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ON THE EXISTENCE AND UNIQUENESS OF SOLUTION FOR
SOME FREQUENCY-DEPENDENT PARTIAL DIFFERENTIAL

EQUATIONS COMING FROM THE MODELLING OF
METAMATERIALS ∗

PIERRE-HENRI COCQUET† , PIERRE-ALAIN MAZET† , AND VINCENT MOUYSSET†

Abstract. Several systems coming from the theory of linear wave propagation are investigated,
on a bounded domain, in presence of frequency-dependent materials like metamaterials. For each
system we show generic well-posedness results under assumptions that are relevant for some models
of the literature. This means existence and uniqueness of solution for all frequency except for a
discrete locally finite and possibly empty set of frequencies. Finally, some examples of materials
are studied like a periodic array of Split-Ring-Resonators (SRR), a chiral metamaterial based on
the Ω-particle resonator model, a bi-anisotropic metamaterial made from SRR, absorbing boundary
conditions of Perfectly-Matched-Layers (PML) type for the acoustics waves, an example of acoustic
metamaterial having negative bulk modulus and an elastic metamaterial.

Key words. Metamaterials, Maxwell’s equations, Wave equation, linear elasticity.
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1. Introduction. In 1968, V.G Veselago [34] theoretically investigated the ef-
fects of electromagnetic and acoustic phenomena in materials having simultaneously
negative values for the permittivity ε and the permeability µ. As they reverse the
Poynting vector, they were called ”Left-Handed-Materials” (LHM). V.G. Veselago also
noticed that they have exotic properties like a reversed Doppler effect or a reversed
Vavilov-Cerenkov radiation effect. The keen interest for the LHM was initiated by J.B
Pendry in 2000 [29, 30]. He managed to build LHM using a periodic array of Split-
Ring-Resonators (SRR). Thus these exotic structures were named ”metamaterials”.
There are various planned applications of metamaterials such as the perfect lens [29],
sound focusing [16], cloaking effect using the concept of transformation optics [5, 14]
or controlling light using photonic crystals [28].

However, as metamaterials cannot be found in nature as negative indexes materi-
als, they are usually seen as the result of a frequency dependent homogenization (see
for example [11, 17, 32, 33]). The homogenized parameters which may depend on
the pulsation w become negative definite for some w. However, the usual framework
to prove the well-posedness of the systems modelling electromagnetics, acoustics or
elastodynamics wave propagation in materials assumes the parameters to be positive
definite. The question we thus want to ask is: What happen for the existence and
uniqueness of solutions to the equations mentioned above in presence of metamateri-
als?

Another way to treat these problems should be to consider minimization vari-
ational principles like those studied in [25] for the acoustics, elastodynamics and
electromagnetism in lossy inhomogeneous bodies at fixed frequency. These principles
rely on the introduction of a saddle point minimization problem in order to study,
for instance, Maxwell’s equation. However, this paper does not give existence and
uniqueness of solution to Maxwell’s equation. Moreover, to be applied, a special
decomposition of the physical parameters have to be achieve in order to get some
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positive definite tensors that we were not able to exhibit in the case of negative index
materials. An additional way to deal with the well-posedness of partial differential
equations in presence of metamaterials should be to use some fixed-point methods like
those introduced in [7] wherein Maxwell’s equation in presence of some chiral media
are solved. However the development of this method is only led in case of variable
but positive parameters and thus does not extend to the case of metamaterials. Con-
sequently, we are not able to use such methods to study existence and uniqueness of
solution for systems of partial differential equation with sign-changing coefficients.

On the subject of the mathematical study of problems involving metamaterials,
there exists, to the best of author knowledge, only few works. For scalar equations in
presence of media having sign-shifting coefficients, some studies were done in [2, 3].
To be more precise, these papers study a second-order scalar problem with parameters
that does not depend on the frequency, for the transmission problem between a ”clas-
sical” material and a ”negative” one. Then, using an integral equation technique on
the interface between the two media, they manage to prove that the considered prob-
lem can be solved with Fredholm alternative and give a new way to approximate the
solution of these kind of problems [1]. In [3], the authors use the so-called T -coercivity
(or inf-sup) approach to show that if the interface between the ”classical” material
and the metamaterial is smooth then the problem rely once again on the Fredholm
alternative. They can even build in some particular geometric setting the operator T
leading to the existence and uniqueness of solution. For works dealing with second
order vector equations, we can cite [12] were Maxwell’s equation in presence of bian-
isotropic material and metamaterials are studied. Actually they give conditions on
the materials that allows the use of Lax-Milgram theorem and prove the convergence
of the classical finite element method within this framework.

However, from a remark of V.G Veselago [34], the parameters of a metamate-
rial have to depend on the pulsation w and could become negative definite only for
some w in a bounded set. The motivation of a frequency-dependence for the ho-
mogenized metamaterials comes also from the ability to describe a material coming
from a well-posed system on time-domain from an energy point of view. Further-
more, one can notice (see for instance [21, 32, 35]) that the homogenized coefficients
of such materials usually depend on the frequency like rational fractions. As a result
they can be considered as holomorphic function of p = iw + δ on some connected
open set of C. Actually, it is worth noting that these observations have been con-
firmed by experiments performed on several metamaterials obtained from a homog-
enization process [17, 21, 32, 33, 10, 36, 23]. Remark that the previously mentioned
well-posedness results are established for metamaterials that does not depend on the
frequency. Nevertheless, these results can be used to study frequency-dependent meta-
materials having specific physical parameters for w = w0. However the main tool to
obtain well-posedness of frequency-dependent partial differential equation is the Fred-
holm analytical theory (see [19] p.371) which discards an unknown set of frequencies
which is not a priori empty and hard to determine (see for instance [22]). Thus we
cannot state a priori the existence and uniqueness of solution for frequency-dependent
metamaterials at w0, whatever the geometry is, since it could happen that w0 has
been discarded away. Consequently we cannot use the previously mentioned results
to straightforwardly study the examples mentioned above.

In this paper, we are going to introduce a frequency dependence of the physical
parameters invoked in first order symmetric systems describing wave propagation
through electromagnetic, acoustic or linear elastic metamaterials. More precisely,
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a global rather than local approach in the frequency domain is considered and our
goal is to provide well-posedness for the frequency-dependent cases mentioned before.
Unfortunately, we will not be able to prove such results for all frequencies. Instead we
formulate generic well-posedness that is existence and uniqueness except for a discrete
and locally finite set of frequencies. The key tool for the proof of the presented results
is the Fredholm theory which implies to remove some frequencies depending on what
the geometry and the boundary conditions are. Consequently, our results are not
global well-posedness. Nevertheless, we are going to give here sufficient and general
conditions on the materials leading to discreteness and local finiteness for the singular
frequencies to be dropped out.

An outline of this article is as follows. First of all, a mathematical framework
to study Maxwell’s equation, acoustic wave system and linear elasticity is introduced
to show the general underlying difficulties due to the presence of metamaterials (sec-
tion 2). We then introduce the Maxwell’s equations we are going to study and give
two generic well-posedness for these equations that are not equivalent (section 3). The
first one (section 3.1) can be applied to study electromagnetic effect into scalar chiral
or bi-anisotropic metamaterials. The second one (section 3.2) can handle Maxwell’s
equation in presence of anisotropic metamaterials. Following the same sketch, we
derive generic well-posedness results respectively for acoustics (section 4) and elastic
metamaterials (section 5). Finally (section 6), in order to show the interest of these
results, we will apply them to study some physical examples of metamaterials.

2. General mathematical framework. We present here in a very general
setting the difficulties coming from the presence of metamaterials and the main tools
used in the proof of our results.

Let Ω be a simply connected and bounded open set of RN with C1 boundary. The
exterior unit normal vector is denoted by ν = (ν1, ν2, ν3). Let S =

∑N
j=1 Sj∂j be a

first order differential operator where Sj ∈ Hom(Ck) are linear applications from Ck
to Ck satisfying S∗j = Sj . We now consider the following system:

Find u ∈ HS such that :{
K(p, x)u+ Su(p, x) = f(x), x ∈ Ω,
u(p, x) ∈ kerN(x), x ∈ ∂Ω,

(2.1)

where p = iw+ δ is the Laplace variable, N(x) is a smooth varying linear application,
f is a source term, K(p, x) ∈ Hom(Ck), u(x) ∈ Ck is an unknown physical quantity
(electric or magnetic fields for instance) and HS =

{
u ∈ L2(Ω)k | Su ∈ L2(Ω)k

}
. We

note D(S) for the domain of the unbounded operator S:

D(S) = {u ∈ HS | u(x) ∈ kerN(x) for x ∈ ∂Ω} .

The boundary conditions are assumed to verify the conditions given in [31] to ensure
maximal dissipativity of the unbounded operator (S,D(S)). As a consequence, when
the multiplicative operator K(p, .) is (uniformly in the second variable) bounded and
coercive, equation (2.1) has an unique solution continuously depending on the source
term.

However, when metamaterials are strictly embedded into Ω, the applicationK(p, x)
can no longer be coercive (nor having any specific sign as x travels through Ω) for
some p. Hence we cannot deduce existence and uniqueness of solution for (2.1) from
the previous argument. This paper is thus devoted to prove well-posedness of systems
modelling wave propagation through metamaterials in electromagnetism or optics
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(theorem 3.2), acoustics (theorem 4.1) and linear elasticity (theorem 5.1) when the
tensor K(p, x) verifies the following hypotheses:

Assumptions 1 (General assumptions).
(H1) The application p ∈ D0 7−→ K(p, x) is holomorphic for almost all x ∈ Ω,

where D0 is a connected open set of C.
(H2) The application x ∈ Ω 7−→ K(p, x) belong to L∞(Ω) (or replacing by Lipchitz

continuous which will be later specified) for all p ∈ D0 and K(p, x)−1 exists
for almost all x ∈ Ω.

(H3) There exists p0 in D0 such that K(p0, .) is coercive.

The above assumptions are the basics of our framework to study system (2.1) with
metamaterials. Actually (H1) describes the frequency dependence of the physical
parameters of the metamaterials. Note that for parameters admitting poles in p, we
can restrict D0 to a subset of the complementary of the union of neighbourhoods of
these poles. (H2) is nothing but a physical assumption saying that the homogenized
metamaterials have smoothly varying (in x ∈ Ω) physical parameters. (H3) says
that the material behaves like a ”physical” one (that is when the parameters are
positive definite) for a given p = p0. Furthermore, (H1) and (H3) are motivated by
the remark of V.G. Veselago [34] mentioned in the introduction and some examples
extracted from the literature [17, 32, 10]. In particular, these hypotheses yield the
well-posedness of (2.1) for p0, see [31].

Let us present now the sketch of the proof of the results presented here. The
basic idea behind the method used to bypass the difficulty relying on the ”negativity”
of K(p, .) is to find a way to extend the existence and uniqueness of solution to (2.1)
from p0 to others p lying in the holomorphy domain of K(p, .). The main tool to do
so can be found with the Fredholm’s analytical theory ([19] p. 371).

