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Abstract This paper presents a major reformulation

of a widely used solution for computing the exact Eu-

clidean distance transform of n-dimensional discrete bi-

nary shapes. Initially proposed by Hirata, the original

algorithm is linear in time, separable, and easy to im-

plement. Furthermore, it accounts for the fastest exist-

ing solutions, leading to its widespread use in the state

of the art, especially in real-time applications. In par-

ticular, we focus on the second step of this algorithm,

where the lower envelope of a set of parabolas has to be

computed. By leveraging the discrete nature of images,

we show that some of those parabolas can be merged

into line segments. It reduces the computational cost

of the algorithm by about 20% in most practical cases,

while maintaining its exactness. To evaluate the pro-

posed improvement on different cases, two state-of-the
art benchmarks are implemented and discussed.
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1 Introduction

First introduced by Rosenfeld et al. [1], the Distance

Transform (DT) of a binary shape associates to each

point its distance to the nearest boundary point. When

this distance is defined by the Euclidean metric (which

is by far the most common case), the DT is then referred

as Euclidean Distance Transform (EDT). This funda-

mental geometric operator finds applications in various

fields, such as shape analysis, data compression, com-

puter graphics or robotics. As such, it has been widely

investigated over the years, leading to a large number

of real-time solutions in arbitrary dimensions.

As pointed out by Fabbri et al. [2], existing EDT

algorithms can generally be classified into three cate-

gories, depending on the order in which pixels are pro-

cessed:

– Ordered propagation algorithms emulate the Eikonal

equation: A wavefront is initiated at the bound-

aries of the considered binary shape, and propagates

at constant speed towards its center, whilst assign-

ing to each encountered pixel the (current) distance

traveled by the wave.

– Raster scan algorithms process pixels by scanning

each line (forward then backward) in a sequential

order.

– Dimensional reduction algorithms first compute the

1D DT for each row (or column) independently. This

intermediate result is then used in a second step

where the 2D DT is obtained. When the considered

shape is defined in higher dimensions, this process

repeats iteratively along each direction until the n-

dimensional distance transform is finally obtained

(i.e. the actual DT).
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Fig. 1 (left) An example of a binary shape, where black cells represent obstacles. (center) The one-dimensional DT, where
each cell’s value corresponds to its distance to the nearest black cell on the same row. (right) The resulting squared EDT. The
column in red is the one considered on Fig.2.

Fig. 2 Squared EDT computation for the red column in Fig.1 based on: (left) the lower envelope of a set of parabolas [3],
and (right) the lower envelope of a set of line segments and parabolas. Notice how, at discrete points (red crosses), both
representations generate the same values.

The work described hereafter relates to this last cat-

egory. In such approaches, although the first step (1D

DT) is straightforward, this is not the case for the fol-

lowing ones. Specific properties of the Euclidean metric

must be leveraged to minimize the computational cost

and guarantee an exact EDT. One popular solution was

initially introduced by Saito et al. [4]. It is based on the

lower envelope of a set of parabolas, from which the

EDT of a given line can be deduced (see Fig.2).

The main contribution of this article is a new formu-

lation of this strategy. While maintaining its separabil-

ity and linear complexity, it leverages the discrete na-

ture of digital shapes to merge successive parabolas into

line segments (see Fig.2). As such, it allows to generate

the exact same result (i.e. the exact EDT) while signif-

icantly reducing the computational cost. Additionally,

the resulting algorithm is extremely short and simple to

implement in arbitrary dimensions, thus favoring its use

on a wide range of real-time contexts, especially when

GPU-based implementation is not an option. Note that

this last point explains why most recent works, such as

[5] or [6] are not compared to the proposed solution.

To better understand the theoretical and algorith-

mic underpinnings of this contribution, the rest of the

article is organized as follows: In Section 2, a brief his-

tory of exact EDT is presented, with particular em-

phasis on algorithms based on dimensional reduction.

In Section 3, preliminary concepts are introduced, in-

cluding general definitions related to EDT computa-

tion, and its relation to the lower envelope of a set of

parabolas. In Section 4, the core contribution is pre-

sented, both in terms of theory and effective implemen-

tation. Section 5 is dedicated to the experimental val-

idation, where the gain of the proposed algorithm is

quantified with respect to the best state-of-the-art al-

gorithms, before concluding this work in Section 6.

