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Minimizing Movements for Nonlinear Mean Curvature Flows

Daniele De Gennaro

Abstract

In this note we prove existence for level-set solutions to a nonlinear variant of the mean
curvature flow via the minimizing movements scheme á la Almgren-Taylor-Wang.

1 Introduction

In this note we study a nonlinear version of the anisotropic mean curvature flow (MCF in short)
with forcing and mobility. In particular, given a continuous non decreasing function G : R → R,
we consider the flow of sets t 7→ Et formally governed by the evolution law

V (x, t) = ψ(νEt(x))G
(
−κϕEt(x) + f(t)

)
, for all x ∈ ∂∗Et, t ≥ 0, (1.1) law evol

where ψ, ϕ are two anisotropies (with ψ usually called the mobility), κϕEt denotes the ϕ-curvature of
the set of finite perimeter Et, νEt denotes the outer normal vector and f is a forcing term constant in
space. We are interested in showing that the mimizing movement approximation scheme produces
discrete-in-time solutions that converge to the unique viscosity solution to (1.1) as the time-step
parameter tends to 0.

The evolution law (1.1) is relevant from a numerical point of view, as suggested e.g. in [10,
Remark 3.5]. For example, a truncation of the evolution speed is usually encoded in algorithms for
the MCF, which would correspond to choosing G(s) = (−M)∨ s∧M in (1.1). Another interesting
choice could be G(s) = −s−, which amounts to consider a purely shrinking evolution. Moreover,
evolution by powers of the mean curvature have been previously studied in the smooth or convex
setting [11, 19, 3] and have been used to prove isoperimetric inequalities [20], or considered in the
setting of image processing algorithms [2, 18]. In particular, in [2, Section 4.5] it is remarked that

the evolution law (1.1) with G(s) = s
1
3 and ϕ = ψ = | · | is particularly interesting as it is invariant

under affine motions (isometries and rescalings).
In the present nonlinear setting, only two concept of solutions are currently available: smooth so-

lutions (starting from smooth sets, in general existing only in a finite time span) and viscosity/level-
set solutions, which are weak solutions of (1.1) defined globally in time and starting from any initial
compact set. On the other hand, it is not clear whether a notion of “BV-solutions” in the spirit of
[1, 16] can be properly defined.

Inspired by the techniques developed in our recent paper [5], we will show that the mimizing
movement scheme à la Almgren-Taylor-Wang or Luckhaus-Sturzenhecker [1, 16] provides existence
by approximation of a level set solution to the nonlinear MCF, under suitable smoothness assump-
tions on the quantities involved. From a technical point of view, the main difficulties arise in the
case where G is bounded from above or below, as some tools heavily employed in the linear setting
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are no longer available (see e.g. the commonly used reformulation (2.12)). Anyhow, by an approx-
imation approach we can recover all the necessary results, which we then pair with the variational
approach used in [5] in order to prove our main result.

To conclude, it would be interesting to study the much more challenging case where ϕ is non
smooth, i.e. the so-called crystalline case. In this setting the availability of the viscosity solutions
of [13, 14] and the development of distribution solutions of [8, 7, 6] may suggest the possibility of
a future investigation in this direction.

We have been informed that a work in progress on the same topic is being prepared in [4].
We want to point out that our result is more general as the authors work in the isotropic setting
without mobility (ψ = ϕ = | · |), require further regularity on the function G and assume that

lim
s→±∞

G(s) = ±∞,

which simplifies many arguments.

2 The minimizing movements scheme

2.1 Preliminaries

We start introducing some notations. We will use both Br(x) and B(x, r) to denote the Euclidean
ball in RN centered in x and of radius r; with SN we denote the sphere ∂B1(0) ⊆ RN . If the ball is
centered in zero, we simply write Br. In the following, we will always speak about measurable sets
and refer to a set as the union of all the points of density 1 of that set i.e. E = E(1). Moreover, if
not otherwise stated, we implicitly assume that the function spaces considered are defined on RN ,
e.g L∞ = L∞(RN ). Moreover, we often drop the measure with respect to which we are integrating,
if clear from the context. For δ ∈ R we denote

Eδ = {x ∈ RN : sdψE(x) ≤ δ},

and use the notation E−∞ := ∅, E+∞ := RN .

def anisotropy Definition 2.1. We define anisotropy a function ψ : RN → [0,+∞) which is continuous, convex,
even and positively 1-homogeneous. Moreover, there exists cψ > 0 such that ∀p ∈ RN it holds

1

cψ
|p| ≤ ψ(p) ≤ cψ|p|. (2.1) bound velocity

Definition 2.2. Given an anisotropy ϕ, we define the ϕ-perimeter (Pϕ in short) as follows

Pϕ(E) =

ˆ
∂∗E

ϕ(νE(x)) dHN−1(x),

where ∂∗E denotes the reduced boundary of E.

We refer to [17] for all the basic references on sets of finite perimeter. By the bounds of (2.1)
we immediately see that P (E)/cϕ ≤ Pϕ(E) ≤ cϕP (E). Furthermore, one can see that the following
variational characterization of the ϕ-perimeter holds

Pϕ(E) = sup

{ˆ
E

div v : v ∈ C1
c (RN ;RN ), ϕ◦(v) ≤ 1

}
, (2.2) def variaz
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where the polar function ϕ◦ of an anisotropy ϕ is defined by

ϕ◦(v) := sup
ϕ(ξ)≤1

ξ · v.

We recall the following identities holding for smooth anisotropies: ∀v, ξ ∈ RN it holds

ϕ(v)ϕ◦(ξ) ≥ v · ξ, ϕ◦(∇ϕ(v)) = v, ∇ϕ(v) · v = ϕ(v).

Definition 2.3. Given an anisotropy ψ and a set E, we define the ψ-distance from E as

distψE(x) = inf
y∈E

ψ◦(x− y),

and the signed ψ-distance from E as

sdψE(x) = distψE(x) − distψEc(x).

Note that (2.1) implies that

1

cψ
distE(x) ≤ distψE(x) ≤ cψdistE(x), (2.3)

where distE denotes the Euclidean distance from the set E.
We focus on the following nonlinear evolution by anisotropic mean curvature with mobility of

a family of sets {Et}t≥0 starting from a set E0 ⊆ RN which is either bounded or has bounded
complement

V (x, t) = ψ(νEt(x))G
(
−κϕEt(x) + f(t)

)
x ∈ ∂∗Et, t ≥ 0, (2.4) smooth law

where νEt(x) is the outer normal vector to Et at x and ϕ, ψ are two anisotropies, and under the
following hypotheses on the quantity involved:

• G : R → R is a continuous, non-decreasing function, with G(0) = 0;

• f ∈ C0
b (R);

• ϕ ∈ C3 and it is strictly convex.

We then set
lim

s→−∞
G(s) = −a ∈ [−∞, 0], lim

s→+∞
G(s) = b ∈ [0,+∞].

