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Stochastic Inertial Dynamics Via Time Scaling and Averaging

Rodrigo Maulen-Soto.∗ Jalal Fadili† Hedy Attouch‡ Peter Ochs§

Abstract. Our work is part of the close link between continuous-time dissipative dynamical systems and optimiza-
tion algorithms, and more precisely here, in the stochastic setting. We aim to study stochastic convex minimization
problems through the lens of stochastic inertial differential inclusions that are driven by the subgradient of a con-
vex objective function. This will provide a general mathematical framework for analyzing the convergence properties
of stochastic second-order inertial continuous-time dynamics involving vanishing viscous damping and measurable
stochastic subgradient selections. Our chief goal in this paper is to develop a systematic and unified way that transfers
the properties recently studied for first-order stochastic differential equations to second-order ones involving even sub-
gradients in lieu of gradients. This program will rely on two tenets: time scaling and averaging, following an approach
recently developed in the literature by one of the co-authors in the deterministic case. Under a mild integrability as-
sumption involving the diffusion term and the viscous damping, our first main result shows that almost surely, there is
weak convergence of the trajectory towards a minimizer of the objective function and fast convergence of the values
and gradients. We also provide a comprehensive complexity analysis by establishing several new pointwise and ergodic
convergence rates in expectation for the convex, strongly convex, and (local) Polyak-Łojasiewicz case. Finally, using
Tikhonov regularization with a properly tuned vanishing parameter, we can obtain almost sure strong convergence of
the trajectory towards the minimum norm solution.

Key words. Stochastic optimization, Inertial (sub)gradient systems, Convex optimization, Stochastic Differential
Equation, Stochastic Differential Inclusion, Tikhonov regularization, Time-dependent viscosity, Łojasiewicz inequality,
KL inequality, Convergence rate, Asymptotic behavior.
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1 Introduction

1.1 Problem Statement

Let us consider the minimization problem

min
x∈H

F (x)
def
= f(x) + g(x), (P)

where H is a separable real Hilbert space, and the objective F satisfies the following standing assumptions:
f : H → R is continuously differentiable and convex with L-Lipschitz continuous gradient;
g : H → R ∪ {±∞} is proper, lower semi-continuous (lsc) and convex;
SF

def
= argmin(F ) ̸= ∅.

(H0)
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To solve (P) when g ≡ 0, a fundamental dynamic is the gradient flow system:{
ẋ(t) +∇f(x(t)) = 0, t > t0;

x(t0) = x0.
(GF)

This dynamic is known to yield a convergence rate of O(t−1) (in fact even o(t−1)) on the values. Second-
order inertial dynamical systems have been introduced to provably accelerate the convergence behaviour.
Among them, the Inertial System with Implicit Hessian Damping (ISIHD) is the following differential equa-
tion starting at t0 > 0 with initial condition x0, v0 ∈ H:{

ẍ(t) + γ(t)ẋ(t) +∇f(x(t) + β(t)ẋ(t)) = 0, t > t0;

x(t0) = x0, ẋ(t0) = v0.
(ISIHD)

where γ, β : [t0,+∞[→ R+. (ISIHD) is inspired by [1]; see also [2, 3]. Following the physical interpretation
of this ODE, we call the non-negative parameters γ and β as the viscous and geometric damping parameters,
respectively. The rationale behind the use of the term "implicit" comes from a a Taylor expansion of the
gradient term (as t → +∞ we expect ẋ(t) → 0), which make the Hessian damping appear indirectly in
(ISIHD). This ODE was found to have a smoothing effect on the energy error and oscillations [1, 2, 3].

Let us now turn the case where g is non-smooth. We are naturally led to consider the generalization of
(ISIHD) to the non-smooth case, which yields the differential inclusion

ẋ(t) = v(t), t > t0,

v̇(t) ∈ −[γ(t)v(t) + ∂F (x(t) + β(t)v(t))];

x(t0) = x0, ẋ(t0) = v0,

(ISIHDNS)

where ∂F is the convex subdifferential of F .
In many practical situations, the (sub-)gradient evaluation is subject to stochastic errors. This is for

example the case if the cost per iteration is very high and thus cheap and random approximations of the
(sub-)gradient are necessary. These errors can also be due to some other exogenous factor. The continuous-
time approach through stochastic differential equations (SDE) is a powerful way to model these errors in a
unified way, and stochastic algorithms can then be viewed as time- discretizations. In fact, several recent
works have used the dynamic (3.1) to model SGD-type algorithms; (see e.g. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]).
In fact, the continuous-time perspective offers a deep insight and unveils the key properties of the dynamic
without being tied to a specific discretization.

In this setting, keeping in mind that we want to give a rigorous meaning to (ISIHDNS), we can model
the associated errors using a stochastic integral with respect to the measure defined by a continuous Itô
martingale. This entails the following stochastic differential inclusion (SDI for short), which is the stochastic
counterpart of (ISIHDNS):

dX(t) = V (t)dt,

dV (t) ∈ −γ(t)V (t)dt− ∂F (X(t) + β(t)V (t))dt+ σ(t,X(t) + β(t)V (t))dW (t),

X(t0) = X0, V (t0) = V0.

(S− ISIHDNS)
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This SDI is defined over a filtered probability space (Ω,F , {Ft}t≥0,P), where X0, V0 ∈ Lν(Ω;H) (for
some ν ≥ 2) are the initial data; the diffusion (volatility) term σ : [t0,+∞[×H → L2(K;H) is a measurable
function with K a separable real Hilbert space; and W is a K-valued Brownian motion (see definition in
Section A.2.1). When g ≡ 0, we recover the stochastic counterpart of (ISIHD) as the following SDE

dX(t) = V (t)dt,

dV (t) = −γ(t)V (t)dt−∇f(X(t) + β(t)V (t))dt+ σ(t,X(t) + β(t)V (t))dW (t),

X(t0) = X0, V (t0) = V0.

(S− ISIHD)

In this work, our goal is to provide a general mathematical framework for analyzing the convergence
properties of (S− ISIHDNS). In this context, considering inertial dynamics with a time-dependent vanishing
viscosity coefficient γ is a key ingredient to obtain fast convergent methods. We will to develop a systematic
and unified way that transfers the properties of stochastic first-order dynamics recently studied by Maulen-
Soto, Fadili, and Attouch [11, 13] to second-order ones. Our program will then rely on two pillars: time
scaling and averaging, following the methodology recently developed by Attouch, Bot, and Nguyen in [14]
in the deterministic gradient case.

More precisely, we study the stochastic dynamics (S− ISIHDNS) and its long-time behavior in order to
solve (P). We conduct a new analysis using specific and careful arguments that are much more involved that
in the deterministic case. To get some intuition, keeping the discussion informal at this stage, let us first
identify the assumptions needed to expect that the position state of (S− ISIHD) "approaches" argmin(f)
in the long run. In the case where H = K, γ(·) ≡ γ > 0, β ≡ 0, and σ = σ̃IH, where σ̃ is a positive real
constant. Under mild assumptions one can show that (S− ISIHD) has a unique invariant distribution πσ̃ in
(x, v) with density proportional to exp

(
− 2γ

σ̃2

(
f(x) + ∥v∥2

2

))
, see e.g., [15, Proposition 6.1]. Clearly, as

σ̃ → 0+, πσ̃ gets concentrated around argmin(f)× {0H}, with limσ̃→0+ πσ̃(argmin(f)× {0H}) = 1, see
Section 1.3 for further discussion. Motivated by these observations and the fact that we aim to exactly solve
(P), our paper will then mainly focus on the case where σ(·, x) vanishes fast enough as t → +∞ uniformly
in x, and some guarantees to a "noise-dominated region" will also be provided when σ is uniformly bounded.

(ISIHD) is one of the most recent developments regarding the use of second-order gradient-based dynam-
ical systems for optimization. Let us briefly recall the steps that led to its emergence. In this regard, let us
stress the importance of working with a time-dependent viscosity coefficient γ(t). An abundant literature
has been devoted to the study of inertial dynamics with time-dependent viscosity coefficient with β ≡ 0,

ẍ(t) + γ(t)ẋ(t) +∇f(x(t)) = 0, t > t0. (IGSγ)

See for instance [16, 17] for general parameter γ. Most of the literature focuses on the case γ(t) = α
t ,

originating from the seminal work of Su, Boyd, and Candès [18] who showed the rate of convergenceO(1/t2)
of the values for α = 3, thus making the link with the accelerated gradient method of Nesterov [19]. Since
then, an important body of literature has been devoted to this important case and the subtle tuning of the
parameter α. Indeed, α must be taken greater than or equal to 3 for getting the rate of convergence O

(
1/t2

)
of the values (see [20]), and α > 3 provides an even better rate of convergence with little-o instead of big-O
(see [21, 22]). On the other hand, α < 3 necessarily leads to a slower rate O

(
1/t2α/3

)
[23, 24].

Another remarkable instance of (IGSγ) arises when γ(t) is a constant function. In this scenario, the
resulting dynamic corresponds to the well-known Heavy Ball with friction (HBF) method, first introduced
(in its discrete and continuous form) by Polyak in [25] where it was shown a linear rate of convergence for the
trajectory when the objective function is strongly convex (we also refer to the insights given in [26]). There
is also a stochastic version of this method, we refer to [27]) for further details.
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However, because of the inertial aspects, and the asymptotic vanishing viscous damping coefficient, (IGSγ)
may exhibit many small oscillations which are not desirable from an optimization point of view. To remedy
this, a powerful tool consists in introducing a geometric damping driven by the Hessian of f into the dynamic.
This yields the Inertial System with Explicit Hessian-driven Damping

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0, (ISEHD)

where γ and β are, the already presented, damping parameters, and b is a time scale parameter. This dy-
namic is the explicit version of (ISIHD). The time discretization of this system has been studied by Attouch,
Chbani, Fadili, and Riahi [28]. It provides a rich family of first-order methods for minimizing f . At first
glance, the presence of the Hessian may seem to entail numerical difficulties. However, this is not the case as
the Hessian intervenes in the above ODE in the form ∇2f(x(t))ẋ(t), which is nothing but the time derivative
of t 7→ ∇f(x(t)). This explains why the time discretization of this dynamic provides first-order algorithms.
On the contrary, the time-continuous dynamics can be argued to be truly of second-order nature, i.e., close
to Newton’s and Levenberg-Marquardt’s dynamics [29]. This understanding suggests that (ISIHD) may rep-
resent the nature of first-order algorithms better than (ISEHD). However, in our stochastic setting, we do
not have direct access to the evaluation of the gradient of f . Instead, we model the associated errors with a
continuous Itô martingale (denoted as M(t)). Therefore, it is meaningless to ask for the time derivative of
∇f(X(t)) +M(t) because (non-constant) martingales are not differentiable a.s.. This is why we focus on
the implicit form of the Hessian-driven damping.

