C5 = (v,¢,b, f,a).

Proof. By distance requirements, f € I(b,u) and b € I(f, s) hold. Hence, by aj-metric property,
we have d(u, s) > p+ q. Assume, in what follows, that d(u,s) = p+ ¢. Then, by Lemma 17, there
must exist vertices x,y, z such that xf, xz,yb,yz € F and d(x,u) = p—1 and d(y,s) = ¢— 1. See
Fig. 3 for an illustration.

Fig. 3. Illustration to the proof of Lemma 23.

Asd(v,z) = d(v,y) = 3 and z € I(z,y), by convexity of disk D(v, 3), we get d(v, z) < 3. Vertex
z cannot be adjacent to v,c,a as d(v,y) = d(a,y) =3 =d(v,z) = d(c,z). So, 2 < d(v,z) < 3.

First consider the case when d(v,z) = 2. Consider a common neighbor h of v and z. As
d(v,z) = d(v,y) = 3 and d(v, f) = d(v,b) = d(v,z) = 2, by convexity of disk D(v,2), we get
zf,zb € E. Convexities of disks D(y, 2) and D(z,2) imply hc, ha € E (notice that v is at distance
3 from both y and =z, vertices a, h are at distance 2 from z, vertices h, c are at distance 2 from
y). To avoid a forbidden induced Cy, h must be adjacent to f and b as well. So, h is adjacent to
all vertices of C5 = (v, ¢, b, f,a).

Now consider the case when d(v, z) = 3. Consider a path (v, h, g, z) between v and z. If z is
adjacent to f then it is adjacent to b (to avoid an induced Cy), and wise versa. But if fz,zb € E,
by convexity of D(z,2), a and ¢ must be adjacent, contradicting with C5 = (v, ¢, b, f, a) being an
induced cycle. So, zf, zb ¢ E, and hence (z, z,y,b, ) forms an induced C5 and g # f,b.
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Vertices ¢ and z cannot be at distance 2 from each other since then convexity of disk D(c, 2)
and d(c,x) = 3 will imply zf € E, which is impossible. Hence, d(z,c¢) = 3 and, in particular,
gc ¢ E and h # c. Similarly, d(a, z) = 3 holds and, in particular, ga ¢ FE and h # a.

We claim that d(h, z) = d(h,y) = 2. If d(h,y) = 3 then using also d(c, z) = 3 we get z € I(h,y),
y € I(z,c). By the aj-metric property, we obtain d(h,c) > d(h,z) + d(c,y) = 4, contradicting
with d(h,c) < 2. Similarly, d(h,z) = 2 must hold.

Now, convexity of disks D(y,2) and D(x,2) gives first he, ha € E (as d(y,h) = d(y,c) =2 =
d(y,v) — 1 and d(z,h) = d(z,a) = 2 = d(x,v) — 1) and then hf,hb € E (as d(y,h) = d(y, ) =
2 = d(y,a) — 1 and d(z,h) = d(z,b) = 2 = d(z,c) — 1). So, h is adjacent to all vertices of
Cs = (v,¢,b, f,a). O

Lemma 24. If an oy-metric graph G has a vertex v with loc(v) > 1 and e(v) = rad(G)+1, then
diam(G) > 2rad(G) — 1.

Proof. Set r := rad(G). Assume, by way of contradiction, that diam(G) < 2r — 2. Let v be an
arbitrary vertex with loc(v) > 1 and e(v) = r + 1. Consider a vertex s € F(v) and a vertex
¢ € Si(v,s) with |F(c)| as small as possible. Since loc(v) > 1, e(c) > e(v). Let also u be an
arbitrary vertex from F'(c).

We claim that e(c) = d(u,c) = d(u,v) = e(v). If d(u,c) > d(u,v), then aj-metric property
applied to v € I(c,u) and ¢ € I(s,v) gives d(s,u) > d(s,c) + d(v,u) > e(v) —1+e(v) — 1 = 2r,
which is impossible. Hence, e(c) = d(u, ¢) = d(u,v) = e(v) = r + 1 must hold.

Assume that a vertex g exists in G such that ge,gv € E and d(g,u) = r = d(u,c) — 1.
If d(g,s) > d(c,s) then, by aj-metric property applied to ¢ € I(g,s) and g € I(u,c), we get

d(s,u) > d(s,c) + d(g,u) = e(v) — 1 4+ r = 2r, which is impossible. If d(g,s) < d(c,s), then
g € Si(v,s) and, by the choice of ¢, there must exist a vertex ¢t € F(g) \ F(c) (recall that
u € F(c)\ F(g) as e(g) > r + 1). So, a;-metric property applied to ¢ € I(g,t) and g € I(u,c),
gives d(t,u) > d(t,c) + d(g,w) > 2r, which is impossible.

So, in what follows, we can assume that no common neighbor g of ¢ and v with d(g,u) =r =
d(u,c) — 1 can exist in G. Since, d(u, c) = d(u,v), by Corollary 6, there is a vertex f which is at
distance 2 from ¢ and v, at distance d(u,c) —2 = r—1 from u and forms with any b € N(c)NN(f)
and any a € N(v) N N(f) an induced Cs = (¢, b, f,a,v).

We claim that d(s,a) = d(s,v) for every a € N(v) N N(f). Indeed, if d(s,a) < d(s,v) then,
by convexity of disk D(s,r), vertices a and ¢ need to be adjacent (as both are adjacent to v with
d(v,s) = r + 1), contradicting with ac ¢ E. If d(s,a) > d(s,v) then, aj-metric property applied
towv € I(a,s) and a € I(u,v), gives d(s,u) > d(s,v) + d(a,u) > 2r + 1, which is impossible.

From d(s,a) = d(s,v), we have also d(s, f) > d(s,c). Assume d(s, f) = d(s,c)+ 1. If d(s,b) =
d(s,c) then b € I(s, f). Since also f € I(b,u), aj-metric property implies d(s,u) > d(s,b) +
d(f,u) = d(s,¢) + r —1 = 2r — 1, which is impossible. If now d(s,b) = d(s,c) + 1, then ¢ €
I(s,b). Since also b € I(c,u), ag-metric property implies d(s,u) > d(s,c) + d(b,u) = 2r, which
is impossible. The last two contradictions show that d(s, f) = d(s,c¢) + 1 is impossible, i.e.,
d(s, f) = d(s,c) must hold. By convexity of disk D(s,r), d(s,b) < r holds for every b € I(f,c).
We distinguish between two cases. In both cases we get contradictions.