Consider a function u : RN × [0,+∞) → R whose superlevel sets Es := {u(·, t) ≥ s} evolve
according to the nonlinear mean curvature equation (2.4). By classical computations (see e.g.
[12]), the function u satisfies the equation

∂tu = |∇u|V (x, t) = ψ(∇u)G
(
−∇2ϕ(∇u) : ∇2u+ f

)
=: −H(t,∇u,∇2u)

where we defined the Hamiltonian H : [0,+∞) × RN \ {0} × SN → R as

H(t, p,X) := −ψ (p)G(−κϕ(p,X) + f(t)), (2.5) def hamiltonian
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and κϕ(p,X) is defined as κϕ(p,X) = ∇2ϕ(p) : X. Therefore, one is let to solve the parabolic
Cauchy problem in bounded time intervals [0, T ], for T > 0, given by{

∂tu+H(t,∇u,∇2u) = 0 on RN × [0, T ]

u(·, 0) = u0 on RN .
(2.6) cauchy problem

Existence and uniqueness to (2.6) can be proved in the framework of viscosity solutions as done
in [15]. Let us recall the notion of viscosity solution used in [15], starting by a family of auxiliary
functions.

family F Definition 2.4. The family F is composed of smooth functions ℓ ∈ C∞
c ([0,+∞)) satisfying ℓ(0) =

ℓ′(0) = ℓ′′(0) = 0, ℓ′′(r) > 0 in a neighborhood of 0, ℓ constant in (0,M)c for some M > 0
(depending on ℓ), and such that

lim
p→0

ℓ′(|p|)
|p|

H(t, p,±I) = 0

holds uniformly in time.

Remark. We note that F ̸= ∅. Since for all t ∈ [0,+∞), p ∈ RN it holds

G(−c/|p| − ∥f∥∞) ≤ H(t, p, I) ≤ H(t, p,−I) ≤ G(c/|p| + ∥f∥∞),

for a suitable positive constant c = c(ϕ), one can repeat the construction used in [15, page 229] to
show that F ̸= ∅.

With a slight abuse of notation, in the following we will say that a function is spatially constant
outside a compact set even if the value of such constant is time-dependent.

def visco sol Definition 2.5. Let ẑ = (x̂, t̂) ∈ RN × (0, T ) and let A ⊆ (0, T ) be any open interval containing t̂.
We will say that η ∈ C0(RN × Ā) is admissible at the point ẑ if it is of class C2 in a neighborhood
of ẑ, it is spatially constant outside a compact set, and, in case ∇η(ẑ) = 0, the following holds:
there exists ℓ ∈ F and ω ∈ C∞([0,∞)) with ω′(0) = 0, ω(r) > 0 for r ̸= 0 and such that

|η(x, t) − η(ẑ) − ηt(ẑ)(t− t̂)| ≤ ℓ(|x− x̂|) + ω(|t− t̂|),

for all (x, t) ∈ RN ×A.

The notion of viscosity solution used in [15] is the following one.

Definition 2.6. An upper semicontinuous function u : RN × [0, T ] → R, constant outside a
compact set, is a viscosity subsolution of the Cauchy problem (2.6) if u(·, 0) ≤ u0 and, for all
z := (x, t) ∈ RN × [0, T ] and all C∞-test functions η such that η is admissible at z and u− η has a
maximum at z, the following holds:

i) If ∇η(z) = 0, then
ηt(z) ≤ 0 (2.7) eq viscosa degen

ii) If ∇η(z) ̸= 0, then
∂tη(z) +H(∇η(z),∇2η(z)) ≤ 0. (2.8) eq viscosa
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A lower semicontinuous function u : RN × [0, T ] → R, constant outside a compact set, is a viscosity
supersolution of the Cauchy problem (2.6) if −u is a viscosity supersolution to (2.6), with −u0
replacing u0. Finally, a function u is a viscosity solution for the Cauchy problem (2.6) if it is both
a subsolution and a supersolution of (2.6).

Remark. By classical arguments, one could assume that the maximum of u − η is strict in the
definition of subsolution above (an analogous remark holds for supersolutions).

We thus recall the existence and uniqueness result proved in [15].

Theorem 2.7. Given an initial datum u0 uniformly continuous and constant outside a compact
set, the Cauchy problem (2.6) admits a unique viscosity solution. Moreover, if u, v are, respectively,
a super- and subsolution to (2.6) satisfying u(·, 0) ≥ v(·, 0), then u(·, t) ≥ v(·, t) for every t ∈ [0, T ].

2.2 The minimizing movements scheme

In order to give the definition of the discrete scheme we introduce some notations. We set g as a
selection of the set-valued inverse of G, that is g(x) ∈ G−1(x) for every x ∈ (−a, b) and extend it
setting g = −∞ for every x ≤ −a, g = +∞ for every x ≥ b. Here, we extended G to [−∞,+∞]
setting G(±∞) = limx→±∞G(x). We assume also that g(0) = 0. Note that these definitions
imply G ◦ g = id in [−a, b]. Moreover, g is strictly increasing. In the following we will denote for
k ∈ N, h > 0

f(kh) =

 (k+1)h

kh

f(s) ds.

Given a bounded set of finite perimeter E and h > 0, t ∈ (0,+∞) we define a functional on the
measurable sets as

FE
h,t(F ) = Pϕ(F ) +

ˆ
E△F

∣∣∣∣∣g
(

sdψE
h

)∣∣∣∣∣− f([t/h]h)|F |, (2.9) def mathscr

where [·] denotes the integer part.

lemma existence Lemma 2.8. Let E be a bounded set of finite perimeter and h > 0, t ∈ [0,+∞). Then, there exist
minimizers of FE

h,t and, denoting E′ one such minimizer, it has the following properties: it is a
bounded set of finite ϕ-perimeter such that (up to negligible sets)

E−ah ⊆ E′ ⊆ Ebh.

Moreover, there exist a maximal and a minimal minimizer (with respect to inclusion) of FE
h,t.

Proof. Since FE
h,t(E) < +∞ and FE

h,t ≥ −∥f∥∞, by the standard method of calculus of variations

we have the existence of a minimizer of FE
n,h. Since it has finite energy, it is straightforward to

check that sdψE ∈ [−ah, bh] a.e. on E′△E. If b < +∞ this clearly implies that E′ is bounded; if
b = +∞ a classic contradiction argument yields the same result. Finally, by classical arguments one
shows that, if E′

1, E
′
2 are minimizers of FE

h,t, then so are E′
1 ∩ E′

2, E
′
1 ∪ E′

2, implying the existence
of a minimal and a maximal solution (see e.g. [9, Proposition 6.1]).
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For a given bounded set E and t ∈ (0,+∞), we thus denote

T−
h,tE = min argmin FE

h,t, T+
h,tE = max argmin FE

h,t, (2.10) incremental pb

where the minimum and maximum above are made with respect to inclusion. We will often denote
Th,t := T−

h,t. We now prove some classical results following the lines of [16].

comparison principle Lemma 2.9 (Weak comparison principle). Fix h > 0, t ∈ (0,+∞) and assume that F1, F2 are
bounded sets with F1 ⊂⊂ F2. Then, for any two minimizers Ei of FFi

h,t for i = 1, 2, we have
E1 ⊆ E2. If, instead, F1 ⊆ F2, then we have that the minimal (respectively maximal) minimizer of
FF1

h,t is contained in the minimal (respectively maximal) minimizer of FF2

h,t.