1.2 Contributions

Our main contributions pertain to the solution trajectories of the dynamics (S− ISIHD) and (S− ISIHDNS)
under integrability conditions on the noise. They are summarized as follows:

• We show almost sure weak convergence of the trajectory (see Theorem 3.1) and convergence rates
(see Theorem 3.2) in expectation in the case of time-dependent coefficients γ(t) and a proper choice
of β(t). For this analysis, we transfer the results from the Lyapunov analysis of the first-order in-time
stochastic (sub-)gradient system studied in [11, 13] from which our inertial system is built through
time scaling and averaging.

• We obtain almost sure and ergodic convergence results which correspond precisely to the best-known
results in the deterministic case. In particular, if we let α > 3, γ(t) = α

t , β(t) = t
α−1 , then under

appropriate assumptions on the diffusion (volatility) term σ, we obtain the rate of convergence o(1/t2)
of the values in almost sure sense (see Corollary 3.4), which corresponds to the known result for the
accelerated gradient method of Nesterov in the deterministic case.

• We then turn to providing a local analysis with a local linear convergence rate under the Polyak-
Łojasiewicz inequality (See Theorem 3.6). This is much more challenging in the stochastic case, and
even more for second-order systems, as localizing the process in this case is very delicate.

• We also show almost sure strong convergence of the trajectory to the minimal norm solution when
adding a Tikhonov regularization to our systems (see Theorem 4.1). Moreover, we show convergence
rates in expectation for the objective and the trajectory for a particular Tikhonov regularizer (see The-
orem 4.5).

It is worth observing that since our approach is based on an averaging technique, it will involve Jensen’s
inequality at some point to get fast convergence rates. In this respect, the convexity condition on the objective
function appears unavoidable, at least in this proof way. It is also worth mentioning that the approach only
makes sense for the implicit form of the Hessian-driven damping. Indeed, as explained above, the explicit
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form of the Hessian-driven damping has a term involving the time derivative of the (sub)gradient at the tra-
jectory. As the noise, modeled here as an Itô martingale, in practice stems from the (sub)gradient evaluation,
this time derivative is meaningless with explicit Hessian-driven damping, as (non-constant) martingales are
a.s. not differentiable.

1.3 Relation to prior work

Kinetic diffusion dynamics for sampling Let’s consider (S− ISIHD) in the case where H = K = Rn,
γ(t) = γ > 0, β ≡ 0, and σ =

√
2γI . Then one recovers the kinetic Langevin diffusion (or second-

order Langevin process). In this case, the continuous-time Markov process (X(t), V (t)) is positive recur-
rent and has a unique invariant distribution which has the density ∝ exp

(
−f(x)− ∥v∥2

2

)
with respect to the

Lebesgue measure on R2n. Time-discretized versions of this Langevin diffusion process have been studied
in the literature to (approximately) sample from ∝ exp(−f(x)) with asymptotic and non-asymptotic con-
vergence guarantees in various topologies and under various conditions have been studied; see [30, 31, 32]
and references therein.

Inexact inertial gradient systems There is an abundant literature regarding the dynamics (ISIHD) and
(ISEHD), either in the exact case or with errors but only deterministic ones; see [1, 3, 33, 34, 35, 20, 36, 37, 38,
39, 40, 41]). We are not aware of any such work in the stochastic case. Only a few papers have been devoted to
studying the second-order in-time inertial stochastic gradient systems with viscous damping, i.e. stochastic
versions of (IGSγ), either with vanishing damping γ(t) = α/t or constant damping γ(t) (stochastic HBF);
see e.g. [12, 42, 43]. For instance, [12] provide asymptotic O(1/t2) convergence rate on the objective values
in expectation under integrability conditions on the diffusion term as well as other rates under additional
geometrical properties of of the objective1. The corresponding stochastic algorithms for these two choices
of γ, whose mathematical formulation and analysis is simpler, have been the subject of an active research
work; see e.g. [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57].

Time scaling and averaging A SDI to solve (P) has been thoroughly studied in [13]; see also [11] for the
SDE case with g ≡ 0 recalled in (2.2). This SDI has the form{

dX(t) ∈ −∂F (X(t))dt+ σ(t,X(t))dW (t), t ≥ t0,

X(t0) = X0.
(1.1)

The authors in [14] proposed time scaling and averaging to link (GF) and (ISIHD) with a general viscous
damping function γ and a properly adjusted geometric damping function β (related to γ). Our aim is to
extend the results of [14] to the stochastic case. Leveraging these techniques with a general function γ
and an appropriate β, we will be able to transfer all the results we obtained in [13] for (1.1) to the SDI
(S− ISIHDNS). This avoids in particular to go through an intricate and a dedicated Lyapunov analysis for
(S− ISIHDNS). A local convergence analysis becomes also easily accessible through this lens while it is
barely possible otherwise. We also specialized our results to a standard case where γ(t) = α

t andβ(t) = t
α−1 .

The idea of passing from a first-order system to a second-order one via time scaling is not new. In the
smooth case (g ≡ 0), the authors of [58, 59] propose time scaling and tricky change of variables to show

1These geometrical assumptions come in the form of global growth and flatness of the objective which is very restrictive. Rather,
here, our geometrical assumptions on f will be only local.
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that (IGSγ) is equivalent to an averaged gradient system, i.e. the steepest gradient system (GF) where the
instantaneous value of∇f(x(t)) is replaced by some average of the gradients∇f(x(s)) over all past positions
s ≤ t. See also [60] for more general gradient systems with memory terms involving kernels. This gives
rise to an integro-differential equation. The asymptotic behaviour of the dynamic associated to this equation
and the equivalent second-order dynamic have been investigated in [58, 59]. A stochastic version of this
integro-differential equation has been studied in [43] where the long time behaviour of the resulting process,
in particular its invariant distribution and occupation measure, was investigated under ellipticity assumptions
on f and σ and proper behaviour of the averaging gradient function. Clearly, the motivation of that work is
not on the minimizing properties of the process while it is our focus here.

1.4 Organization of the paper

Section 2 introduces notations, and it reviews some definitions and results of convex and stochastic analysis
that will be used in the paper. Section 3 is the main part of our study. We develop the passage from the
first-order system to the second-order inertial system by using the time scaling and averaging in a stochastic
framework. Almost sure and ergodic convergence rates are provided under different geometric properties
of the objective function, such as convexity and Polyak-Łojasiewicz geometry. Finally, we show a strong
convergence result when adding a Tikhonov regularization. Technical lemmas and theorems that are needed
throughout the paper will be collected in Appendix A.

2 Notation and Preliminaries

2.1 Notation

We will use the following shorthand notations: Givenn ∈ N, [n] def
= {1, . . . , n}. ConsiderH,K real separable

Hilbert spaces endowed with the inner product ⟨·, ·⟩H and ⟨·, ·⟩K, respectively, and norm ∥·∥H =
√
⟨·, ·⟩H and

∥ · ∥K =
√

⟨·, ·⟩K, respectively (we will omit the subscripts H and K whenever it is clear from the context).
IH is the identity operator from H to H. L(K;H) is the space of bounded linear operators from K to H,
L1(K) is the space of trace-class operators, and L2(K;H) is the space of bounded linear Hilbert-Schmidt
operators from K to H. For M ∈ L1(K), the trace is defined by

tr(M)
def
=
∑
i∈I

⟨Mei, ei⟩ < +∞,

where I ⊆ N and (ei)i∈I is an orthonormal basis of K. Besides, for M ∈ L(K;H), M⋆ ∈ L(H;K) is the
adjoint operator of M , and for M ∈ L2(K;H),

∥M∥HS
def
=
√

tr(MM⋆) < +∞

is its Hilbert-Schmidt norm (in the finite-dimensional case is equivalent to the Frobenius norm). We denote
by w-lim (resp. s-lim) the limit for the weak (resp. strong) topology of H. The notation A : H ⇒ H means
that A is a set-valued operator from H to H. For f : H → R, the sublevel of f at height r ∈ R is denoted
[f ≤ r]

def
= {x ∈ H : f(x) ≤ r}. For 1 ≤ p ≤ +∞, Lp([a, b]) is the space of measurable functions

g : R → R such that
∫ b
a |g(t)|pdt < +∞, with the usual adaptation when p = +∞. On the probability

space (Ω,F ,P), Lp(Ω;H) denotes the (Bochner) space of H-valued random variables whose p-th moment
(with respect to the measure P) is finite. Other notations will be explained when they first appear.
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Let us recall some important definitions and results from convex analysis; for a comprehensive coverage,
we refer the reader to [61].

We denote by Γ0(H) the class of proper lsc and convex functions on H taking values in R ∪ {+∞}. For
µ > 0, Γµ(H) ⊂ Γ0(H) is the class of µ-strongly convex functions, i.e., functions f such that f − µ

2∥ · ∥
2

is convex. We denote by Cs(H) the class of s-times continuously differentiable functions on H. For L ≥ 0,
C1,1
L (H) ⊂ C1(H) is the set of functions on H whose gradient is L-Lipschitz continuous, and C2

L(H) is the
subset of C1,1

L (H) whose functions are twice differentiable.
The subdifferential of a function f ∈ Γ0(H) is the set-valued operator ∂f : H ⇒ H such that, for every

x in H,
∂f(x) = {u ∈ H : f(y) ≥ f(x) + ⟨u, y − x⟩ ∀y ∈ H},

which is non-empty for every point in the relative interior of the domain of f . When f is finite-valued, then
f is continuous, and ∂f(x) is a non-empty convex and compact set for every x ∈ H. If f is differentiable,
then ∂f(x) = {∇f(x)}. For every x ∈ H such that ∂f(x) ̸= ∅, the minimum norm selection of ∂f(x) is
the unique element {∂0f(x)} def

= argminu∈∂f(x) ∥u∥. The projection of a point x ∈ H onto a non-empty
closed convex set C ⊆ H is denoted by PC(x).

2.2 Other assumptions

Recall that our focus in this paper is on an optimization perspective, and as we argued in the introduction, we
will study the long time behaviour of our SDE’s and SDI’s (in particular (S− ISIHD) and (S− ISIHDNS))
as the diffusion term vanishes when t → +∞. Therefore, throughout the paper, we assume that the diffusion
(volatility) term σ satisfies: {

supt≥t0,x∈H ∥σ(t, x)∥HS < +∞,

∥σ(t, x′)− σ(t, x)∥HS ≤ l0 ∥x′ − x∥ ,
(H)

for some l0 > 0 and for all t ≥ t0, x, x
′ ∈ H. The Lipschitz continuity assumption is mild and classical

and will be required to ensure the well-posedness of (S− ISIHD) and (S− ISIHDNS). Let us also define
σ∞ : [t0,+∞[→ R+ as

σ∞(t)
def
= sup

x∈H
∥σ(t, x)∥HS.