2 State of the art

Early DT algorithms were based on raster scan [1] or

ordered propagation [7], and considered city-block or

chessboard discrete metrics. The issue of Euclidean DT

computation was thereafter investigated more than a

decade later. Although fast to compute, the algorithms

proposed in [8, 9] were only approximations, and there-

fore required a costly post-processing step [10, 11]. For

a complete overview of the approximate method, we re-
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fer the reader to the state-of-the-art proposed by Fabbri

et al. [2] or the technical survey proposed in [12] for im-

plementation details. In the following, we will focus on

exact EDT algorithms.

From the early 90’s, exact EDT algorithms based

on dimensional reduction became popular. In such ap-

proaches the basic idea is to first compute the 1D DT

for each row (or column) independently, and then use

this intermediate result in a second phase to compute

the 2D DT. The non trivial part is the second step,

where various algorithms have been proposed to min-

imize the computational cost and guarantee an exact

EDT. There are three main variants of this approach

guaranteeing linear complexity with respect to the dis-

crete grid size. The first is based on Voronoi diagrams

(VD). Instead of computing the VD explicitly (which

is time consuming, and in no case linear), Breu et al.

[13] proposed an EDT algorithm that efficiently deter-

mines the intersection between an image line and the

VD, without constructing it explicitly. This approach

was later improved by Guan et al. [14], who took ad-

vantage of the fact that adjacent points tend to have

the same nearest boundary. Although the concepts are

exactly the same, more efficient algorithms were then

successively proposed by Maurer et al. [15] and Wang et

al. [16] (who also introduced a recursive generalization

to higher dimensions). The second variant is based on

mathematical morphology. After Shih et al. [17] showed

that the EDT can be computed by a single gray-scale

morphological erosion of the input shape, Lotufo et al.

[18] proposed a strategy to decompose the structuring

element into a set of 1D elements, thus leading to an

independent scanning algorithm. The last variant uses

parabola intersections, as originally introduced by Saito

et al. [4]. The central idea is to speed up the second

phase (and possibly additional phases) by computing

the lower envelope of a set of parabolas, from which

the EDT of a given line can be deduced (see Section 3).

This approach has been greatly improved, reformulated

and enhanced over the years ([3], [19], [20]), and has led

to a set of algorithms with exactly the same complexity

(i.e. linear in the grid size), but with a variable constant

term.

3 EDT computation using lower envelope of

parabolas

3.1 General idea

For the sake of simplicity, and given that the following

can easily be generalized to higher dimensions, let’s con-

sider a two- dimensional binary image input, I = X∪X c

of dimension m× n (m rows, n columns), where X de-

notes the shape, and X c the background. The EDT

of I is a 2D grid DI = {D(x)} storing for each pixel

x = (x1, x2) its distance D(x) to the nearest back-

ground point:

∀x ∈ I, D(x) = min
y∈X c

√
(x1 − y1)2 + (x2 − y2)2 (1)

This formulation provides an efficient computation

process using two steps :

– First, each row of index l is independently consid-

ered as a 1D signal to generate a one dimensional

EDT G = {g(x)}:

∀x = (l, x2), g(x) = min
(l,y2)∈Xc

|x2 − y2| (2)

– Second, each column of index c is scanned to deduce

the distance transform D(x) by solving:

∀x = (x1, c), D(x)2 = min
1≤l≤m

{(x1− l)2+g(l, c)2} (3)

As discussed in [4], the min operation in the second

step is equivalent to a calculation of the lower envelope

of a set of parabolas. Let us consider a given column c as

a one-dimensional signal. Each row l defines a parabola

Fl(i) = (i− l)2+g(l, c)2 representing the (squared) dis-

tance between a point along c and the closest boundary

point from (l, c) along row l. Consequently, the lower

envelope of the set F = {Fl} of all parabolas exactly

defines the EDT for column c.

3.2 EDT Algorithm based on parabolas lower envelope

Several works ([3], [19], [21], [20]) have thus focused on

the definition of efficient algorithms to compute such a

lower envelope. They are extremely close to each other,

both in term of formulation and performance. Accord-

ing to our tests (see Section.5), the one proposed by

[20] slightly outperforms the others. Algorithms 1 and

2 present the corresponding pseudo-code for both steps.

