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Increasing dynamic range of NES by using geometric nonlinear

damping

Etienne Gourc, Pierre-Olivier Mattei, Renaud Cote, Matteo Capaldo

Abstract

The paper deal with the passive control of resonant systems using nonlinear energy sink (NES).
The objective is to highlight the benefits of adding nonlinear geometrical damping in addition to
the cubic stiffness nonlinearity. The behavior of the system is investigated theoretically by using
the mixed harmonic balance multiple scales method. Based on the obtained slow flow equations,
a design procedure that maximize the dynamic range of the NES is presented. Singularity theory
is used to express conditions for the birth of detached resonance cure independently of the forcing
frequency. It is shown that the presence of a detached resonance curve is not necessarily detrimental
to the performance of the NES. Moreover, the detached resonce curve can be completely suppressed
by adding nonlinear damping. The results of the design procedure are the compared to numerical
simulations.

1 Introduction

Nonlinear energy sinks (NES) are strongly nonlinear oscillator that are used to mitigate vibration
of a host system through targeted energy transfer. One of the main feature of NES, which is
a consequence of their essential nonlinear nature is their ability to enter in resonance capture
with the system to which their are attached, giving them a broadband capability [13]. When
the primary system is subjected to harmonic excitation, the system exhibit relaxation oscillation
denoted as strongly modulated response (SMR) which is also a typical feature of systems with NES
[11]. One of the main drawback of NES when used to control an harmonically excited system is the
possible presence of a high amplitude detached resonance curve. Specific design procedure have been
developed to ensure a safe operating region of the system, at the price of limited performance of the
NES [10, 4]. A promising way to overcome this difficulty is the introduction of nonlinear damping
in addition to linear viscous damping. This has been first proposed in [12] where the authors
considered piecewise-quadratic damping. It was shown that by imposing a fairly low damping at
low amplitude and a higher damping at high amplitude can lead to a complete elimination of the
detached resonance curve. In [1], the dynamics of a NES with geometrical damping is investigated
under transient loading. They showed that the nonlinear damping can induce transient instability
caused by a bifurcation to 1 : 3 resonance capture. The behavior of a NES with global and local
potential as well as nonlinear damping has been analyzed theoretically in [6]. Recently, the behavior
of a NES with geometrical damping used to control a toy model of floating offshore wind turbine was
investigated in [8]. They confirmed both theoretically and by using extensive numerical simulation
that the addition of nonlinear damping can in certain condition completely suppress the detached
resonance curve. Experimental investigation of nonlinear damping, not in the context of NES, is
reported in [9], where a nonlinear damping element is realized geometrically at a beam tip.

The objective of the present paper is to investigate the benefits induced by the addition of
geometrical nonlinear damping. Section 2 is devoted to the presentation of the studied system.
Section 3 is devoted to the theoretical analysis of the system. First the equation of motions are
analyzed by using the multiple scales-harmonic balance method (MSHBM) [7] allowing us to obtain
the expression of the slow invariant manifold (SIM) and the slow flow modulation equation. In the
same section, the folded singularity are expressed and interpreted as a grazing flow and condition
for the existence of detached resonance curve is expressed by using singularity theory [3, 5]. The
tuning procedure enabling to discriminate problematic and non problematic detached resonance
curve is presented in section 4.
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2 Description of the system

The system considered in the present paper is the same as in [1] and consists in a linear oscillator
coupled to an embedded NES with geometrical nonlinear stiffness and damping. The equation of
motion are given by

Mẍ+ Cẋ+Kx+ cẇ + rw3 + dw2ẇ = A cos(Ωt)
m(ẍ− ẅ)− cẇ − rw3 − dw2ẇ = 0

(1)

where x(t) and w(t) are the displacement of the linear oscillator and the relative displacement
of the NES, respectively. The dots denote differentiation with respect to time t. M , C, and K are
the mass, damping and stiffness of the linear oscillator, respectively. c, r and d are the damping,
cubic nonlinear stiffness and nonlinear damping of the NES, respectively. Adimensional parameters
are introduced as follows

t̃ = ω1t, ω1 =
√

K
M , ζ = C

2Mω1
, µ = c

mω1

κ = r
mω2

1
, G = A

Mω2
1
, ω = Ω

ω1
, λ = d

mω1

(2)

Substituting into Eq. (1) yields to the following adimensional equation of motion

ẍ+ 2ζẋ+ x+ ϵ(µẇ + κw3 + λw2ẇ) = G cos(ωt)
ϵ(ẍ− ẅ − µẇ − κw3 − λw2ẇ) = 0

(3)

where the tilde has been dropped for brevity and the dots now represent the derivative with
respect to adimensional time. ϵ = m/M ≪ 1 is the mass ratio.