Firstly, for the systems we work with, there exists a first order differential operator
Q such that QS = 0 in the sense of distribution and ker(S) = Im(Q∗) where ker(S) ={
u ∈ L2(Ω)k | Su = 0, D′(Ω)

}
. Moreover, they are shown to be subjected to some

coercive inequality [24] of the form:

‖u‖H1(Ω) ≤ C
{
‖u‖L2(Ω) + ‖Su‖L2(Ω) + ‖Qu‖L2(Ω)

}
(2.2)

where u ∈ D(S)∩
{
u ∈ L2(Ω)k | Qu ∈ L2(Ω)

}
. Then, to obtain some compactness for

the resolvent of (S,D(S)) one has to control Qu for u ∈ D(S). One way to proceed is to
use an orthogonal splitting of L2(Ω)k given by a suitable Hodge decomposition [9, 4]:

L2(Ω)k = R⊕R⊥,

where R is a linear subspace of L2(Ω)k such that ker(S) ⊂ R. This implies that
ker(S)⊥ = ker(Q) ⊃ R⊥. With such a decomposition at hands, one can project (2.1)
to get the following equivalent system:

Find u = PRu+ PR⊥u ∈ D(S) such that :{
PR⊥K(p, .)(PRu+ PR⊥u) + PR⊥SPR⊥u = PR⊥f, on Ω,
PRK(p, .)(PRu+ PR⊥u) = PRf, on Ω,

where PR : L2(Ω)k −→ R and PR⊥ : L2(Ω)k −→ R⊥ are the orthogonal projections
associated to the Hodge decomposition. Remark then that one needs to invert the
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family of operators PR⊥K(p, .)PR⊥ + PR⊥MPR⊥ on R⊥ ∩ D(S). As this family is
holomorphic (thanks to (H1)) and have compact resolvent (thanks to inequality 2.2),
this inversion can be done with help of Fredholm analytic theory. This yields to
existence and uniqueness of PR⊥u(p, .) for all p ∈ D0\S for S a set of exceptional
values. However, what is difficult is to get PRu in this very general setting. Indeed,
one has to invert the operator PRK(p, .)PR on R for all p ∈ D0, even when K(p, .) is
not coercive. To do this, one must have more information on the spaceR implying that
we must specify the physics we work with. We thus prove theorems 3.2, 4.1 and 5.1 but
under restrictive phenomenological assumptions (scalar valued physical parameters for
instance). In some others cases we can prove the invertibilty of PRK(p, .)PR (leading
to theorems 3.6, 4.5 and 5.2) by adding one hypothesis of the form

Assumptions 2 (General additional assumptions for non-scalar parameters).
(H4) There exists a(p, x) ∈ C, Lipschitz continuous for x ∈ Ω and holomorphic

for p ∈ D0, such that K(p, x)a(p, x) is coercive for all p ∈ D0 and almost all
x ∈ Ω.

Remark 2.1. Assumption (H4) is added when tensorial and not scalar param-
eters are considered because of change of the spectral properties of the operator in-
volved. For instance, Maxwell’s equations in chiral media may admit an essential
spectrum close to zero on the positive imaginary axis. This does not occur in isotropic
media [22]. Finally note that assumption (H4) is satisfied for scalar Lipchitz contin-
uous parameters satisfying (H1) − (H2). Indeed, in that case, (H4) is satisfied with
a(p, x) = K(p, x)−1.

3. Generic well-posedness results for electromagnetism and optics. In
this section, we study electromagnetic phenomenons in presence of metamaterials
with three different models. Firstly we look at the usual time-harmonic Maxwell’s
equations in Laplace transform:

Find (e, h) ∈ H(curl,Ω)2 such that : pε(p, x)e(p, x)−∇× h(p, x) = −j(x), on Ω,
pµ(p, x)h(p, x) +∇× e(p, x) = −m(x), on Ω,
ν(x)× (e(p, x) + Λ(x)(ν(x)× h(p, x))) = 0, x ∈ ∂Ω,

(3.1)

where H(curl,Ω) =
{

Ψ ∈ L2(Ω)3 | ∇ ×Ψ ∈ L2(Ω)3
}

, e is the electric field, h is the
magnetic field, ε stands for the permittivity, µ for the permeability and j and m are
respectively the electric and magnetic current densities. At last Λ : ∂Ω −→ Hom(C3)
describes impedance boundary condition and is assumed to be Lipschitz continuous
and coercive:

∀ z ∈ C3,Re 〈(Λ + Λ∗) z, z〉 ≥ 0,

noting 〈X,Y 〉 =
∑N
j=1XjYj the standard scalar product of vector X,Y ∈ CN with

associated norm |X| =
√
〈X,X〉. Note that the tangential traces on ∂Ω of (e, h) ∈

H(curl,Ω)2 have to be understood in the sense that
(
ν × e|∂Ω , ν × h|∂Ω

)
∈ H− 1

2 (∂Ω)2.
A second model we are interested in describes the wave propagation of time-

harmonic electromagnetic waves through bi-anisotropic media [21]:

Find (e, h) ∈ H(curl,Ω)2 such that : pε(p, x)e(p, x) + pξ(p, x)h(p, x)−∇× h(p, x) = −j(x), on Ω,
pµ(p, x)h(p, x) + pζ(p, x)e(p, x) +∇× e(p, x) = −m(x), on Ω,
ν(x)× (e(p, x) + Λ(x)(ν(x)× h(p, x))) = 0, x ∈ ∂Ω,

(3.2)
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where ξ and ζ are called the coupling constants.
Finally, in the special case of chiral media appearing in optics for crystals, one

can replace Maxwell’s equations by the Drude-Born-Fedorov system [17]:

Find (e, h) ∈ H(curl,Ω)2 such that :
pε(p, x)e(p, x) + pβ(p, x)ε(p, x)∇× e(p, x)

−∇× h(p, x) = −j(x), x ∈ Ω,
pµ(p, x)h(p, x) + pβ(p, x)µ(p, x)∇× h(p, x)

+∇× e(p, x) = −m(x), x ∈ Ω,
ν(x)× (e(p, x) + Λ(x)(ν(x)× h(p, x))) = 0, x ∈ ∂Ω,

(3.3)

where β is the chirality of the material embedded into Ω.

Remark 3.1. Maxwell’s equations (3.1) are special case of (3.2) and (3.3) that
can be obtained respectively by taking β = 0 or ξ = ζ = 0.

Moreover, (3.2) and (3.3) are equivalent up to some algebraic computations.
Hence, we will give two sets of assumptions on the media embedded into Ω according
whether it is scalar bi-anisotropic (assumption 3) or chiral (assumption 4) but only
one theorem will be formulated (theorem 3.2). To show that (3.3) is similar to (3.2)
(the reciprocal can be done in the same way), first rewrite (3.3) as follows:{

∇× h = pεe+ pβε∇× e+ j,
∇× e = −m− pµh− pβµ∇× h,

where the dependence of the physical parameters in (p, x) have been dropped to lighten
the overall expressions. Then, reporting the first equation above into the second one
of (3.3) and vise-versa, one gets:{

pεe+ pβε (−m− pµh− pβµ∇× h)−∇× h = −j,
pµh+ pβµ (pεe+ pβε∇× e+ j) +∇× e = −m.

Finally, gathering the previous computations, one has the following (3.2) system:{ (
I3 + p2β2εµ

)−1 (
pεe− p2βεµh

)
−∇× h = −j̃,(

I3 + p2β2µε
)−1 (

pµh+ p2βµεe
)

+∇× e = −m̃.

We are going to give two generic well-posedness results (that is existence and
uniqueness of solution except for some p) for electromagnetism. The first generic well-
posedness result allows to study either chiral (3.3) or bi-anisotropic (3.2) materials
having scalar physical parameters satisfying assumptions similar to (H1) − (H2) −
(H3). The second result, for 3×3 tensorial coefficients, requires additionally a variant
of assumption (H4).

3.1. Generic well-posedness for scalar chiral or bi-anisotropic materi-
als. We focus here on solving equation (3.3) or (3.2) in presence of materials charac-
terized by scalar parameters, and introduce the following assumptions:

Assumptions 3 (For scalar bi-anisotropic materials).
(B1) The applications ε(p, x), µ(p, x), ξ(p, x) and ζ(p, x) are holomorphic in p ∈ D0

for almost all x ∈ Ω, where D0 is a connected open set of C.
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(B2) The applications ε(p, x), µ(p, x), ξ(p, x) and ζ(p, x) are Lipschitz continuous
in x ∈ Ω for all p ∈ D0. Moreover, ε(p, x)µ(p, x) − ξ(p, x)ζ(p, x) 6= 0 for
almost all x ∈ Ω and for any p ∈ D0.

(B3) There exists p0 in D0 and α > 0 such that the following inequality holds:

Re
(
< p0ε(p0, x)X,X > + < p0µ(p0, x)Y, Y > + < p0ξ(p0, x)Y,X >

)
+Re

(
< p0ζ(p0, x)X,Y >

)
≥ α(|X|2 + |Y |2),

for almost all x ∈ Ω and for all X,Y ∈ C3.

Assumptions 4 (For scalar chiral media).
(C1) The applications ε(p, x), µ(p, x) and β(p, x) are holomorphic in p ∈ D0 for

almost all x ∈ Ω, where D0 is a connected open set of C.
(C2) The applications ε(p, x), µ(p, x) and β(p, x) are Lipschitz continuous in x ∈ Ω

for all p ∈ D0. Moreover, p2ε(p, x)µ(p, x)M(p, x) 6= 0, with M(p, x) = (1 +
p2β(p, x)2ε(p, x)µ(p, x))−1, for almost all x ∈ Ω.

(C3) There exist p0 in D0 and α > 0 such that, for almost all x ∈ Ω and X,Y ∈ C3:

Re
{
< p0ε(p0, x)M(p0, x)X,X > + < p0µ(p0, x)M(p0, x)Y, Y >

}
+Re

{
< p2

0β(p0, x)ε(p0, x)µ(p0, x)M(p0, x)Y,X >
}

−Re
{
< p2

0β(p0, x)ε(p0, x)µ(p0, x)M(p0, x)X,Y >
}
≥ α(|X|2 + |Y |2),

Finally, let us note H(div,Ω) =
{
e ∈ L2(Ω)3 | dive ∈ L2(Ω)

}
. Then, the first

main result of this paper is:
Theorem 3.2. Suppose that (j,m) ∈ (H(div,Ω))2 and that assumption 3 (re-

spectively 4) are satisfied. Then Maxwell’s equations (3.2) (respectively (3.3)) are
well-posed for all p ∈ D0\S where S is a discrete, locally finite and possibly empty set
of D0. Moreover the solution (e(p, .), h(p, .)) verifies:

‖(e(p, .), h(p, .))‖L2(Ω)6 ≤ C(p)

{∥∥∥∥( j
m

)∥∥∥∥
L2(Ω)6

+
∥∥∥∥( div(j)

div(m)

)∥∥∥∥
L2(Ω)2

}
,

with C(p) a constant depending only on p and Ω. Moreover, the application p ∈
D0\S 7−→ (e(p, .), h(p, .)) ∈ L2(Ω)6 is holomorphic.

Proof. The proof follows the sketch presented in section 2. Hence we start by
formulating Maxwell’s equations as:

Find u = (e, h)T ∈ HM such that :{
K(p, x)u(p, x) + Mu(p, x) = f(x), x ∈ Ω,
ν(x)× (e(p, x) + Λ(x)(ν(x)× h(p, x))) = 0, x ∈ ∂Ω,

(3.4)

where f = (−j,−m) ∈ H(div,Ω)2 and M is the unbounded operator:

M =
(

0 −∇×
∇× 0

)
,

with domain D(M) defined by:

D(M) =
{

(e, h)T ∈ (H(curl,Ω))2 | ν(x)×
(
e|∂Ω + Λ(x)(ν(x)× h|∂Ω)

)
= 0, x ∈ ∂Ω

}
.
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Note that (M,D(M)) is maximal dissipative. Finally, K(p, x) ∈ Hom(C6) is given by:

K(p, x) =
(
K11(p, x)I3 K12(p, x)I3

K21(p, x)I3 K22(p, x)I3

)
, (3.5)

where IN denotes the identity operator of CN , and with
• for bi-anisotropic media (3.2): K11(p, x) = pε(p, x), K12(p, x) = pξ(p, x),
K21(p, x) = pζ(p, x), K22(p, x) = pµ(p, x),

• and for chiral media (3.3): K11(p, x) = pε(p, x)M(p, x), K21(p, x) = −K12(p, x),
K12(p, x) = p2β(p, x)ε(p, x)µ(p, x)M(p, x), K22(p, x) = pµ(p, x)M(p, x) where
M(p, x) is defined in (C3).