The first algorithm (Algo.1), corresponding to the

one-dimensional EDT computation, is common to all

solutions (including ours), and is simply a direct appli-

cation of Eq.2. The second algorithm (Algo.2) is cen-

tral to the proposed contribution, and therefore requires

some explanation. For each column j ∈ [0, n[ (line 1),

the core idea is to determine the ordered subset of F
contributing to its lower envelope, using a single scan of

each cell. For this, it uses two arrays v and z to store for

each parabola k of this subset, i) the horizontal coordi-

nate of its summit (v[k]), and ii) the starting position

of its contribution to the lower envelope (z[k]), corre-

sponding to its intersection with the previous parabola
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Algorithm 1: Computing g (first dimension)

input : Binary image I = X ∪Xc of size m ∗ n
output : 1-dimensional distance transform g(x) for

each x ∈ I
1 for i=0 to m-1 do
2 if (i, 0) ∈ Xc then
3 g(i, 0) = 0

4 else
5 g(i, 0) = ∞
6 for j=1 to n-1 do
7 if (i, j) ∈ Xc then
8 g(i, j) = 0

9 else
10 g(i, j) = g(i, j − 1) + 1

11 for j=n-2 to 0 do
12 if g(i, j + 1) < g(i, j) then
13 g(i, j) = g(i, j + 1) + 1

Algorithm 2: Computing D from g (second

dimension)

input : 1-dimensional distance transform g(x), for
each x ∈ I

output : Euclidean distance transform D
1 for j=0 to n-1 do
2 k = 0, v[0] = 0, z[0] = −∞, z[1] = +∞
3 for i=1 to m-1 do
4 w = 1 + s(v[k], i) (Eq.4)
5 while w ≤ z[k] do
6 k = k − 1
7 w = 1 + s(v[k], i) (Eq.4)

8 k = k + 1, v[k] = i, z[k] = w, z[k + 1] = ∞
9 for i=0 to m-1 do

10 while z[k + 1] < i do
11 k = k + 1

12 D2(i, j) = (i− v[k])2 + g(v[k], j)2

(k−1) (see Table.1 for an illustration). Both arrays are

initialized with the first parabola of the column (line 2).

At a given step of the algorithm, corresponding to a cell

i ∈ [1,m[ (line 3), v and z contain k parabolas defin-

ing a temporary lower envelope. To determine whether

or not the parabola Fi contributes to the last one, its

intersection s(v[k], i) with Fv[k] is calculated :

s(v[k], i) =
i2 − v[k]2 + g(i, j)− g(v[k], j)

2(i− v[k])
(4)

Let w = 1 + s(v[k], i) denote the closest integer

higher than this intersection coordinate (line 4). Two

cases are then to be considered:

– w is higher than z[k] (line 8): as illustrated Fig.3(left),

it means that Fv[k] still contributes to the lower en-

velope of F (from z[k] to w − 1). Fi is then added

to the list such that z[k + 1] = w, and v[k + 1] = i.

– w is lower than or equal to z[k] (lines 5 to 7): as

illustrated Fig.3(center), it involves that the contri-

bution to the lower envelope of Fv[k] is entirely cov-

ered by the one of Fi. Therefore, Fv[k] is removed,

and the process is repeated with Fv[k−1].

Once each cell has been considered, v and z entirely

define the lower envelope of F . The last step is thus to

iterate through the column, and compute for each cell

its Euclidean distance, based on the parabola associated

to its position (lines 9 to 12).

It should be noted that, for a shape defined in Zn,

Algo.2 is simply repeated for each dimension except the

first one (i.e. n− 1 times).

4 EDT Algorithm based on parabolas and line

segments

4.1 General idea of the proposed method

A simple analysis of Algo.2 shows that the main compu-

tational load is induced by lines 4 and 7, where the in-

tersection between two parabolas is determined (Eq.4).

The core idea behind the proposed approach is to re-

duce the frequency of this operation. To achieve this

goal, two properties induced by the context are lever-

aged.

– The considered shapes are defined on discrete grids.

Thus, due to sampling, adjacent cells often tend to

have the same one-dimensional distance transform

g. As illustrated in Fig.2 (bottom left), for a given

column, the corresponding lower envelope is then

formed of a large number of identical parabolas, up

to a shift along the axis.

– The distance transform is also defined on a discrete

grid. In other words, as long as the resulting EDT

is exact for each cell, the lower envelope calculated

for each column does not have to be exact for any

continuous point on the grid domain.