Case 1: There is a common neighbor b of f and ¢ which is at distance r — 1 = d(s,c) — 1 from s.
We have d(v,u) =7+ 1=d(c,u) =d(u, f) + 2 and d(v,s) =r+ 1 =d(a,s) = d(s,b) + 2. By

Lemma 23, either d(u, s) = 2r —1 (which is impossible) or there is a vertex h which is adjacent to
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all vertices of C5 = (b, ¢, v, a, f). The latter contradicts with our earlier claim that d(s,a) = d(s,v)
for every a € N(v) N N(f) (observe that h € N(v) N N(f) and d(s,h) = d(s,b) +1 =d(s,v)—1).

Case 2: There is no common neighbor b of f and ¢ which is at distance r — 1 = d(s,c) — 1 from s.

So, for every b € I(f,c), d(b,s) = r. By Lemma 20, there exists a vertex s’ at distance 2 from
c and f and at distance r — 2 from s. Consider a common neighbor x of ¢ and s’ and a common
neighbor y of f and s’. We may assume that yc,zf ¢ E (otherwise, we are in Case 1). We claim
that d(y,v) = 2. Assume, d(y,v) = 3. If also d(a,z) = 3, then a € I(y,v) and v € I(a,z) and
aj-metric property implies d(y,z) > d(y,a) + d(v,x) = 4, which is impossible. So, d(a,x) = 2
must hold and therefore, by convexity of disk D(a,2), vertices x and y are adjacent (observe
that z,y € D(a,2) and s’ ¢ D(a,2)). Asy € I(f,z), y ¢ D(v,2) and f,z € D(v,2), we get a
contradiction with convexity of disk D(v,2). Thus, d(y,v) = 2 must hold. By convexity of disk
D(v,2), vertices x and y must be adjacent.

Consider a common neighbor w of y and v. By convexity of disk D(s’,2), vertices w and ¢ are
adjacent. To avoid an induced cycle Cy, w and x are also adjacent. If d(w,u) = d(u,c) —1 then, by
the choice of ¢, there exists a vertex t € F(w)\ F(c) (recall that u € F(c)\ F(w) as e(w) > r+1).
So, aj-metric property applied to ¢ € I(w,t) and w € I(u,c), gives d(t,u) > d(t,c)+d(w,u) > 2r,
which is impossible. So, d(w, u) = d(u, ¢) = r+1 must hold. In particular, vertices w and f cannot
be adjacent. Note also that d(a,y) = d(v,y) = 2 (as d(a,s) = d(v, s)) and wa ¢ E (to avoid an
induced Cy). Hence, (v, w,y, f,a) induce a C5 in G.

Now, we have d(v,u) = r + 1 = d(w,u) = d(f,u) + 2 and d(v,s) = r+ 1 = d(a,s) =
d(s,y) + 2. By Lemma 23, either d(u,s) = 2r — 1 (which is impossible) or there is a vertex h
which is adjacent to all vertices of C5 = (y,w,v,a, f). The latter contradicts with our earlier
claim that d(s,a) = d(s,v) for every a € N(v) N N(f) (observe that h € N(v) N N(f) and
d(s,h) =d(s,y) +1=d(s,v) —1).

The contradictions obtained prove the lemma. a

Now Theorem 6 follows from Lemma 8, Lemma 21, Lemma 22 and Lemma 24. Here we
formulate three interesting corollaries of Theorem 6.

Corollary 7. Let G be an ay-metric graph. Then,

(1) if diam(G) < 2rad(G) — 1 (i.e., diam(G) = 2rad(G) — 2) then every local minimum of the
eccentricity function on G is a global minimum.

(17) if diam(G) > 2rad(G) — 1 then every local minimum of the eccentricity function on G is a
global minimum or is at distance 2 from a global minimum.

Corollary 8. For every aj-metric graph G and any vertex v, the following formula is true:
d(v,C(Q)) + rad(G) > e(v) > d(v,C(Q)) + rad(G) — ¢,
where € < 1, if diam(G) > 2rad(G) — 1, and € = 0, otherwise.
A path (v = vg,...,vx = x) of a graph G from a vertex v to a vertex z is called strictly
decreasing (with respect to the eccentricity function) if for every i (0 < i < k—1), e(v;) > e(viy1).

It is called decreasing if for every i (0 <1i <k —1), e(v;) > e(vi+1). An edge ab € E of a graph G
is called horizontal (with respect to the eccentricity function) if e(a) = e(b).
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Corollary 9. Let G be an ay-metric graph and v be its arbitrary vertex. Then, there is a shortest
path P(v,z) from v to a closest vertex x in C(G) such that:

(1) if diam(G) < 2rad(G) — 1 (i.e., diam(G) = 2rad(G) — 2) then P(v,x) is strictly decreasing;
(1) if diam(G) > 2rad(G) — 1 then P(v,x) is decreasing and can have only one horizontal edge,
with an end-vertex adjacent to x.

3.2 Diameters of centers of a;-metric graphs

Observe that the center C(G) of a graph G = (V, E) can be represented as the intersection of all
the disks of G of radius rad(G), i.e., C(G) = N{D(v,rad(G)) : v € V}. Consequently, the center
C(G) of an aj-metric graph G is convex (in particular, it is connected), as the intersection of
convex sets is always a convex set. In general, any set C<;(G) := {2z € V : ecc(z) < rad(G) + i}
is a convex set of G as C<;(G) = {D(v,rad(G) +1i):v e V}.

Corollary 10. In an «aj-metric graph G, all sets C<;(G), i € {0,...,diam(G) — rad(G)}, are
convex. In particular, the center C(G) of an aq-metric graph G is convez.

In this section, we provide sharp bounds on the diameter and the radius of the center of
an ap-metric graph. Previously, it was known that the diameter (the radius) of the center of a
chordal graph is at most 3 (at most 2, respectively) [15]. To prove our result, we will need a few
technical lemmas.

Lemma 25. Let G be an aj-metric graph. Then, for every shortest path P = (x1,x2, 3, x4, T5)
and a vertex u of G with d(u,z;) = k for all i € {1,...,5}, there exist vertices t,w,s such that
d(t,u) =d(s,u) =k—1, k—2 < d(w,u) < k—1, and t is adjacent to x1,x2,w and s is adjacent
to x4, T5,W.