Remark 2.1. (H) implies the existence of σ∗ > 0 such that:

∥σ(t, x)∥2HS = tr[Σ(t, x)] ≤ σ2
∗,

for all t ≥ t0, x ∈ H, where Σ def
= σσ⋆.

For t0 > 0, let γ : [t0,+∞[→ R+ be a viscous damping and denote:

p(t)
def
= exp

(∫ t

t0

γ(s)ds

)
.

If {
γ is upper bounded by a non-increasing function for every t ≥ t0;∫∞
t0

ds
p(s) < +∞.

(Hγ)

We define Γ : [t0,+∞[→ R+ by

Γ(t)
def
= p(t)

∫ ∞

t

ds

p(s)
. (2.1)
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Remark 2.2. Let us notice that Γ satisfies the relation Γ′ = γΓ− 1.

We denote

I[h](t)
def
= exp

(
−
∫ t

t0

du

Γ(u)

)∫ t

t0

h(u)
exp

(∫ u
t0

ds
Γ(s)

)
Γ(u)

du.

Before we delve into our core contributions, it is important to note that we will require some specific
results gleaned from [11, 13]. These are the subject of the following subsections.

2.3 Results for the first-order gradient SDE

The stochastic version of (GF) where f is smooth has been well studied and documented in [11]. We recall
two main results of that paper on which we will build our study. Since we are going to show results in the
smooth case, we rewrite (H0) when g ≡ 0,{

f : H → R is continuously differentiable and convex with L-Lipschitz continuous gradient;
S def
= argmin(f) ̸= ∅.

(H′
0)

Theorem 2.3 ([11, Theorem 3.1]). Consider f and σ that satisfy Assumptions (H′
0) and (H). Let ν ≥ 2 and

consider the SDE: {
dX(t) = −∇f(X(t))dt+ σ(t,X(t))dW (t),

X(t0) = X0,
(2.2)

where X0 ∈ Lν(Ω;H). Then, there exists a unique solution X ∈ Sν
H[t0] (see Section A.2.1 for the notation)

of (2.2). Additionally, if σ∞ ∈ L2([t0,+∞[), then:
(i) supt≥0 E[∥X(t)∥2] < +∞.
(ii) ∀x⋆ ∈ S, limt→+∞ ∥X(t)− x⋆∥ exists a.s. and supt≥0 ∥X(t)∥ < +∞ a.s..
(iii) limt→∞ ∥∇f(X(t))∥ = 0 a.s.. As a result, limt→∞ f(X(t)) = min f a.s..
(iv) There exists an S-valued random variable X⋆ such that w-limt→+∞X(t) = X⋆ a.s..

Theorem 2.4 ([11, Theorem 3.4]). Let ν ≥ 2 and consider the SDE (2.2) with initial data X0 ∈ Lν(Ω;H),
where f and σ satisfy Assumptions (H0) and (H). Moreover, we assume that σ satisfies t 7→ tσ2

∞(t) ∈
L1([t0,+∞[) and that eitherH is finite-dimensional or f ∈ C2(H). Then, the solution trajectoryX ∈ Sν

H[t0]
is unique and we have that:

(i) E[f(X(t))−min f ] = O(t−1).
Moreover, if f ∈ C2(H), then the following hold:

(ii) t 7→ t∥∇f(X(t))∥2 ∈ L1([t0,+∞[) a.s..
(iii) f(X(t))−min f = o(t−1) a.s..

2.4 Results for the first-order stochastic non-smooth case

The far more intricate non-smooth case has been very recently studied in [13]. Let F, σ satisfy (H0) and (H).
We consider the stochastic differential inclusion{

dX(t) ∈ −∂F (X(t))dt+ σ(t,X(t))dW (t), t > t0,

X(t0) = X0.
(SDI)

The following definition makes precise the notion of solution that we are interested in.

8



Definition 2.5. A solution of (SDI) is a couple (X, η) of Ft-adapted processes such that almost surely:
(i) X is continuous with sample paths in the domain of ∂g.
(ii) η : [t0,+∞[→ H is absolutely continuous, such that η(t0) = 0, and ∀T > t0, η′ ∈ L2([t0, T ];H),

η′(t) ∈ ∂g(X(t)) for almost all t ≥ t0;
(iii) For t > t0, {

X(t) = X0 −
∫ t
t0
∇f(X(s))ds− η(t) +

∫ t
t0
σ(s,X(s))dW (s),

X(t0) = X0.
(2.3)

For brevity, we sometimes omit the process η and say that X is a solution of (SDI), meaning that, there
exists a process η such that (X, η) satisfies the previous definition. The definition of uniqueness for the pro-
cess X is given in Section A.2.1.

In order to show the main results for (SDI), we consider the sequence of solutions {Xλ}λ>0 of the SDE’s{
dXλ(t) = −∇(f + gλ)(Xλ(t))dt+ σ(t,Xλ(t))dW (t), t > t0,

Xλ(t0) = X0,
(SDEλ)

where gλ is the Moreau envelope of g with parameter λ > 0. Under the integrability condition that for every
T > t0,

lim sup
λ↓0

∫ T

t0

E(∥∇gλ(Xλ(t))∥2)dt < +∞, (Hλ)

it was shown in [62] that there exists a couple (X, η) of stochastic processes which is a solution of (SDI) in
the sense of Definition 2.5, and moreover, for every T > t0,

lim
λ↓0

E

(
sup

t∈[t0,T ]
∥Xλ(t)−X(t)∥2

)
= 0 and lim

λ↓0
E

(
sup

t∈[t0,T ]
∥ηλ(t)− η(t)∥2

)
= 0,

where ηλ(t) =
∫ t
t0
∇gλ(Xλ(s))ds. In addition, the uniqueness of this solution was proved in [13].

Remark 2.6. Condition (Hλ) is satisfied under different conditions, some examples are mentioned in [62].
One case where this condition holds is when ∂g is full domain and there exists C0 > 0 such that:∥∥∂0g(x)

∥∥ ≤ C0(1 + ∥x∥), ∀x ∈ H.

This is for instance the case when g is Lipschitz continuous.
Now, we can show the main results we have for the dynamic (SDI), this was shown by Maulen-Soto, Fadili,

Attouch in [13].
Theorem 2.7. Consider F = f + g and σ satisfying (H0) and (H). Suppose further that g verifies (Hλ). Let
ν ≥ 2, t0 ≥ 0 , and consider the dynamic (SDI) with initial data X0 ∈ Lν(Ω;H). Then, (SDI) has a unique
solution (X, η) ∈ Sν

H[t0]× C1([t0,+∞[;H).
Moreover, if σ∞ ∈ L2([t0,+∞[), then the following holds:
(i) E[supt≥t0 ∥X(t)∥ν ] < +∞.
(ii) ∀x⋆ ∈ SF , limt→+∞ ∥X(t)− x⋆∥ exists a.s. and supt≥t0 ∥X(t)∥ < +∞ a.s..
(iii) If g is continuous , then ∀x⋆ ∈ SF , ∇f(x⋆) is constant, s-limt→∞∇f(X(t) = ∇f(x⋆) a.s., and∫ +∞

t0

F (X(t))−minF dt < +∞ a.s..

(iv) There exists an SF -valued random variable X⋆ such that w-limt→+∞X(t) = X⋆.
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Tikhonov regularization. Let’s now turn to a Tikhonov regularization of (SDI), i.e.,{
dX(t) ∈ −∂F (X(t))− ε(t)X(t) + σ(t,X(t))dW (t), t ≥ t0,

X(t0) = X0.
(SDI− TA)

Solution existence and uniqueness for (SDI− TA) is proved in [13, Theorem 3.3]. We also have the following
result from [13].

Theorem 2.8 ([13]). Let ν ≥ 2 and consider the dynamic (SDI− TA) with initial data X0 ∈ Lν(Ω;H),
where F = f + g and σ satisfy Assumptions (H0) and (H). Furthermore, assume that g satisfies (Hλ). Then,
there exists a unique solution X ∈ Sν

H[t0] of (SDI− TA). Let x⋆ = PSF
(0) be the minimum norm solution,

and for ε > 0 let xε be the unique minimizer of Fε(x)
def
= F (x) + ε

2∥x∥
2. Suppose that σ∞ ∈ L2([t0,+∞[),

and that ε : [t0,+∞[→ R+ satisfies the conditions:

(T1) ε(t) → 0 as t → +∞;

(T2)

∫ +∞

t0

ε(t)dt = +∞;

(T3)

∫ +∞

t0

ε(t)
(
∥x⋆∥2 − ∥xε(t)∥2

)
dt < +∞.

Then, we have
(i) supt≥t0 ∥X(t)∥ < +∞ a.s., and
(ii) s-limt→+∞X(t) = x⋆ a.s..

This means that we can obtain the strong convergence of the trajectory to the minimal norm solution.

We show the following version of Itô’s formula for a multi-valued drift, which plays a central role in the
study of SDI’s.

Proposition 2.9. Let ν ≥ 2, X0 ∈ Lν(Ω;H) and F0-measurable, t0 ≥ 0, and F = f + g that satisfies (H0),
σ : [t0,+∞[×H → L2(K;H) measurable functions. We consider (X, η) ∈ Sν

H[t0] × C1([t0,+∞[;H) be
the unique solution of {

dX(t) ∈ −∂F (X(t))dt+ σ(t,X(t))dW (t), t > t0,

X(t0) = X0.
(2.4)

Let ϕ : [t0,+∞[×H → R be such that ϕ(·, x) ∈ C1([t0,+∞[) for every x ∈ H and ϕ(t, ·) ∈ C2(H) for
every t ≥ t0. Then the process

Ỹ (t) = ϕ(t,X(t)),

is an Itô process such that for all t ≥ t0

Ỹ (t) = Ỹ (t0) +

∫ t

t0

∂ϕ

∂t
(s,X(s))ds−

∫ t

t0

〈
∇ϕ(s,X(s)),∇f(X(s)) + η′(s)

〉
ds

+

∫ t

t0

⟨σ⋆(s,X(s))∇ϕ(s,X(s)), dW (s)⟩+ 1

2

∫ t

t0

tr
(
σ(s,X(s))σ⋆(s,X(s))∇2ϕ(s,X(s))

)
ds, (2.5)

where η′(t) ∈ ∂g(X(t)) a.s. for almost all t ≥ t0. Moreover, if E[Ỹ (t0)] < +∞, and if for all T > t0

E
(∫ T

t0

∥σ⋆(s,X(s))∇ϕ(s,X(s))∥2 ds
)

< +∞,
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then
∫ t

t0

⟨σ⋆(s,X(s))∇ϕ(s,X(s)), dW (s)⟩ is a square-integrable continuous martingale and

E[Ỹ (t)] = E[Ỹ (t0)] + E
(∫ t

t0

∂ϕ

∂t
(s,X(s))ds

)
− E

(∫ t

t0

〈
∇ϕ(s,X(s)),∇f(X(s)) + η′(s)

〉
ds

)
+

1

2
E
(∫ t

t0

tr
(
σ(s,X(s))σ⋆(s,X(s))∇2ϕ(s,X(s))

)
ds

)
. (2.6)

Proof. The existence and uniqueness of a solution (X, η) ∈ Sν
H[t0]×C1([t0,+∞[;H) of (2.4) was proved in

[13, Theorem 3.3] following the work of [62]. This solution satisfies (by definition) the following equation:{
X(t) = X0 +

∫ t
t0
−[∇f(X(s)) + η′(s)]ds+

∫ t
t0
σ(s,X(s))dW (s), t > t0,

X(t0) = X0.
(2.7)

and η′(s) ∈ ∂g(X(s)) for almost all t ≥ 0 a.s.. Then, (2.7) is an Itô process with drift
s 7→ −[∇f(X(s)) + η′(s)] and diffusion s 7→ σ(s,X(s)). Consequently, we can apply the classical Itô’s
formula (see [63, Section 2.3]) to obtain the desired.