Based on these properties, this work proposes to ap-

proximate adjacent parabolas of the same height by a

single line segment connecting their summit, as illus-

trated in Fig.2. This approach has two major advan-

tages. First, as explained previously, this reduces the

number of entities composing the lower envelope for

each column, and therefore the number of intersections

(lines 4 and 7) to be computed. Second, the construc-

tion of such line segments can be performed using a

fast-forward process, which allows to entirely skip lines

4 to 8 of Algo.2 for the corresponding cells.
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Fig. 3 The three cases to be considered when adding the red parabola to the lower envelope: (left) When z[k] <= w, the
parabola k (in blue) still contributes to the lower envelope; (center) when z[k] > w, the parabola k is totally eclipsed by the
red one. It is thus removed from the lower envelope; and (right) when the element k is a line segment, the process is exactly
the same, except that w is calculated based on Eq.6 instead of Eq.4.

4.2 Lower envelope computation

Similarly to the original work, the lower envelope of a

given column c is built incrementally by successively

considering the parabolas Fi for each i ∈ [0, n[, and, if

necessary, by adding a single one as a parabola, or sev-

eral ones as a line segment. The success of this process

depends on answering the following questions:

– When should a line segment be added ? Consider

when a parabola Fl (computed from row l and de-

fined by the tuple {z[k], v[k]}) has just been added.

This parabola marks the beginning of a line segment

when i) the beginning of its area of influence z[k] is

inferior or equal to its center v[k], and ii) at least

the following two parabolas have the same height as

Fl:{
z[k] ≤ v[k]

∃L ≥ 2 | ∀j ∈ [l, l + L], g(j, c) = g(l, c)
(5)

The first condition is required, because when not

respected, the summit of Fl does not belong to the

lower envelope, and thus cannot be the beginning of

a line segment.

– How to efficiently add a line segment? Assuming

the two previous conditions are respected, a fast for-

ward from row l to row l + L is performed (i.e., all

the parabolas in between are not considered). Two

elements are then added to the lower envelope:

– A line segment from l to l + L with height h =

g(l, c)2 to encapsulate all the required informa-

tion for the skipped parabolas,

– A parabola starting from and centered on l + L

to ensure the transition with the rest of the lower

envelope.

Notice that the whole process, while potentially con-

sidering a large number of parabolas, does not re-

quire any calculation.

– How to efficiently add a parabola? When Fl does

not belong to a line segment, it has to be added on

the lower envelope by itself. This process leads to

evaluate its intersection with the last element to de-

termine if the latter should be removed, and iterates

until this is not the case. Two cases are then to be

considered:

– Case 1: the last element is a parabola: Eq.4 is

used, exactly as in [20] (lines 4 to 7 of Algo.2).

– Case 2: the last element is a line segment. Let h

be its height. In this case, the intersection with

Fl is obtained by solving the second-order sys-

tem Fl = h, and keeping the lowest solution (i.e.

the one on the left of the parabola). It is then

given by:

s2(h, l) = l −
√
h− g(l, c)2 (6)

As in the parabola/parabola case, let w = 1 +

s2(h, l) be the nearest integer higher than this

intersection. When the start of the line segment

follows the intersection (i.e. when z[k] > w),

it is completely occluded by the parabola, and

is therefore removed from the lower envelope.

Otherwise, as illustrated (Fig.3(right)), the line

segment still contributes to the lower envelope

(from z[k] to w−1). The parabola is then added

to the list such that z[k+1] = w and v[k+1] = i.

4.3 Efficient implementation

In the original version of the algorithm (Algo.2), the

lower envelope is represented with two arrays v and z

storing respectively for each parabola k: i) the horizon-

tal coordinate of its summit (v[k]), and ii) the starting

position of its zone of influence (z[k]). Given its com-

putational and memory efficiencies, this representation

is adapted and completed to fit the proposed combi-

nation of parabolas and line segments. First, a third

array t is added to store the nature of a given object k
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(parabola or line segment). Arbitrarily, t[k] is set to 0

when k is a parabola, and to 1 otherwise. Second, when

the object k is a line segment, the array v is recycled

to store the (unique) value of g along it (i.e. the height

of the line segment). Please refer to Table.1 for a clear

understanding of this representation.

Table 1 Proposed representation of the lower envelope. For
parabolas, v and z are exactly the same as in [20].