Proof. By Lemma 20, there is a vertex u’ that is at distance 2 from each z; (1 < i < 4) and
at distance k — 2 from u. Assume that d(u/, x5) is greater than 2, i.e., d(v/,xz5) = 3. Consider a
common neighbor a of v’ and x4. We have x4 € I(r5,a) and a € I(u,x4). Then, by the aj-metric
property, k = d(x5,u) > 1+ k — 1 = k, and therefore, by Lemma 17, there must exist vertices b
and ¢ such that bxs, ¢b, ca € E and d(c,u) = k—2. As d(c,u) = d(v/,u) = k—2 and d(u,a) = k—1,
by convexity of disk D(u,k — 2), vertices v’ and ¢ must be adjacent. If ¢ is at distance 2 from
x1 then, by convexity of disk D(c,2), each vertex z; (1 <1 < 5) is at distance 2 from ¢, and we
can replace u’ with ¢ (see the case when d(u/,x5) = 2 below). If ¢ is at distance 3 from 1, then
from v’ € I(c,z1) and ¢ € I(v/,x5), by the ag-metric property, we get 4 = d(x1,25) > 2+ 2 = 4.
Now, by Lemma 17, there must exist vertices t,w and s such that sxzs, sc, sw, tu’, tzq,tw € E.
Furthermore, since d(zs5,t) = d(zs,22) = 3 and d(zs, 1) = 4, by convexity of disk D(zs,3),
vertices ¢ and xo must also be adjacent. Similarly, sx4 € E. Necessarily, d(u,t) = d(u,s) = k — 1.
By convexity of disk D(u,k — 1), either d(u,w) =k — 1 or d(u,w) = k — 2. In the latter case, w
has all vertices x;, 1 < i <5, at distance 2, by convexity of disk D(w,2).

The remaining case, when d(u’, z5) = 2, can be handled in a similar (even simpler) manner.
Set w := v/, t is any common neighbor of ' and x; and s is any common neighbor of v’ and xs.
By convexity of disks D(x1,3) and D(x5,3), the existence of edges txs and szy follows. O
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Fig. 4. Illustration to Lemma 26.

Lemma 26. Let G be an aj-metric graph. Then, for every shortest path P = (x1,x2, 3, x4, T5)
and a vertex u of G with d(u,x;) = k for all i € {1,...,5}, there exists a shortest path QQ =
(y1,Y2,y3) such that d(u,y;) = k—1, for eachi € {1,...,3}, and N(y1)NP = {x1,22}, N(y2)NP =
{xo, 3,24} and N(y3) N P = {x4,x5} (see Fig. 4).

Proof. By Lemma 25, there exist vertices t, s such that d(t,u) = d(s,u) = k — 1, t is adjacent to
x1, w2 and s is adjacent to x4, x5. If d(xy4,t) = 3, then xo € I(t,z4) and t € I(u,z2) and, by the
aj-metric property, d(z4,u) > 2+ k —1 = k + 1, which is impossible. Hence, d(z4,t) = 2 must
hold. Let v be a common neighbor of ¢t and x4. If d(v,u) = k, then again the a;-metric property
applied tov € I(t,z5) and t € I(u,v) gives d(z5,u) > 24+k—1 = k+1, which is impossible. Thus,
d(v,u) = k—1 must hold. As d(v,u) = k—1 = d(s,u) and d(u, x4) = k, by convexity of D(u,k—1),
vertices v and s must be adjacent. Notice also that x3 cannot be adjacent to t or to s. If, for
example, z3s € E (the case when tx3 € E can be handled in a similar way) then the a;-metric
property applied to s € I(u,z3) and z3 € I(s,z1) will give d(z1,u) > 2+ k —1 =k + 1, which
is impossible. Now, convexity of disk D(x1,2) implies edge vzs and convexity of disk D(x3,1)
implies edge vxy. Letting y1 :=t, yo := v and y3 := s, we get the required path Q. ad

Theorem 7. Let G be an ay-metric graph. For every pair of vertices s,t of G with d(s,t) > 4
there exists a vertex c € I1°(s,t) such that e(c) < max{e(s),e(t)}.

Proof. 1t is sufficient to prove the statement for vertices s,t with d(s,t) = 4.

We know, by Corollary 5, that e(c) < max{e(s),e(t)} for every ¢ € I(s,t). Assume, by
way of contradiction, that there is no vertex ¢ € I°(s,t) such that e(c) < max{e(s),e(t)}. Let,
without loss of generality, e(s) < e(t). Then, for every ¢ € I°(s,t), e(c) = e(t). Consider a vertex
c € Si(s,t). If e(c) > e(s), then e(c) = e(s) + 1. Consider a vertex z from F(c). Necessarily,
z € F(s). Applying the aj-metric property to ¢ € I(s,t), s € I(c,z), we get e(c) = e(t) >
d(t,z) > d(e,t) + d(s,z) = 3+ e(s) = 2+ e(c), which is impossible. So, e(s) = e(c) = e(t) for
every ¢ € 1°(s,t).

Consider an arbitrary shortest path P = (s = 1,22, x3, 24, x5 = t) connecting vertices s and
t. We claim that for any vertex u € F(x3) all vertices of P are at distance k := d(u, z3) = e(x3)
from w. As e(z;) = e(x3), we know that d(u,z;) < k (1 < i < 5). Assume d(u,z;) = k — 1,
d(u,zi+1) = k, and i < 2. Then, the aj-metric property applied to z; € I(u,x;y+1) and x;4; €
I(x;,iy3) gives d(ziys,u) > k— 142 = k + 1, which is a contradiction with d(u,x;y3) < k.
So, d(u,z1) = d(u,z2) = k. By symmetry, also d(u,z4) = d(u,z5) = k. Hence, by Lemma
26, for the path P = (x1,x2,x3, x4, x5), there exists a shortest path @Q = (y1,y2,y3) such that
d(u,y;) =k —1, for each i € {1,...,3}, and N(y1) N P = {z1,22}, N(y2) N P = {x2,x3, 24} and
N(y3) NP = {x4,x5} (see Fig. 4). As y; € I°(x1,25) = [°(s,t) for each i € {1,...,3}, we have
e(y;) = e(x3) = k.
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All the above holds for every shortest path P = (s = x1, x9, 3, 24, x5 = t) connecting vertices
s and t. Now, assume that P is chosen in such a way that, among all vertices in Sy(s,t), the
vertex x3 has the minimum number of furthest vertices, i.e., |F'(x3)| is as small as possible. As ya
also belongs to Sa(s,t) and has u at distance k — 1, by the choice of x3, there must exist a vertex
u' € F(yz) which is at distance k — 1 from x3. Applying the previous arguments to the path
P = (s = x1,x9,Y2, 24,25 = t), we will have d(x;,u') = d(yz,u’) = k for i = 1,2,4,5 and, by
Lemma 26, get two more vertices v and w at distance k—1 from v’ such that vy, vas, wry, wrs € E
and vy2, wys ¢ E (see Fig. 5). By convexity of disk D(u, k — 1), also vas, wzs € E. Now consider
the disk D(z2,2). Since y3,w are in the disk and x5 is not, vertices w and y3 must be adjacent.
But then vertices yo, x3, w, y3 form a forbidden induced cycle Cy.