Note Q =
(

div 0
0 div

)
. Then, using that QM = 0 and that K(p, .) satisfies

(B2) allows to take the divergence of equation (3.4) to obtain:

Qf = QK(p, x)u+ QMu =: Z(p, x)u+ K̃(p, x)Qu.

In this last identity, K̃(p, x) ∈ Hom(C2) and Z(p, x) ∈ Hom(C6,C2) are given by:

K̃(p, x) =
(
K11(p, x) K12(p, x)
K21(p, x) K22(p, x)

)
,

Z(p)u = Z(p)
(
e
h

)
=
(
〈∇K11(p, x), e〉+ 〈∇K12(p, x), h〉
〈∇K21(p, x), e〉+ 〈∇K22(p, x), h〉

)
.

An elliptization of Maxwell’s equations is then performed by writing a relaxed version
of system (3.4) by the introduction of two new unknown functions ϕ and ψ - identically
zero in (3.4)- as follows [22]:

Find (e, h, ϕ, ψ) ∈ D(M) ∩ (H(div,Ω))2 ×H1
0 (Ω)2 such that :

(K(p, x) + M)
(
e
h

)
+
(
∇ϕ
∇ψ

)
= f, x ∈ Ω,

K̃(p, x)−1Z(p, x)
(
e
h

)
+ Q

(
e
h

)
+K̃(p, x)−1

(
ϕ
ψ

)
= K̃(p, x)−1Qf.

(3.6)

As det(K(p, x)) = det(K̃(p, x))3, K̃(p, x) is invertible thanks to (B2) and the
above equation makes sense. Now introduce the closed unbounded operator T:

T =


0 −∇× ∇ 0
∇× 0 0 ∇
div 0 0 0
0 div 0 0

 ,

with domain:

D(T) =
{
U ∈ (H(curl,Ω) ∩H(div,Ω))2 ×H1(Ω)2 | U(x)|∂Ω ∈ ker(Ñ(x))

}
,

for U = (e, h, ϕ, ψ) and where the boundary conditions are encoded by the linear
application Ñ : ∂Ω −→ Hom(C8,C5)) which is Lipschitz continuous and defined by:

Ñ(x)U(x) =

 ν × e(x) + ν × Λ(x)(ν × h(x))
ϕ(x)
ψ(x)

 , for x ∈ ∂Ω.
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The elliptized Maxwell’s equations (3.6) can now be summarized as follows:

Find U = (e, h, ϕ, ψ) ∈ HT such that :{
(K̃(p, x) + T)U(p, x) = F (p, x), x ∈ Ω,
U(p, x) ∈ ker(Ñ(x)), x ∈ ∂Ω,

(3.7)

where K̃(p, .) belongs to L∞(Ω, Hom(C8)) according to (B1) and Rademacher’s theo-
rem. Furthermore F (p, .) :=

(
f, K̃(p, .)−1Qf

)
∈ L2(Ω)8 is holomorphic for all p ∈ D0.

Lemma 3.3. Assume that F (p, .) =
(
f, K̃(p, .)−1Qf

)
for f ∈ (H(div,Ω))2 and

U = (e, h, ϕ, ψ) ∈ D(T) satisfies (3.7). Then ϕ = ψ = 0 and u = (e, h) ∈ D(M) is
solution to (3.4).

From lemma 3.3, (3.4) corresponds to solving (3.7). Moreover, we have:

Lemma 3.4. (T,D(T)) is maximal dissipative with compact resolvent.

From lemma 3.4 and as the multiplicative operator K̃(p, .) is bounded for all p
in D0, the resolvent set of

(
K̃(p, .) + T,D(T)

)
is thus non-empty for all p ∈ D0.

Moreover, the holomorphic family of closed operators
(
K̃(p, .) + T,D(T)

)
p∈D0

has

compact resolvent. Hence, solving (3.6) is the same as inverting a holomorphic family
of closed operators with compact resolvent. This can actually be done with Fredholm
analytical theory ([19] theorem 1.10 p. 371) since we find p0 ∈ D0 such that (3.6) is
well-posed. This is the purpose of the lemma below.

Lemma 3.5. The operator
(
K̃(p0, .) + T,D(T)

)
, for p0 satisfying (B3) (respec-

tively (C3)), is invertible and
(
K̃(p0, .) + T

)−1

∈ B
(
L2(Ω)8,D(T)

)
.

The notation B(X,Y) stands for the set of bounded linear operator from X to
Y, both being Banach spaces. Using lemma 3.5 and Fredholm analytical theory,
we obtain that the holomorphic family of closed operators with compact resolvent(
K̃(p, .) + T,D(T)

)
p∈D0

is invertible for p ∈ D0\S where S is a discrete, locally finite

and possibly empty set of D0. This shows that the system (3.7) is well-posed for p ∈
D0\S. Furthermore, using (B1) and (B2) (respectively (C1)−(C2)), the applications
p ∈ D0 7−→

(
K̃(p, .) + T

)
∈ B(D(T), L2(Ω)8) and p ∈ D0 7−→ F (p) ∈ L2(Ω)8 are

both holomorphic and so is (see [19] p.365) the application: U : p ∈ D0\S 7−→
U(p, .) :=

(
K̃(p, .) + T

)−1

F (p, .) ∈ L2(Ω)8. Consequently the application solution

to (3.7) p ∈ D0\S 7−→ u(p, .) ∈ L2(Ω)6, where u(p, .) satisfies (3.4) is holomorphic.
Moreover we get, for some constant C(p) > 0, the estimate:

‖U(p, .)‖L2(Ω)8 ≤ C(p) ‖F (p, .)‖L2(Ω) .

Now using lemma 3.3 we obtain that the previous estimate reduces to:

‖e(p, .)‖L2(Ω)3 + ‖h(p, .)‖L2(Ω)3 ≤ C(p)
{
‖f‖L2(Ω) + ‖Qf‖L2(Ω)

}
,
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which concludes the proof.

The rest of the section is dedicated to the proof of the lemmas set up above.

Proof. [Proof of lemma 3.3] We follow the proof of theorem 4.2 in [22]. Applying
Q to the first equation of (3.6) shows that:(

∆ϕ
∆ψ

)
= Qf −Q

(
K(p, .)

(
e
h

))
,

where ∆ψ = div (∇ψ). From the definition of K̃(p, x) and Z(p, x), we derive that the
second equation of (3.6) can be written as follows:(

ϕ
ψ

)
= Qf −Q

(
K(p, .)

(
e
h

))
.

As a result, ϕ and ψ are both solutions to the following equation:

Find ϑ ∈ H1
0 (Ω) such that :

∆ϑ− ϑ = 0, on Ω,

for ϑ ∈ {ϕ,ψ}, which only admits the null solution.

Proof. [Proof of lemma 3.4] There exists three symmetric tensors Tj ∈ Hom(C8)
such that T =

∑3
j=1 Tj∂j . Thus, according to [31], the unbounded operator (T,D(T))

is maximal dissipative if:
(a) On every connected component of ∂Ω, the rank of Tν(x) :=

∑3
j=1 Tjνj(x),

x ∈ ∂Ω is constant,
(b) For all x ∈ ∂Ω and U(p, x) ∈ ker(Ñ(x)), we have

〈
Tν(x)U(p, x), U(p, x)

〉
≥ 0,

(c) dim(ker(Ñ(x))= ] {non− negative eigenvalues of Tν counting multiplicity}.
Firstly, straightforward computations shows that det(Tν) =

(
ν2

1 + ν2
2 + ν2

3

)4
> 0 and

then (a) is satisfied. Then, for U(x) = (e, h, ϕ, ψ) ∈ ker(Ñ(x)), it comes:〈
Tν(x)U(x), U(x)

〉
= 2Re

〈
Λ(x)(ν × h), ν × h

〉
≥ 2α|ν × h|2 ≥ 0,

verifying (b). Finally the spectrum of Tν is σ(Tν) = {−1,+1} both with multiplicity
4 and dim(ker(Ñ(x))) = 4, so (c) is satisfied too.

Now, from [24], the following inequality holds for all u ∈ D(M) ∩ (H(div,Ω))2

‖u‖(H1(Ω))6 ≤ C
{
‖u‖(L2(Ω))6 + ‖Mu‖(L2(Ω))6 + ‖Qu‖(L2(Ω))6

}
.

Thus, the embedding of H1(Ω) into L2(Ω) being compact, one obtains that the em-
bedding of D(T) into L2(Ω)8 is compact. Hence, the resolvent of (T,D(T)) is compact.

Proof. [Proof of lemma 3.5] Inverting
(
K̃(p0, .) + T

)
on D (T) means solving

the following problem:

Find U = (e, h, ϕ, ψ) ∈ HT such that :{
(K̃(p0, x) + T)U(p, x) = G, x ∈ Ω,
U(p, x) ∈ ker(Ñ(x)), x ∈ ∂Ω,

(3.8)
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for G in L2(Ω)8. From lemma 3.4, there exists at least one α > 0 belonging to the re-
solvent set of the operator (T,D(T)). Furthermore the resolvent operator (αI8 + T)−1

is a compact operator of L2(Ω)8. Then (3.8) remains to solve the following problem:

Find U ∈ L2(Ω)8 such that(
I8 + (αI8 + T)−1

(
K̃(p0, .)− αI8

))
U = (αI8 + T)−1

G =: G̃. (3.9)

The boundedness of K̃(p0, x) shows that the operator (αI8 + T)−1
(
K̃(p0, .)− αI8

)
is

compact on L2(Ω)8. Then, from the Fredholm alternative, we only need to show the
injectivity of the operator

(
I8 + (αI8 + T)−1

(
K̃(p0, .)− αI8

))
acting on L2(Ω)8 to

prove the lemma. Taking G̃ = 0 in (3.9) and using the boundedness of (αI8 + T)−1 :
L2(Ω)8 7−→ D(T) implies that U belongs to D(T) and satisfies (3.8) with right mem-
ber G = 0. Now lemma 3.3 shows that U = (e, h, ϕ, ψ) = (e, h, 0, 0) with (e, h)
verifying (3.4) for p = p0. Then from (B3) (respectively (C3)) and the uniqueness of
solution to (3.4) we infer that (e, h) = (0, 0) concluding the proof of the lemma.

3.2. Generic well-posedness for some anisotropic materials. The generic
well-posedness result for the Maxwell systems (3.1), (3.3) or (3.2) proved in the pre-
vious section can be only applied to materials with scalar physical parameters. In the
case of anisotropic materials, we would have to take into account for some physical
parameters that are no longer scalar. This done in this section. We start introducing
the corresponding assumptions:

Assumptions 5 (For bi-anisotropic materials having tensorial parameters).
(BT1) The applications ε(p, x), µ(p, x), ξ(p, x) and ζ(p, x) (which are now 3× 3 ten-

sors) are holomorphic in p ∈ D0 for almost all x ∈ Ω, where D0 is a connected
open set of C.

(BT2) The applications ε(p, x), µ(p, x), ξ(p, x) and ζ(p, x) belong to L∞(Ω) for all
p ∈ D0. Moreover, det(ε(p, x)µ(p, x) − ξ(p, x)ζ(p, x)) 6= 0 for almost all
x ∈ Ω and for any p ∈ D0.