Parabola Line segment

v[k]
horizontal location of
the parabola’s center

height of the
line segment

z[k]
beginning of the
zone of influence

beginning of the
zone of influence

t[k] 0 1

The structure of the proposed algorithm is given

in (Algo.3). To start, the fast forward process is im-

plemented (lines 4 to 10). Once the presence of a line

segment has been asserted (lines 4 and 6), it is added in

line 7 and the process ends (lines 8 and 9) by adding the

last parabola (line 10). Notice that when the test (line

6) is not valid (i.e. when the next parabola of a potential

line segment is not at the same height), the algorithm

jumps to line 10 and simply adds Fi as a parabola with-

out computing its intersection with Fi−1. The rest of

the algorithm, i.e. lines 11 to 20, follows exactly the

same structure as the original algorithm (Algo.2). The

only differences lay in lines 15 and 20, to hand over the

cases where the current considered element of the lower

envelope is a line segment. In particular, the intersec-

tion with Fi is calculated (Eq.6) on line 15, while line

20 describes how to determine the DT D2(i, j) of a line

segment, simply given by its height v[k].

5 Comparative results

5.1 Methodology

A complete benchmark was conducted to compare the

proposed approach with the fastest existing CPU-based

algorithms for exact EDT computation. They consist of

the solutions offered by:

Algorithm 3: Proposed algorithm

input : 1-dimensional distance transform g(x), for
each x ∈ I

output : Euclidean distance transform D
1 for j=0 to n-1 do
2 k = 0, v[k] = 0, z[k] = −∞, z[k + 1] = +∞,

t[k] = 0, w = 0, i = 1
3 while i < m do
4 if g(i− 1, j) == g(i, j) and w < i then
5 i = i+ 1
6 if i < m and g(i− 1, j) == g(i, j) then
7 k = k + 1, z[k] = i− 1, v[k] = g(i, j),

t[k] = 1
8 while

i < m and g(i− 1, j) == g(i, j) do
9 i = i+ 1

10 k = k + 1, z[k] = i− 1, z[k + 1] = ∞,
v[k] = i− 1, t[k] = 0

11 w = 1 + s(v[k], i)
12 while w ≤ z[k] do
13 k = k − 1
14 if t[k] == 0 then
15 w = 1 + s(v[k], i)

16 else
17 w = 1 + s2(v[k], i)

18 k = k + 1, z[k] = w, z[k + 1] = ∞, v[k] = i,
t[k] = 0, i = i+ 1

19 for i=0 to m-1 do
20 while z[k + 1] < i do
21 k = k + 1

22 if t[k] == 0 then
23 D2(i, j) = (v[k]− j)2 + g(v[k], j)2

24 else
25 D2(i, j) = v[k]

– Felzenszwalbe et al.[20], which performs an inde-

pendent scanning based on the lower envelope of

parabolas as detailed in Section.3;

– Hirata[3] which is similar to [20] with a slightly dif-

ferent algorithm for constructing the lower envelope;

– Maurer et al.[15] which performs independent scan-

ning based the partial construction of the Voronoi

diagram;

– Lucet et al.[22] which performs an independent scan-

ning based on the Legendre Conjugate;

– Schouten et al.[23] that uses a combination of or-

dered propagation, raster scanning and independent

scanning.

With the exception of the last one, all algorithms are

directly comparable to the proposed approach, as they

are relatively easy to implement, separable, generaliz-

able to higher dimensions, and linear in the number of

pixels. The FEED algorithm introduced by Schouten

et al. [23] is much more complicated to implement and
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Table 2 Computation time results on the [2] dataset, for the algorithms considered in the benchmark

images
Computation Time (in ns/pixel) per algorithm

Proposed Felzenswalb Hirata Maurer Lucet Schouten
ave rms ave rms ave rms ave rms ave rms ave rms

rotating line 7.86 1.67 7.64 1.61 8.07 1.69 8.20 1.70 6.11 0.3 19.90 8.11
rotating line, inverse 4.20 0.05 6.69 0.07 8.79 0.08 8.65 0.197 9.03 0.07 1.79 0.05
inscribed circle 8.99 0.26 9.23 0.36 9.90 0.14 10.70 0.31 11.98 4.81 44.88 21.68
inscribed circle, inverse 5.09 0.25 7.20 0.17 9.04 0.19 9.09 0.35 12.95 4.62 3.82 0.53
random pixels (see Fig.5) 18.92 6.50 19.21 5.19 18.60 4.15 19.92 5.11 23.10 3.50 18.52 8.73
random squares 6.69 1.51 7.97 0.81 9.29 0.32 9.33 0.40 17.59 0.80 7.10 3.83
point in corner 5.76 0.12 7.81 0.14 9.45 0.14 8.89 0.11 10.35 2.91 1.86 0.07
point in corner, inverse 4.00 0.15 6.43 0.17 8.71 0.20 8.58 0.16 12.18 2.95 1.74 0.05
Lenna edges 16.34 15.42 14.30 15.95 17.05 13.68
Lenna edges, inverse 7.51 9.07 10.56 10.77 16.36 4.74

