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Abstract. A novel method for the approximate estimation of curve squeal sound 

levels is proposed. The method directly targets the stationary regime by using 

wheel/rail mobilities at contact instead of modal characteristics of the structures. 

The condensation allows a more general description of the dynamics of the struc-

tures, in particular the behavior of the rail for which a modal representation is not 

very suitable. The method is first validated in the case of a reduced modal de-

scription of the system by comparing results to a reference cycle obtained by 

numerical integration in the time domain. It is then applied to realistic cases for 

which the wheel/rail mobilities are obtained from more elaborated models. The 

model can be used to carry out parametric studies allowing to design squeal noise 

mitigation solutions. 
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1 Introduction 

Since Rudd [1], most of the works in the literature agree to attribute the generation of 

wheel/rail squeal noise in curves to the high lateral slip imposed in the curve and to the 

resulting instabilities [2]. In squeal models, the occurrence of the phenomenon is thus 

generally studied through a stability analysis based on the linearization of the contact 

forces. Two families of methods are used: those leading to a generalized eigenvalue 

system via a modal description of the system [3] and those describing the wheel/rail 

interaction at the contact's degrees of freedom using their respective mobilities (Nyquist 

criterion) [4].  

Despite its undeniable interest, stability analysis does not allow the prediction of the 

amplitudes of the nonlinear self-sustained vibrations resulting from instabilities. These 

nonlinear vibrations are most often calculated using a numerical integration of the dy-

namic equations of the system in the time domain, by using either a modal description 

[3] or a contact condensation from the wheel/rail impulse responses [5]. The possible 

stationary regimes or "limit cycles" obtained are then re-expressed in the frequency 

domain. A disadvantage is that the integration has to be carried out over a sufficiently 

long period of time for the transient regime to stabilize.  
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Some authors have proposed simplified methods allowing a direct computation of 

stationary regimes [1,6,7]. These methods are mainly based on the assumption of mono-

harmonic limit cycles. Unfortunately, they are limited to a reduced modal description 

of the system dynamics. In this paper, a more general method using wheel/rail mobili-

ties is proposed to determine approximate limit cycles. 

2 Proposed approach 

The pass-by of a guided vehicle at speed 𝑉 in a curve of small radius is considered. The 

key parameter is the angle of attack 𝛼 which designates the misalignment of the wheel 

axis with the rolling direction tangent to the rail.  The resulting lateral slip of the wheel 

on the rail head is given by 𝑉𝑡 ≈ 𝛼𝑉. The interaction of a single wheel with the rail is 

considered and the flange contact is disregarded. The wheel/rail interaction is point-

like and reduced to two degrees of freedom, normal and tangential. The wheel and the 

rail are described by their point and cross contact mobilities 𝑌𝑊𝑡𝑡 , 𝑌𝑊𝑛𝑛 , 𝑌𝑤𝑡𝑛 , 𝑌𝑅𝑡𝑡 , 

𝑌𝑅𝑛𝑛 and 𝑌𝑅𝑡𝑛 in the frequency domain where subscripts 𝑊, 𝑅, 𝑛 and 𝑡 stand for wheel, 

rail, normal and tangential degree of freedom. These mobilities can be determined using 

various types of models.  

2.1 Contact and friction laws 

The contact is modelled by Hertz’s normal stiffness 𝑘𝐻 and Mindlin’s tangential stiff-

ness 𝜉𝑘𝐻 leading to normal and tangential point mobilities  𝑌𝐶𝑛𝑛 = 𝑗𝜔𝑘𝐻
−1 and 𝑌𝐶𝑡𝑡 =

𝑗𝜔𝜉𝑘𝐻
−1 (see for instance rolling noise models [8]) while a non-linear friction/creep law 

is considered relating the total friction force 𝑓𝑡 acting at the wheel/rail interface to the 

wheel/rail creep 𝑠 and the normal contact force 𝑓𝑛:  

 𝑓𝑡(𝑠, 𝑓𝑛) = 𝜇(𝑠, 𝑓𝑛)𝑓𝑛   with   𝑠 = (𝑉𝑡 + ∆𝑣𝑡)/𝑉 (1) 

where 𝜇 denotes the non-linear dynamic friction coefficient and ∆𝑣𝑡 = 𝑣𝑊𝑡 − 𝑣𝑅𝑡 −
𝑣𝐶𝑡  stands for the relative instantaneous tangential velocity at the wheel/rail interface. 