Fig. 5. Illustration to the proof of Theorem 7.
Thus, a vertex ¢ € I°(s,t) with e(c) < max{e(s), e(t)} must exist. 0
Corollary 11. Let G be an aq-metric graph. Then, diam(C(G)) < 3 and rad(C(G)) < 2.

Proof. Assume, by way of contradiction, that there are vertices s,t € C(G) such that d(s,t) > 4.
Then, by Theorem 7, there must exist a vertex ¢ € I°(s,t) such that e(c) < max{e(s),e(t)}. The
latter means that e(c) < rad(G), which is impossible. So, diam(C(G)) < 3 must hold. As C(QG)
is a convex set of G, the subgraph of G induced by C(G) is also an aj-metric graph. According
o [64], diam(G) > 2rad(G) — 2 holds for every aj-metric graph G. Hence, for a graph induced
by C(G), we have 3 > diam(C(G)) > 2rad(C(G)) — 2, i.e., rad(C(G)) < 2. ]

As chordal graphs are aj-metric graphs, we get also the following old result.

Corollary 12 ([15]). Let G be a chordal graph. Then, diam(C(G)) < 3 and rad(C(G)) < 2.

3.3 Finding a central vertex of an a;-metric graph

We present a local-search algorithm in order to compute a central vertex of an arbitrary aq-
metric graph in subquadratic time (Theorem 8). Our algorithm even achieves linear runtime on
an important subclass of aj-metric graphs, namely, (a1, A)-metric graphs (Theorem 9), thus
answering an open question from [32] where this subclass was introduced. The (o, A)-metric
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(b)

Fig. 6. Sharpness of results of Theorem 7 and Corollary 11. (a) A chordal graph with diam(C(G)) = 3 and
rad(C(G)) = 2. (b) An aj-metric graph with a pair of vertices at distance 3 for which no vertex with smaller
eccentricity exists in a shortest path between them. The number next to each vertex indicates its eccentricity.

graphs are exactly the aq-metric graphs that further satisfy the so-called triangle condition: for
every vertices u, v, w such that v and v are adjacent, and d(u,w) = d(v,w) = k, there must exist
some common neighbour z € N(u) N N(v) such that d(xz,w) = k — 1. Chordal graphs, and plane
triangulations with inner vertices of degree at least 7, are («y, A)-metric graphs (see [14, 15,32,
54]).

Distance-k Gates. We first introduce the required new notations and terminology for this part.
In what follows, let proj(v,A) = {a € A : d(v,a) = d(v, A)} denote the metric projection of a
vertex v to a vertex subset A. For every k such that 0 < k < d(v, A), we define S(A,v) =
U{Sk(a,v) : a € proj(v,A)}. A distance-k gate of v with respect to A is a vertex v* such that
v* € ({I(a,v) : a € proj(v,A)} and d(v*, A) < k. If k = 1, then following [16] we simply call
it a gate. Note that every vertex v such that d(v, A) < k is its own distance-k gate. We study
the existence of distance-k gates, for some k < 2, with respect to neighbour-sets and cliques. The
latter are a cornerstone of our main algorithms. They are also, we think, of independent interest.

Lemma 27. Let x and v be vertices in an aq-metric graph G such that d(x,v) > 3. For ev-
ery vertices u,u’ € Ss(x,v), the metric projections proj(u, D(z,1)) and proj(u',D(x,1)) are
comparable by inclusion.

Proof. Suppose by contradiction that U = proj(u, D(z,1)) and U’ = proj(u/, D(z,1)) are in-
comparable by inclusion. Let a € U \ U’ and o’ € U’ \ U. Observe that d(u,a) < d(u’,a) and
similarly d(u',a’) < d(u,a’). Furthermore, a,a’ € N(z) N I(z,v)(= D(z,1) N D(v,d(v,z) — 1))
must be adjacent because, according to Theorem 5, every disk is convex, and the intersection
of two convex sets is also convex. As a result, applying aj-metric property to u,a,a’,u’, we get
d(u,u’) > d(u,a)+d(a’,u') = 4. A contradiction arises because u,u’ € S3(z,v) and, by Lemma 2,
the interval thinness of G is at most 2. O

Lemma 28. Let z and u be vertices in an ai-metric graph G such that d(z,u) = 3. For every

vertices w,w’ € N(u) N I(x,u), the metric projections proj(w, D(z,1)),proj(w’, D(x,1)) are
comparable by inclusion.
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Proof. Since w,w’ € N(u) N I(u,x), which is the intersection of two disks, and by Theorem 5
every disk must be convex, the vertices w and w’ must be adjacent. Suppose by contradiction that
proj(w, D(z,1)),proj(w’, D(x, 1)) are not comparable by inclusion. Let a,a’ € N(z) be such that
a € N(w)\ N(w'") and a’ € N(w')\ N(w). We prove similarly as above that a,a’ € N(z)NI(x,u)
must be adjacent. But then, vertices a,a’,w’, w induce a Cy, which is impossible. O

Corollary 13. Let x be an arbitrary vertex of an ayi-metric graph G. Every vertex v of G has a
gate v* with respect to D(x,1).

Proof. If d(v,z) < 2, then we can choose v* = v. From now on, d(z,v) > 3. Let u € S3(x,v)
be such that |proj(u, D(x,1))| is maximized. By Lemma 27, proj(v, D(z,1)) = proj(u, D(x,1)).
Then, let v* € N(u) N I(u,z) be such that |proj(v*, D(x,1))| is maximized. By Lemma 28,
proj(v*, D(x,1)) = proj(u, D(x,1)) = proj(v, D(x,1)). O

We now turn our attention to cliques. A difference appears between general «-metric graphs
and (aq, A)-metric graphs, which partly justifies the better runtime achieved for computing a
central vertex in the latter subclass.

Lemma 29 ([32]). Let K be a clique in an (ay, A)-metric graph G. Every vertex v has a gate
v* with respect to K.

Lemma 29 does not hold for general a-metric graphs. For example, if one takes an edge in
Cs, then the vertex at distance two to both end-vertices has no gate with respect to this edge.
Nevertheless, we prove next the existence of distance-two gates.

Lemma 30. Let K be a clique in an ai-metric graph G. Every verter v has a distance-two gate
v* with respect to K.