(BT3) There exists p0 ∈ D0 and α > 0 such that the following inequality holds:

Re
{
< p0ε(p0, x)X,X > + < p0µ(p0, x)Y, Y > + < p0ξ(p0, x)Y,X >

}
+Re

{
< p0ζ(p0, x)X,Y >

}
≥ α(|X|2 + |Y |2),

for almost all x ∈ Ω and for all X,Y ∈ C3.
(BT4) There exists a(p, x) ∈ C, Lipschitz continuous for x ∈ Ω and holomorphic for

p ∈ D0 verifying:

Re
{
< pε(p, x)a(p, x)X,X > + < pµ(p, x)a(p, x)Y, Y >

}
+Re

{
< pξ(p, x)a(p, x)Y,X > + < pζ(p, x)a(p, x)X,Y >

}
≥ α(|X|2 + |Y |2),

for all p ∈ D0, for almost all x ∈ Ω and for all X,Y ∈ C3.

Assumptions 6 (For dielectric materials having tensorial parameters). Suppose
that (BT1)-(BT2)-(BT3) are holding and replace (BT4) with:
(DT4) Parameters ξ and ζ are vanishing, and there exists aε(p, x), aµ(p, x) ∈ C both

Lipschitz continuous for x ∈ Ω and holomorphic for p ∈ D0. Moreover, there
exists α > 0 such that following inequalities holds:

Re
{
< pϑ(p, x)aϑ(p, x)X,X >

}
≥ α|X|2,
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for ϑ ∈ {ε, µ}, for all p ∈ D0, for almost all x ∈ Ω and for all X,Y ∈ C3.

Assumptions 7 (For chiral materials having tensorial parameters).
(CT1) The applications ε(p, x), µ(p, x) and β(p, x) (which are now 3×3 tensors) are

holomorphic in p ∈ D0 for almost all x ∈ Ω, where D0 is a connected open
set of C.

(CT2) The applications ε(p, x), µ(p, x) and β(p, x) are in L∞(Ω) for all p ∈ D0.
Moreover, we ask for

det
[
p2ε(p, x)µ(p, x)

]
detM̃ 6= 0,

for almost all x ∈ Ω with M̃(p, x) =
(
I3 + p2β(p, x)ε(p, x)β(p, x)µ(p, x)

)−1.
(CT3) There exist p0 in D0 and α > 0 such that the following inequality

Re
{
< p0M̃(p0, x)ε(p0, x)X,X > + < p0M(p0, x)µ(p0, x)Y, Y >

}
+Re

{
< p2

0β(p0, x)ε(p0, x)M(p0, x)µ(p0, x)Y,X >
}

−Re
{
< p2

0M̃(p0, x)β(p0, x)µ(p0, x)ε(p0, x)X,Y >
}
≥ α(|X|2 + |Y |2),

where M(p, x) =
(
I3 + p2β(p, x)µ(p, x)β(p, x)ε(p, x)

)−1, holds for almost all
x ∈ Ω and for all X,Y ∈ C3.

(CT4) There exists a(p, x) ∈ C, Lipschitz continuous for x ∈ Ω and holomorphic for
p ∈ D0 such that the following inequality holds:

Re
{
< pa(p, x)M̃(p, x)ε(p, x)X,X > + < pa(p, x)M(p, x)µ(p, x)Y, Y >

}
+Re

{
< p2a(p, x)β(p, x)ε(p, x)M(p, x)µ(p, x)Y,X >

}
−Re

{
< p2a(p, x)M̃(p, x)β(p, x)µ(p, x)ε(p, x)X,Y >

}
≥ α(|X|2 + |Y |2),

for all p ∈ D0, for almost all x ∈ Ω and for all X,Y ∈ C3.

We can now formulate the following theorem:
Theorem 3.6. If assumption 5 (respectively 6 or 7) is satisfied, then for all

(j,m) ∈ L2(Ω)3×L2(Ω)3 Maxwell’s system (3.2) (resp. (3.1) or (3.3)) has an unique
solution for all p in D0\S where S ⊂ D0 is a discrete, locally finite and possibly empty
set of D0. Moreover the solution satisfies the bound:

∀p ∈ D0\S, ‖(e(p, .), h(p, .))‖L2(Ω) ≤ C(p) ‖(j,m)‖L2(Ω) ,

and the application p ∈ D0\S 7−→ (e(p, .), h(p, .)) ∈ L2(Ω)6 is holomorphic.

Proof. We focus on system (3.4) when the multiplicative operator K(p, x) satisfy-
ing (BT1)− (BT2)− (BT3) and either (BT4) or (DT4). The case of media checking
(CT1)− (CT2)− (CT3)− (CT4) is very similar.

Let us introduce the following Hodge decomposition [9]:

L2(Ω)3 × L2(Ω)3 = (H(div0,Ω))2 ⊕ grad(H1
0 (Ω))2, (3.10)

where H(div0,Ω) =
{
v ∈ L2 (Ω)3 | divv = 0

}
. and denote by P0 : L2(Ω)6 −→

H(div0,Ω)2 and P∇ : L2(Ω)6 −→ grad(H1
0 (Ω))2 the orthogonal projections associated
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to the direct sum (3.10). Applying them to (3.4) and using the identity P∇Mu = 0
for all u ∈ D(M), the solution to (3.4) thus solves the system:

Find u = P0u+ P∇u ∈ D(M) such that :{
P0K(p, .)(P0u+ P∇u) + P0MP0u = P0f,
P∇K(p, .)(P∇u+ P0u) = P∇f.

(3.11)

Second equation of (3.11) is solved with the following lemma:

Lemma 3.7. Assume that (B1)− (B2)− (B3) and either (BT4) or (DT4) hold.
Then, the operator P∇K(p, .)P∇ ∈ B

(
grad(H1

0 (Ω))2
)

is invertible with a bounded
inverse for all p ∈ D0\S0 where S0 is a discrete, locally finite and possibly empty set of
D0. Moreover the application p ∈ D0\S0 7−→ (P∇K(p, .)P∇)−1 ∈ B

(
grad(H1

0 (Ω))2
)

is holomorphic.

Applying lemma 3.7, the system (3.11) becomes:

Find u = P0u+ P∇u ∈ D(M) such that :{
P∇u = (P∇K(p, .)P∇)−1 [P∇f − P∇K(p, .)P0u] ,
B(p, .)P0u+ P0MP0u = f̃(p),

(3.12)

where f̃(p, .) = P0f −P0K(p, .)P∇ (P∇K(p, .)P∇)−1
P∇f belongs to H(div0,Ω)2, and

B(p, .) = P0K(p, .)P0−P0K(p, .)P∇(P∇K(p, .)P∇)−1P∇K(p, .)P0 ∈ B
(
H(div0,Ω)2

)
.

Let M̃ be the restriction of the operator M to the set (H(div0,Ω))2. Then (3.12) is
equivalent to the inversion of the holomorphic family of closed operator of (H(div0,Ω))2

defined by
(
B(p, .) + M̃, (H(div0,Ω))2 ∩ D(M)

)
p∈D0\S0

. Consider now the following

Majda’s inequality [24] holding for all u ∈ D(M) ∩ (H(div,Ω))2:

‖u‖(H1(Ω))6 ≤ C
{
‖u‖(L2(Ω))6 + ‖Mu‖(L2(Ω))6 + ‖Qu‖(L2(Ω))6

}
, (3.13)

where Q is defined in theorem 3.2. From (3.13), the compactness of the embedding
of H1(Ω) into L2(Ω), and the maximal dissipativity of (M,D(M)), one obtains that
the holomorphic family of closed operators

(
B(p, .) + M̃, (H(div0,Ω))2 ∩ D(M)

)
p

has

compact resolvent and non-empty resolvent set for all p ∈ D0\S0. From (BT3),
there exists p0 such that K(p0, x) is coercive for almost all x ∈ Ω. Then, since the
unbounded operator (M,D(M)) is maximal dissipative, equation (3.4) is well-posed for
p = p0. Hence, by the equivalence between (3.4) and (3.12), B(p0, .) + M̃ is invertible
on (H(div0,Ω))2 ∩D(M). Finally, thanks to Fredholm analytic theory B(p, .) + M̃ is
invertible on (H(div0,Ω))2∩D(M) for all p ∈ D0\S, where S = S0∪S1 for a discrete,
locally finite and possibly empty set of D0\S0 noted S1.

Remark that the inverse operator
(
B(p, .) + M̃

)−1

belongs to B(H(div0,Ω)2) and

that the application p ∈ D0\S 7−→
(
B(p, .) + M̃

)−1

is holomorphic. Thus P0u(p, .) is
holomorphic too. Then, from Lemma 3.7 we derive that P∇u(p, .) is holomorphic on
D0\S and so is the application p ∈ D0\S 7−→ u(p, .) = P∇u(p, .)+P0u(p, .) ∈ L2(Ω)6.
Finally we have the bound:

‖u(p, .)‖L2(Ω) ≤ ‖P∇u(p, .)‖L2(Ω) + ‖P0u(p, .)‖L2(Ω) ≤ C(p) ‖f‖L2(Ω) ,
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where C(p) is a positive constant depending only on Ω and p.

The rest of this section is dedicated to prove the lemmas.
Proof. [Proof of lemma 3.7] We begin by proving the lemma when (BT1) −

(BT2)− (BT3)− (BT4) hold. Inverting P∇K(p, .)P∇ on grad(H1
0 (Ω))2 summarizes

as solving the problem:

Find ϕ ∈ H1
0 (Ω)2 such that, for all v ∈ H1

0 (Ω)2 :∫
Ω

〈
K(p, x)Gϕ,Gv

〉
dx =< h, v >H−1(Ω)2×H1

0 (Ω)2 ,
(3.14)

where h belongs to H−1(Ω)2 and Gϕ = (−∇ϕ1,−∇ϕ2) for ϕ = (ϕ1, ϕ2) ∈ H1
0 (Ω)2.

System (3.14) is equivalent to the following second order partial differential equation:

Find ϕ ∈ H1
0 (Ω)2 such that :

−Q (K(p, .)Gϕ(p, x)) = h.
(3.15)

Unfortunately, the principal part of this second order partial differential operator
fails to be coercive for some p ∈ D0. However, introducing the following change of
unknown:

ϕ(p, .) = a(p, .)ψ(p, .), (3.16)

where a is given by (BT4). Reporting (3.16) into (3.15) leads to an equivalent in ψ:

Find ψ ∈ H1
0 (Ω)2 such that :

S(p)ψ := −QK(p, x)
(
a(p, x)Gψ(p, x) +

(
ψ1(p, x)∇a(p, x)
ψ2(p, x)∇a(p, x)

))
= h.

(3.17)

From (BT4) the multiplicative operator a(p, .)K(p, .) is coercive for all p ∈ D0 im-
plying that the principal part of (3.17) is coercive. Moreover, a(p, .) is Lipschitz
continuous for all p ∈ D0 so Rademacher’s theorem shows that ∇a(p, .) belongs to
L∞(Ω). Thus, S(p) : H1

0 (Ω)2 → H−1(Ω)2 is a holomorphic family of closed operator.
Let assume now that there exists λ in the resolvent set of

(
S(p), H1

0 (Ω)2
)
. Since

the embedding of H1
0 (Ω) into H−1(Ω) is compact, the resolvent operator (S(p)− λ)−1

defines a compact operator of H−1(Ω)2. Consequently, solving equation (3.17) is the
same as inverting a holomorphic family of closed operators with compact resolvent.
This is achieved with help of the Fredholm analytic theory since we show that the
resolvent set of

(
S(p), H1

0 (Ω)2
)

is non-empty for all p ∈ D0. Thus, let λ be an arbitrary
complex number and Ap(ψ, v) be given, for any ψ, v ∈ H1

0 (Ω)2, by

Ap(ψ, v) =
∫

Ω

〈
K(p, x)a(p, x)Gψ,Gv

〉
+
〈
K(p, x)

(
ψ1(p, x)∇a(p, x)
ψ2(p, x)∇a(p, x)

)
,Gv

〉
dx.