Proof. Firstly, we assume F1 ⊂⊂ F2, Testing the minimality of E1, E2 with their intersection and
union, respectively, we obtain

Pϕ(E1) +

ˆ
(E1\E2)\F1

g

(
sdψF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdψF1

h

)
≤ Pϕ(E1 ∩ E2) + f([t/h]h)|E1 \ E2|

Pϕ(E2) ≤ Pϕ(E1 ∪ E2) +

ˆ
(E1\E2)\F2

g

(
sdψF2

h

)
+

ˆ
(E1\E2)∩F2

g

(
sdψF2

h

)
− f([t/h]h)|E1 \ E2|.

Summing the two inequalities above and using the submodularity of the perimeter we get

ˆ
(E1\E2)\F1

g

(
sdψF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdψF1

h

)
≤
ˆ
(E1\E2)∩F2

g

(
sdψF2

h

)
+

ˆ
(E1\E2)\F2

g

(
sdψF2

h

)
.

(2.11) ineq comp

Assume by contradiction that |E1 \ E2| > 0. Since sdψF2
< sdψF1

and by the strict monotonicity of
g, we estimate the rhs of (2.11) by

ˆ
(E1\E2)\F2

g

(
sdψF2

h

)
+

ˆ
(E1\E2)∩F2

g

(
sdψF2

h

)
<

ˆ
(E1\E2)\F2

g

(
sdψF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdψF1

h

)

and plug it in (2.11) to reach the desired contradiction. The other cases follow analogously, reasoning
by approximation if F1 ⊆ F2.

lemma comparison function Lemma 2.10. Let c ∈ R. Consider E a bounded set of finite perimeter and non-decreasing func-
tions g1, g2 : R → R such that g1 < g2 in R \ {0} and g1(0) = g2(0) = 0. Then, if Ei solves

min
F

{
Pϕ(F ) +

ˆ
E△F

∣∣∣gi(sdψE(x))
∣∣∣ dx+ c|F |

}
for i = 1, 2, we have that E2 ⊆ E1. If g1 ≤ g2 instead, an analogous statement holds for the
maximal and minimal solutions.

Proof. Denote gi = gi ◦ sdψE for i = 1, 2 and assume by contradiction that |E2 \E1| > 0. Reasoning
as in Lemma 2.9, one gets

ˆ
E1△E

|g1| +

ˆ
E2△E

|g2| ≤
ˆ
(E1∪E2)△E

|g1| +

ˆ
(E1∩E2)△E

|g2|.
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Simplifying1 the above expression and recalling that gi ≥ 0 on Ec, gi ≤ 0 on E, we reach

0 ≤
ˆ
(E2\E1)\E

(g1 − g2) +

ˆ
(E2\E1)∩E

(g1 − g2) =

ˆ
E2\E1

(g1 − g2),

which implies the contradiction. The case g1 ≤ g2 follows by approximation.

In the linear case (g = id), minimizers of FE
h,t minimize also the functional

F 7→ Pϕ(F ) +

ˆ
F

sdψE/h− f([t/h]h)|F |. (2.12) pb equi inf

In the present setting, since
´
E
g(sdψE) may be infinite in the case a < +∞, we can not draw this

conclusion straightforwardly. We can nonetheless recover the minimal and the maximal solution to
(2.10) by means of a sequence of minimizers of a functional similar to (2.12).

corollary approx Corollary 2.11. Let E be a bounded set of finite perimeter and t ∈ (0,+∞), h > 0. Then, there
exists a sequence of uniformly bounded sets (En)n∈N such that En ↗ T−

h,tE and for any n ∈ N, En
is a minimizer of

F 7→ Pϕ(F ) +

ˆ
F

g

(
sdψE
h

)
∨ (−n) − f([t/h]h)|F | =: FE,n

h,t (F ). (2.13) funct coroll

Analogously, there exists a sequence of uniformly bounded sets (En)n∈N such that En ↘ T+
h,tE in

L1 and for any n ∈ N, En is a solution to

min

{
Pϕ(F ) +

ˆ
BR\F

g

(
sdψE
h

)
∧ n− f([t/h]h)|F | : F ⊆ BR

}
, (2.14) funct coroll2

where T±
h,tE ⊆ BR.

Proof. We prove the statement for T−
h,tE, the other case being analogous. Assume a < +∞ (other-

wise the result follows by the boundedness of T−
h,tE). We set c = f([t/h]h), gn := g(sdψE/h)∨ (−n),

and E′ = T−
h,tE. Consider the sequence of sets (En)n∈N, each being the minimal minimizer of

FE,n
h,t . By the same arguments recalled above, note that that there exists a constant R > 0 such

that En ⊆ BR for all n ∈ N. By Lemma 2.10, the sequence En is increasing as gn ≥ gn+1

and moreover E′ ⊇ En as g ≤ gn. Therefore, one has that En ↗ Ẽ :=
⋃
nEn ⊆ E′ and also

χEn△E′ = |χEn − χE′ | → χẼ△E′ a.e. as n → ∞. By lower semicontinuity of the perimeter and
Fatou’s lemma we get

FE
h,t(Ẽ) = Pϕ(Ẽ) − c|Ẽ| +

ˆ
Ẽ△E′

|g(sdψE/h)| = Pϕ(Ẽ) − c|Ẽ| +

ˆ
RN

lim inf
n→∞

(|gn|χEn△E)

1Noting that

E1△E = ((E1 \ E2) \ E) ∪ ((E1 ∩ E2) \ E) ∪ ((E \ E1) \ E2) ∪ ((E ∩ E2) \ E1)

(E1 ∪ E2)△E = (E2 \ E1 \ E) ∪ ((E1 ∩ E2) \ E) ∪ ((E1 \ E2) \ E) ∪ ((E \ E1) \ E2)

(E1 ∩ E2)△E = ((E2 ∩ E1) \ E) ∪ ((E \ E1) \ E2) ∪ ((E ∩ E1) \ E2) ∪ ((E ∩ E2) \ E1).
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≤ lim inf
n→∞

(
Pϕ(En) − c|En| +

ˆ
En△E

|gn|
)
.