Proof. We may assume, without loss of generality, d(v, K) > 3. Let v* € So(K,v) be maximizing
|proj(v*, K)|. Suppose by contradiction that proj(v*, K) # proj(v, K). Let € proj(v, K) \
proj(v*, K) be arbitrary, and let w € Sy(x,v). By maximality of |proj(v*, K)|, there exists a
y € proj(v*, K) \ proj(w, K). Since G is an aj-metric graph, d(v*,w) > d(v*,y) + d(z,w) = 4.
We also have d(v*,w) < d(v*,y) + 1 + d(z,w) = 5 because otherwise, the disk D(v,d(v, K) — 2)
could not be convex, thus contradicting Theorem 5. Therefore, d(v*,w) = 4. By Lemma 17,
there exist ¥’ € N(y) N N(v*) and 2’ € N(x) N N(w) such that d(z’,y") = 2. However, since
we have 2’y € I(v*,w) \ D(v,d(v, K) — 2), the latter still contradicts the convexity of disk
D(v,d(v,K) —2). 0

Computation of gates and distance-two gates. The problem of computing gates has already
attracted some attention, e.g., see [16]. We use this routine in the design of our main algorithms.

Lemma 31 ([39]). Let A be an arbitrary subset of vertices in some graph G with m edges. In
total O(m) time, we can map every vertexr v ¢ A to some vertex v* € D(v,d(v,A) —1) N N(A)
such that |N(v*) N A| is maximized. Furthermore, if v has a gate with respect to A, then v* is a
gate of v.

The efficient computation of distance-two gates is more challenging. We present a
subquadratic-time procedure that only works in our special setting.
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Lemma 32. Let K be a clique in some ay-metric graph G with m edges. In total O(m'4t) time,
we can map every vertex v & K to some distance-two gate v* with respect to K. Furthermore, in
doing so we can also map v* to some independent set Ji(v*) C D(v*,1) such that proj(v*, K)
is the disjoint union of neighbour-sets N(w) N K, for every w € Jg (v*).

Proof. For short, let us write px(v) = |proj(v, K)| for every vertex v. If v € N(K), then we can
set v* = v, Jg(v) = {v} and px(v) = |[N(v) N K|. This can be done in total O(m) time for every
vertex of N(K'). Thus from now on we only consider vertices v such that d(v, K) > 2.

We compute Jx (u) for every vertex u such that d(u, K) = 2. For that, we order the vertices
of N(u) N N(K) by nonincreasing pgx-value. For every x € N(u) N N(K), if there is a triangle
xyu for some y € N(K) ordered before z, then we claim that N(z) N K C N(y), and so we can
ignore z. Indeed, since x, y are adjacent, N(xz)NK and N(y)N K must be comparable by inclusion
(otherwise, since K is a clique, there would exist an induced Cy with x,y and arbitrary vertices
of (N(z)\ N(y)) N K,(N(y) \ N(x)) N K). Since y was ordered before x, px(y) > px(x), which
implies as claimed N(z) N K C N(y). Else, for any y € N(K) N N(u) ordered before x, we claim
that N(xz) N K and N(y) N K must be disjoint. Indeed, otherwise, there would be an induced Cy
with u, z,y and an arbitrary vertex of N(z) NN (y)NK. Then, we put vertex x in Jx (u). Overall,
we are left solving a variation of the well-known problem of deciding, for every edge in a graph,
whether it is part of a triangle. This problem can be solved in O(m!4!) time [2].

Finally, we consider all vertices v such that d(v, K) > 2 by nondecreasing distance to K. If
d(v, K) = 2, then we set v* = v and pg(v) = > {px(z) : * € Jx(v)}. Otherwise, we pick some
neighbour v € N(v) such that d(u, K) = d(v,K) — 1 and pg(u) is maximized. Then, we set
v* = u* and pg(v) = pr(u). This procedure is correct assuming that a distance-two gate always
exists, which follows from Lemma 30. O

Local-search algorithms. Now that we proved the existence of gates and distance-two gates,
and of efficient algorithms in order to compute them, we turn our attention to the following
subproblem: being given a vertex x in an aj-metric graph G, either compute a neighbour y such
that e(y) < e(x), or assert that x is a local minimum for the eccentricity function (but not
necessarily a central vertex). Our analysis of the next algorithms essentially follows from the
results of Section 3.1. We first present the following special case, of independent interest, and for
which we obtain a better runtime than for the more general Lemma 34.

Lemma 33. Let x be an arbitrary vertex in an «i-metric graph G with m edges. If e(x) >
rad(G)+ 2, then N{N(x) NI(x,z): z € F(x)} # 0, and every neighbour y in this subset satisfies
e(y) < e(x). In particular, there is an O(m)-time algorithm that either outputs a y € N(x) such
that e(y) < e(x), or asserts that e(z) < rad(G) + 1.

Proof. 1f e(x) > rad(G) + 2, then by Theorem 6, there exists a y € N(z) such that e(y) < e(x).
In particular, ({N(z) N I(x,2) : z € F(x)} # 0. Let ¥ be an arbitrary neighbour of = in this
subset. Suppose by contradiction e(y’) > e(x). By Lemma 19, e(y’) < e(z). Hence, e(x) = e(y’) >
rad(G) + 2. Furthermore, F(z) N F(y') = () because we assumed that ' € N(x) N I(z,z) for
every z € F(z). But then, let z € F(z), 2/ € F(y') be arbitrary. Since G is an ajq-metric graph,
d(z,2") > d(z,y) +d(z,2') = e(y/) — 1 +e(x) — 1 > 2(rad(G) + 1) > diam(G). The latter is
impossible.

Finally, we describe our O(m)-time algorithm for an arbitrary vertex x (of unknown ec-
centricity). We assume without loss of generality e(z) > 2. We compute gates z* with respect
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to D(z,1) for every z € F(x), whose existence follows from Corollary 13. By Lemma 31, this
can be done in O(m) time. Then, we compute K = ({N(z) N I(x,z) : z € F(z)}. Note that
K = {N(z)NN(z*) : z € F(x)}, and therefore, we can also compute K in O(m) time. If K = 0,
then we can assert e(x) < rad(G) + 1. Else, let y € K be arbitrary. If e(z) < e(y), then again we
can assert that e(x) < rad(G) + 1. Otherwise, we are done outputting y. 0

We can strengthen Lemma 33 as follows, at the expenses of a higher runtime.

Lemma 34. Let x be an arbitrary vertex in an «ai-metric graph G with m edges. There is an
O(m**)-time algorithm that either outputs a y € N(x) such that e(y) < e(z), or asserts that =
is a local minimum for the eccentricity function. If G is (a1, A)-metric, then its runtime can be
lowered down to O(m).