3 Nonlinear analysis

The behavior of the system is analyzed theoretically using the mixed multiple scales-harmonic bal-
ance method (MSHBM) [7]. Independent time scales ti = ϵit are introduced and the displacements
are expanded as

x(t; ϵ) = x0(t0, t1) + ϵx1(t0, t1) + . . .
w(t; ϵ) = w0(t0, t1) + ϵw1(t0, t1) + . . .

(4)

The damping of the primary system ζ as well as the forcing amplitude G are considered small
and are scaled such that ζ = ϵζ and G = ϵG. Substituting Eq. (4) into Eq. (3) and collecting
terms of same power of ϵ gives

O(ϵ0) : d20x0 + x0 = 0 (5)

O(ϵ1) : d20x1 + x1 = −2d0d1x0 − 2ζd0x0 − µd0w0 − κw3
0 − λw2

0d0w0 +G cos(ωt0)
d20(w0 − x0) + µd0w0 + κw3

0 + λw2
0d0w0 = 0

(6)

The solution at order ϵ0 is expressed by

x0(t0, t1) =
1

2
X(t1)e

it0 + c.c. (7)

Now we deal with the equations at order ϵ1. Since the second equation does not admit a closed
form solution, according to the MSHBM, we seek an approximate solution of the form

w0(t0, t1) =
1

2
W (t1)e

it0 + c.c. (8)

Substituting Eq. (7, 8) into the second equation of Eq.(6) and balancing terms corresponding
to the first harmonic yields

X = (1− iµ)W − 1

4
(3κ+ iλ)W 2W ∗ (9)

Equation (9) represents the slow invariant manifold (SIM) of the problem. The behavior of the
system is analyzed in the vicinity of the resonance of the primary system. Accordingly, a detuning
parameter is introduced as ω = 1 + ϵσ. Substituting Eq. (7, 8) into the first equation of Eq.(6)
and eliminating secular terms reads
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d1X = −ζX − 1

2
µW +

1

8
(3iκ− λ)W 2W ∗ − 1

2
iGeiσt1 (10)

Going back to true time t and reabsorbing ϵ the modulation equation is obtained as

Ẋ = −ζX − ϵ

(
1

2
µW +

1

8
(3iκ− λ)W 2W ∗

)
− 1

2
iGeiσt (11)

Since we are interested in the dynamic of the system under 1 : 1 resonance capture, i.e. on the
SIM, Eq. (9) is substituted into Eq. (11). Expressing W (t) = b(t)eiβ(t) and splitting into real and
imaginary parts gives

ḃ = f1(b,θ)
g(b)

θ̇ = f2(b,θ,σ)
g(b)

(12)

where the new phase variable θ(t) = ϵσt− β has been introduced to transform the system into
an autonomous one. Expressions of f1 and f2 are given in appendix. The fixed points of the system
are computed by setting f1 = f2 = 0.

3.1 Analysis of the SIM

Substituting polar expression of W (t) and X(t) = a(t)eiα(t) into Eq. (9), the real valued expression
of the SIM is obtained as

A =
1

16

[
(3κB − 4)2B + (λB + 4µ)2B

]
(13)

where A = a2 and B = b2. The values of local extremums B1 and B2 are found by equating
the derivative of the right hand side of Eq. (13) with respect to B to zero, giving

Bi =
4

3

6κ− 2µλ∓
√
h

9κ2 + λ2
(14)

with

h = −27κ2µ2 + λ2µ2 − 24κλµ+ 9κ2 − 3λ2 (15)

Note that the SIM admits extremums only if h > 0. It is well known that this topology of SIM
can give rise to strongly modulated response. An example of SIM for µ = 0.1, κ = 1 and λ = 0.1
is depicted in Fig. 3.1.