Since En minimizes FE,n
h,t we get

FE
h,t(Ẽ) ≤ lim inf

n

(
Pϕ(E′) +

ˆ
E′△E

|gn| − c|E′|
)

≤ FE
h,t(E

′), (2.15) final eq

where in the last inequality we used that |gn| ≤ |g|. Since E′ is the minimal minimizer of FE
h,t we

conclude Ẽ = E′. The functional (2.13) is obtained from (2.9) adding
´
E
gn(sdψE/h). Finally, the

functional in (2.14) is obtained from functional (2.9) adding the (finite) term −
´
BR\E g(sdψE/h)∧n

and restricting the family of competitors.

We define the discrete flow starting from the initial set E0 by setting E
(h)
t = E0 for t ∈ [0, h)

and iteratively

E
(h)
t = Th,t−hE

(h)
t−h, t ∈ [h,+∞). (2.16) def discrete flow

We now provide an estimate on the evolution speed of balls. It is interesting to note that, in
the isotropic setting (ψ = ϕ = | · |) and under the hypothesis of strict monotonicity of G, an explicit
evolution law for the radii of evolving balls can be obtained. In our more general case we need to
employ the variational proofs of [9, 5].

evolution bounded sets Lemma 2.12. For every R > 0 and every t ∈ (0,+∞), h > 0 it holds

T±
h,tBR ⊆ BR+ h

cψ
G(∥f∥∞).

Proof. We fix h > 0 and set c := f([t/h]h) and E′ = T±
h,tBR. Let ε > 0 and set H ⊆ RN as an

half-space containing the ball centered at 0 of radius R + h
cψ
G(c+ ε). By the minimality of E′ we

get ˆ
E′△BR

|g(sdψBR/h)| −
ˆ
(E′∩H)△BR

|g(sdψBR/h)| ≤ Pϕ(E′ ∩H) − Pϕ(E′) + c|E′ \H|.

By a simple computation, since BR ⊂ H we findˆ
E′\H

g(sdψBR/h) ≤ Pϕ(E′ ∩H) − Pϕ(E′) + c|E′ \H| ≤ c|E′ \H| (2.17) ineq boundedness

where in the last inequality we used that cutting sets of finite perimeter by half-spaces decreases
Pϕ. Therefore, since sdψBR ≥ hG(c + ε) on E′ \ H, one concludes |E′ \ H| = 0. Thus the result
follows sending ε→ 0.

We then provide an upper bound on the evolution speed of balls in the spirit of [9, 5]. We
remark that the significant case is a = +∞ as otherwise Lemma 2.8 yields

T±
h,tBR ⊇ BR−ah.

lemma estimates on balls Lemma 2.13. Let R0 > 0 and σ > 1 be fixed. Assume a = +∞. Then, there exist a positive
constant c such that, if h > 0 is small enough, for all R ≥ R0 and t ∈ (0,+∞) it holds

T±
h,tBR ⊇ BR+ h

cψ
G(−σ cR−∥f∥∞). (2.18) decay speed ball
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Proof. We prove the result for E := Th,tBR. Take h small enough so that Th,tB 1
4R0

̸= ∅. By

Lemma 2.12, translation invariance and taking h small, one can see that2 BR
4
⊆ E. We set

ρ̄ = sup{r ∈ [0, R] : |Br \ E| = 0} ∈
[
R

4
, R+

h

cψ
G(∥f∥∞)

]
. (2.19) def bar rho

Assume wlog ρ̄ < R. Let x̄ ∈ ∂Bρ̄ be such that |B(x̄, ε) \ E| > 0 for any ε > 0. Set ρ ∈ (0, ρ̄) and
τ = (1 − ρ/ρ̄)x̄ such that ∂B(τ, ρ) ∩ ∂Bρ̄ = {x̄}. Setting Bε := ((1 + ε)τ, ρ), consider the sets

W ε := Bε \ E.

Notice that by construction, for ε small, W ε has positive measure and it converges to {x} as ε→ 0.
By (2.2) with v = ∇ϕ(x/|x|) and by submodularity, we obtain

ˆ
RN

∇ϕ
(
x

|x|

)
·DχW ε =

ˆ
RN

∇ϕ
(
x

|x|

)
·
(
DχBε −DχBε∩T±

h,tBR

)
≤ Pϕ(Bε ∩ T±

h,tBR) − Pϕ(Bε) ≤ Pϕ(T±
h,tBR) − Pϕ(Bε ∪ T±

h,tBR).

(2.20) split

Since E minimizes (2.12) (as a = +∞), we use its minimality on the rhs of (2.20) and the divergence
theorem on the lhs of (2.20) to arrive at

−
ˆ
W ε

div∇ϕ
(
x

|x|

)
≤ f([t/h]h)|Wε| +

ˆ
W ε

g

(
sdψBR
h

)
. (2.21) eq 1

By the regularity assumptions on ϕ we remark that it holds

|div∇ϕ(p)| = |tr(∇2ϕ(p))| ≤ c

|p|
.

We plug the estimate above in (2.21), divide by |W ε| and send ε→ 0 to conclude

− c

ρ
− ∥f∥∞ ≤ lim sup

s→cψ(ρ̄−R)/h

g(s).

Applying G to both sides and letting ρ→ ρ̄, we conclude

ρ̄ ≥ R+
h

cψ
G

(
− c

ρ̄
− ∥f∥∞

)
≥ R+

h

cψ
G

(
−4c

R
− ∥f∥∞

)
, (2.22) incremental eq

where in the last inequality we recalled that ρ̄ ≥ R/4. Using again the previous analysis with the
bound (2.22), we show (2.18) by taking h small enough.

2Indeed, by translation invariance and Lemma 2.12 it holds

Th,tBR
4
+B 3

4
R ⊆ Th,tBR ⊆ BR+ch.
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2.3 The scheme for unbounded sets

We now define the discrete evolution scheme for unbounded sets having compact boundary. For
every compact set K and h > 0, t ≥ 0, we will denote by T̃±

h,tK the maximal and the minimal

minimizer of F̃K
h,t, which corresponds to (2.9) with g̃(s) := −g(−s) instead of g(s) and −f instead

of f . By changing variable F̃ := F c in (2.9), we see that (T̃−
h,tK)c is the maximal solution to

min

{
Pϕ(F̃ ) +

ˆ
F̃△Kc

∣∣∣g (sdψKc/h
)∣∣∣+ f([t/h]h)|F̃ c|

}
. (2.23) equiv pb unbounded

Therefore, for every unbounded set E with compact boundary we define3

T±
h,tE :=

(
T̃∓
h,tE

c
)c
. (2.24) def unbounded

As in the case of compact sets, we set Th,tE := T−
h,tE. Given an unbounded set E0 having compact

boundary, we define the discrete flow {E(h)
t }t≥0 as follows: E

(h)
t := E0 for t ∈ [0, h) and

E
(h)
t = Th,t−hE

(h)
t−h, ∀t ∈ [h,+∞).