Hypothesis (BT4) together with Cauchy-Schwartz inequality imply then the bound:

Re(Ap(ψ,ψ)) +Re(λ)
∫

Ω

|ψ|2dx ≥ α ‖ Gψ ‖2L2(Ω) +Re(λ) ‖ψ‖2L2(Ω)

− 2‖K(p, .)Ga(p, .)‖L∞(Ω) ‖ψ‖L2(Ω)2 ‖Gψ‖L2(Ω)2 .
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Using Young inequality ab ≤ ξa2/2 + b2/(2ξ) onto the term ‖ψ‖L2(Ω)2 ‖Gψ‖L2(Ω)2 ,

with ξ = α/
(

2 ‖K(p, .)Ga(p, .)‖L∞(Ω)

)
and, gathering the previous calculations yields:

Re(Ap(ψ,ψ)) +Re(λ)
∫

Ω

|ψ|2dx ≥

(
Re(λ)−

‖K(p, .)Ga(p, .)‖2L∞(Ω)

α

)
‖ψ‖2L2(Ω)2

+
α

2
‖Gψ‖2L2(Ω) .

Thus, taking λ ∈ C with a big enough real part and using Lax-Milgram theorem, we
obtain that the resolvent set of

(
S(p), H1

0 (Ω)2
)

is non-empty for all p ∈ D0. It remains
to find p such that equation (3.17) is well-posed. Taking p = p0 defined through
assumption (BT3) we get that (3.14) is well-posed and the reverse change of unknown
(3.16) implies that (3.17) is well-posed too for p = p0. Hence the holomorphic family
of closed operator

(
S(p), H1

0 (Ω)2
)

is invertible for all p ∈ D0\S0 where S0 is a discrete,
locally finite and possibly empty set of D0. Moreover, the inverse operator S(p)−1

which belong to B(H−1(Ω)2, H1
0 (Ω)2) is holomorphic for all p ∈ D0\S0 because the

application p ∈ D0 7−→ S(p) ∈ B(H1
0 (Ω)2, H−1(Ω)2) is holomorphic ([19] p.365).

Since equations (3.17) and (3.14) are equivalent, we derive, from the well-posedness
of (3.17), the invertibility of the operator P∇K(p, .)P∇ on (grad(H1

0 (Ω)))2 for all
p ∈ D0\S0. Moreover, the closed graph theorem shows that (P∇K(p, .)P∇)−1 actually
belongs to B

(
grad(H1

0 (Ω))2
)
. Finally, remark that the operator (P∇K(p, .)P∇)−1 ∈

B
(
grad(H1

0 (Ω))2
)

is holomorphic for all p ∈ D0\S0 since the application p ∈ D0 7−→
P∇K(p, .)P∇ ∈ B

(
grad(H1

0 (Ω))2
)

is holomorphic ([19] p.361).

When (DT4) holds instead of (BT4), the tensor K(p, x) is the block-diagonal
matrix K(p, x) = p diag (ε(p, x), µ(p, x)). Hence, equation (3.14) reduces to

Find ϕ ∈ H1
0 (Ω) such that :

−div (pϑ(p, x)∇ϕϑ) = hϑ,

for hϑ ∈ H−1(Ω) and ϑ ∈ {ε, µ}. Introducing the changes of unknown ϕϑ(p, .) =
aϑ(p, .)ψϑ(p, .), where aϑ is given in (DT4), yields to

Find ψ ∈ H1
0 (Ω) such that :

−div (ϑ(p, x)aϑ(p, x)∇ψϑ(p, x))− div (ϑ(p, x)ψϑ(p, x)∇aϑ(p, x)) = hϑ, on Ω.

From now, the proof of the existence and uniqueness of ψϑ can be achieved, in the
same way as before, using the Fredholm analytic theory once for each ϑ ∈ {ε, µ}.

4. Acoustic wave system. In this section, we are investigating the first order
wave equation:

Find (u, ρ) ∈ H(div,Ω)×H1(Ω) such that : Γ(p, x)u(p, x)−∇ρ(p, x) = f1(x), on Ω,
n(p, x)ρ(p, x)− div(u(p, x)) = f2(x), on Ω,
ρ(p, x) + λ(x) 〈u(p, x), ν〉 = 0, on ∂Ω,

(4.1)

where ρ denotes the acoustic velocity, u is the acoustic pressure, f = (f1, f2) ∈
L2(Ω)3 ×L2(Ω) is a source term, λ is the acoustic impedance, Γ is the bulk modulus
and n is the refractive index. The normal trace of u ∈ H(div,Ω) appearing in the
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boundary conditions has to be understood in the sense that 〈u, ν〉|∂Ω
∈ H−

1
2 (∂Ω).

Finally, assume that the function λ : ∂Ω 7→ C is Lipschitz continuous with Re(λ) ≥ 0.
We introduce the following conditions to be satisfied by the material:

Assumptions 8 (For acoustic materials).
(A1) The applications Γ(p, x) and n(p, x) are holomorphic in p on D0 for almost

all x ∈ Ω, where D0 is a connected open set of C.
(A2) The applications Γ(p, x) and n(p, x) both belong to L∞(Ω) and are invertible

for all p ∈ D0.
(A3) There exists p0 in D0 and α > 0 such that the following inequality holds:

Re
{
< Γ(p0, x)X,X >

}
+ |z|2Re(n(p0, x)) ≥ α(|X|2 + |z|2),

for all (X, z) ∈ C3 × C and for almost all x ∈ Ω.

Our first generic well-posedness result for (4.2) is given below:
Theorem 4.1. Suppose that Γ(p) ∈ C\ {0} is scalar valued and does not depend

on x, and assume that assumption 8 is fulfilled. Then equation (4.2) is well-posed
for all p ∈ D0\S where S ⊂ D0 is a discrete, locally finite and possibly empty set of
D0. Moreover, the solution is holomorphic from D0\S to L2(Ω)4 and continuous with
respect to the data.

Proof. Firstly, rewrite (4.1) as the following general first order wave equation:

Find (u, ρ) ∈ HW such that : (K(p, x)−W)
(
u
ρ

)
= f(x), x ∈ Ω,

ρ(p, x) + λ(x) 〈u(p, x), ν〉 = 0, x ∈ ∂Ω,

(4.2)

where f ∈ L2(Ω)4 and K(p, x) =
(

Γ(p) 0
0I3 n(p, x)

)
. The operator W is defined by:

W =
(

03×3 ∇
div 0

)
,

whose domain is given below:

D(W) =
{

(u, ρ) ∈ H(div,Ω)×H1(Ω) |ρ(x) + λ(x) 〈u(x), ν〉 = 0, x ∈ ∂Ω
}
.

The operator (−W,D(W)) is maximal dissipative [31]. Now consider the following
Hodge decomposition ([4] p. 54, theorem 10):

L2(Ω)3 = gradH1(Ω)⊕
(
∇× Ṽ

)
, (4.3)

where Ṽ =
{

Ψ ∈ H(curl,Ω) | divΨ = 0, ν ×Ψ|∂Ω = 0
}

, and introduce the orthogonal
projections associated to the direct sum (4.3), P0 : L2(Ω)6 −→ ∇ × Ṽ and P∇ :
L2(Ω)6 −→ gradH1(Ω). Noting that P0∇φ = 0 for all φ ∈ H1(Ω), (4.1) becomes:

Find (u, ρ) = (P0v + P∇u, ρ) ∈ D(W) such that : P0Γ(p)P0u+ P0Γ(p)P∇u = P0f1, x ∈ Ω,
P∇Γ(p)P∇u+ P∇Γ(p)P0u−∇ρ = P∇f1, x ∈ Ω,
n(p, x)ρ− div(P∇u) = f2 x ∈ Ω.

(4.4)
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Lemma 4.2. The operator P0Γ(p)P0 ∈ B
(
∇× Ṽ

)
is invertible with a bounded

inverse for all p ∈ D0. Moreover the application p ∈ D0 7−→ (P0Γ(p)P0)−1 ∈
B
(
∇× Ṽ

)
is holomorphic.

Lemma 4.2 shows that P0u = (P0Γ(p, .)P0)−1 {−P0Γ(p, .)P∇u+ P0f1} implying
that one can rewrite system (4.4) into the form:

Find (w, ρ) ∈ D(W̃) such that :(
B(p, .)− W̃

)( w
ρ

)
= g,

(4.5)

where W̃ =
(

03×3 ∇
divP∇ 0

)
with domainD(W̃) =

{
(u, ρ) ∈ D(W) |u ∈ gradH1(Ω)3

}
,

and w = P∇u, g ∈ gradH1(Ω)× L2(Ω) and B(p, .) ∈ B
(
L2(Ω)4

)
is defined by:

B(p, .) =
(
P∇Γ(p)P∇ − P∇Γ(p)P0 (P0Γ(p)P0)−1

P0Γ(p)P∇ 0
0 n(p, .)

)
.

From (A1)− (A2) and lemma 4.2, the function p 7→ B(p) is holomorphic on D0.
From [24], we have for all (u, ρ) ∈ D(W) ∩ (H(curl,Ω)× L2(Ω)):

‖(u, ρ)‖H1(Ω)4 ≤ C
{
‖(u, ρ)‖L2(Ω)4 + ‖W(u, ρ)‖L2(Ω)4 + ‖∇ × u‖L2(Ω)3

}
. (4.6)

Then the identity ∇ × ∇φ = 0 and (4.6) show that the operator
(
W̃,D(W̃)

)
has

compact resolvent. Consequently, solving (4.5) is the same as inverting the holomor-
phic family of closed operators with compact resolvent, having non-empty resolvent
set, given by

(
B(p, .)− W̃,D(W̃)

)
p∈D0

. The later is done with Fredholm analytic

theory. Using (A3), there exists p0 such that K(p0, .) is coercive. The unbounded
operator (−W,D(W)) is maximal dissipative so (4.2) is well-posed for p = p0 and the
equivalence between problems (4.2) and (4.5) shows that B(p0, .)− W̃ is invertible on
D(W̃). Hence we obtain that the operator B(p, .) − W̃ is invertible on D(W̃) for all
p ∈ D0\S, where S is a discrete, locally finite and possibly empty set of D0.

Finally, remark that the inverse operator
(
B(p, .)− W̃

)−1

∈ B(gradH1(Ω) ×
L2(Ω)) and that the application

p ∈ D0\S 7−→
(
B(p, .)− W̃

)−1

∈ B
(
gradH1(Ω)× L2(Ω)

)
,

is holomorphic. From Lemma 4.2 we then derive that (P0v(p, .), ρ) is holomorphic on
D0\S and hence the application p ∈ D0\S 7−→ (P∇v(p, .) + P0v(p, .), ρ(p, .)) ∈ L2(Ω)4

is holomorphic too. Moreover, using the fact that u(p, .) = a(p, .)v(p, .), it comes the
holomorphy of p ∈ D0\S 7−→ (u(p, .), ρ(p, .)) ∈ L2(Ω)4 and the bound:

∀p ∈ D0\S, ‖(u(p, .), ρ(p, .))‖L2(Ω)4 ≤ C(p) ‖f‖L2(Ω)4 .

This concludes the proof.