3.2 Folded singularities

In addition to classical fixed points of the slow flow system, computed by setting f1 = f2 = 0
and g ̸= 0, it is well known that systems with NES also admit singular fixed points denoted as
folded singularities [11]. The folded singularities are found by setting f1 = f2 = g = 0. Physically
speaking, folded singularity allow the flow to jump from the lower to the upper branch of the SIM.
On the phase plane (θ, b), the transition from a situation where the slow flow remains on the lower
part of the SIM to a situation where the flow can jumps to the higher branch of the SIM corresponds
to a grazing flow at b = b1, that is

db

dθ

∣∣∣∣
b=b1

= 0 (16)

with

db

dθ
=

db
dt
dθ
dt

=
f1
f2

(17)

Such that the grazing condition simply reads f1(b1, θ) = 0. From this relation, it is possible to
express the minimal amplitude Gfs1 that give rise to the existence of folded singularities. Note that
since f1 is independent of σ, Gfs1 is valid for the whole excitation frequency range. An example of
grazing bifurcation yielding to the birth of a pair of folded singularities is depicted in Fig. 3.2.

For completeness, folded singularity on the upper branch of the SIM at b = b2 can be expressed
similarly, i.e. f1(b2, θ) = 0, and the critical forcing amplitude yielding to their appearance is
denoted by Gfs2 .
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Figure 1: SIM for µ = 0.1, κ = 1 and λ = 0.1. Solif and dashed lines correspond to stable and unstable
branches, respectively.

Figure 2: Phase plot for µ = 0.1, ϵ = 0.01, ζ = 0.01, κ = 1, λ = 0.1 and σ = 1 for three value
of G around G1 = 0.0101. Solid reg line corresponds to b = b1 and orange triangle to the folded
singularities.
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3.3 Detached resonance curve

As mentioned earlier, systems with NES can exhibit a detached resonance curve that can yield to
high amplitude oscillations and therefore deteriorate the performance of the NES. A polynomial
expression for the amplitude of the fixed points b can be obtained by solving f1 = f2 = 0 for the
trigonometric terms and using trigonometric identity. The fixed points b are now found by solving

f3(b, σ) = 0 (18)

Singularity theory is a powerful tool to classify the different topologies of frequency response
curve [3]. Here, we are particularly interested in isola and simple bifurcation singularities that are
responsible for the creation of the isola or to the merging of the detached resonance curve with
the main frequency response curve, respectively. The defining conditions for these singularities are
given by

isola : f3 = 0, ∂f3
∂b = 0, ∂f3

∂σ = 0, ∂2f3
∂b2 ̸= 0, det(d2f3) > 0

simple bifurcation : f3 = 0, ∂f3
∂b = 0, ∂f3

∂σ = 0, ∂2f3
∂b2 ̸= 0, det(d2f3) < 0

(19)

where d2f3 is the Hessian matrix of f3(b, σ). Closed form solutions are not available, however,
Eq. (19) can be combined to express a sixth order polynomial in b2 that can be efficiently solved
using any root finding algorithm and the corresponding forcing amplitude can be retrieved by using
the fixed point equation. Remarkably, the obtained result is independent of σ. The critical forcing
amplitudes corresponding to isola and simple bifurcation singularities are denoted Gdrc and Gsb,
respectively. Note however that the presence of a detached resonance curve does not necessarily
yields to higher amplitude compared to the principal resonance curve. An example is depicted in
Fig. 3.3 for two different set of parameters.

Clearly, in the upper case, the detached resonance curve is problematic as it yield to high
amplitude oscillation. Problematic cases can be easily detected by looking at the amplitude b at
which the detached resonance curve is created. Exploiting the topology of the SIM, if the isola
singularity is located at b > b3 it will cause high amplitude oscillations of the primary system, as
shown in Fig. 3.3.

4 NES sizing

In this section, the sizing of the NES is addressed and can be formulated as follows: Given a maximal
allowed amplitude of the primary system, what are the parameters of the NES that maximize the
forcing amplitude?