Fig. 4 Samples of the considered shapes extracted from Fabbri’s dataset. From left to right: inscribed circle, random pixels
(50%), random squares (75%), Lenna edges (inverse). The images have different complexities to test the algorithms in different
situations and their dependency on image content.

2.

configure. Furthermore, it is not linear in the image

size and has exponential complexity when dealing with

higher dimensions (according to Schouten et al.[24]).

However, the authors have shown its excellent perfor-

mances on 2D shapes. Although, we do not consider it

to be in the same scope as the proposed algorithm, it

was still added to the benchmark. Except for FEED, for

which we directly used the source code provided by the

authors (about 500 optimized lines with many imple-

mentation tricks), all algorithms were re-implemented

according to their formulation, and optimized with all

known strategies. In particular, as stated in [23], the

order of processing (i.e. first the rows and then the

columns, or vice-versa) does not affect the accuracy of

the result, but it influences the execution time. For all

algorithms, the fastest implementation was therefore se-

lected, which in our case was column-row ordering.

To guarantee full control over these assessments and

encourage the comparison of the present work with yet-

to-be-released algorithms, all source codes (including

algorithms and benchmark implementation) can be found

on github1). Finally, although all the algorithms (ex-

cept for FEED) are separable, they were implemented

without any parallelization on a laptop equipped with

an Intel Core i7-5600U CPU @ 2.60GHz. Their execu-

1 https://github.com/RomMarie/EnhancedDT

tion time could thus be easily reduced on any modern

processor with a multi-core architecture.

5.2 Fabbri et al. dataset

The first dataset considered here was introduced by

Fabbri et al.[2] in a comparative survey to review state-

of-the-art sequential 2D EDT algorithms. It considers

a variety of artificial 2d binary shapes (see Fig.4), and

is designed to highlight the pros and cons of each ap-

proach. The results of this dataset are presented in Ta-

ble 2. Overall, they confirm those presented in [23]. The

FEED algorithm outperforms other solutions (includ-

ing the presented work) in most scenarios, whilst the

algorithm proposed by [22] is generally the slowest. Ad-

ditionally, although the theoretical foundations of both

works are exactly the same, the algorithm proposed by

[20] is significantly faster than the one initially intro-

duced by [3], with an average gain of around 10%. It

validates the algorithmic choice discussed earlier.

Another global observation depicted by Table 2 is

the good performance of the proposed approach, as it

outperforms other comparable algorithms (except FEED),

ranging from 13% for the solution proposed by Felzenswalb,

to 41% for Lucet et al. algorithm. However, it is worth

noting that this statement is not true for 3 scenarios,
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Fig. 5 Evolution of the computational cost (in ns/pixel) for
each considered algorithm, when increasing the number of
background pixels (randomly generated). Although slower in
the beginning, the proposed algorithm (and FEED) outper-
forms other comparable solutions when the background is suf-
ficiently connected.

namely random pixels, rotating line and Lenna edges

which require specific attention. Consider for example

the case of random pixels. In this scenario, a set of

images are generated by setting an increasing percent-

age of random pixels as the background. As detailed in

Fig.5, the proposed algorithm is slower than [20] and [3]

until about 70% of the image is filled with background

points. This behavior clearly highlights the overload in-

duced by mixing line segments with parabolas. As the

points are randomly generated, the background is not

connected. To generate line segments, the algorithm has

to search for non-existent adjacent parabolas, which in-

creases the computational cost by at most 5% (com-

pared to [20] and [3]). From 70%, the background pix-

els become highly connected. This cost is then largely

counterbalanced by the gain induced by the line seg-

ments now found, and the proposed approach begins to

significantly outperform other algorithms. Finally, we

also observe that the FEED algorithm suffers from the

same drawback, but to a much greater extent.