Proof. 1f e(x) < 2 then z is always a local minimum for the eccentricity function, unless e(z) = 2
and x is adjacent to some universal vertex y. Therefore, we assume for the remainder of the proof
e(x) > 3. First we compute K = ({N(z) N I(x,z) : z € F(x)}. This can be done in O(m) time
by using the exact same approach as for Lemma 33. If K = (), then clearly z is a local minimum
for the eccentricity function. Otherwise, we are left deciding whether there exists a vertex of K
with eccentricity smaller than e(x). For that, we claim that we only need to consider the vertices
v such that d(v, K) > e(x) —1 > 2. Indeed, by Theorem 5, the disks of G must be convex,
which implies that K is a clique. In particular, every vertex v such that d(v, K) < e(z) — 2 is
at a distance at most e(z) — 1 to every vertex of K. Therefore, the claim is proved. Now, if
d(v, K) = e(x) for at least one vertex v, then every vertex of K must have eccentricity at least
e(z), hence we can assert that x is a local minimum for the eccentricity function. Otherwise, let
F(K)={veV:dvK)=e(x)—1}. For every y € K, in order to decide whether e(y) < e(z),
it suffices to decide whether y € N{proj(v,K) : v € F(K)}, or even more strongly to compute
the number of vertices v € F(K) such that y € proj(v, K).

For general aj-metric graphs, we compute distance-two gates v* for every v € F(K), whose
existence follows from Lemma 30. By Lemma 32, this can be done in O(m!4!) time. Being also
given the independent sets Jx (v*) C N(v*), for every v € F(K), as in Lemma 32, we compute
the following weight function aw on N(K): a(w) = [{v € F(K) : w € Jg(v*)}|. This can be done
in O(m) time. Recall that for every v € F(K), proj(v, K) is the disjoint union of N(w) N K
for every w € Jg(v*). As a result, for every y € K, the number of vertices v € F(K) such that
y € proj(v, K) is exactly > {a(w) : w € N(y) \ K}, which can be calculated in total O(m) time
for every vertex of K.

Finally, assume for the remainder of the proof that G is (ay, A)-metric, and let us modify this
last part of the procedure as follows. We compute gates v* for every v € F(K), whose existence
follows from Lemma 29. By Lemma 31, this can be done in O(m) time. For every w € N(K), let
a(w) = {v € F(K) : v* = w}|. As before, for every y € K, the number of vertices v € F(K)
such that y € proj(v, K) is exactly > {a(w) : w € N(y) \ K}, which can still be calculated in
total O(m) time for every vertex of K. O

The main procedures. We start presenting our algorithm for the general aj-metric graphs.

Theorem 8. If G is an ay-metric graph with m edges, then a verter xo such that e(xg) <
rad(G) + 1 can be computed in O(m) time. Furthermore, a central vertex can be computed in

O(m*™) time.
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Proof. By Theorem 2, we can compute in O(m) time a vertex xg such that e(zg) < rad(G) + 3.
We repeatedly apply Lemma 33 until we can further assert that e(zg) < rad(G) + 1 (and, hence,
by Theorem 6, d(zo, C(G)) < 2). Since there are at most two calls to this local-search procedure,
the runtime is in O(m). Then, we apply the following procedure, starting from z¢ and Xy :=V,
until we can assert that the current vertex z; (considered at the i" iteration) is central.

1. If deg(z;) < m?°, then we output a vertex of minimum eccentricity within D(z;,2), and
then we stop. This is done by applying Lemma 34 to every vertex of D(x;,1). Otherwise
(deg(x;) > m?Y), we go to Step 2.

2. Let z; € F(x;) be arbitrary. We set X;11 := X; N D(24,5) N D(z;,e(x;) —1). If X;41 =0, then
we output x;. Otherwise, we pick an arbitrary vertex y € X;41, and then we go to Step 3.

3. We consider several cases in what follows.

(a) If e(y) < e(x;), then we output y;

(b) Else, if e(y) = e(x;), then we set x;41 := y and we go back to Step 1;

(c) Else, there are three subcases. If ({X;41 NN (y)NI(y,w) : w € F(y)} = 0, then we output
x;. Otherwise, we pick an arbitrary neighbour 3’ in this subset. If e(y’) > e(y), then we
also output z;. Else, we set y := 3/ and we repeat Step 3.

We stress that at the ¥ iteration we ensure at Step 2 that z; € X; \ Xit+1. In particular,
Xo D X1 D ... D X;. It implies that our procedure eventually halts at some iteration 7" because
we always stop at Step 2 if X;11 = (). Suppose by contradiction that we do not output a central
vertex. For every i such that 0 < i < T, we ensure at Step 3b that e(x;y1) = e(z;). Therefore,
e(rr) = e(xr_1) = ... = e(x0) < rad(G) + 1. Since at the T*" iteration, we output a vertex
of eccentricity at most e(xr), we must have e(zr) > rad(G) + 1. It implies e(z;) = rad(G) + 1
for every i such that 0 < ¢ < T. Then, by Theorem 6, d(z;, C(G)) < 2 for every i such that
0 < i < T. Let us now consider the last step executed during iteration 7. It cannot be Step 1
because a minimum eccentricity vertex within D(z7,2) must be central. Suppose by contradiction
that we halt at Step 2. Then, X7, = (). We prove by induction that C(G) C X; for every i with
0 < i < T+ 1, obtaining a contradiction. This is true for ¢ = 0 because Xy = V. Assume
now this is true for some ¢ with 0 < ¢ < T'. Recall that d(z;, C(G)) < 2. By Corollary 11,
diam(C(G)) < 3. As a result, C(G) C D(z;,5). Furthermore, C(G) C D(z;,e(x;) — 1) because
we have rad(G) = e(x;) — 1. Hence, C(G) C X; N D(x;,5) N D(z, e(x;) — 1) = X;41. We deduce
from the above that we must halt at Step 3. Since we suppose that we output a vertex of
eccentricity e(xp) = rad(G) + 1, it implies that we halt at Step 3c. In particular, we found a
vertex y € Xpy1 such that e(y) > e(zr)+1, and either \{X7r41 NN (y)NI(y,w) : w € F(y)} =0,
or e(y') > e(y) for some arbitrary neighbour of y in this subset. However, by Corollary 9, there
exists a shortest yC'(G)-path that is decreasing and such that the only horizontal edge, if any, must
have one end that is adjacent to the end-vertex in proj(y, C(G)) (i.e., it must be the penultimate
edge of the path, starting from y). In particular, the neighbour y” of y on this shortest path
must satisfy e(y”) < e(y). Since y € X711, C(G) € Xpy1 and according to Theorem 5 the
subset X741 must be convex (as intersection of convex disks), we get that y” € Xpi1. Then,
M X1 N N(y)NI(y,w):w e F(y)} # 0. Furthermore, since we assume e(y) > rad(G) + 2, by
Lemma 33, every neighbour ¢/ in this subset must satisfy e(y’) < e(y). A contradiction occurs.
We end up analysing the runtime of the procedure. Recall that all vertices xg, x1, ...,z are
pairwise different. Since all such vertices, except maybe the last one, have degree more than m2%,
the number of iterations is in O(m/m?2?) = O(m'™). Let us consider an arbitrary iteration 4,
for some 4 such that 0 < ¢ < T. During Step 1, either we do nothing or (only if i = T') we call
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Lemma 34 at most O(m?’) times and then we stop. In the latter case, the runtime is in O(m?! 7).
Step 2 takes O(m) time. Then, during Step 3, we only consider vertices y € D(z;,5). Since every
such vertex y satisfies e(y) < e(z;) + b5, we can execute Step 3¢ at most five times. For every
execution of Step 3c, we can slightly modify the algorithm of Lemma 33 in order to perform all
computations in O(m) time. Therefore, Step 3 also takes O(m) time. Overall, the total runtime
of any iteration is in O(m), except maybe for the last iteration whose runtime can be O(m!'").
Since there are only O(m'™') iterations, the final runtime is in O(m!' ™). O