It is known that the the control mechanism of NES under harmonic forcing involves strongly
modulated response (SMR) regimes. This regime corresponds to relaxation oscillation where the
dynamics successively jumps between the two stable branches of the SIM. If no other attractors
(i.e. fixed points) are present, the maximal amplitude of the primary system is directly governed
by the shape of the SIM and corresponds to the point labeled a1 in Fig. 3.1. The first step of
the design procedure consists in determining the nonlinear stiffness coefficient κ to fix the maximal
amplitude a1. This is done by using the expression of the SIM Eq. (13) at b = b1. Notice that the
obtained expression is invariant with respect to a1 if κ = κ̃/a21 and λ = λ̃/a21 such that without loss
of generality we choose a1 = 1. The value of κ as a function of the linear and nonlinear damping
µ and λ allows to reduce the design space by one and is depicted in Fig. 4.

The second step consists in identifying the parameter space where a ≤ a1. Exploiting the shape
of the SIM, an equivalent condition in terms of the relative amplitude of the NES reads b ≤ b3.
A necessary but not sufficient condition to express the maximal forcing amplitude Gmax such that
b ≤ b3 is given by

∂b

∂σ

∣∣∣∣
b=b3

= 0 (20)

Using implicit differenciation, condition in Eq. (20) becomes

f3 = 0,
∂f3
∂σ

∣∣∣∣
b=b3

= 0 (21)

As mentioned, this condition is however not sufficient to guaranty that a ≤ a1 due to the
possible presence of a detached resonance curve at higher amplitude. As explained in the previous
section, problematic detached resonance curves are easily identified by looking at the amplitude
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Figure 3: Frequency response curve for ϵ = 0.01, λ = 0.1, κ = 1, µ = 0.05. Up : ζ = 0.001,
G = 0.0045, down : ζ = 0.005, G = 0.08. Blue and orange lines corresponds to stable and unstable
solution, respectively. Dashed lines indicates the singular points of the SIM.
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Figure 4: Evolution of κ as a function of µ and λ for a1 = 1. Red line corresponds to the limit where
the SIM admit a double root.

b corresponding to the isola singularity. If b > b3, the resulting isola will result to amplitude of
oscillation greater than a1. On the contrary, if a detached resonance curve is created in the lower
portion of the SIM (b < b3), while the growth of this detached resonance curve until a = a1 will be
captured by Eq. (21).

Examples of obtained sizing diagram are depicted in Fig. 4. In both cases ϵ = 0.01 and
µ = 0.1. On the left diagram ζ = 0.001 while on the righ diagram ζ = 0.01. Solid and dashed blue
lines corresponds to folded singularities occuring on b = b1 and b = b2, respectively. Solid green
lines corresponds to the maximal forcing amplitude Gmax. Orange and yellow lines correspond to
problematic and non-problematic isola singularity, respectively and finally purple dash-dotted lines
corresponds to simple bifurcation singularity yielding to the merging of the detached resonance
curve with the main resonance curve. The safe region of operation of the NES is indicated by the
grey area.

Frequency response curves corresponding to different area of the sizing diagram are depicted in
Fig. 4. Bellow the first folded singularity (Fig. 4(a)), SMR regime is not possible and the NES
behaves in a quasi-linear manner. In the zone corresponding to Fig. 4(b), i.e. between both folded
singularities and bellow any detached resonance curve, the periodic solutions around σ = 0 are
unstable and the only possible response is SMR. When the forcing amplitude is increased above
the second folded singularity and bellow the maximal forcing amplitude (Fig. 4(c,h)), SMR regime
can be replaced by stable periodic response, but still satisfying the design criteria (i.e. a < 1).
Fig. 4(d,f) illustrates again problematic and non problematic detached resonance curve, similarly
to Fig. 3.3. In the case depicted in Fig. 4(f), the presence of the detached resonance curve does
not restrict the design area. In the case presented in Fig. 4(g), the forcing amplitude is increased
above the simple bifurcation singularity corresponding to the merging of the detached resonance
curve. In this case, the design criteria is still satisfied. In the case depicted in Fig. 4(e,i), the
parameters of the system are above the maximal forcing amplitude Gmax, and even if no detached
resonance curve are present, the stable periodic solution exceed the maximal amplitude (i.e. a > 1).
Nevertheless, for both sizing diagram, it can be noticed that the addition of nonlinear damping
significantly increase the dynamic range of the NES.