3 From first-order to second-order systems

3.1 Time scaling and averaging

We apply a time scaling and then an averaging technique to the system (SDI) to derive an insightful reparametriza-
tion of a particular case of our second-order system (S− ISIHDNS), specifically, the case when β ≡ Γ. The
main advantage of this method is that the results of (SDI) directly carry over to obtain results on the conver-
gence behaviour of (S− ISIHDNS) without passing through a dedicated Lyapunov analysis.

Let ν ≥ 2, s0 > 0. We consider the potential F = f + g where g satisfies (Hλ). Let σ1 be a diffusion
term in the time parametrization by s. We will study the dynamic (SDI) in s, starting at s0, with diffusion
term σ1 under hypotheses (H0) and (H). Let σ1∗ > 0 be such that

∥σ1(s, x)∥HS ≤ σ2
1∗ , ∀s ≥ s0,∀x ∈ H,

and σ1∞(s)
def
= supx∈H ∥σ1(s, x)∥HS. We rewrite (SDI) adapted to our case,{

dZ(s) ∈ −∂F (Z(s))ds+ σ1(s, Z(s))dW (s), s > s0,

Z(s0) = Z0,
(3.1)

where Z0 ∈ Lν([s0,+∞[;H).
Let us make the change of time s = τ(t) in the dynamic (3.1), where τ is an increasing function from

[t0,+∞[ to [s0,+∞[, which is twice differentiable, and which satisfies limt→+∞ τ(t) = +∞. Denote
Y (t)

def
= Z(s) and t0 be such that s0 = τ(t0). By the chain rule and [64, Theorem 8.5.7], we have{

dY (t) ∈ −τ ′(t)∂F (Y (t))dt+
√
τ ′(t)σ1(τ(t), Y (t))dW (t), t > t0,

Y (t0) = Z0.
(3.2)
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Consider the smooth case, i.e. when g ≡ 0 and the hypotheses of Theorem 2.4 (f ∈ C2
L(H) and σ1 ∈

L2([s0,+∞[)), then we can conclude that the convergence rate of (3.2) (when g ≡ 0) is the following

f(Y (t))−min f = o

(
1

τ(t)

)
a.s.. (3.3)

By introducing a function τ that grows faster than the identity (τ(t) ≥ t), we have accelerated the dynamic,
passing from the asymptotic convergence rate 1/s for (3.1) to 1/τ(t) for (3.2). The price to pay is that the
drift term in (3.2) is non-autonomous, furthermore, when the coefficient in front of the gradient tends to
infinity as t → +∞, it will preclude the use of an explicit discretization in time. To overcome this, we adapt
from [14] the following approach, which is called averaging.

Consider (3.2) and let X,V : Ω× [t0,+∞[→ H be two stochastic processes such that:
dX(t) = V (t)dt, t > t0,

Y (t) = X(t) + τ ′(t)V (t), t > t0,

X(t0) = X0, V (t0) = V0,

(3.4)

where Y (t) is the process in (3.2), and X0, V0 ∈ Lν(Ω;H) are initial data. This leads us to set Z0
def
=

X0 + τ ′(t0)V0 in order for the equations to fit. According to the averaging, the differential form of Y (t) is

dY (t) = dX(t) + τ ′′(t)V (t)dt+ τ ′(t)dV (t).

Combining the previous equation with (3.2), we have that

−τ ′(t)∂F (Y (t))dt+
√
τ ′(t)σ1(τ(t), Y (t))dW (t) ∋ dX(t) + τ ′′(t)V (t)dt+ τ ′(t)dV (t).

Using that dX(t) = V (t)dt and dividing by τ ′, we then have

−∂F (X(t) + τ ′(t)V (t))dt+
1√
τ ′(t)

σ1(τ(t), X(t) + τ ′(t)V (t))dW (t) ∋ 1 + τ ′′(t)

τ ′(t)
V (t)dt+ dV (t).

Therefore, after the time scaling and averaging, we obtain the following dynamic:
dX(t) = V (t)dt, t > t0,

dV (t) ∈ −1+τ ′′(t)
τ ′(t) V (t)dt− ∂F (X(t) + τ ′(t)V (t))dt

+ 1√
τ ′(t)

σ1(τ(t)X(t) + τ ′(t)V (t))dW (t), t > t0,

X(t0) = X0, V (t0) = V0.

(ISIHD-S.1)

Let γ : [t0,+∞[→ R+ satisfying (Hγ). We are going to determine τ in order to obtain a viscous damping
coefficient equal to γ, i.e.,

1 + τ ′′(t)

τ ′(t)
= γ(t).

Clearly, τ ′ solves the the following ODE in ζ

ζ ′ = γζ − 1.
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As observed in Remark 2.2, the function Γ also satisfies the same ODE, and thus we can adjust the initial
condition of τ ′ to obtain

τ ′(t) = Γ(t) = p(t)

∫ ∞

t

du

p(u)
∀t ≥ t0.

We then integrate and take τ(t) = s0 +
∫ t
t0
Γ(u)du to get τ(t0) = s0 as required. This is a valid selection of

τ since t 7→ s0 +
∫ t
t0
Γ(u)du is an increasing function from [t0,+∞[ to [s0,+∞[, twice differentiable and

Γ /∈ L1([t0,+∞[) because Γ is lower bounded by a non-decreasing function since γ is upper bounded by a
non-increasing function (see [65, Proposition 2.2]) by (Hγ). For this particular selection of τ , and defining
σ̃1(t, ·)

def
= σ1(τ(t),·)√

Γ(t)
, we have that (ISIHD-S.1) is equivalent to


dX(t) = V (t)dt, t > t0,

dV (t) ∈ −γ(t)V (t)dt− ∂F (X(t) + Γ(t)V (t))dt+ σ̃1(t,X(t) + Γ(t)V (t))dW (t), t > t0,

X(t0) = X0, V (t0) = V0.
(ISIHD-S.2)

Clearly, (ISIHD-S.2) is nothing but (S− ISIHDNS) when β ≡ Γ and σ ≡ σ̃1.

In order to be able to transfer the convergence results on Z in (3.1) (via (3.2)) to X in (ISIHD-S.2), it
remains to express X in terms of Y only. For this, let

a(t)
def
=

1

τ ′(t)
, A(t)

def
=

∫ t

t0

a(u)du.

Recalling the averaging in (3.4), we need to integrate the following equation

V (t) + a(t)X(t) = a(t)Y (t). (3.5)

Multiplying both sides by eA(t) and using (3.4), we get equivalently

d
(
eA(t)X(t)

)
= a(t)eA(t)Y (t)dt. (3.6)

Integrating and using again (3.4), we obtain

X(t) = e−A(t)X(t0) + e−A(t)

∫ t

t0

a(u)eA(u)Y (u)du

= e−A(t)Y (t0) + e−A(t)

∫ t

t0

a(u)eA(u)Y (u)du− e−A(t)τ ′(t0)V (t0).

Then we can write
X(t) =

∫ t

t0

Y (u)dµt(u) + ξ(t), (3.7)

where µt is the probability measure on [t0, t] defined by

µt
def
= e−A(t)δt0 + a(u)eA(u)−A(t)du, (3.8)

where δt0 is the Dirac measure at t0, a(u)eA(u)−A(t)du is the measure with density a(·)eA(·)−A(t) with respect
to the Lebesgue measure on [t0, t], and ξ(t) is a random process since V0 is a random variable, i.e.,

ξ(t)
def
= ξ(ω, t) = −e−A(t)τ ′(t0)V0(ω) ∀ω ∈ Ω. (3.9)
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3.2 Convergence of the trajectory and convergence rates under general γ, and β ≡ Γ

We here state the main results of this section. We first show almost sure convergence of the trajectory of
(S− ISIHDNS) to a random variable taking values in the set of minimizers of F . When g ≡ 0, we also
provide convergence rates.

Theorem 3.1. Let ν ≥ 2 and consider the dynamic (S− ISIHDNS) with initial data X0, V0 ∈ Lν(Ω;H),
where γ : [t0,+∞[→ R+ satisfies (Hγ), and β ≡ Γ. Besides, F = f + g and σ satisfy Assumptions (H0)
and (H). Moreover, suppose that g satisfies (Hλ). Then, there exists a unique solution (X,V ) ∈ Sν

H×H[t0]
of (S− ISIHDNS). Additionally, if Γσ∞ ∈ L2([t0,+∞[), then there exists an SF -valued random variable
X⋆ such that w-limt→∞X(t) = X⋆ a.s. and w-limt→∞ Γ(t)V (t) = 0. a.s..

Proof. Let θ(t) def
=
∫ t
t0
Γ(u)du and σ̃(s, ·) def

= σ(θ−1(s), ·)
√
Γ(θ−1(s)). Then Γσ∞ ∈ L2([t0,+∞[) is

equivalent to σ̃∞ ∈ L2(R+). Consider the dynamic:{
dZ(s) ∈ −∂F (Z(s)) + σ̃(s, Z(s))dW (s), s > 0,

Z(0) = X0 + Γ(t0)V0.
(3.10)

By Theorem 2.7, we have that there exists a unique solution (Z, η) ∈ Sν
H × C1(R+;H) of (3.10), and

an SF -valued random variable X⋆ such that w-lims→∞ Z(s) = X⋆ a.s.. Moreover, using the time scaling
τ ≡ θ and the averaging described in this section, we end up with the dynamic (S− ISIHDNS) in the case
where β ≡ Γ.