To lower the runtime to O(m) for the (a1, A)-metric graphs, we use a different approach that
is based on the following additional properties of these graphs. Unfortunately, these properties
crucially depend on the triangle condition.

Lemma 35 ([32]). Let G be an (a1, A)-metric graph. Then, in every slice Si(y,z), there is a
vertex w that is universal to that slice, i.e., Sk(y,z) C D(w,1).

Lemma 36. Letx,y be adjacent vertices in an (a1, A)-metric graph G such that both x,y are local
minima for the eccentricity function and e(x) = e(y) = rad(G)+ 1. For every z € proj(z,C(G)),
there exists a u € N(x) N N(z) such that F(u) C F(x) N F(y).

Proof. First we prove that z € proj(y,C(G)). Suppose by contradiction it is not the case. By
Theorem 6, d(z,C(G)) = d(y,C(G)) = 2. Therefore, d(y,z) = 3 and x € N(y) N I(y,z). Let
w € N(x) N N(z) be arbitrary. Note that e(w) < e(z) + 1 = e(x). It implies e(w) = e(x) =
rad(G) + 1 because x is assumed to be a local minimum for the eccentricity function. Then, let
v € F(w) be arbitrary. Since G is ag-metric, d(v,y) > d(v, z) + d(w,y) = rad(G) + 2. The latter
is in contradiction with e(y) = rad(G) + 1.

Since x,y are adjacent and d(z,z) = d(y, z) = 2, the triangle condition implies the existence
of some common neighbour v € N(z)NN(y)NN(z). Recall that e(u) = e(z) = e(y) = rad(G)+1.
Suppose by contradiction that there exists a v € F(u) \ F/(z). Since G is an «aj-metric graph,
d(z,v) > d(z,u)+d(z,v) = 1+rad(G), which is impossible for z € C(G). As aresult, F(u) C F(z).
We prove similarly that F'(u) C F(y), and so F(u) C F(x) N F(y). 0

Theorem 9. If G is an (aq, A)-metric graph with m edges, then a central vertex can be computed
in O(m) time.

Proof. The algorithm starts from a vertex x which is a local minimum for the eccentricity function
of G. To compute such a vertex in O(m) time, we first apply Theorem 2 in order to compute a
vertex of eccentricity at most rad(G) + 3. Then, we apply Lemma 34 at most three times.

We run a core procedure which either outputs two adjacent vertices u,v € D(x, 1) such that
e(u) = e(v) = e(x) and F(u), F(v) are not comparable by inclusion, or outputs a central vertex.
In the former case, let y € F(u) \ F'(v) and z € F(v) \ F(u) be arbitrary. Since G is an a;q-metric
graph, d(y, z) > d(y,v) + d(u, z) = 2e(z) — 2. If d(y, z) > 2e(x) — 1, then rad(G) > e(x) — 1, and
therefore z is a central vertex. From now on, we assume that d(y, z) = 2e(x) —2. Then, any vertex
of eccentricity e(z) — 1 must be contained in Se)_1(y,2). Let w be such that Se,)_1(y,2) C
D(w, 1), whose existence follows from Lemma 35. We apply Lemma 34 in order to compute a
minimum eccentricity vertex z’ within D(w,1). Finally, we output any of x, 2’ that has minimum
eccentricity. To complete the description of our algorithm, we now present the core procedure.

1. We compute gates z* with respect to D(z, 1) for every z € F(x), whose existence follows from
Corollary 13. By Lemma 31, this can be done in O(m) time. Then, for every y € N(x), we
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compute fz(y) = [{z € F(z) : y € N(x) N I(z,2)}|. This can also be done in O(m) time by
enumerating the gates z* in N(y) for every y € N(x).
2. We choose a neighbour y; such that f,(y;) is maximized. There are three cases.

(a) If e(y1) > e(x) then, by Lemma 19, we can assert that z is a central vertex. From now on,
e(y1) < e(x). Since z is a local minimum for the eccentricity function, e(z) = e(yy).

(b) If y; is not a local minimum for the eccentricity function of G, then by Lemma 34 we can
compute a central vertex within N(y;) in O(m) time. From now on both z,y; are local
minima for the eccentricity function.

(c) If F(y1)\F(x) # 0, then we can output u = z,v = y;. Indeed, we also have F(z)\ F(y1) # 0
because y; € N(z)NI(z,z) for some z € F(z). In what follows, we assume that F(z), F(y1)
are comparable by inclusion, and so, F(y;1) C F(x).

3. Let z1 € F(y1) be arbitrary. We choose some neighbour ys within N(z) N I(z,2;) which
maximizes fz(y2). Note that in order to compute N(z)NI(x,z1), and so ¥z, in O(m) time, it
suffices to only consider the vertices of N(z) N N(z7). There are two cases.

(a) If e(y2) > e(x) then, by Lemma 19, we can assert that x is a central vertex. From now on
we assume e(y2) = e(x).

(b) If y9 is not a local minimum for the eccentricity function of G, then by Lemma 34 we can
compute a central vertex within N(y2) in O(m) time. From now on vertices z,y;, ys are
local minima for the eccentricity function.

4. Due to the maximality of f,(y1) and the existence of a z; € F(z) N F(y1), we have f,(y2) <
fz(y1) < |F(x)|. Furthermore, both F(z) \ F(y1), F(x) \ F(y2) are nonempty. For each i €
{1,2}, we compute B; = ({N(z)NI(x,z):z € F(z)\ F(y;)}. Since B; = "{N(z) " N(z*) :
z € F(x)\ F(y;)}, it can be done in O(m) time. There are now two cases.