Before proving lemma 4.2, we need the following technical result:
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Lemma 4.3. There exists a constant C > 0 depending only on Ω such that:

‖Φ‖L2(Ω)3 ≤ C ‖∇ × Φ‖L2(Ω)3 , for all Φ ∈ Ṽ . (4.7)

Proof. [Proof of lemma 4.3] First, one has for all Φ ∈ Ṽ [9, 24]

‖Φ‖(H1(Ω))3 ≤ C
{
‖Φ‖(L2(Ω))3 + ‖∇ × Φ‖(L2(Ω))3 + ‖div(Φ)‖L2(Ω)

}
. (4.8)

Inequality (4.7) is then established by contradiction. Let (Φn)n ⊂ Ṽ be a sequence
such that ‖Φn‖L2(Ω)3 = 1 and ‖∇ × Φn‖L2(Ω)3 ≤ 1

n . From (4.8) (Φn)n is bounded in
H1 norm, hence it has a strongly convergent subsequence in the L2(Ω)3 norm toward
some Φ0 ∈ H1(Ω)3. Since Φn ∈ Ṽ , for all n, one obtains divΦ0 = 0 in the sense of
distributions and ν × Φ0|∂Ω = 0 in H−

1
2 (∂Ω)3. Moreover, as ‖∇ × Φn‖L2(Ω)3 ≤ 1

n it
comes ∇× Φ0 = 0. Consider now the following Hodge decomposition ([9] p.353):

L2(Ω)3 = H0(curl0,Ω)⊕H(div0,Ω),

where H0(curl0,Ω) =
{
v ∈ L2(Ω)3 | ∇ × v = 0, on Ω, ν × v = 0, on ∂Ω

}
. We thus

deduce that Φ0 both belongs to H0(curl0,Ω) and H(div0,Ω) so Φ0 = 0 which contra-
dicts the fact that ‖Φ0‖L2(Ω)3 = 1.

Remark 4.4. Lemma 4.3 is recovered from inequality (4.8) by compactness but
holds without (4.8) (see p.553 in [13]).

Proof. [Proof of lemma 4.2] First note that inverting P0Γ(p)P0 on ∇ × Ṽ is
the same as solving the following boundary value problem:

Find Φ ∈ Ṽ such that, for all Ψ ∈ Ṽ :∫
Ω

〈
Γ(p)∇× Φ,∇×Ψ

〉
dx =< h,Ψ >eV ′×eV , (4.9)

where h belongs to Ṽ ′, which is the set of continuous linear forms on Ṽ . Integrating
by parts and using the boundary condition, Φ is thus solution to the equation:

Find Φ ∈ Ṽ such that :{
∇×∇× Φ = h(p, .), in Ω
ν × Φ|∂Ω = 0, on ∂Ω,

where h(p) = h/Γ(p) ∈ Ṽ ′. Note, from inequality (4.8), that the set Ṽ is a Hilbert
space when equipped with the usual H1(Ω)3 norm. The coercivity of the bilinear
form involved in (4.9) thus follows from lemma 4.3 and the proof of the first part
of the lemma 4.2 is then done by using Lax-Milgram lemma. The holomorphy of
p ∈ D0 7−→ (P0Γ(p)P0)−1 ∈ B

(
∇× Ṽ

)
then comes from [19] and the holomorphy of

Γ(p).

The range of application of the result presented into theorem 4.1 seems to be quite
restricted since it requires the physical parameters to not depend on x. However it
can be extended with following assumption:

Assumptions 9 (For non-constant and tensorial acoustic materials). Suppose
that (A1)− (A2)− (A3) and (A4) hold, with the additional condition
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(A4) There exists a(p, x) ∈ C, Lipschitz continuous for x ∈ Ω and holomorphic for
p ∈ D0, satisfying a(p, .)|∂Ω = 1 and such that the following inequality holds:

Re
〈
Γ(p, x)a(p, x)X,X

〉
≥ α|X|2,

for all p ∈ D0, for almost all x ∈ Ω and for all X ∈ C3.

Corollary 4.5. If assumption 9 is satisfied, then equation (4.1) is well-posed
for all p ∈ D0\S where S ⊂ D0 is a discrete, locally finite and possibly empty set of
D0. Moreover, the solution satisfies the bound:

∀p ∈ D0\S, ‖(u(p, .), ρ(p, .))‖L2(Ω)4 ≤ C(p) ‖f‖L2(Ω)4 ,

and the application p ∈ D0\S 7−→ (u(p, .), ρ(p, .)) ∈ L2(Ω)4 is holomorphic.

Proof. We follow the proof of theorem 4.1. However, before projecting equa-
tion (4.2) according to Hodge decomposition (4.3), we perform the change of unknown
u = a(p, .)v. Then one derives from (A4) that (v, ρ) belongs to D(W) and is solution
to:

Find (v, ρ) ∈ D(W) such that : Γ(p, .)a(p, x)v(p, x)−∇ρ(p, x) = f1(x), x ∈ Ω,
a−1(p, x)n(p, x)ρ(p, x) + a(p, x)−1 < ∇a(p, x), v(p, x) >

−div(v(p, x)) = a−1(p, x)f2(x), for x ∈ Ω.

(4.10)

Then projecting (4.10), it comes:

Find (v, ρ) = (P0v + P∇v, ρ) ∈ D(W) such that :
P0Γ(p, x)a(p, x)P0v + P0Γ(p, x)a(p, x)P∇v = P0f1, x ∈ Ω,
P∇Γ(p, x)a(p, x)P∇v + P∇Γ(p, x)a(p, x)P0v −∇ρ = P∇f1, x ∈ Ω,
a−1(p, x)n(p, x)ρ(p, x) + a(p, x)−1 < ∇a(p, x), v(p, x) >

−div(P∇v) = a−1(p, x)f2(x), x ∈ Ω.

(4.11)

Lemma 4.6. The operator P0Γ(p, .)a(p, .)P0 ∈ B
(
∇× Ṽ

)
is invertible with a

bounded inverse for all p ∈ D0 and the application p ∈ D0 7−→ (P0Γ(p, .)a(p, .)P0)−1 ∈
B
(
∇× Ṽ

)
is holomorphic.

Lemma 4.6 shows that P0v = (P0Γ(p, .)a(p, .)P0)−1 {−P0Γ(p, .)a(p, .)P∇v + P0f1}
implying system (4.11) to be rewritten into the form:

Find (P∇v, ρ) ∈ D(W̃) such that :(
B(p, .)− W̃

)( P∇v
ρ

)
= g, on Ω,

where g ∈ gradH1(Ω) × L2(Ω), B(p, .) ∈ B
(
L2(Ω)4

)
is a bounded operator which is

holomorphic on D0 (thanks to (A1) − (A2) − (A4) and lemma 4.6). The end of the
proof is now the same as for theorem 4.1.
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Proof. [Proof of lemma 4.6] Following the proof of lemma 4.2, it comes that
inverting P0Γ(p, .)a(p, .)P0 on ∇× Ṽ remains to find Φ ∈ Ṽ solution to:

Find Φ ∈ Ṽ such that :{
∇× Γ(p, x)a(p, x)∇× Φ(p, x) = h, x ∈ Ω,
ν × Φ(p, x) = 0, on ∂Ω.

From assumption (A4), it follows for all p ∈ D0 that the multiplicative operator

a(p, .)Γ(p, .) is coercive. The bilinear form (Φ,Ψ) 7−→
∫

Ω

〈
Γ(p, .)a(p, .)∇× Φ,∇×Ψ

〉
dx

is then coercive on Ṽ equipped with the usual H1(Ω)3 norm (see lemma 4.3). Con-
sequently Lax-Milgram theorem shows the first part of the lemma. The holomorphy
of p ∈ D0 7−→ (P0Γ(p, .)a(p, .)P0)−1 ∈ B

(
∇× Ṽ

)
comes from the holomorphy of

Γ(p, .)a(p, .) (thanks to (A1)− (A2)− (A4)) [19].

5. Generic well-posedness for linear elasticity. The physical properties of
the elastic metamaterial manifest with for instance negative mass density or bulk
modulus [10, 36]. Hence, we consider the equations of elastodynamics [6]:

Find u = (u1, u2, u3) ∈ H1(Ω)3 such that for j = 1, 2, 3 :
div(µ(p, x)∇uj(p, x)) + ∂j(λ(p, x) + µ(p, x))div(u(p, x))

−p2uj(p, x) = f(x), on Ω,〈
(µ(p, x)∇uj)|∂Ω , ν

〉
+ νj(λ(p, x) + µ(p, x))|∂Ωdiv(u)|∂Ω

−(Λ(x)uj)|∂Ω = 0, on ∂Ω,

(5.1)

where λ, µ are the Lamé coefficients, f is the body force per unit volume, Λ : ∂Ω −→ C
is an impedance assumed to be coercive and u is the displacement. To formulate (5.1)
as a first order system of partial differential equation, we introduce new unknowns:{

vj = µ(p, x)∇uj , j = 1, 2, 3,
γ = (λ(p, x) + µ(p, x))divu.

Thus for j = 1, 2, 3, (5.1) reduces to the following first order system:

Find (vj , uj , γ) ∈ H(div,Ω)×H1(Ω)×H1(Ω) such that :
p2uj − div(vj)− ∂jγ = −f, on Ω,
µ−1(p, x)vj −∇uj = 0, on Ω,
(λ(p, x) + µ(p, x))−1γ − div(u) = 0, on Ω,
< vj(x), ν > +νjγ(x)− Λ(x)uj(x) = 0, on ∂Ω.

(5.2)

The conditions to be verified by the metamaterial are thus:

Assumptions 10 (For elastic materials).
(E1) The applications λ(p, x)−1 and (λ(p, x) + µ(p, x))−1 are holomorphic on D0

for almost all x ∈ Ω where D0 is a connected open set of C.
(E2) The applications λ(p, x)−1 and (λ(p, x) + µ(p, x))−1 belong to L∞(Ω) for all

p ∈ D0.
(E3) There exists p0 in D0 and α > 0 such that the following inequality holds:

Re
{
< p2

0X,X > +Re < µ−1(p0, x)Y, Y >
}

+Re(λ(p0, x) + µ(p0, x))−1|z|2 ≥ α(|X|2 + |Y |2 + |z|2),

for all (X,Y, z) ∈ C3 × C3 × C and for almost all x ∈ Ω.
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We then have the result:
Theorem 5.1. Suppose that µ(p, .) 6= 0 (see (5.2)) is scalar valued and does

not depend on x. If assumption 10 is fulfilled, then system (5.2) is well-posed for
all p ∈ D0\S where S ⊂ D0 is a discrete, locally finite and possibly empty set of
D0. Moreover, the solution is continuous with respect to the data and the application
p ∈ D0\S 7−→ (v(p, .), u(p, .), γ(p, .)) ∈ L2(Ω)13 is holomorphic.

Proof. First of all, let us introduce the following unbounded operator:

E =



0 0 0 ∇ 0 0 0
0 0 0 0 ∇ 0 0
0 0 0 0 0 ∇ 0

div 0 0 0 0 0 ∂1

0 div 0 0 0 0 ∂2

0 0 div 0 0 0 ∂3

0 0 0 ∂1 ∂2 ∂3 0


,

acting on vector fields of the form (v1, v2, v3, u1, u2, u3, γ) ∈ C13 on the domain D(E)

D(E) =
{
∀j, (vj , uj , γ) ∈ H(div,Ω)×H1(Ω)×H1(Ω)

∣∣ (vj , uj , γ)|∂Ω ∈ kerÑj(x)
}
,

where Ñj(x)(vj , uj , γ) =< (vj(x), ν > +νjγ(x)− Λuj(x). Thus (5.2) collapses as

Find Π = (v1, v2, v3, u1, u2, u3, γ) ∈ HE, such that :{
(K(p, x)− E) Π = F, x ∈ Ω,
< (vj)|∂Ω , ν > +νjγ|∂Ω − (Λ(x)uj)|∂Ω = 0, on ∂Ω,

(5.3)

where F ∈ L2(Ω)13 and the multiplicative operator is given by

K(p, x) =

 µ−1(p)I9 0I3 0
0I9 p2I3 0
0I9 0I3 (λ(p, x) + µ(p, .))−1

 . (5.4)

The operator (−E,D(E)) being maximal dissipative, (5.3) is well-posed for p = p0 [31].
At last, (5.2) is similar to the first order wave equation (4.1). Hence, one simply

needs to control the curl of vector fields vj ∈ H(div,Ω) to recover some compactness
for the resolvent of (E,D(E)). Thus, using the results of [24], the following inequality
holds for all Π = (v1, v2, v3, u1, u2, u3, γ) ∈ D(E) ∩ (H(curl,Ω))3 × L2(Ω)4:

‖Π‖H1(Ω)13 ≤ C

‖Π‖L2(Ω)13 + ‖EΠ‖L2(Ω)13 +
3∑
j=1

‖∇ × vj‖L2(Ω)3

 .