Since g̃ has the same properties of g, one easily checks that analogous results to Lemmas 2.12, 2.9
and 2.13 hold also for (2.24).

comparison principle, unbounded Lemma 2.14. Let t, h > 0. The following statements hold.

• Let F1 ⊆ F2 be unbounded sets with compact boundary. Then, Th,tF1 ⊆ Th,tF2.

• There exists c > 0 such that for every R > 0, h > 0 it holds T±
h,tB

c
R ⊇ BcR+ch.

• Let R0 > 0 and σ > 1 be fixed. Then, if a = +∞ there exist c > 0 such that for h > 0 small
enough and for all R ≥ R0, it holds

T±
h,tB

c
R ⊆ Bc

R+ h
cψ
G(−σ cR−∥f∥∞)

. (2.25)

If instead a < +∞ it holds
T±
h,tB

c
R ⊆ BcR−ah. (2.26)

Furthermore, Corollary 2.11 implies straightforwardly the following approximation result.

corollary approx unbounded Corollary 2.15. Set t, h > 0 and let E be an unbounded set of finite perimeter with bounded
complement. Then, there exists two sequences of sets (En)n∈N, (E

′
n)n∈N with uniformly bounded

complement with the following property. Each (En)c is a minimizer of (2.23) with g ∨ (−n) substi-
tuting g, and (E′

n)c is a minimizer of (2.23) with g ∧ n substituting g. Moreover En ↗ T−
h,tE and

E′
n ↘ T+

h,tE.

3To justify this, one can check that if a set E is moving according to (2.4), its complement moves according to

V (x, t) = −ψ(νEc (x))G(κEc (x) + f) in the direction νEc ,

from which the incremental problem follows.
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We now deduce an equivalent version of (2.23), which will be used in the final proof, following
[9]. Let us consider E such that Ec ⊆ BR and assume a = +∞. Recall that T±

h,tE ⊇ BcR+ch for

some c > 0 by Lemma 2.14. Adding to the functional in (2.23) the term
´
BR+ch\(T−

h,tE)c
g(sdψE/h)

and restricting the family of competitors, we note that T−
h,tE is the minimal solution to

min

{
Pϕ(F̃ ) +

ˆ
F̃∩BR+ch

g
(

sdψE/h
)

+ f([t/h]h)|F̃ c| : F̃ c ⊆ BR+ch

}
. (2.27) pb equi unbounded

The case a < +∞ needs to be treated by approximation using Corollary 2.15. Lastly, we state
a comparison principle between bounded and unbounded sets. Its proof follows the one of [9,
Lemma 6.10], up to employing Corollary 2.15.

comparison principle, bounded-unbounded Lemma 2.16. Let E1 be a compact set and let E2 be an open, unbounded set with compact bound-
ary, and such that E1 ⊆ E2. Then, for every h ∈ (0, 1), t ≥ 0 it holds T±

h,tE1 ⊆ T±
h,tE2.

3 Main result

We now describe the discrete-in-time approximation of the viscosity solution based on the operators
T±
h,t previously defined. Given a continuous function v : RN → R which is constant outside a

compact set, we define the transformation

Th,tv(x) = sup {s ∈ R : x ∈ Th,t{v ≥ s}} , (3.1) def operator

which defines a new function on RN × [0,+∞) by setting vh(x, t) = v(x) for t ∈ [0, h) and

vh(x, t) := (Th,t−hvh(·, t− h)) (x). (3.2) def increm supersol

By lemmas 2.9 and 2.14, one can see that the operator Th,t maps functions into functions. Moreover,
the following holds.

Lemma 3.1. Given t, h > 0, the operator Th,t defined in (3.1) satisfies the following properties:

• Th,t is monotone, meaning that u0 ≤ v0 implies Th,tu0 ≤ Th,tv0;

• Th,t is translation invariant, as for any z ∈ RN , setting τzu0(x) := u0(x − z), it holds
Th,t(τzu0) = τz(Th,tu0);

• Th,t commutes with constants, meaning Th,t(u+ c) = (Th,tu) + c for every c ∈ R.

Proof. The first assertion follows from Lemma 2.9 and 2.14. The second one follows easily em-
ploying the definition (3.1), recalling the fact that the functional defined in (2.9) is invariant under
translations and that {τzu0 ≥ λ} = {u0 ≥ λ} + z for all λ ∈ R. The last result follows analo-
gously.

The previous properties satisfied by the operator, in turn, preserve the continuity in space of the
initial function. Indeed, assume u0 is uniformly continuous and let ω : R+ → R+ be an increasing,
continuous modulus of continuity for u0. Then, for any s > s′ we have

{u > s} +Bω−1(s−s′) ⊆ {u > s′},

11



thus, by translation invariance we deduce

Th,t{u > s} +Bω−1(s−s′) ⊆ Th,t{u > s′}.

This inclusion implies that the function Th,tu0 is uniformly continuous in space, with the same
modulus of continuity ω of u0.

In order to study the continuity in time of the functions uh, we state the following lemma, where
equality between sets must be understood up to negligible sets.

lemma 6.12 Nonlocal Lemma 3.2. Fix t, h > 0 and u0 a uniformly continuous function. For all λ ∈ R it holds

Th,t{uh(·, t) > λ} = {uh(·, t+ h) > λ}, T+
h,t{uh(·, t) ≥ λ} = {uh(·, t+ h) ≥ λ}.

Proof. Given ε > 0, by definition it is easy to see that

{Th,0u0 > λ+ ε} ⊆ T±
h,0{u0 > λ} ⊆ {Th,0u0 > λ− ε}.

Passing to the limit ε→ 0, we deduce

{uh(·, h) ≥ λ} ⊆ T±
h,0{u0 > λ} ⊆ {uh(·, h) ≥ λ}.

Finally, since uh(·, h) is a continuous function, the equalities {uh(·, h) > λ} = int{uh(·, h) ≥ λ} and
{uh(·, h) ≥ λ} = {uh(·, h) ≥ λ} holds and we prove the result for t = h. The other cases follow by
iteration.

With the previous results and reasoning exactly as in [9, Lemma 6.13], we can prove that the
functions uh are uniformly continuous in time.

Lemma 3.3. For any ε > 0, there exists τ > 0 and h0 = h0(ε) > 0 such that for all |t − t′| ≤ τ
and h ≤ h0 we have |uh(·, t) − uh(·, t′)| ≤ ε.

Thus, the family {uh}h>0 is equicontinuous and uniformly bounded as implied by Lemma 2.12.
By the Ascoli-Arzelà theorem we can pass to the limit h → 0 (up to subsequences) to conclude
that uh → u uniformly in any compact in time subset of RN × [0,+∞), with u being a uniformly
continuous function. Moreover, the function u is bounded and constant outside a compact set.

existence by approx Proposition 3.4. Let T > 0. Up to a subsequence, the family {uh}h>0 converges uniformly on
RN × [0, T ] to a uniformly continuous function u, which is bounded and constant out of a compact
set.