(a) Assume the existence of an edge uv where u € By, v € By. If max{e(u),e(v)} > e(z) then,
by Lemma 19, we can assert that x is a central vertex. Otherwise, we prove next that
F(u), F(v) are not comparable by inclusion, and therefore we can output u,v. Indeed,
F(y1), F(x) N F(y2) are not comparable by inclusion because

[F(2) N F(y2)| = [F(2)| = fo(y2) = |F(z)| = falyr) = [F(y1)]

and z1 € F(y1) \ F(y2). Furthermore, F(z) N F(u) C F(y1) (F(z) N F(v) C F(y2),
respectively) because u € By (v € Ba, respectively). Then, F(u) N F(x) = F(y1) and
F(v) N F(x) = F(y2) N F(x), because otherwise this would contradict the maximality of
either fx(yl) or fa:(yQ)

(b) Finally, assume that every vertex of Bj is nonadjacent to every vertex of By. We claim that
x is a central vertex. Suppose by contradiction e(z) = rad(G) + 1. Let z € proj(z, C(Q))
be arbitrary. By Lemma 36, there exist vertices u,v € N(x) N N(z) such that F(u) C
F(z)NF(y1) = F(y1), F(v) C F(z) N F(y2). Note that max{e(u),e(v)} < e(z) +1 =
rad(G) + 1. Since z is a local minimum for the eccentricity function, we obtain e(u) =
e(v) = rad(G) + 1. Then, u € Bj, v € Bs. In particular, u,v must be nonadjacent, thus
contradicting the convexity of D(z,1) N D(z,1), and so, Theorem 5.

O

We leave as an open question whether there exists a linear-time algorithm for computing a
central vertex in an aj-metric graph.
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3.4 Approximating all eccentricities in a;-metric graphs

It follows from the results of Section 3.3 and Section 2.2 that a vertex with eccentricity at most
rad(G) + 1 and a vertex with eccentricity at least diam(G) — 5 can be found in linear time for
every aj-metric graph G. Furthermore, all vertex eccentricities with an additive one-sided error
at most 5 in an «j-metric graph can be computed in total linear time (see Section 2.3). Here,
we present two immediate consequences of the results of Section 3, hereby answering some open
questions from [25, 32].

Theorem 10. Every ai-metric graph G admits an eccentricity 3-approximating spanning tree.
Furthermore, an additive 4-approxzimation of all vertex eccentricities in G can be computed in
subquadratic total time.

Proof. Tt is sufficient to show that any breadth-first-search tree T of G rooted at a vertex ¢ € C(G)
is an eccentricity 4-approximating spanning tree of G and any breadth-first-search tree T of G
rooted at a vertex ¢ € C(C(G)) (i.e., a central vertex of the subgraph of G that is induced
by C(G)) is an eccentricity 3-approximating spanning tree of G. We do not know how to find
efficiently a vertex ¢ € C'(C(QG)) but, by Theorem 8, a central vertex ¢ of G with m edges can be
computed in O(m! ™) time.

Consider an arbitrary vertex v in G and let v’ be a vertex of C'(G) closest to v. By Corollary 8,
e(v) > d(v,v") +rad(G) — €, where € < 1. Since T is a shortest path tree and ¢ is a central vertex
of G, er(v) < dr(v,c) + er(c) = da(v,c) + eq(c) = dg(v,c) + rad(G). Hence, by the triangle
inequality, er(v) —eq(v) < dg(v,c)+rad(G)—dg(v,v") —rad(G)+e < dg(c,v')+e < dg(c,v")+1.

By Corollary 11, we know diam(C(G)) < 3 and rad(C(G)) < 2. Hence, if ¢ € C(G) then
dg(c,v’) <3, and if ¢ € C(C(G)) then dg(c,v') < 2. 0

For (a1, A)-metric graphs this result can be strengthened further.

Theorem 11. FEvery (aq, A)-metric graph G admits an eccentricity 2-approzimating spanning
tree. Furthermore, an additive 3-approximation of all vertex eccentricities in G with m edges can
be computed in total O(m) time.

Proof. Let T' be a BFS(c)-tree, where ¢ is a central vertex of G. We can follow the proof of
Theorem 10 and get ep(v) — eg(v) < dg(c,v') + €, where v/ is a vertex of C(G) closest to v. In
an (o, A)-metric graph G, we have € < 1, if diam(G) = 2rad(G), and € = 0, otherwise [32].
Furthermore, when diam(G) = 2rad(G), diam(C(G)) < 2 and rad(C(G)) < 1 must hold [32].
Thus, if ¢ € C(G) then er(v) — eq(v) < dg(c,v') + € < diam(C(G)) + € < 3 (i.e., <3+ 0 or
<2+41),and if c € C(C(Q)) then ep(v) —eq(v) < dg(c,v')+e < rad(C(G))+e < < 2 (1.e., <240
or < 1+1). Note also that a central vertex of an («;, A)-metric graph can be computed in linear
time (Theorem 9). ]

The existence of an eccentricity 2-approximating spanning tree in an (a1, A)-metric graph is
known already from [32]. The second part of Theorem 11 provides an answer to an open question
from [25].

4 Concluding remarks

We conclude the paper with some immediate questions building off our results.

30



1. Can our (approximation) bounds on eccentricities in general a;-metric graphs be improved?
In particular,
i) is our bound on the eccentricity of a middle vertex of a shortest path between two mutually
distant vertices best possible?
ii) is our bound on the eccentricity of a vertex furthest from an arbitrary vertex sharp?
iii) can our bound 3i + 2 on the diameter of the center be improved to 2i + 17
2. What best approximations of the radius and of the diameter of an «-metric graph G can be
achieved in linear time? In particular,
iv) does there exist a linear-time algorithm for finding a central vertex (and, hence, the exact
radius) of an «;-metric graph?
v) is it possible to show that the eccentricity of a vertex furthest from an arbitrary vertex is
at least diam(G) — 27
vi) can a vertex with eccentricity at least diam(G) — 1 be found in linear time?

Recall that in chordal graphs (a subclass of aj-metric graphs) a central vertex can be found in
linear time and the eccentricity of a vertex furthest from an arbitrary vertex is at least diam(G)—2
[16]. Furthermore, a vertex with eccentricity at least diam(G)—1 can be found in linear time by a
LexBFS [34]. On the other hand, computing the exact diameter of a chordal graph in subquadratic
time is impossible unless the well known Strong Exponential Time Hypothesis (SETH) is false [6].
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