Following the same reasoning, the proposed algo-

rithm is also slightly slower when applied on Lenna

edges (by definition, edges are thin, and therefore rarely

generate line segments) and on the rotating line. Note

however that for all these scenarios, the difference re-

mains very small.

5.3 The Kimia’s dataset

Although the Fabbri et al. dataset considers a wide

range of shapes, with varying geometric properties, it

remains artificial and not representative of real-world

application cases. Therefore, we also compared the al-

gorithms considered on the dataset proposed in [25].

It is a collection of 216 binary images representing real

world entities (objects, animals, ...). The computational

cost obtained by averaging a hundred runs of each al-

gorithm on each image is presented in Fig.6.

Overall, the hierarchy in terms of execution time be-

tween the considered algorithms is consistent across the

entire dataset. More specifically, the FEED algorithm

remains the fastest, followed by the proposed solution.

The latter is in average 20% faster than the method it

extends (i.e. Felzenswalb work), and about 35% faster

than Hirata’s algorithm. Finally, the other algorithms

are significantly slower. Please notice that, as shown in

Fig.6, the considered shapes are extremely different in

terms of topology and geometry. Although it has a clear

influence on the computational cost, the performance

order of the algorithms remains unchanged throughout

the dataset.

5.4 Discussion

In this section, six algorithms (including the proposed

one) have been compared in terms of computational

cost. It clearly shows that FEED [23] outperforms the

others, whilst the proposed solution consistently comes

at the second place. At this point, the reader might

thus question the interest of this work. Together with

the quantitative comparison, a qualitative reflection is

further added.

Implementation difficulty: We spent a consider-

able amount of time implementing all the benchmark

algorithms. As such, we can affirm that among them,

the easiest were those proposed by Felzenswalb [20] and

Hirata [3], followed by ours, Maurer [15], and finally

Lucet [22]. Although a C++ source code is made avail-

able by the authors for FEED (as supplementary ma-

terial), it still consists in around 500 very dense lines,

making it by far the most difficult to implement. This

is, in our opinion, a major drawback for this algorithm,

because its use in a different context (with another pro-

gramming language or in higher dimension) is far from

straightforward. This is certainly not the case for the

proposed algorithm.

Parameter tuning: Unlike the other five meth-

ods, FEED’s performance relies heavily on tuning six

parameters. In the source code provided in the supple-

mentary material, it is stated that ”A way to do it is to

start with an initial educated guess and then vary P1 to

obtain minimal time. Then repeat this with P2 to P6,

followed by going back from P5 to P1”. Although we

may have our doubts as to what an ”initial educated

guess” should be, the results presented in this article

for FEED are the ones obtained after spending time

working on P1-P6 to obtain the best possible execution
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Fig. 6 Computational cost (in ns/pixel) of each considered algorithm, when applied on the 216 images of Kimia’s dataset.
Note that, although the FEED algorithm is clearly faster, the proposed approach consistently outperforms the other state-of-
the-art solutions.

time. As pointed out in [23], the difference between de-

fault values and fine-tuning is about 44%, which is huge.

While fine-tuning is clearly a strength of FEED (since it

optimizes the performance of the algorithm for a given

context), it also increases the difficulty of actually using

it effectively.

Generalization to higher dimensions: Among

the six considered algorithms, only those proposed by

Lucet [22] and Schouten [23] cannot be directly gener-

alized to higher dimensions. As described in [24], FEED

requires major adaptations (and a new set of parame-

ters) to work efficiently in 3D, and is not yet designed
to work in arbitrary dimensions.

Based on these points, the proposed algorithm clearly

seems to be an interesting alternative, especially when

working in arbitrary dimensions.

6 Conclusion

In this article, we presented a major reformulation to

the well-known solution for the Euclidean Distance Trans-

form computation initially introduced by Saito et al.

[4]. It leverages the discrete nature of the input shape

and the output result to limit the frequency of evalu-

ating the intersection between two parabolas, which is

a computationally expensive operation. The resulting

algorithm remains linear in the shape size, but allows

the constant term to be reduced significantly.

We proposed a comprehensive analysis and bench-

marking of several similar state-of-the-art algorithms.

Although slower than the FEED algorithm (which is,

to our knowledge, the fastest at this stage), it is both

easy to implement and easily scalable to higher dimen-

sions. In fact, our ongoing work uses this algorithm as

input for robot path planning in 4-dimensional space,

where FEED is definitely not an option.
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