We can thus state our main result.

teo sol viscosa Theorem 3.5. The function u defined in Proposition 3.4 coincides with the unique continuous
viscosity solution of the Cauchy problem (2.6).

We finally recall the notion of a level-set solution to the evolution equation (2.4) (cp. e.g. [12]).

Definition 3.6. Given an initial bounded set E0 (or unbounded set with bounded complement)
define an uniformly continuous function u0 : RN → R such that {u0 > 0} = E0. Then, setting u as
the solution to (2.6) with initial datum u0 given by Theorem 3.5, we define the level-set solution to
the nonlinear mean curvature evolution (2.4) of E0 as

Et := {u(·, t) > 0}.

Our main result, Theorem 3.5 amounts thus in showing that the discrete flow converges to the
unique level set solution to equation (1.1).
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3.1 Proof of the main result

We start by an estimate on the evolution speed. For every r > 0, using the notation of Lemma 2.13,
we set

κ̂(r) = min

{
−1,

1

cψ
G
(
− c
r
− ∥f∥∞

)}
and, given r0 > 0, we set r(t) as the unique solution to{

ṙ(t) = κ̂(r(t))

r(0) = r0.
(3.3) ODE

Note that, in general, the solution r(t) will exist in a finite time interval [0, T ∗(r0)], where T ∗(r0)
denotes the extinction time of the solution starting from r0 i.e. the first time t such that r(t) = 0.

lemma evol balls in levelsets Lemma 3.7. Let u be the function given by Proposition 3.4 and assume that there exists λ ∈ R
such that B(x0, r0) ⊆ {u(·, t0) > λ}. Then, if a = +∞, it holds

B(x0, r(t− t0)) ⊆ {u(·, t) > λ}

for every t ≤ T ∗(r0) + t0, where r(t) is the solution to (3.3) with extinction time T ∗(r0). If instead
a < +∞ it holds

B(x0, r0 − a(t− t0)) ⊆ {u(·, t) > λ}

for all t such that r0−a(t− t0) ≥ 0. The same result holds for sublevels substituting superlevel sets.

Proof. The result in the case a < +∞ follows directly by Lemma 2.8, so we assume a = +∞. We
consider wlog {u(·, t0) > λ} bounded, as the other case is analogous. For a fixed R0 < r0, taking
h(R0) small enough, we can ensure that B(x0, R0) ⊆ {uh(·, t0) > λ}. We then fix σ > 1 and define
recursively the radii Rn by

Rn+1 = Rn +
h

cψ
G

(
−σCϕ

Rn
− ∥f∥∞

)
.

By Lemmas 2.9, 2.13 and 3.2, we see that B(x0, R[(t−t0)/h]+1) ⊆ {u(·, t) > λ} for every t ≥ t0 such
that R[(t−t0)/h]+1 > 0. Let then rσ be the unique solution to the ODE{

ṙσ(t) = κ̂(rσ(t)/σ)

rσ(0) = R0.
(3.4) ODE modif

Employing the monotonicity of κ̂, if rσ(t) ≤ Rn, then

rσ((n+ 1)h) ≤ Rn +

ˆ (n−1)h

nh

κ̂

(
rσ(s)

σ

)
ds ≤ Rn +

ˆ (n−1)h

nh

κ̂

(
Rn
σ

)
ds

≤ Rn +

ˆ (n−1)h

nh

1

cψ
G

(
−σCϕ

Rn
− ∥f∥∞

)
ds = Rn+1.

Therefore, B(x0, rσ(h[(t − t0)/h] + h) ⊆ {uh(·, t) > λ} for t ≥ t0 as long as the radius is positive.
We conclude sending h→ 0, then R0 → r0 and σ → 1.
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We are now in the position to prove our main result.

Proof of Theorem 3.5. Consider u as defined in (3.4): we show that u is a subsolution, as proving
that it is a supersolution is analogous. Let η(x, t) be an admissible test function in z̄ := (x̄, t̄) and
assume that (x̄, t̄) is a strict maximum point for u− η. Assume furthermore that u− η = 0 in such
point.

Case 1: We assume that ∇η(z̄) ̸= 0. Firstly, in the case a < +∞ we remark that if
∂tη/ψ(∇η(ẑ)) ≤ −a, then (2.8) is trivially satisfied, thus we can assume wlog that

∂tη(z̄)

ψ(∇η(ẑ))
> −a. (3.5) rmk test

By classical arguments (recalled in [5]) we can assume that each function uhk − η assumes a local
supremum in Bρ(z̄) at a point zhk =: (xk, tk) and that uhk(zhk) → u(z̄) as k → ∞. Moreover, we
can assume that ∇η(zk) ̸= 0 for k large enough.
Step 1: We define a suitable competitor for the minimality of the level sets of uh. By the previous
remarks we have that

uh(x, t) ≤ η(x, t) + ck (3.6) eq 6.19 Nonlocal

where ck := uhk(xk, tk) − η(xk, tk), with equality if (x, t) = (xk, tk). Let σ > 0 and set

ησhk(x) := η(x, tk) + ck +
σ

2
|x− xk|2.

Then, for all x ∈ RN ,
uhk(x, tk) ≤ ησhk(x)

with equality if and only if x = xk. We set lk = uhk(xk, tk) = ησhk(xk). We fix ε > 0, to be chosen

later, and define Ekε := {uhk(·, tk) > lk − ε} = Thk,tk−hk {uhk(·, tk − hk) > lk − ε}4 and

W k
ε := Ekε \

{
ησhk(·) > lk + ε

}
. (3.7)

Assume that Ekε is bounded and let us define Ekε,n as the sets constructed by Corollary 2.11 where

{uhk(·, tk − hk) > lk − ε} , Ekε substitute E, T−
h,tE respectively. We thus have that Ekε,n ↗ Ekε as

n→ ∞ and that each Ekε,n is the minimal minimizer of a problem in the form (2.12). We define

W k
ε,n := Ekε,n \

{
ησhk(·) > lk + ε,

}
. (3.8)

It is easy to see that, along any subsequence n(ε) → ∞ as ε→ 0, it holds W k
ε,n(ε) → {x} as ε→ 0.

Furthermore, we check that for every ε, k > 0 there exists n(ε, k) large enough such that |W k
ε,n| > 0

for all n ≥ n(ε, k). Indeed, by the continuity of ησ and since |∇η(z̄)| ≠ 0 there exists a positive
radius r such that

(B(xk, r) ∩ Ekε ) ⊆W k
ε .

Since xk ∈ Ekε and it is an open set, it holds |W k
ε | > 0. Recalling that Ekε,n → Ekε in L1, we conclude

that |W k
ε,n| > 0 for all n = n(ε, k) large enough. Note also that, for every fixed k, n(ε, k) → ∞ as

ε→ 0.