It is direct to check that the time scaling and averaging preserves the uniqueness of a solution
(X,V ) ∈ S0

H×H[t0]. Now let us validate (X,V ) ∈ Sν
H×H[t0]. Since

E

(
sup

s∈[0,T ]
∥Z(s)∥ν

)
< +∞, ∀T > 0,

we directly obtain

E

(
sup

t∈[t0,T ]
∥Y (t)∥ν

)
< +∞, ∀T > t0.

Thanks to the relation (3.7), the following holds

∥X(t)∥ν ≤ ν

(∥∥∥X(t)−
∫ t

t0

Y (u)dµt(u)
∥∥∥ν + ∥∥∥∫ t

t0

Y (u)dµt(u)
∥∥∥ν)

≤ ν

(
∥ξ(t)∥ν + (t− t0)

ν−1

∫ t

t0

∥Y (u)∥νdµt(u)

)
.

Let T > t0 be arbitrary. Taking supremum over [t0, T ] and then expectation at both sides, we obtain that

E

(
sup

t∈[t0,T ]
∥X(t)∥ν

)
≤ ν

(
E(∥V0∥ν)∥Γ(t0)∥ν + (T − t0)

ν−1E

(
sup

t∈[t0,T ]
∥Y (t)∥ν

))
< +∞.

Since V (t) = Y (t)−X(t)
Γ(t) , we have

∥V (t)∥ν ≤ ν

Γν(t)
(∥Y (t)∥ν + ∥X(t)∥ν).
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Similarly as before, we let T > t0 be arbitrary, and take the supremum over [t0, T ] and then expectation at
both sides to obtain

E

(
sup

t∈[t0,T ]
∥V (t)∥ν

)
≤ ν sup

t∈[t0,T ]

1

Γν(t)

(
E

(
sup

t∈[t0,T ]
(∥Y (t)∥ν + ∥X(t)∥ν)

))
.

Since Γ is a continuous positive function, by the extreme value theorem, we have that there exists tT ∈ [t0, T ]
such that supt∈[t0,T ]

1
Γν(t) =

1
Γν(tT ) < +∞, and we conclude that (X,V ) ∈ Sν

H×H[t0].

Now we prove that there exists an SF−valued random variable X⋆ such that w-limt→∞X(t) = X⋆ a.s..
By virtue of Theorem 2.7, there exists an SF−valued random variable X⋆ such that w-lims→∞ Z(s) = X⋆

a.s.. We also notice that we have directly w-limt→∞ Y (t) = X⋆ a.s.. Let h ∈ H be arbitrary and use the
relation (3.7) as follows:

|⟨X(t)−X⋆, h⟩| ≤
∣∣∣∣〈X(t)−

∫ t

t0

Y (u)dµt(u), h

〉∣∣∣∣+ ∣∣∣∣〈 ∫ t

t0

Y (u)dµt(u)−X⋆, h

〉∣∣∣∣
= |⟨ξ(t), h⟩|+

∣∣∣∣〈 ∫ t

t0

(Y (u)−X⋆)dµt(u), h

〉∣∣∣∣
= |⟨ξ(t), h⟩|+

∣∣∣∣ ∫ t

t0

⟨Y (u)−X⋆, h⟩dµt(u)

∣∣∣∣
≤ ∥ξ(t)∥∥h∥+

∫ t

t0

|⟨Y (u)−X⋆, h⟩|dµt(u),

where the second equality comes from the dominated convergence theorem, since sups>t0 ∥Y (s)∥ < +∞
a.s. (by (ii) of Theorem 2.7).
Now let a(t) = 1

Γ(t) and A(t) =
∫ t
t0

du
Γ(u) . By Lemma A.3, we have that limt→∞ ∥ξ(t)∥ = 0 a.s.. On the

other hand, it holds that∫ t

t0

|⟨Y (u)−X⋆, h⟩|dµt(u) ≤ e−A(t)|⟨Y (t0)−X⋆, h⟩|+ e−A(t)

∫ t

t0

a(u)eA(u)|⟨Y (u)−X⋆, h⟩|du.

Now let b(u) = |⟨Y (u) − X⋆, h⟩|. Since we already proved that limu→∞ b(u) = 0 a.s., and we have that
a /∈ L1([t0,+∞[) by Lemma A.3, we utilize Lemma A.2 with our respective a, b functions. This let us
conclude that

lim
t→+∞

|⟨X(t)−X⋆, h⟩| = 0 a.s..

Thus, w-limt→∞X(t) = X⋆ a.s.. Finally, since

Y (t) = X(t) + Γ(t)V (t),

and the fact that X and Y have (a.s.) the same limit, we conclude that

w-lim
t→∞

Γ(t)V (t) = 0 a.s..

In the smooth case, we also have convergence rates on the objective value and the gradient.
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Theorem 3.2. Let ν ≥ 2 and consider the dynamic (S− ISIHD) with initial data X0, V0 ∈ Lν(Ω;H), such
that f and σ satisfy (H′

0) and (H), and in the case where γ satisfy (Hγ), β ≡ Γ. Moreover, suppose that
either H is finite dimensional or f ∈ C2(H), and

t 7→
√

θ(t)Γ(t)σ∞ ∈ L2([t0,+∞[),

where θ(t) def
=
∫ t
t0
Γ(u)du. Then the solution trajectory (X,V ) ∈ Sν

H×H[t0] is unique and satisfies:

E[f(X(t))−min f ] = O
(
max

{
e−A(t), I

[
1

θ

]
(t)
})

, ∀t > t0,

where A(t)
def
=
∫ t
t0

du
Γ(u) and we recall that I[1θ ](t) = e−A(t)

∫ t
t0

1
θ(u)

eA(u)

Γ(u) du.

From hypothesis (Hγ) we have that limt→+∞ e−A(t) = 0, and since Γ /∈ L1([t0,+∞[), we can use
Lemma A.2 to check that limt→∞ I

[
1
θ

]
(t) = 0.

Proof. We will utilize the averaging technique used in Theorem 3.1 and Jensens’s inequality. First, we have

E(f(X(t))−min f) = E
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
+ E

(
f

(∫ t

t0

Y (u)dµt(u)

)
−min f

)
.

Let us recall that E(sups≥0 ∥Z(s)∥) < +∞, which implies that E(supt≥t0 ∥X(t)∥) < +∞. We bound the
first term using the gradient convexity inequality on f to get

f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

)
≤ ∥∇f(X(t))∥∥ξ(t)∥

≤ ∥ξ(t)∥(L∥X(t)∥+ ∥∇f(0)∥)

≤ ∥ξ(t)∥
(
L sup

t≥t0

∥X(t)∥+ ∥∇f(0)∥
)
,

and we conclude that
E
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
= O(e−A(t)).

For the second term, we use Jensen’s inequality to obtain

E
(
f

(∫ t

t0

Y (u)dµt(u)

)
−min f

)
≤
∫ t

t0

E[f(Y (u))−min f ]dµt(u)

≤ e−A(t)E[f(Y (t0)−min f ] + e−A(t)

∫ t

t0

eA(u)

Γ(u)
E(f(Y (u))−min f)du.

Since
√
θΓσ∞ ∈ L2([t0,+∞[) is equivalent to s 7→ sσ̃2

∞(s) ∈ L1(R+), by Theorem 2.4, we have that there
exists C > 0 such that E(f(Z(s))−min f) ≤ C

s . Then, we have E(f(Y (t))−min f) ≤ C
θ(t) . Hence, there

exists C0 > 0 such that

E (f(X(t))−min f) ≤ C0e
−A(t) + CI

[
1

θ

]
(t).

16



Theorem 3.3. Let ν ≥ 2 and consider the dynamic (S− ISIHD) with initial data X0, V0 ∈ Lν(Ω;H), such
that f and σ satisfy (H′

0) and (H), and in the case where γ satisfy (Hγ), β ≡ Γ. Moreover, suppose that
f ∈ C2(H) and

t 7→ θ(t)Γ2(t)σ2
∞(t) ∈ L1([t0,+∞[),

where θ(t) def
=
∫ t
t0
Γ(u)du. Then the solution trajectory (X,V ) ∈ Sν

H×H[t0] is unique and satisfies∫ ∞

t0

θ(u)Γ(u)∥∇f(X(u) + Γ(u)V (u))∥2du < +∞ a.s.. (3.11)

Proof. Consider (3.10) and the technique used in Theorem 3.1. We have that t 7→ θ(t)Γ2(t)σ2
∞(t) ∈

L1([t0,+∞[) is equivalent to s 7→ sσ̃2
∞(s) ∈ L1(R+). Therefore, we can use Theorem 2.4 to state that∫ ∞

0
s∥∇f(Z(s))∥2ds < +∞ a.s..

Using the time scaling τ ≡ θ and making the change of variable θ(t) = s in the previous integral, we obtain∫ ∞

t0

θ(t)Γ(t)∥∇f(Y (t))∥2dt < +∞ a.s..

Recalling that in the averaging we impose that Y = X + ΓV , we conclude.

3.3 Fast convergence under α > 3, γ(t) = α
t

and β(t) = t
α−1

In the following, we show fast convergence results in expectation.

Corollary 3.4 (Case α
t ). Let ν ≥ 2, α > 3 and consider the dynamic (S− ISIHD) with initial dataX0, V0 ∈

Lν(Ω;H), in the case where γ(t) = α
t and β(t) = t

α−1 . Besides, consider that f and σ satisfy (H′
0) and

(H). Moreover, let f ∈ C2(H) and t 7→ t2σ∞(t) ∈ L2([t0,+∞[). Then the solution trajectory (X,V ) ∈
Sν
H×H[t0] is unique and satisfies:
(i) f(X(t))−min f = o(t−2) a.s..
(ii) E[f(X(t))−min f ] = O(t−2).
(iii) ∫ ∞

t0

t3
∥∥∥∇f

(
X(t) +

t

α− 1
V (t)

)∥∥∥2dt < +∞ a.s..

Proof. Consider (3.10) with Γ(t) = t
α−1 and θ(t) =

t2−t20
2(α−1) . Let σ̃(s, ·) = σ(θ−1(s), ·)

√
Γ(θ−1(s)).

Notice that t 7→ t2σ∞(t) ∈ L2([t0,+∞[) is equivalent to s 7→ sσ̃2
∞(s) ∈ L1(R+). We apply Theorem 2.4

to deduce that
f(Z(s))−min f = o(s−1) a.s..

Using the time scaling τ ≡ θ and then the averaging technique as in the proof of Theorem 3.1, we have that

f(Y (t))−min f = o(t−2) a.s..