In this paper, the choice was made for a non-linear creep law of Shen-Hedrick-Elkins 

type [2,4], combined with a heuristic velocity-weakening friction coefficient, but this 

choice does not restrict the generality of Eq. (1). 

2.2 Stability analysis 

A stability analysis is first performed using the Nyquist criterion as proposed by De 

Beer et al [4]. For small oscillations around the quasi-static equilibrium characterized 

by normal load 𝑁, lateral creep 𝑠 ≈ 𝛼 and quasi-static friction force 𝑇 = 𝜇(𝛼, 𝑁)𝑁,  

the dynamic part of the friction force can be linearized. Considering furthermore har-

monic variations of the oscillations such that ∆𝑣𝑡 = ∆𝑣𝑡̂𝑒𝑖𝜔𝑡, 𝑓𝑡 − 𝑇 = 𝑓𝑡̂𝑒𝑖𝜔𝑡  and 𝑓𝑛 −

𝑁 = 𝑓𝑛̂𝑒𝑖𝜔𝑡, the wheel, rail and contact mobilities can be used to express the normal 

and tangential coupling between the components in the frequency domain: 



3 

 𝑌𝑛𝑛𝑓𝑛̂ + 𝑌𝑛𝑡𝑓𝑡̂ = 0   and   𝑌𝑡𝑛𝑓𝑛̂ + 𝑌𝑡𝑡𝑓𝑡̂ = ∆𝑣𝑡̂ (2) 

where 𝑌𝑛𝑛 = 𝑌𝑊𝑛𝑛 + 𝑌𝑅𝑛𝑛 + 𝑌𝐶𝑛𝑛 , 𝑌𝑡𝑡 = 𝑌𝑊𝑡𝑡 + 𝑌𝑅𝑡𝑡 + 𝑌𝐶𝑡𝑡  and 𝑌𝑛𝑡 = 𝑌𝑡𝑛 = 𝑌𝑊𝑛𝑡 +

𝑌𝑅𝑛𝑡 are the total contact mobilities. A complex equation 𝑓𝑡̂ = 𝐻(𝜔)𝑓𝑡̂ is obtained for 

the friction force, where closed-loop transfer function 𝐻(𝜔) is given in [4] as a function 

of total contact mobilities. According to the Nyquist criterion, oscillations are unstable 

for pulsations 𝜔 such that ℑ(𝐻(𝜔)) = 0 and ℜ(𝐻(𝜔)) > 1. This technique is useful 

to find the pulsations where instabilities may occur and initiate self-sustained vibrations 

but does not give any information on the amplitude of these vibrations.  

2.3 Power balance for non-linear harmonic cycles 

Considering larger oscillations around the quasi-static equilibrium, the friction force 

can no longer be linearized and in most cases the frequency domain is not appropriate 

to describe the response of the structure. Nevertheless, a mono-harmonic response of 

the structure is assumed at pulsation 𝜔𝑖  for which the system is unstable, such that 

∆𝑣𝑡(𝑡) = ℜ(∆𝑣𝑡̂𝑒𝑖𝜔𝑖𝑡). With this assumption the power dissipated in the system can be 

evaluated analytically with linear harmonic techniques (i.e. from Eqs. (2)) since the 

behavior in the structure remains linear:  

 𝑊dis
̅̅ ̅̅ ̅̅ =

1

2
 ℜ(∆𝑣𝑡̂𝑓𝑡

∗) =
|∆𝑣𝑡̂|2

2
 ℜ((𝑌𝑡𝑡 − 𝑌𝑡𝑛𝑌𝑛𝑛

−1𝑌𝑛𝑡)−1) (3) 

However, for the evaluation of the injected power a time integration over the cycle 

has to be performed since the friction force is non-linear: 

 𝑊inj
̅̅ ̅̅ ̅ =

1

𝑇
∫ ∆𝑣𝑡(𝑡)𝜇(𝑠(𝑡), 𝑓𝑛(𝑡))𝑓𝑛(𝑡)𝑑𝑡

𝑇

0
  (4) 

where 𝑠(𝑡) = 𝛼 +
1

𝑉
ℜ(∆𝑣𝑡̂𝑒𝑖𝜔𝑖𝑡)  and 𝑓𝑛(𝑡) = 𝑁 + ℜ((𝑌𝑡𝑛 − 𝑌𝑡𝑡𝑌𝑛𝑡

−1𝑌𝑛𝑛)−1∆𝑣𝑡̂𝑒𝑖𝜔𝑖𝑡) 

is directly expressed as a function of ∆𝑣𝑡(𝑡) from Eqs. (2).  