4The choice of working with the open superlevel sets is motivated by our need to employ (2.13)
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By minimality of Ekε,n we have

Pϕ(Ekε,n) +

ˆ
Ekε,n

g

(
sdψ{uhk (·,tk−hk)>lk−ε}

(x)/hk

)
∨ (−n) dx− f

([
t

hk

]
hk

)
|W k

ε,n|

≤ Pϕ
(
Ekε,n ∩ {ησhk > lk}

)
+

ˆ
Ekε,n∩{ησhk>lk}

g

(
sdψ{uhk (·,tk−hk)>lk−ε}

(x)/hk

)
∨ (−n) dx. (3.9) eq 6.21 Nonlocal

Adding to both sides Pϕ
(
{ησhk > lk} ∪ Ekε,n

)
and using the submodularity of the perimeter, we

obtain

Pϕ({ησhk > lk + ε} ∪W k
ε,n) − Pϕ({ησhk > lk + ε}) − f

([
t

hk

]
hk

)
|W k

ε,n|

+

ˆ
Wk
ε,n

g

(
sdψ{uhk (·,tk−hk)>lk−ε}

(x)/hk

)
∨ (−n) dx ≤ 0.

Equation (3.6) implies {uhk(·, tk − hk) > lk − ε} ⊆ {η(·, tk − hk) > lk − ck − ε}, therefore by
monotonicity we get

Pϕ({ησhk > lk + ε} ∪W k
ε,n) − Pϕ({ησhk > lk + ε}) − f

([
t

hk

]
hk

)
|W k

ε,n|

+

ˆ
Wk
ε,n

g
(

sdψ{η(·,tk−hk)>lk−ck−ε}(x)/hk

)
∨ (−n) dx ≤ 0.

(3.10) eq 6.22 Nonlocal

If instead Ekε is an unbounded set with compact boundary, we employ (2.27) instead of (3.9) to
obtain (3.10) in the computations above. See [9, 5] for details.
Step 2: We now estimate the terms appearing in (3.10). We start with the first two perimeter
terms Pϕ({ησhk > lk + ε} ∪W k

ε,n) − Pϕ({ησhk > lk + ε}). Reasoning as in Lemma 2.13, we use the
divergence theorem and (2.2) with the vector field v := ∇ϕ(∇ησ/|∇ησ|) to obtain

Pϕ({ησhk > lk + ε} ∪W k
ε,n) − Pϕ({ησhk ≥ lk + ε})

≥
ˆ
∂({ησhk>lk+ε}∪W

k
ε,n)

v · ν −
ˆ
∂{ησhk>lk+ε}

v · ν =

ˆ
Wk
ε,n

div v,
(3.11) eq 6.30 Nonlocal

where ν denotes the unit outer vector to the set we are integrating on.
The last term in (3.10) can be treated as follows. For any z ∈Wε, we have

η(z, tk) + ck +
σ

2
|z − xk|2 ≤ lk + ε. (3.12) eq 6.23 Nonlocal

Since, in turn, η(z, tk) + ck > lk − ε it follows that σ|z − xk|2 < 4ε and thus, for ε small enough,

W k
ε ⊆ Bc

√
ε(xk). (3.13)

Therefore, by Hausdorff convergence it holds that for every ε, k > 0 there exists n = n(ε, k) large
enough such that

W k
ε,n ⊆ B2c

√
ε(xk). (3.14) eq 6.24 Nonlocal
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On the other hand, by a Taylor expansion, for every z ∈W k
ε,n we have

η(z, tk − hk) = η(z, tk) − hk∂tη(z, tk) + h2k

ˆ 1

0

(1 − s)∂2ttη(z, tk − shk) ds. (3.15) eq 6.25 Nonlocal

Then, we consider y ∈ {η(·, tk − hk)(y) = lk − ck − ε} being a point of minimal ψ-distance from z,

that is, ψ(z− y) = |sdψ{η(·,tk−hk)(y)>lk−ck−ε}(z)|. One can prove (see [5, eq. (4.26)] for details) that

|z − y| = O(hk). (3.16) decay y

Moreover, it holds (see [9, eq (6.26)] for details)

(z − y) · ∇η(y, tk − hk)

|∇η(y, tk − hk)|
= ±ψ

(
∇η(y, tk − hk)

|∇η(y, tk − hk)|

)
distψ{η(·,tk−hk)(y)=lk−ck−ε}(z),

with a “+” if z ∈ {η(·, tk − hk)(y) ≤ lk − ck − ε} and a “-” otherwise. We get

η(z, tk − hk) = η(y, tk − hk) + (z − y) · ∇η(y, tk − hk)

+

ˆ 1

0

(1 − s)
(
∇2η(y + s(z − y), tk − hk)(z − y)

)
· (z − y) ds

= lk − ck − ε− sdψ{η(·,tk−hk)(y)=lk−ck−ε}(z)ψ(∇η(y, tk − hk))

+

ˆ 1

0

(1 − s)
(
∇2η(y + s(z − y), tk − hk)(z − y)

)
· (z − y) ds. (3.17) eq 6.27 Nonlocal

Note that, in view of (3.12) it holds |η(z, tk) − η(y, tk)| ≤ cε+ chk = O(hk), provided ε ≪ hk and
small enough. Thus, using also (3.14),(3.16) we deduce

1

hk
sdψ{η(·,tk−hk)>lk−ck−ε}(z) ≥

∂tη(z, tk) − 2ε
hk

−O(hk) −Ohk(1)

ψ(∇η(y, tk − hk))

=
∂tη(xk, tk) +O(

√
ε) − 2ε

hk
−O(hk) −Ohk(1)

ψ(∇η(xk, tk − hk)) +O(
√
ε) +O(hk)

,

and we apply g to both sides to conclude

g
(

sdψ{η(·,tk−hk)>lk−ck−ε}(z)/hk

)
≥ g

(
∂tη(xk, tk) −Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
(3.18) eq 6.29 Nonlocal

Step 4: We conclude the proof. Combining (3.10), (3.11) and (3.18), we arrive at

0 ≥
ˆ
Wk
ε,n

div v + |W k
ε,n|

(
−f
([

t

hk

]
hk

)
+ g

(
∂tη(xk, tk) −Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
∨ (−n)

)
. (3.19) end eq

Choosing n = n(ε, k), we can divide by |W k
ε,n(ε,k)| > 0 and apply G to both sides to get

G

(
−
 
Wk
ε,n(ε,k)

div v + f

([
t

hk

]
hk

))
≥ G

(
g

(
∂tη(xk, tk) −Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
∨ (−n(ε, k))

)
.
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Let us fix k > 0 and send ε→ 0 (thus also n(ε, k) → 0). Thanks to the continuity of G and recalling
also that W k

ε,n(ε,k) → {x} as ε→ 0, we arrive at

G

(
−κϕ{ησhk≥ησhk (xk)}

(xk) + f

([
t

hk

]
hk

))
≥ ∂tη(xk, tk) −Ohk(1)

ψ(∇η(xk, tk)) +O(hk)
,

which finally implies the thesis by letting simultaneously σ → 0 and k → +∞.
Case 2: We assume ∇η(x̄, t̄) = 0 and prove that ∂tη(x̄, t̄) ≤ 0. The proof follows the line of the

one in [9]. We focus on the case a = +∞, the other being simpler.
Since ∇η(z̄) = 0, there exist ℓ ∈ F and ω ∈ C∞(R) with ω′(0) = 0 such that

|η(x, t) − η(z̄) − ∂tη(z̄)(t− t̄)| ≤ ℓ(|x− x̄|) + ω(|t− t̄|)
thus, we can define

η̃(x, t) = ∂tη(z̄)(t− t̄) + 2ℓ(|x− x̄|) + 2ω(|t− t̄|)

η̃k(x, t) = η̃(x, t) +
1

k(t̄− t)
.