The proposed sizing procedure is compared to numerical simulation in Fig. 4 where the maximal
amplitude of the primary oscillator obtained from numerical integration is depicted for various
excitation amplitude and frequency for ϵ = 0.01, ζ = 0.01, µ = 0.1, λ = 0.16, and κ = 0.214.
The red plane and dashed lines correspond to the maximal allowed amplitude. The first vertical
dashed line corresponds to the critical forcing yielding to the birth of a pair of folded singularity
Gfs1 = 0.0244 while the second vertical dashed line corresponds to the maximal forcing amplitude
Gmax = 0.0453. The location of the control plateau for G ∈ [Gfs1 , Gmax] is in very good agreement
with numerical simulations while the maximal amplitude is underestimated by the theoretical
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Figure 5: Evolution of κ as a function of µ and λ for a1 = 1. Red line corresponds to the limit where
the SIM admit a double root.

analysis.
As illustrated in Fig. 4 where G = 0.04 and σ = 1.1, this is due to the fact that the jump

between the branch of the SIM does not occur as a discontinuous phase trajectory when ϵ ̸= 0.
Note that this fact has been investigated theoretically in [2] by interpreting the jump as a dynamic
fold bifurcation.

5 Conclusion

The objective of the present paper was to investigate the potential benefits of geometric nonlinear
damping on NES. To this end, the dynamics of the system has been analyzed by using the mixed
multiple scales - harmonic balance method. A simple design procedure is presented and can be
simply summarized as follow: given a maximal allowable amplitude of the primary system, what
are the parameters of the NES that maximize the forcing range. The main theoretical findings
presented throughout the design procedure are twofold:

� Exploiting the topology of the SIM, in combination with singularity theory, we are able to
distinguish parameters that yield to unacceptable or acceptable detached resonance curves.

� Again exploiting the topology of the SIM and the expression of the fixed points allow us
to express a maximal forcing amplitude independently of the forcing frequency yielding to a
given amplitude of the host oscillator.

The conjunction of these two criteria allow us to define a safe design space of the NES guaranteeing
that the vibration amplitude of the primary oscillator is bellow a certain threshold. Finally, this
design procedure highlight the benefits of nonlinear damping with a significant increase of the
maximal allowable forcing amplitude.

Appendix A

The expressions of f1, f2 and g given in Eq. (12) are given by

f1(b, θ) = b
(
−ζ

(
9κ2 + λ2

)
b5 + 2 (12κζ − ϵλ− 4λµζ) b3 − 8

(
2µ2ζ + ϵµ+ 2ζ

)
b

+8Gµ cos θ + 2G
(
3κb2 + 4

)
sin θ

)
f2(b, θ) = 3ϵ(9κ2 + λ2)(2σ + 1)b5 + 4 (ϵ(8λµσ − 24κσ + 4λµ− 3κ) + 4ζ(λ+ 3κµ)) b3

+16ϵ
(
2µ2σ + µ2 + 2σ

)
b− 4G(9κb2 − 4) cos θ − 4G(3λb2 + 4µ)

g(b) = 2b
(
3(λ2 + 9κ2)b4 + 16(λµ− 3κ)b2 + 16(µ2 + 1)

) (22)
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Figure 6: Frequency response curve of the primary oscillator corresponding to points in Fig. 4.
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Figure 7: Amplitude of the primary oscillator as a function of the frequency detuning σ and forcing
amplitude G for ϵ = 0.01, ζ = 0.01, µ = 0.1, λ = 0.16, and κ = 0.214. Red plane (dashed line)
corresponds to the theoretical maximal allowed amplitude and dashed vertical lines corresponds to
Gfs1 (left) and Gmax (right).

Figure 8: Example of strongly modulated response and projection on the SIM obtained for ϵ = 0.01,
ζ = 0.01, µ = 0.1, λ = 0.16, κ = 0.214, σ = 1.1 and G = 0.04.
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