The ntegral (4) may be computed numerically for a given value of amplitude ∆𝑣𝑡̂ . It 

is important to note that, unlike dissipated power 𝑊dis
̅̅ ̅̅ ̅̅ , injected power 𝑊inj

̅̅ ̅̅ ̅ is not pro-

portional to |∆𝑣𝑡̂|2 so that the power balance may vary with ∆𝑣𝑡̂ and differ from the 

linear case (see ref. [9] in this case). The search for stationary self-sustained vibrations 

thus amounts to find ∆𝑣𝑡̂  such that: 

 𝑊inj
̅̅ ̅̅ ̅(∆𝑣𝑡̂) = 𝑊dis

̅̅ ̅̅ ̅̅ (∆𝑣𝑡̂) (5) 

which consists in solving a nonlinear algebraic equation on ∆𝑣𝑡̂ .  

2.4 From the amplitude of the cycle to the radiated sound power 

In cases where a solution is found to Equation (5), complex magnitudes 𝑓𝑡̂ and 𝑓𝑛̂ of the 

tangent and normal forces acting at the wheel/rail interface at unstable pulsation 𝜔𝑖 are 

calculated using Eqs. (2). The sound power radiated by the wheel is finally estimated 

from contact forces by a “rolling noise” type method based on analytical radiation fac-

tors [8]. 
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3 Validation for a reduced wheel/rail model 

The method was tested on the reduced model proposed in [10] and shown in Fig. 1. The 

wheel and rail are each modelled by a mass-spring-damper system tuned to a particular 

mode. Angle θ is related to the ratio of the normal and tangential contributions of the 

wheel mode. For the rail, only the normal dynamics are considered. For the wheel, 

parameters have been adjusted to the axial mode 0𝐿4 of the wheel modelled in Sec. 4. 

For the rail, the reduction to one mode is not very realistic: the parameters were simply 

chosen to obtain the same normal mobility (modulus and phase) as the model used in 

Sec. 4 at the natural frequency of the wheel mode (1850 Hz).  

 

Fig. 1. Schematic of the reduced model used for the validation of the method 

3.1 Expression of contact mobilities and stability analysis 

For such a system, the contact mobilities are simply written: 

 

𝑌𝑛𝑛 = 𝑌𝑊 sin 𝜃2 + 𝑌𝑅 + 𝑗𝜔𝑘𝐻
−1

𝑌𝑡𝑡 = 𝑌𝑊 cos 𝜃2

𝑌𝑛𝑡 = 𝑌𝑊 sin 𝜃 cos 𝜃

with 𝑌𝑊 = 𝑗𝜔(−𝑀𝑊𝜔2 + 𝑗𝜔𝑀𝐶𝑊 + 𝐾𝑊)

and  𝑌𝑅 = 𝑗𝜔(−𝑀𝑅𝜔2 + 𝑗𝜔𝑀𝐶𝑅 + 𝐾𝑅)

 (6) 

Closed-loop transfer function 𝐻(𝜔) can be easily computed from these mobilities, 

and linearized form of creep/friction law 𝑓𝑡(𝑠, 𝑓𝑛) as described in [4,9]. With the tuned 

parameters, the Nyquist criterion shows that the system is unstable at a frequency close 

to the natural frequency of the wheel mode. 
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3.2 Numerical integration in the time-domain 

In order to obtain a reference solution, a numerical integration of the nonlinear equa-

tions corresponding to the reduced model (see [7] for instance) has been performed in 

the time domain. A small initial tangential velocity of 10−3 m/s has been used to accel-

erate the development of the self-sustained vibrations from the quasi-static equilibrium. 

The evolution of the tangential velocity over the whole integration time (1 s) is given 

on the left of Fig. 2. On the right, only the five last milliseconds are plotted.  A transient 

increase due to instability is observed, followed by the establishment of a quasi-har-

monic periodic stationary oscillation at a fundamental frequency of 1847 Hz and an 

amplitude of 0.0585 m/s.  