We remark that u− η̃ achieves a strict maximum in z̄ and the local maxima of u− η̃k in RN × [0, t̄]
are in points (xk, tk) → z̄ as k → ∞, with tn ≤ t̄. From now on, the only difference from [9] is in
the case xk = x̄ for an (unrelabeled) subsequence. We thus assume xk = x̄ for all k > 0 and define
bk = t̄− tk > 0 and the radii

rk := ℓ−1(akbk),

where ak → 0 must be chosen such that the extinction time for the solution of (3.3) satisfies
T ∗(rk) ≥ t̄− tk, for k large enough. To show that such a choice for ak is possible, we set

β(t) = sup
0≤s≤t

κ̂(ℓ−1(s))ℓ′(ℓ−1(s)), (3.20)

where κ̂ is as in (3.3). Note that by Definition 2.4 it holds β(t) ≤ κ̂(t) for t small, β is non decreasing
in t and g(t) → 0 as t→ 0. We then have

T ∗(rk)

bk
≥ 1

bk

ˆ rk

rk/2

1

κ̂(s)
ds =

1

bk

ˆ ℓ−1(akbk)

ℓ−1(akbk/2)

1

κ̂(s)
ds

=
ak
2

 akbk

akbk/2

1

κ̂(ℓ−1(r))ℓ′(ℓ−1(r))
dr ≥ ak

2

1

β(bk)
= 2, (3.21) eq 6.32 Nonlocal

where in the last equality we chose ak := 4β(bk) which tends to 0 as k → ∞.
By definition of η̃k it holds

B(x̄, rk) ⊆ {η̃k(·, tk) ≤ η̃k(x̄, tk) + 2ℓ(rk)}
⊆ {u(·, tk) ≤ u(x̄, tk) + 2ℓ(rk)},

by maximality of u− η̃k at zk and since u(zk) = η̃k(zk). Since the balls B(·, rk) are not vanishing,
by Lemma 3.7 we have

x̄ ∈ {u(·, t̄) ≤ u(x̄, tk) + 2ℓ(rk)}. (3.22) eq bar x

Finally, using again the maximality of u− η at z̄, the choice of rk and (3.22), we obtain

η(z̄) − η(x̄, tk)

t̄− tk
=
η(z̄) − η(x̄, tk)

bk
≤ u(z̄) − u(x̄, tk)

bk
≤ 2ℓ(rk)

bk
= 2ak.

Passing to the limit k → ∞, we conclude that ∂tη(z̄) ≤ 0.

17



Acknowledgements

The author whishes to thank professors A. Chambolle and M. Morini for helpful discussions and
comments. The author has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk lodowska-Curie grant agreement No 94532.

References

AlmTayWan [1] F. Almgren, J. E. Taylor, and L. Wang. “Curvature-driven flows: a variational approach”. In:
SIAM J. Control Optim. 31.2 (1993), pp. 387–438. issn: 0363-0129. doi: 10.1137/0331020.

AlvGuiLioMor [2] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. “Axioms and fundamental equations of
image processing”. In: Arch. Rational Mech. Anal. 123.3 (1993), pp. 199–257. issn: 0003-9527.
doi: 10.1007/BF00375127. url: https://doi.org/10.1007/BF00375127.

And10 [3] B. Andrews. “Moving surfaces by non-concave curvature functions”. In: Calc. Var. Partial
Differential Equations 39.3-4 (2010), pp. 649–657. issn: 0944-2669. doi: 10.1007/s00526-
010-0329-z.

ChaCioTho [4] A. Chambolle, A. Ciomaga, and G. Thoroude. “Nonlinear Mean Curvatuer Flow”. In: In
preparation ().

ChaDegMor [5] A. Chambolle, D. De Gennaro, and M. Morini. In: Advances in Calculus of Variations (2023).
doi: doi:10.1515/acv-2022-0102. url: https://doi.org/10.1515/acv-2022-0102.

ChaMorNovPon19JAMS [6] A. Chambolle, M. Morini, M. Novaga, and M. Ponsiglione. “Existence and uniqueness for
anisotropic and crystalline mean curvature flows”. In: J. Amer. Math. Soc. 32.3 (2019),
pp. 779–824. issn: 0894-0347. doi: 10.1090/jams/919. url: https://doi.org/10.1090/
jams/919.

CHaMorNovPon19Anal [7] A. Chambolle, M. Morini, M. Novaga, and M. Ponsiglione. “Generalized crystalline evolutions
as limits of flows with smooth anisotropies”. In: Anal. PDE 12.3 (2019), pp. 789–813. issn:
2157-5045. doi: 10.2140/apde.2019.12.789.

ChaMorPon17 [8] A. Chambolle, M. Morini, and M. Ponsiglione. “Existence and uniqueness for a crystalline
mean curvature flow”. In: Comm. Pure Appl. Math. 70.6 (2017), pp. 1084–1114. issn: 0010-
3640. doi: 10.1002/cpa.21668.

ChaMorPon15 [9] A. Chambolle, M. Morini, and M. Ponsiglione. “Nonlocal curvature flows”. In: Arch. Ration.
Mech. Anal. 218.3 (2015), pp. 1263–1329. doi: 10.1007/s00205-015-0880-z.

ChaNov08 [10] A. Chambolle and M. Novaga. “Implicit time discretization of the mean curvature flow with
a discontinuous forcing term”. In: Interfaces Free Bound. 10.3 (2008), pp. 283–300. issn:
1463-9963. doi: 10.4171/ifb/190. url: https://doi.org/10.4171/ifb/190.

Cho87 [11] B. Chow. “Deforming convex hypersurfaces by the square root of the scalar curvature”. In:
Invent. Math. 87.1 (1987), pp. 63–82. issn: 0020-9910. doi: 10.1007/BF01389153. url:
https://doi.org/10.1007/BF01389153.

Gig-book [12] Y. Giga. Surface evolution equations. Vol. 99. Monographs in Mathematics. A level set ap-
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