Moreover, it holds that

X(t) =

∫ t

t0

Y (u)dµt(u) + ξ(t).
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(i) Now we prove the first point in the following way:

t2(f(X(t))−min f) = t2
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
+ t2

(
f

(∫ t

t0

Y (u)dµt(u)

)
−min f

)
.

Let us bound the first term using the convexity of f :

t2
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
≤ t2∥∇f(X(t))∥∥ξ(t)∥

≤ t2∥ξ(t)∥(L∥X(t)∥+ ∥∇f(0)∥)

≤ t2∥ξ(t)∥
(
L sup

t≥t0

∥X(t)∥+ ∥∇f(0)∥
)
.

Let us recall that sups≥0 ∥Z(s)∥ < +∞ a.s.. Due to the time scaling and averaging, it is direct to
check that supt≥t0 ∥X(t)∥ < +∞ a.s.. On the other hand, ∥ξ(t)∥ = O(t1−α) a.s.. Therefore, we have

t2
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
= O(t3−α) a.s.. (3.12)

Now let us bound the second term using Jensen’s inequality,

t2
(
f

(∫ t

t0

Y (u)dµt(u)

)
−min f

)
≤ t2

(∫ t

t0

[f(Y (u))−min f ]dµt(u)

)
=

tα−1
0

tα−3
[f(Y (t0))−min f ]

+
α− 1

tα−3

∫ t

t0

uα−4(u2(f(Y (u))−min f))du.

In order to calculate the limit of this second term, let a(t) = α−1
t , b(u) = u2(f(Y (u)) −min f), by

Lemma A.2 we have that
lim
t→∞

α− 1

tα−1

∫ t

t0

uα−2b(u)du = 0 a.s..

Since α > 3, we also have that

lim
t→∞

α− 3

tα−3

∫ t

t0

uα−4b(u)du = 0 a.s.. (3.13)

Therefore, we conclude that

lim
t→∞

t2(f(X(t))−min f) = 0 a.s..

(ii) By Theorem 3.2 in the case γ(t) = α
t , we have that e−A(t) = tα−1

0 t1−α and θ(t) =
t2−t20
2(α−1) . On the

other hand
I

[
1

θ

]
(t) = 2(α− 1)2t1−α

∫ t

t0

uα−2

u2 − t20
= O(t1−α + t−2).

Since α > 3, we have that O(t1−α) is also O(t−2), and we conclude that

E(f(X(t))−min f) = O(t−2).

(iii) This point follows directly from Theorem 3.3 in the case γ(t) = α
t .
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3.4 Convergence rate under Polyak-Łojasiewicz inequality

In this subsection, we show a local convergence rate under Polyak-Łojasiewicz inequality. The Polyak-
Łojasiewicz property is a special case of the Łojasiewicz property (see [66, 67, 68]) and is commonly used
to prove linear convergence of gradient descent algorithms.

Definition 3.5 (Polyak-Łojasiewicz inequality). Let f : H → R be a differentiable function with S ≠ ∅.
Then, f satisfies the Polyak-Łojasiewicz (PŁ) inequality on S, if there exists r > min f and µ > 0 such that

2µ(f(x)−min f) ≤ ∥∇f(x)∥2 , ∀x ∈ [min f < f < r], (3.14)

and we will write f ∈ PŁµ(S).

Theorem 3.6. Let ν ≥ 2 and consider the dynamic (S− ISIHD) with initial data X0, V0 ∈ Lν(Ω;H), where
f satisfies (H′

0), and σ satisfies (H). Besides, f ∈ PŁµ(S) and suppose that either H is finite dimensional
or f ∈ C2(H). Let also, γ ≡

√
2µ, β ≡ Γ ≡ 1√

2µ
, and such that σ∞ ∈ L2([t0,+∞[).

Then the solution trajectory (X,V ) ∈ Sν
H×H[t0] is unique. Moreover, letting δ > 0, then there exists

t̂δ > t0,Kµ,δ, Cl, Cf > 0 such that:

E(f(X(t))−min f) ≤ Kµ,δe
−µ

2
(t−t̂δ) +

1

µ
lδ

(
t+ 3t̂δ − 4t0

4µ

)
+ Cf

√
δ, ∀t > t̂δ, (3.15)

where
lδ(s) =

L

2
σ2
∞(s) + Cl

√
δ

σ2
∞(s)

2
√∫ s

ŝδ
σ2
∞(u)du

.

Besides, if f ∈ PŁµ(S) holds on the entire space (i.e. r = +∞), then we have that there exists Kµ > 0
such that:

E(f(X(t))−min f) ≤ Kµe
−µ

2
(t−t0) +

L

2µ
σ2
∞

(
t− t0
4µ

)
, ∀t > t0, (3.16)

Remark 3.7. If f is µ−strongly convex, then f ∈ PŁµ(S) holds on the entire space (i.e. r = +∞).

Proof. Consider the dynamic (S− ISIHD) with γ ≡ c, β ≡ Γ ≡ 1
c , where c > 0 is a constant that will be

fixed later.
Let us also define θ(t)

def
=
∫ t
t0
Γ(u)du = t−t0

c and σ̃(s, ·) def
= σ(θ−1(s), ·)

√
Γ(θ−1(s)). Then σ∞ ∈

L2([t0,+∞[) is equivalent to σ̃∞ ∈ L2(R+). Now consider the dynamic:{
dZ(s) = −∇f(Z(s)) + σ̃(s, Z(s))dW (s), s > 0,

Z(0) = X0 + Γ(t0)V0.
(3.17)

Let δ > 0 and apply the result of [11, (i-b), Theorem 4.5] (with coefficient
√
2µ), that is, there exists

ŝδ > 0 such that for every λ ∈]0, 1[,

E (f(Z(s))−min f) ≤ e−2µ(s−ŝδ)E(f(Z(ŝδ))−min f)

+ e−2µ(1−λ)(s−ŝδ)

(
LC2

∞
2

+ ClC∞
√
δ

)
+

lδ(ŝδ + λ(s− ŝδ))

2µ
+ Cf

√
δ, ∀s > ŝδ,

(3.18)
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where C∞, Cl, Cf > 0 and the establishment of lδ are detailed in [11, Section 4.2].

Consider the time scaling τ ≡ θ, Y (t) = Z(θ(t)) and t̂δ > t0 such that θ(t̂δ) = ŝδ (i.e. t̂δ = cŝδ + t0),
we have that:

E (f(Y (t))−min f) ≤ e−2µ(θ(t)−ŝδ)E(f(Y (t̂δ))−min f)

+ e−2µ(1−λ)(θ(t)−ŝδ)

(
LC2

∞
2

+ ClC∞
√
δ

)
+

lδ(ŝδ + λ(θ(t)− ŝδ))

2µ
+ Cf

√
δ, ∀t > t̂δ.

(3.19)

Let a(t) = c and A(t) = c(t− t̂δ). Now, we consider the averaging as in (3.6) but change the initial condition
to t̂δ. Thus, we have

X(t) =

∫ t

t̂δ

Y (u)dµ̃t(u) + ξ̃(t), (3.20)

where µ̃t is the probability measure on [t̂δ, t] defined by

µ̃t = e−c(t−t̂δ)δt̂δ + cec(u−t)du, (3.21)

where δt̂δ is the Dirac measure at t̂δ and

ξ̃(t)
def
= −1

c
e−c(t−t̂δ)V (t̂δ). (3.22)

Then

E(f(X(t))−min f) = E
(
f(X(t))− f

(∫ t

t̂δ

Y (u)dµt(u)

))
+ E

(
f

(∫ t

t̂δ

Y (u)dµt(u)

)
−min f

)
.

We can bound the first term using convexity and Cauchy-Schwarz inequality in the following way

E
(
f(X(t))− f

(∫ t

t̂δ

Y (u)dµ̃t(u)

))
≤
√

E(∥∇f(X(t))∥2)
√
E(∥ξ̃(t)∥2)

≤

√
E(∥V (t̂δ)∥2)

c

√
2∥∇f(0)∥2 + 2L2E

(
sup
t≥t0

∥X(t)∥2
)
e−c(t−t̂δ),

where E(supt≥t0 ∥X(t)∥2) < +∞ as mentioned in Corollary 3.4.
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On the other hand, we can bound the second term using Jensen’s inequality and then (3.19)

E
(
f

(∫ t

t̂δ

Y (u)dµ̃t(u)

)
−min f

)
≤
∫ t

t̂δ

E(f(Y (u)−min f))dµ̃t(u)

≤
∫ t

t̂δ

e−2µ(θ(u)−ŝδ)E(f(Y (t̂δ))−min f)dµ̃t(u)

+

∫ t

t̂δ

e−2µ(1−λ)(θ(u)−ŝδ)

(
LC2

∞
2

+ ClC∞
√
δ

)
dµ̃t(u)

+

∫ t

t̂δ

lδ(ŝδ + λ(θ(u)− ŝδ))

2µ
dµ̃t(u) + Cf

√
δ

=

(
E(f(Y (t̂δ))−min f) +

(
LC2

∞
2

+ ClC∞
√
δ

)
+

lδ(ŝδ)

2µ

)
e−c(t−t̂δ)

+ cE(f(Y (t̂δ))−min f)e−cs

∫ s

t̂δ

e−2µ(θ(u)−ŝδ)ecudu

+ c

(
LC2

∞
2

+ ClC∞
√
δ

)
e−ct

∫ t

t̂δ

e−2µ(1−λ)(θ(u)−ŝδ)ecudu

+
c

2µ
e−ct

∫ t

t̂δ

lδ(ŝδ + λ(θ(u)− ŝδ))e
cudu+ Cf

√
δ, ∀t > t̂δ.

We bound the first integral as follows:

e−ct

∫ t

t̂δ

e−2µ(θ(u)−ŝδ)ecudu ≤ e2µ(
t0
c
+ŝδ)e−

2µ
c
t.

The second integral in the same way

e−ct

∫ t

t̂δ

e−2µ(1−λ)(θ(u)−ŝδ)ecudu ≤ e2µ(1−λ)( t0
c
+ŝδ)e−

2µ(1−λ)
c

t.