 

Fig. 2. Solution obtained by numerical integration in the time-domain 

3.3 Results obtained with the proposed approach 

Non-linear Equation (5) is then solved at the frequency where instability occurs, from 

contact mobilities given in Eq. (6) and non-linear form of creep/friction law 𝑓𝑡(𝑠, 𝑓𝑛), 

leading to a solution ∆𝑣𝑡̂ = 0.0585 m/s. This result is remarkably good as it corre-

sponds to an error of less than 0.02% compared to the reference value obtained with the 

numerical integration.   

Details of the variations of the injected and dissipated powers (normalized by |∆𝑣𝑡̂|2) 

are plotted on Fig. 3 as a function of ∆𝑣𝑡̂. The figure highlights the difference between 

the linear domain (amplitudes ∆𝑣𝑡̂ < 0.05 m/s) where the normalized powers are both 

constant and the non-linear domain (higher amplitudes ∆𝑣𝑡̂ > 0.05 m/s) where the nor-

malized injected power decreases with the amplitude of the cycle until it reaches the 

normalized dissipated power at the solution value. 
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Fig. 3. Power balance as a function of the cycle amplitude for the reduced model 

4 Results obtained with more elaborated models  

4.1 Components models and input data 

The method is tested in a realistic case of a metro wheel rolling in a curve at speed 𝑉 =
30 km/h and angle of attack 𝛼 = 11 mrad. At this angle of attack and for the chosen 

friction parameters, the friction/creep curve is decreasing which reflects a potential 

source of instability.  A normal load 𝑁 = 51 kN is considered. The wheel is a steel 

monobloc wheel with a diameter of 86 cm. It is first modelled by the Finite Element 

Method considering clamped boundary conditions at the axle axis. Contact mobilities 

are computed by modal superposition from 37 normal modes obtained with the Finite 

Element model in the frequency range 0 – 6250 Hz.  Damping factors of 0.01 % are 

chosen for most of modes above 400 Hz. A classical “Rodel” model (infinite Timo-

shenko beam with uniform elastic support [8]) is chosen for the rail lying on monobloc 

concrete sleepers through elastic rail pads of medium stiffness. Contact mobilities are 

computed analytically from rail and support parameters.  

The stability analysis performed by using the Nyquist criterion highlights 9 frequen-

cies where instabilities may occur. They correspond for the most part to the natural 

frequencies of axial wheel modes without nodal circles. These modes are known to play 

an important role in the generation of curve squeal.  

4.2 Non-linear harmonic cycles and radiated sound power 

Non-linear Equation (5) is solved for each frequency where instability may occur. For 

each of them an amplitude ∆𝑣𝑡̂  is found, leading to a balance between the injected and 

dissipated powers. The corresponding radiated sound powers are given in Fig. 4. It can 
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be observed that the amplitudes are quite similar for all modes. Even though this simple 

model cannot predict which mode(s) or set of modes will actually be present in the 

solution, computed sound powers provide a first estimation of the squeal noise poten-

tially emitted by the system for one given unstable mode. The levels obtained for the 

0𝐿0 and 0𝐿1 modes are however questionable, as these modes are generally not found 

in field measurements. The single wheel model used here is probably not sufficient to 

fully understand the dynamics of these low-frequency modes, due to the potential in-

fluence of bending axle modes on the wheel mobility. 

 

Fig. 4. Radiated sound power for each unstable mode 

 

Fig. 5. Influence of damping on radiated sound power (mode 0𝐿4) 
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4.3 Effect of wheel damping 

The effect of wheel damping is studied to illustrate possible parametric studies with the 

simplified approach. Fig. 5 shows the results obtained for the mode 0𝐿4 with damping 

factors of 0.02 %, 0.05 % and 0.1 % compared with a nominal damping factor of 

0.01%. It is important to note that a critical damping factor of 0.11 % is sufficient to 

stabilize the mode. It can be observed that the amplitude of the cycle as well as the 

radiated power are very little sensitive to the damping factor except near the critical 

damping, which reflects a strongly non-linear behavior. 

5 Conclusion 

A novel method for the approximate estimation of curve squeal levels is proposed, di-

rectly targeting the non-linear stationary regime and using wheel/rail mobilities at con-

tact instead of modal characteristics of the structures. As for the stability analysis or the 

time integration, the condensation at contact allows a more general and more functional 

description of the dynamics of the structures, in particular the behaviour of the rail for 

which a modal representation is not very suited. The method is applied to a realistic 

case for which the wheel and rail mobilities are obtained from elaborated models. It 

proves to be very efficient and adapted to parametric studies aiming to design curve 

squeal noise mitigation solutions.  
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