From now, we mimic the proof of theorem 4.1. First, projecting equation (5.3)
with help of Hodge decomposition (4.3), and using the same notations as for the
acoustics, we infer that:

P0vj =
(
P0µ(p, .)−1P0

)−1 {−P0µ(p, .)−1P∇vj + P0Gj
}
,

for Gj ∈ L2(Ω)3 and j = 1, 2, 3. This implies that system (4.2) is equivalent to:

Find Π̃ = (P∇v1, P∇v2, P∇v3, u1, u2, u3, γ) ∈ D(Ẽ), such that :(
B(p, .)− Ẽ

)
Π = F̃ ,

(5.5)
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where F̃ ∈ (gradH1(Ω))3×L2(Ω)4, B(p, .) ∈ B
(
L2(Ω)13

)
is a bounded operator which

is also holomorphic on D0, and Ẽ is defined by:

Ẽ =



0 0 0 ∇ 0 0 0
0 0 0 0 ∇ 0 0
0 0 0 0 0 ∇ 0

divP∇ 0 0 0 0 0 ∂1

0 divP∇ 0 0 0 0 ∂2

0 0 divP∇ 0 0 0 ∂3

0 0 0 ∂1 ∂2 ∂3 0


,

with domain D(Ẽ) = D(E) ∩ (gradH1(Ω))3 × L2(Ω)4. From (4.8), the embedding of
D(Ẽ) into L2(Ω)13 is compact. It yields the compactness of the resolvent of

(
Ẽ,D(Ẽ)

)
.

Since this operator is maximal dissipative and B(p, .) is a bounded multiplicative
operator of L2(Ω)13 for all p ∈ D0, solving (5.5) is the same as inverting a holomorphic
family of closed operators with compact resolvent which can be done with Fredholm
analytical theory. The end of the proof is identical to the one of theorem 4.1.

As for theorem 4.1 we can here extend the previous results with:
Assumptions 11 (For non-constant and tensorial elastic materials). Suppose

that (E1)− (E2)− (E3) and (E4) hold, with the additional condition
(E4) There exists α > 0 and a(p, x) ∈ C, Lipschitz continuous for x ∈ Ω and

holomorphic for p ∈ D0, satisfying a(p, .)|∂Ω = 1, such that

Re
(
< µ(p, x)−1a(p, x)X,X >

)
≥ α|X|2,

for all p ∈ D0, for almost all x ∈ Ω and for all X ∈ C3.

Corollary 5.2. If assumption 11 is verified, then equation (5.2) is well-posed
for all p ∈ D0\S where S ⊂ D0 is a discrete, locally finite and possibly empty set of
D0. Moreover, the solution is continuous with respect to the data and the application
p ∈ D0\S 7−→ (v(p, .), u(p, .), γ(p)) ∈ L2(Ω)13 is holomorphic.

Proof. We follow the proof of corollary 4.5. Perform the changes of unknown
Xj(p) = a(p, .)vj and γ(p) = a(p, .)γ̃ and then project the system according to Hodge
decomposition (4.3). Thus, from (E4), it comes:

P0Xj =
(
P0µ(p, .)−1a(p, .)P0

)−1 {−P0µ(p, .)−1a(p, .)P∇Xj + P0Gj
}
,

for j = 1, 2, 3. This implies that system (4.2) is equivalent to:

Find Π̃ = (P∇X1, P∇X2, P∇X3, u1, u2, u3, γ̃) ∈ D(Ẽ), such that :(
B(p, .)− Ẽ

)
Π = F̃ ,

where F ∈ (gradH1(Ω))3×L2(Ω)4, B(p, .) ∈ B
(
L2(Ω)13

)
is a bounded operator which

is also holomorphic on D0. The end of the proof is the same as for theorem 5.1.
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6. Study of some examples. This section is dedicated to illustrate our results
with some examples from the literature. We successively apply them to the study of
Maxwell’s equations with a periodical array of SRR, a Drude-Born-Fedorov system
with some chiral metamaterial made from the Ω-particle resonator model or with a bi-
anisotropic metamaterials. Examples that are also considered are the wave equation
with some absorbing boundary condition of Perfectly Matched Layers (PML) type,
and the wave equation with a homogenized acoustic metamaterial having negative
bulk modulus.

6.1. Periodic array of Split-Ring-Resonator (SRR). The Split Ring Res-
onator (SRR) have been introduced by J.B. Pendry in 2000 as the first example of
negative index material [30, 33]. Some studies dealing with a periodic array of S.R.R
have followed [18, 29, 32] but the well-posedness of this system remains unanswered at
the best of our knowledge. The effective parameters involved in (3.1) of a periodical
array of interspaced conducting non-magnetic Split-Ring-Resonators and continuous
wires calculated in [32] have the following expressions:

ε(p, x) =
(

1 + w2
G

p2

)
I3,

µ(p, x) =
(

1 + Fp2

−p2−w2
0+pΓ

)
I3,

β(p, x) = 0,

(6.1)

where wG > 0 is the plasma pulsation of gold, w0 =
√

3l
π2µ0Cr3 and Γ = 2lρ

rµ0
> 0

are constants. Here ρ is the resistance per unit length of the rings measured around
the circumference, l is the distance between layers, a is the lattice parameter, r is a
geometrical parameter (defined on figure 1 of [32]) and C is the capacitance associated
with the gaps between the rings.

We consider here a homogenized SRR embedded in a connected bounded open
set Ω ⊂ R3 with connected C1 boundary. We invoke theorem 3.2 to study (3.1)-(6.1).
So we have to check assumption 3.

(B1): ε and µ defined by (6.1) behave on p as rational fractions and thus are holo-
morphic on D0 = C\Z, where Z is the set of zeros of their denominators.
Namely Z =

{
(Γ−

√
Γ2 − 4w2

0)/2, 0, (Γ +
√

Γ2 − 4w2
0)/2

}
where

√
y is equal

to i
√
−y when y < 0.

(B2): Coefficients ε and µ are constant in x and thus have the requested regularity.
(B3): Let g : p ∈ R\{0} 7−→ −p2 − w2

0 + pΓ ∈ R. The maximum of g is reached for
p0 = Γ

2 . As g(p0) > 0, (B3) is satisfied.
Hence, theorem 3.2 implies the well-posedness of the Maxwell’s equations in presence
of homogenized SRR (3.1)-(6.1), with f ∈ H(div,Ω)2, for all p in D0\S̃ where S̃ is a
discrete, locally finite and possibly empty set of D0.

6.2. A bi-anisotropic metamaterial. We consider now a material described
by a lattice composed of bi-anisotropic homogenized Split-Ring-Resonator as studied
in [21]. The physical parameters of the homogenized material are now defined by (3.5)
with the following parameters:

ε(p) = 1 + (dc0l2 )2 F
w2
LC+p2−pγ ,

µ(p, .) = 1− Fp2

w2
LC+p2−pγ ,

ξ(p) = idc0l2
Fp

w2
LC+p2−pγ ,

ζ(p, .) = −idc0l2
Fp

w2
LC+p2−pγ .

(6.2)
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where l and d are positive constant, c0 is the speed of light in the vacuum, F is
the S.R.R. volume filling fraction, γ > 0 is the damping and wLC > 0 is the LC
eigenfrequency.

Theorem 3.2 will be used to study the system (3.2)-(6.2), and hence assumption 3
has to be checked.

(B1): Coefficients (6.2) depend on p like rational fractions. So, they are holomorphic
on C\Z, with Z =

{(
γ ±

√
γ2 − w2

LC

)
/2
}

.

(B2): ε(p, x), µ(p, x), ξ(p, x) and ζ(p, x) are obviously Lipschitz continuous in x ∈ Ω
for all p ∈ C\Z. To show that ε(p, x)µ(p, x) − ξ(p, x)ζ(p, x) does not vanish
in a well-suited domain D0 := C\(Z ∪{pi, i = 1 · · · 5}), we compute the zeros
pi (which do not depend on x) in p of this function using the explicit values
of dc0/l2 = 0.75wLC , F = 0.3 and γ = 0.05wLC (see figure 2 of [21]):

p1 = (0.1522392099 + 1.128302032i)wLC ,
p2 = (−0.09152492420 + 1.131232555i)wLC ,
p3 = (−0.09152492420− 131232555i)wLC ,
p4 = (0.1522392099 + 1.128302032i)wLC ,
p5 = 0.

(B3): To fulfil (B3) one needs to find a p0 ∈ D0 satisfying the constraint given in
(B3). It can be done by looking for a p0 such that K(p) (3.5) is coercive at
this point. Its spectrum is

σ(K(p, .)) =
{(
ε(p) + µ(p, .)−

√
(ε(p)2 − 2µ(p, .)ε(p) + µ(p, .)2 + 4ξ(p)2)

) p
2
,(

ε(p) + µ(p, .) +
√

(ε(p)2 − 2µ(p, .)ε(p) + µ(p, .)2 + 4ξ(p)2)
) p

2

}
.

For p = wLC we have K(wLC) = K(wLC)∗ and

σ(K(wLC)) = {0.7997334285wLC , 1.132958880wLC} ,

both with multiplicity 3. Finally K(wLC) is coercive.
Consequently, theorem 3.2 can be applied to show that the Maxwell’s equation (3.2)
in presence of a bi-anisotropic material described by a homogenized S.R.R. 6.2) is
well-posed with right member f ∈ (H(div,Ω))2 for all p in D0\S where S in an
exceptional set of values.

6.3. Chiral metamaterial based on the Ω-particle resonator model. We
consider a material described by a Ω-particle resonator model (see figure 6 [35]) em-
bedded in a connected bounded open set Ω̃ (the notations changes here to avoid con-
fusion) which is filled with a material whose positive parameters are denoted εb, µb.
The electromagnetic properties are described by equation (3.3) with the following
parameters: 

ε(p, x) = εb + Ωεw
2
0

w2
0+p2−pγ I3,

µ(p, x) = µb − Ωµp
2

w2
0+p2−pγ I3,

β(p, x) = Ωβp

i(w2
0+p2−pγ) I3,

(6.3)

where w0, γ and Ωε,µ,β are some positive constants defined by the homogenized
model [35].

To be used on system (3.3)-(6.3), theorem 3.2 now requires to check assumption 4:
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(C1): The permittivity, the permeability and the chirality defined by (6.3) are ra-
tional fractions of p. Hence (C1) is satisfied on C\Z where Z = {( γ ±√
γ2 − w2

0 )/2} is the set of zeros of their denominators.
(C2): ε, µ and β do not depend on x, hence the required regularity is obviously

satisfied. The quantity p2ε(p, x)µ(p, x)M(p, x) does not vanish since p /∈
Z ∪ {pj , j = 1 · · · 5}, where (pj)j are the zeros of this function. Using the
explicit values of Ωε,µ,β and εb, µb (see p.12 of [35]) we find

p1 = 0, 05146743450− 1.909033734i,
p2 = 0, 05146743450 + 1.909033734i,
p3 = 0, 05498575999− 1.927011242i,
p4 = 0, 05498575999 + 1.927011242i,
p5 = 0.