To treat the third integral we are going to split the integral in two in order to find a useful convergence rate. Let
us recall that lδ ∈ L1([ŝδ,+∞[) and that lδ is decreasing. Let us define φλ,c,δ(t)

def
= ŝδ +λ

(
t+t̂δ−2t0

2c − ŝδ

)
,

then

e−ct

∫ t

t̂δ

lδ(ŝδ + λ(θ(u)− ŝδ))e
cudu = e−ct

∫ t̂δ+t

2

t̂δ

lδ(ŝδ + λ(θ(u)− ŝδ))e
cudu

+ e−ct

∫ t

t̂δ+t

2

lδ(ŝδ + λ(θ(u)− ŝδ))e
cudu

≤ c

λ
e

ct̂δ
2 C∞e−

ct
2 + lδ(φλ,c,δ(t)).
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Now that we have bounded all the terms, we have the following bound

E(f(X(t))−min f) ≤

√
E(∥V (t̂δ)∥2)

c

√
2∥∇f(0)∥2 + 2L2E

(
sup
t≥t0

∥X(t)∥2
)
e−c(t−t̂δ)

+

(
E(f(Y (t̂δ))−min f) +

(
LC2

∞
2

+ ClC∞
√
δ

)
+

lδ(ŝδ)

2µ

)
e−c(t−t̂δ)

+ cE(f(Y (t̂δ))−min f)e
2µ

(
t0+t̂δ

c
+ŝδ

)
e−

2µ
c
(t−t̂δ)

+ c

(
LC2

∞
2

+ ClC∞
√
δ

)
e
2µ(1−λ)

(
t0+t̂δ

c
+ŝδ

)
e−

2µ(1−λ)
c

(t−t̂δ)

+
c

2µ

(
c

λ
C∞e−

c(t−t̂δ)

2 + lδ(φλ,c,δ(t))

)
+ Cf

√
δ, ∀t > t̂δ.

Letting λ = 1
2 and c =

√
2µ we obtain

E(f(X(t))−min f) ≤

√
E(∥V (t̂δ)∥2)

√
2µ

√
2∥∇f(0)∥2 + 2L2E

(
sup
t≥t0

∥X(t)∥2
)
e−

√
2µ(t−t̂δ)

+

(
E(f(Y (t̂δ))−min f) +

(
LC2

∞
2

+ ClC∞
√
δ

)
+

lδ(ŝδ)

2
√
2µ

)
e−

√
2µ(t−t̂δ)

+
√
2µE(f(Y (t̂δ))−min f)e

2
√
2µ

(
t0+t̂δ√

2µ
+ŝδ

)
e−

√
2µ(t−t̂δ)

+
√
2µ

(
LC2

∞
2

+ ClC∞
√
δ

)
e
√
2µ

(
t0+t̂δ√

2µ
+ŝδ

)
e−

√
2µ
2

(t−t̂δ)

+ 2C∞e−
√
2µ(t−t̂δ)

2 +
1√
2µ

lδ(φ 1
2
,
√
2µ,δ(t)) + Cf

√
δ, ∀t > t̂δ.

Letting Kµ,δ
def
=

√
2µ
(
LC2

∞
2 + ClC∞

√
δ
)
e
√
2µ

(
t0+t̂δ√

2µ
+ŝδ

)
+ 2

√
2µC∞, we conclude that

E(f(X(t))−min f) ≤ Kµ,δe
−

√
2µ
2

(t−t̂δ) +
1√
2µ

lδ(φ 1
2
,
√
2µ,δ(t)) + Cf

√
δ, ∀t > t̂δ. (3.23)

4 From weak to strong convergence under general γ and β ≡ Γ

4.1 General result

We consider the Tikhonov regularization of the dynamic (S− ISIHDNS), i.e., for t > 0,
dX(t) = V (t)dt,

dV (t) ∈ −γ(t)V (t)dt− ∂F (X(t) + Γ(t)V (t))dt− ε(t)(X(t) + β(t)V (t))dt

+ σ(t,X(t) + Γ(t)V (t))dW (t),

X(t0) = X0, V (t0) = V0.

(S− ISIHDNS − TA)

We show some conditions (on γ, β, ε) under which we can obtain strong convergence of the trajectory.
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Theorem 4.1. Consider that γ : [t0,+∞[→ R+ satisfies (Hγ). Besides,F = f+g and σ satisfy assumptions
(H0) and (H). Moreover, suppose that g satisfies (Hλ) and let ν ≥ 2. Consider (S− ISIHDNS − TA) with
β ≡ Γ and initial data X0, V0 ∈ Lν(Ω;H).

Then, there exists a unique solution (X,V ) ∈ Sν
H×H[t0] of (S− ISIHDNS − TA). Additionally, let x⋆ def

=

PSF
(0) be the minimum norm solution, and for ε > 0 let xε be the unique minimizer of Fε(x)

def
= F (x) +

ε
2∥x∥

2. If we suppose that Γσ∞ ∈ L2([t0,+∞[), and that ε : [t0,+∞[→ R+ satisfies the conditions:

(T
′
1) ε(t) → 0 as t → +∞;

(T
′
2)

∫ +∞

t0

ε(t)Γ(t)dt = +∞;

(T
′
3)

∫ +∞

t0

ε(t)Γ(t)
(
∥x⋆∥2 − ∥xε(t)∥2

)
dt < +∞.

Then s-limt→+∞X(t) = x⋆ a.s., and V (t) = o
(

1
Γ(t)

)
a.s..

Proof. Let s0 > 0, θ(t) def
= s0 +

∫ t
t0
Γ(u)du; ε̃(t) = ε(θ−1(t)); and σ̃(s, ·) def

= σ(θ−1(s), ·)
√
Γ(θ−1(s)).

Then ε satisfying (T ′
1),(T

′
2), and (T ′

3) is equivalent to ε̃ satisfying (T1),(T2), and (T3). Besides, Γσ∞ ∈
L2([t0,+∞[) is equivalent to σ̃∞ ∈ L2(R+). Consider the dynamic:{

dZ(s) ∈ −∂F (Z(s))− ε̃(s)Z(s) + σ̃(s, Z(s))dW (s), s > s0,

Z(s0) = X0 + Γ(t0)V0.
(4.1)

By Theorem 2.8, we have that there exists a unique solution Z ∈ Sν
H[s0], and that lims→∞ Z(s) = x⋆ a.s.

(Recall that x⋆ def
= PSF

(0)). Using the time scaling τ ≡ θ and the averaging described at the beginning of
this section, we end up with the dynamic (S− ISIHDNS − TA) in the case where β ≡ Γ. The existence and
uniqueness of solution, and the fact that (X,V ) ∈ Sν

H×H[t0] goes analogously as in the proof of Theorem 3.1.
Now we prove the claim, since lims→∞ Z(s) = x⋆ a.s., this implies directly that limt→∞ Y (t) = x⋆ a.s..

Besides, we have the relation (3.7), i.e.

X(t) =

∫ t

t0

Y (u)dµt(u) + ξ(t),

where µt and ξ are defined in (3.8) and (3.9), respectively. Consequently, we have

∥X(t)− x⋆∥ ≤
∥∥∥∥X(t)−

∫ t

t0

Y (u)dµt(u)

∥∥∥∥+ ∥∥∥∥∫ t

t0

Y (u)dµt(u)− x⋆
∥∥∥∥

≤ ∥ξ(t)∥+
∥∥∥∥∫ t

t0

Y (u)dµt(u)− x⋆
∥∥∥∥ .

Let a(t) = 1
Γ(t) and A(t) =

∫ t
t0

du
Γ(u) . By Lemma A.3, we have that limt→∞ ∥ξ(t)∥ = 0. On the other hand∥∥∥∥∫ t

t0

Y (u)dµt(u)− x⋆
∥∥∥∥ =

∥∥∥∥∫ t

t0

(Y (u)− x⋆)dµt(u)

∥∥∥∥
≤
∫ t

t0

∥Y (u)− x⋆∥dµt(u)

= e−A(t)∥Y (t0)− x⋆∥+ e−A(t)

∫ t

t0

a(u)eA(u)∥Y (u)− x⋆∥du.
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Let b(u) = ∥Y (u) − x⋆∥. Since we already proved that limu→∞ b(u) = 0 a.s., and we have that a /∈
L1([t0,+∞[) by Lemma A.3, we utilize Lemma A.2 with our respective a, b functions. This let us conclude
that

lim
t→∞

∥∥∥∥∫ t

t0

Y (u)dµt(u)− x⋆
∥∥∥∥ = 0 a.s..

Thus, limt→∞X(t) = x⋆ a.s.. Finally, since

Y (t) = X(t) + Γ(t)V (t),

and the fact that X and Y have (a.s.) the same limit, we conclude that

lim
t→∞

Γ(t)V (t) = 0 a.s..

4.2 Practical situations

In order to give some conditions when (T ′
1), (T

′
2), and (T ′

3) of Theorem 4.1 are satisfied we need to introduce
the following definition:

Definition 4.2 (Hölderian error bound). Let f : H → R be a proper function such that S ≠ ∅. f satisfies
a Hölderian (or power-type) error bound inequality on S with exponent p ≥ 1, if there exists κ > 0 and
r > min f such that

f(x)−min f ≥ κdist(x,S)p, ∀x ∈ [min f ≤ f ≤ r], (4.2)

and we will write f ∈ EBp(S),

Remark 4.3. Let f : H → R be a differentiable function such that S ̸= ∅. If f satisfies the Polyak-
Łojasiewicz inequality on S , then f satisfies a Hölderian error bound inequality with exponent p = 2.

Theorem 4.4. Consider the setting of Theorem 4.1 and suppose that F = f + g ∈ EBp(SF ). Let s0 > 0

and denote θ(t) def
= s0 +

∫ t
t0
Γ(s)ds, then taking the Tikhonov parameter ε(t) = 1

θr(t) with

1 ≥ r >
2p

2p+ 1
,

then the three conditions (T ′
1), (T

′
2), and (T ′

3) of Theorem 4.1 are satisfied simultaneously. In particular, for
any solution (X,V ) ∈ Sν

H×H[t0] of (4.1), we get almost sure (strong) convergence of X(t) to the minimal
norm solution named x⋆ = PSF

(0) and that V (t) = o
(

1
Γ(t)

)
.

Proof. We proceed as in the proof of Theorem 4.1 and arrive to the dynamic (4.1), since ε̃(t) = ε(θ−1(t)) =
1
tr , the proof goes as in [13, Theorem 4.8].

Theorem 4.5. Let ν ≥ 2, f ∈ Γ0(H)∩C2
L(H) such that S is nonempty, and also f ∈ EBp(S), σ satisfying

(H), and Γσ∞ ∈ L2([t0,+∞[) and is non-increasing. Let us consider ε(t) = 1
tr where 0 < r < 1, then

we evaluate (S− ISIHDNS − TA) in the case where γ satisfies (Hγ), g ≡ 0, β ≡ Γ, and with initial data
X0, V0 ∈ Lν(Ω;H), i.e., for t > t0,
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dX(t) = V (t)dt,

dV (t) = −γ(t)V (t)dt−∇f(X(t) + Γ(t)V (t))dt− ε(t)(X(t) + Γ(t)V (t))

+ σ(t,X(t) + Γ(t)V (t))dW (t),

X(t0) = X0, V (t0) = V0.

(4.3)

For ε > 0, let us define fε(x)
def
= f(x) + ε

2∥x∥
2, and let xε be the unique minimizer of fε. Moreover, let

s0 > 0 and for s1 > s0 consider,

R(s)
def
= e−

s1−r

1−r

∫ s

s1

e
u1−r

1−r σ2
∞(θ−1(u))Γ(θ−1(u))du, (4.4)

where θ(t) def
= s0+

∫ t
t0
Γ(u)du. Let also x⋆

def
= PS(0), A(s)

def
=
∫ s
s1

du
Γ(u) , and t1

def
= θ−1(s1). Then, the solution

trajectory (X,V ) ∈ Sν
H×H[t0] is unique, and we have that:

(i) R(θ(t)) → 0 as t → +∞.

(ii) Let σ̄(t) = Γ(t)σ2
∞(t), then

R(θ(t)) = O
(
exp(−θr(t)(1− 2−r)) + θr(t)σ̄

(
s1 + θ(t)

2

))
.

Moreover, if σ̄(t) = O(θ−∆(t)) for ∆ > 1, then R(θ(t)) = O(θr−∆(t)).
Besides, we have the following convergence rate in expectation:

(iii) For the values, we have:

E[f(X(t))−min(f)] = O
(
max{e−A(t), I[h1](t)}

)
,

where h1(t) = 1
θr(t) +R(θ(t)).

(iv) And for the trajectory, we obtain:

E[∥X(t)− x⋆∥2] = O
(
max{e−A(t), I[h2](t)}

)
,

where h2(t) = θr−1(t) + θ
− r

p (t) + θr(t)R(θ(t)).

Proof. We proceed as in the proof of Theorem 3.1 and define analogously σ̃, ε̃, we also consider the dynamic
(3.10). By [13, Theorem 4.11] we obtain that

R(s) = e−
s1−r

1−r

∫ s

s1

e
u1−r

1−r σ̃2
∞(u)du,

where σ̃2
∞ ∈ L2([s0,+∞[), satisfies the following:

• R(s) → +∞ as t → +∞.
• R(s) = O

(
exp(−sr(1− 2−r)) + srσ̃2

∞
(
s1+s
2

))
. Moreover if σ̃2

∞(s) = O(s−∆) for ∆ > 1, then
R(s) = O(sr−∆).

And evaluating at s = θ(t) we obtain the first two items of the theorem. For the third and fourth items we
used that
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• E[f(Z(s))−min(f)] = O
(

1

sr
+R(s)

)
.

• E[∥Z(s)− x⋆∥2] = O
(

1

s1−r
+

1

s
r
p

+ srR(s)

)
.

Then, proceeding as in the proof of Theorem 3.2, we obtain the desired results.

Corollary 4.6. Consider Theorem 4.4 in the case where γ(t) = α
t for α > 1, β(t) = t

α−1 then we have that:
1. If σ2

∞(t) = O(t−2(∆+1)) for ∆ > 1, and α ̸= {1 + 2r, 1 + 2(∆− r)} , then

E[f(X(t))−min(f)] = O
(
max{t−(α−1), t−2r, t−2(∆−r)}

)
.

In particular, if α > 3
2. If σ2

∞(t) = O(t−2(∆+1)) for ∆ > max{1, 2r}, and α ̸= {3− 2r, 1 + 2r
p , 1 + 2(2r −∆)}, then

E[∥X(t)− x⋆∥2] = O
(
max{t−(α−1), t−2(1−r), t

− 2r
p , t−2(2r−∆)}

)
,

5 Conclusion

This work uncovers the global and local convergence properties of trajectories of the Inertial System with
Implicit Hessian-driven Damping under stochastic errors both in the smooth and non-smooth setting. The
aim is to solve convex optimization problems with noisy gradient input with vanishing variance. We have
shed light on these properties and provided a comprehensive local and global complexity analysis both in the
case where the Hessian damping parameter β was dependent on the geometric damping γ and when it was
zero. We believe that this work, along with the technique of time scaling and averaging, paves the way for
important extensions and research avenues. Among them, we mention extension to the situation where the
drift term is a non-potential co-coercive operator.

A Auxiliary results

A.1 Deterministic results

Lemma A.1. Let t0 > 0 and a, b : [t0,+∞[→ R+. If limt→∞ a(t) exists, b /∈ L1([t0,+∞[) and∫∞
t0

a(s)b(s)ds < +∞, then limt→∞ a(t) = 0.

Lemma A.2. Let a, b : [t0,+∞[→ R+ be two functions such that a /∈ L1([t0,+∞[), limu→+∞ b(u) = 0,
and define A(t)

def
=
∫ t
t0
a(u)du and B(t)

def
= e−A(t)

∫ t
t0
a(u)eA(u)b(u)du. Then limt→+∞B(t) = 0.

Proof. Let ε > 0 arbitrary, let us take Tε such that t0 < Tε and b(u) ≤ ε for u ≥ Tε. For t > Tε, let us
write

B(t) = e−A(t)

∫ Tε

t0

a(u)eA(u)b(u)du+ e−A(t)

∫ t

Tε

a(u)eA(u)b(u)du

≤ e−A(t)

∫ Tε

t0

a(u)eA(u)b(u)du+ ε.
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Since a /∈ L1([t0,+∞[), then limt→+∞ e−A(t) = 0, we get

lim sup
t→+∞

B(t) ≤ ε.

This being true for any ε > 0, we infer that limt→+∞B(t) = 0, which gives the claim.

Lemma A.3. Under hypothesis (Hγ), then ∫ ∞

t0

ds

Γ(s)
= +∞.

Proof. Let q(t) def
=
∫∞
t

ds
p(s) , since

∫∞
t0

ds
p(s) < +∞, then limt→∞ q(t) = 0 and q′(t) = − 1

p(t) . On the other
hand ∫ ∞

t0

ds

Γ(s)
= −

∫ ∞

t0

q′(t)

q(t)
= ln(q(t0))− lim

t→∞
ln(q(t)) = +∞.

A.2 Stochastic results

A.2.1 On stochastic processes

Let us recall some elements of stochastic analysis. Throughout the paper, (Ω,F ,P) is a probability space
and {Ft|t ≥ 0} is a filtration of the σ−algebra F . Given C ∈ P(Ω), we will denote σ(C) the σ−algebra
generated by C. We denote F∞

def
= σ

(⋃
t≥0Ft

)
∈ F .

The expectation of a random variable ξ : Ω → H is denoted by

E(ξ) def
=

∫
Ω
ξ(ω)dP(ω).

An event E ∈ F happens almost surely if P(E) = 1, and it will be denoted as "E, P-a.s." or simply "E,
a.s.". The indicator function of an event E ∈ F is denoted by

1E(ω)
def
=

{
1 if ω ∈ E,

0 otherwise.

An H-valued stochastic process starting at t0 ≥ 0 is a function X : Ω × [t0,+∞[→ H. It is said to be
continuous if X(ω, ·) ∈ C([t0,+∞[;H) for almost all ω ∈ Ω. We will denote X(t)

def
= X(·, t). We are

going to study SDE’s and SDI’s, and in order to ensure the uniqueness of a solution, we introduce a relation
over stochastic processes. Two stochastic processes X,Y : Ω × [t0, T ] → H are said to be equivalent if
X(t) = Y (t), ∀t ∈ [t0, T ], P-a.s. This leads us to define the equivalence relation R, which associates the
equivalent stochastic processes in the same class.

Furthermore, we will need some properties about the measurability of these processes. A stochastic pro-
cess X : Ω× [t0,+∞[→ H is progressively measurable if for every t ≥ t0, the map Ω× [t0, t] → H defined
by (ω, s) → X(ω, s) is Ft ⊗ B([t0, t])-measurable, where ⊗ is the product σ-algebra and B is the Borel
σ-algebra. On the other hand, X is Ft-adapted if X(t) is Ft-measurable for every t ≥ t0. It is a direct
consequence of the definition that if X is progressively measurable, then X is Ft-adapted.
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Let us define the quotient space:

S0
H[t0, T ]

def
= {X : Ω× [t0, T ] → H, X is a prog. measurable cont. stochastic process}

/
R.

Set S0
H[t0]

def
=
⋂

T≥t0
S0
H[t0, T ]. For ν > 0, we define Sν

H[t0, T ] as the subset of processes X(t) in S0
H[t0, T ]

such that

Sν
H[t0, T ]

def
=

{
X ∈ S0

H[t0, T ] : E

(
sup

t∈[t0,T ]
∥Xt∥ν

)
< +∞

}
.

We define Sν
H[t0]

def
=
⋂

T≥t0
Sν
H[t0, T ].

Let I ⊆ N be a numerable set such that {ei}i∈I is an orthonormal basis of K, and {wi(t)}i∈I,t≥0 be a
sequence of independent Brownian motions defined on the filtered space (Ω,F ,Ft,P). The process

W (t) =
∑
i∈I

wi(t)ei

is well-defined (independent from the election of {ei}i∈I ) and is called a K-valued Brownian motion. Be-
sides, letG : Ω×R+ → L2(K;H) be a measurable andFt-adapted process, then we can define

∫ t
0 G(s)dW (s)

which is the stochastic integral of G, and we have that the application G →
∫ ·
0 G(s)dW (s) is an isometry

between the measurable and Ft−adapted L2(K;H)−valued processes and the space of H-valued continuous
square-integrable martingales (see [63, Theorem 2.3]).

Proposition A.4. (see [69] and [70, Section 1.2]) (Burkholder-Davis-Gundy Inequality) Let p > 0, W be a
K-valued Brownian motion defined over a filtered probability space (Ω,F , {Ft}t≥0,P) and g : Ω×R+ → K
a progressively measurable process (with our usual notation g(t)

def
= g(·, t)) such that

E

[(∫ T

0
∥g(s)∥2ds

) p
2

]
< +∞, ∀T > 0.

Then, there exists Cp > 0 (only depending on p) for every T > 0 such that:

E

[
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0
⟨g(s), dW (s)⟩

∣∣∣∣∣
p]

≤ CpE

[(∫ T

0
∥g(s)∥2ds

) p
2

]
.

Theorem A.5. [71, Theorem 1.3.9] Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing pro-
cesses with A0 = U0 = 0 a.s.. Let {Mt}t≥0 be a real-valued continuous local martingale with M0 = 0 a.s..
Let ξ be a nonnegative F0-measurable random variable. Define

Xt = ξ +At − Ut +Mt for t ≥ 0.

If Xt is nonnegative and limt→∞At < ∞, then limt→∞Xt exists and is finite, and limt→∞ Ut < ∞.
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