(C3): We use again the notation K(p) (3.5) and infer its spectrum to be: σ(K(p))

=

{
ε(p) + µ(p)−

√
ε(p)2 − 2ε(p)µ(p) + µ(p)2 − 4ε(p)2µ(p)2p2β(p)2p

2 + 2p2ε(p)µ(p)β(p)

ε(p) + µ(p) +
√
ε(p)2 − 2ε(p)µ(p) + µ(p)2 − 4ε(p)2µ(p)2)p2β(p)2p

2 + 2p2ε(p)µ(p)β(p)

}
,

both with multiplicity 3. Thus, the spectrum of K(1) = K(1)∗ is σ(K(1)) =
{0.9536351793, 3.444237487}, both with multiplicity 3, and then K(p0) is
coercive for p0 = 1.

Consequently, theorem 3.2 can be applied to show that the Maxwell’s equa-
tion (3.3) in presence of a chiral material described by a Ω-particle resonator model (6.3)

is well-posed with right member f ∈
(
H(div, Ω̃)

)2

for all p in D0\S where S is an
exceptional set of values.

6.4. Acoustic metamaterial with negative modulus. We consider now a
homogenized acoustic metamaterial made from short tubes with side hole used as unit
cell like the one studied in [23]. The homogenized media has negative modulus at some
frequencies. It has been remarked in [23] that such material behaves analogously to
the one having negative permittivity. The physical modelling is given by system (4.1)
with parameters

Γ(p, x) = pϑI3, n(p, x) = pB−1

(
1− w2

sh

γp− p2

)
, (6.4)

where x ∈ Ω, γ is the damping term, ϑ = 1.21 kg/m3, B = 1.42× 105 Pa is the bulk
modulus of air and wsh > 0 is defined in [23].

According to theorem 4.1 we are going to check assumption 8.
(A1): Coefficients in (6.4) are meromorphic with pole at 0 and γ, hence they are

holomorphic in D0 = C\ {0, γ}.
(A2): Γ and n are not depending on x, hence they have the required regularity and

invertiblity since they are defined for any x when p belongs to D0.
(A3): For p0 ∈ R+ large enough it comes p0B

−1
(

1− w2
sh

γp0−p2
0

)
> 0, thus satisfying

the condition.
Finally, theorem 4.1 can be applied to show that equation (4.1)-(6.4) is well-posed for
all p ∈ D0\S where S is a discrete, locally finite and possibly empty set of D0.
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6.5. Approximate cloaking for the Wave equation. It is well known that
perfect acoustic or electromagnetic cloaking is hard since it uses singular transfor-
mations optics which lead to singular material parameters (see [14] and references
therein). This difficulty has been overcome recently with the approximate cloak-
ing (see [15] and references therein) giving rise to non-singular parameters which are
bounded from above and below. However, much of approximate cloaking devices do
not use materials with frequency dependent parameters such as metamaterials. Nev-
ertheless, there exists theoretical materials defined as complex absorbing boundary
conditions [27] which perform approximate cloaking since they absorb strongly the
scattered waves. We thus consider them as metamaterial in a broader sense. Actually,
as an application of our theory, we are going to retrieve that the wave equation (4.1)
in presence of complex absorbing boundary condition of Perfectly-Matched-Layers
(PML) type is well-posed.

Now we introduce the construction of PML via a complex stretching of R3 [27].
Let Θ be a convex subset of Ω with C3 boundary whose outward unitary normal is
noted nΘ. Since Θ is convex, there exists, for all x ∈ Ω, a unique ηx ∈ ∂Θ such
that h = dist(x, ∂Θ) = |x − ηx| and x = ηx + hnΘ(ηx). Let σ ∈ C3(R+,R+) such
that lims−→+∞ σ(s) = lims−→+∞ σ

′
(s) = +∞ and σ(0) = σ

′
(0+) = 0. A complex

formulation of the PML is then obtained introducing the new coordinates:

x̃ : R3 −→ C3, x 7−→ x̃(x) = x+
σ(h)nΘ(ηx)

p
. (6.5)

At last, noting J(p, x) = ∇x̃(p, x) the Jacobian of this transformation, we assume
that (6.5 defines a bijective mapping for (p, x) ∈ C\{0}×Ω. The wave equation with
absorbing boundary condition of PML type is then equation (4.1) with coefficients

Γ(p, x) =
√
det(g(p, x)) g(p, x)−1, n(p, x) = p2det(g(p, x)), (6.6)

where g(p, x) = (J(p, x)TJ(p, x))−1.
We show that (4.1)-6.6) is well-posed with corollary 4.5, by checking assumption 9.

(A1): For almost all x ∈ Ω, the application p ∈ D0 = C\{0} 7−→ g(p, x) ∈ Hom(C3)
is holomorphic, and so are p 7→ Γ(p, .) and p 7→ n(p, .).

(A2): For any p ∈ D0 := C\{0}, g(p, .) is invertible. Moreover, g(p, .) and g(p, .)−1

are bounded on Ω since the application σ belongs to C3(R+,R+) and never
vanish and since x 7→ x̃(x) (6.5) is bijective by hypothesis.

(A3): The tensor g(p0) is coercive with p0 = 1. Hence, (X, z) 7→ |z|2Re(n(1, x)) +
Re
{
< Γ(1, x)X,X >

}
is coercive too.

(A4): Pose a(p, x) = 1/
√
det(g(p, x)), then

〈
Γ(p, x)a(p, x)X,X

〉
= |J(p, x)X|2

which is coercive.
Hence, the system (4.1)-(6.6) is well-posed for all p ∈ D0\S where S is a discrete,

locally finite and possibly empty set of D0 = C\{0}.

Remark 6.1. Remark, in the same way, that we can prove that Maxwell’s equa-
tions with absorbing boundary condition of PML type are well-posed too. Indeed the
presence of convex PML implies that the physical parameters (see [27] for computa-
tions) in equation (3.1) are modified as follows

ε(p, x) = µ(p, x) = g(p, x)/
√

det(g(p, x)). (6.7)

The same study can now be led using theorem 3.6. Thus, we have to check assump-
tion 5 where (BT1) − (BT2) − (BT3) are already proved with (A1) − (A2) − (A3).



27

The last item, (BT4), is satisfied taking aε(p, x) = aµ(p, x) =
√

det(g(p, x)). Hence,
the Maxwell’s equations (3.1)-(6.7) with PML is well-posed for all p ∈ D0\S where S
is a discrete, locally finite and maybe empty set of D0 = C\{0}.

6.6. Elastic metamaterial. The last example to be addressed in this paper
concerns a model introduced in [36]. It consists of a three phase composite with
coated spheres with radius rj embedded in a host material represented by a connected
bounded open set Ω. Each region of the doubly-coated sphere is assumed to be
elastic material characterized by mass density ρi, Lamé coefficients λi and µi with
the subscript i = 1, 2, 3 representing separately the sphere, the coating and the host. It
is shown in [36] that this composite has negative effective mass density ρeff , negative
µeff and negative bulk modulus κeff . We show, using theorem 5.1, that the elasticity
system (5.1) in presence of this material is well-posed. The effective Lamé coefficients
of the media are defined by:



µeff (p) = µ3+
(µ1 − µ2)r2

1

(
u
′

r,2(r1) + 3u
′

θ,2(r1)
)

+ (µ2 − µ3)r2
1

(
u
′

r,2(r2) + 3u
′

θ,2(r2)
)

r2
3

(
u
′
r,2(r3) + 3u′θ,2(r3)

) ,

λeff (p) = κeff (p)− 2
3
µeff (p),

κeff (p) = κ3+
r1(κ1 − κ2)E13

0 (s, r1)c(1)
0 + r2(κ2 − κ3)

(
E11

0 (h, r2)a(3)
0 + E13

0 (h, r2)
)

r3

(
E11

0 (h, r3)a(3)
0 + E13

0 (h, r3)
) ,

(6.8)

where Ekij and u
′

r,θ,l depend on p and invoke spherical Bessel and Hankel functions of
the first kind (see the appendix of [36]). We check assumption 10.

(E1): The holomorphy of µeff (p) and λeff (p) follows from the holomorphy of spher-
ical Hankel and Bessel functions of the first kind (see [26] for definitions and
properties of these special functions). Hence the Lamé coefficients (6.8) are
holomorphic on D0 = C\{0}.

(E2): The Lamé coefficients (6.8) do not depend on x ∈ Ω giving trivialy the con-
dition.

(E3): According to [36] figures 4 and 6, for p0 = 1 the coefficients µeff and λeff
are strictly positive constants.

Thus, theorem 5.1 shows that for all p ∈ D0\S, where S is a set of exceptional values,
system (5.2)-(5.4)-(6.8) is well-posed.

7. Conclusion and remarks. In this paper we have studied the well-posedness
of some linear partial differential equations coming from the modelling of electromag-
netics, acoustics and elastodynamics phenomenons in metamaterials. We have shown
some generic well-posedness for each of the previously mentioned systems in presence
of metamaterials, under assumptions relevant for some models from the literature.
Moreover, we have successively applied our results on a periodical array of Split-Ring-
Resonator for Maxwell’s equations, a chiral metamaterial built from the Ω-particle
resonator model, a bi-anisotropic metamaterial, some absorbing boundary conditions
of PML type for the wave equation and a homogenized acoustic metamaterial having
negative bulk modulus. We have also examined some elastic metamaterials by intro-
ducing a elasticity system for which a well-posedness result have been demonstrated.
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However, some remarks have to be formulated. Concerning our results, we do not
show that a particular model is well-posed since we discard a discrete, locally finite and
possibly empty set of frequencies. Fortunately the frequencies for which the problem
is ill-posed are isolated and the solution is holomorphic. Thus any small variation of
p would make it well-posed. On the other hand, we are not able to provide explicit
values for the singular frequencies for which the problem is not well-posed since we
work with domain having not any specific shape. Nevertheless, we provide in this
paper sufficient conditions on the material to ensure discreteness and local finiteness
of singular frequencies.

Remark also that we require smoothness in the spatial variable (at least Lipschitz
continuous) of the multiplicative operators involved in equation we have studied here
thought the assumptions of our theorems. Consequently, we cannot study transmis-
sion problems between ”classical” materials and metamaterials, as it is done in [1, 3],
since the multiplicative operator K(p, .) is (only) L∞(Ω).

Acknowledgement. The authors want to thanks the anonymous referee for
useful comments, references and suggestions to improve the overall presentation of
this paper.
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de transmission non coercif, Comptes-Rendus àl’Académie des Sciences Série I, vol. 328,
number 8, p. 717-720, 1999.

[3] A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., Optimality of T-coercivity for scalar inter-
face problems between dielectrics and metamaterials, http://hal.archives-ouvertes.fr/hal-
00564312/, 2011.

[4] M. Cessenat, Mathematical Methods in Electromagnetism: Linear theory and applications,
World Scientific Singapore and River Edge, 1996.

[5] H. Chena, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials,
Applied Physics Letters, vol. 91, issue 18, p. 183518, 2007.

[6] M. Costabel, E. Stephan, Integral equations for transmission problems in elasticity, Journal of
Integral Equations and Applications, vol. 2, p. 211-223, 1990.

[7] P. Courilleau, T.H. Molinaro, I.G. Stratis, On the controllability of time-harmonic electromag-
netic fields in chiral media, Advances in mathematical sciences and applications, vol. 16,
number 2, p. 491-502, 2006.

[8] S.A. Cummer, D. Schurig, One path to acoustic cloaking, New Journal of Physics, vol. 9, p.
45, 2007.
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