
HAL Id: hal-04519951
https://hal.science/hal-04519951v1

Submitted on 25 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthetic Data in Human Analysis: A Survey
Indu Joshi, Marcel Grimmer, Christian Rathgeb, Christoph Busch, Francois

Bremond, Antitza Dantcheva

To cite this version:
Indu Joshi, Marcel Grimmer, Christian Rathgeb, Christoph Busch, Francois Bremond, et al.. Syn-
thetic Data in Human Analysis: A Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024, pp.1-20. �10.1109/TPAMI.2024.3362821�. �hal-04519951�

https://hal.science/hal-04519951v1
https://hal.archives-ouvertes.fr


1

Synthetic Data in Human Analysis: A Survey
Indu Joshi, Marcel Grimmer, Christian Rathgeb, Christoph Busch, Francois Bremond, Antitza Dantcheva

Abstract—Deep neural networks have become prevalent in human analysis, boosting the performance of applications, such as biometric
recognition, action recognition, as well as person re-identification. However, the performance of such networks scales with the available training data.
In human analysis, the demand for large-scale datasets poses a severe challenge, as data collection is tedious, time-expensive, costly and must
comply with data protection laws. Current research investigates the generation of synthetic data as an efficient and privacy-ensuring alternative to
collecting real data in the field. This survey introduces the basic definitions and methodologies, essential when generating and employing synthetic
data for human analysis. We summarise current state-of-the-art methods and the main benefits of using synthetic data. We also provide an overview
of publicly available synthetic datasets and generation models. Finally, we discuss limitations, as well as open research problems in this field. This
survey is intended for researchers and practitioners in the field of human analysis.

Index Terms—Human Analysis, Deep Neural Networks, Synthetic Data, Survey

✦

1 INTRODUCTION

D EEP neural networks (DNNs) have witnessed remark-
able advancement in the past decade, leading to ma-

ture and robust algorithms in visual perception, natural
language processing, and robotic control [1], among others.
Such advancement has been fuelled by the development
of algorithms to train DNNs, the availability of large-scale
training datasets, as well as the progress in computational
power.

DNN techniques have been designed for, among other
applications, human analysis, aiming to recognize human
characteristics, behaviour, as well as interactions with the
physical world. In this context, human analysis ranges
from the unique authentication of single individuals, the
classification of human attributes or actions to the evalua-
tion of crowd-based data. Despite the immense benefit of
processing human data, lack of annotated training data still
hinders DNNs from unfolding their full potential. In ad-
dition, the implementation of data protection laws, such as
the European general data protection regulation (GDPR), defines
strict rules for processing data that can reveal identity infor-
mation, thus violating the data subjects’ informational self-
determination. According to article 9 of the GDPR, biometric
data is considered as sensitive data, and processing without
explicit consent of the data subjects is imposed with fines of
up to 20 million Euro or 4% of the firm’s worldwide annual
revenue from the preceding financial year (article 83).

One solution to overcome challenges related to limited
training data and data protection has to do with creating
large-scale synthetic datasets. Progress of deep generative
models has allowed for the generation of highly realistic
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(a) StyleGAN2 [5] (b) SFinGe [6] (c) SpoofGAN [7]

(d) SURREAL [8] (e) ElderSim [9]

Fig. 1: Synthetic images generated for human analysis,
namely (a) 2D face image generation, (b) fingerprint image
generation, (c) fingerprint presentation attack detection, (d)
2D pose estimation, (e) and elderly action recognition

synthetic human images - challenging to distinguish from
real data by both humans, and computer vision algorithms
[2][3] (see Figure 1). While generative models have been able
to produce highly realistic synthetic samples, we note that
they are prone to leak information from training datasets.
This is specifically of concern when human data is involved,
and hence identity leaks risk at infringing personal privacy
rights. In this context, current research indicates that iden-
tity leaks in deep generative networks become less likely,
in case the complexity of the training dataset exceeds the
complexity of the model architecture [4]. The main reason
for identity leaks stems from generative model overfitting to
the training dataset, with the consequence of specific units
in the network revealing information of single data subjects
- a concept referred to as generative adversarial network (GAN)
memorization.
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1.1 Domains of application
Synthetic data boosts the performance of many data-driven
models in human analysis [10] [11] [12]. In this context, a
number of training schemes have been introduced including
data replacement and data enrichment. The motivation for
replacing real samples with synthetic data (i.e., synthetic
training) has to do with alleviating privacy concerns. In
contrast, the combination of synthetic and real data (i.e.,
augmented training) mainly aims at reducing biases achieved
by re-balancing according to observed soft characteristics.
Another optimization scheme aims at initializing model
weights based on synthetic data with subsequent fine-
tuning on a small subset of real data, referred to as model ini-
tialization. Finally, domain translation techniques are utilized
to close the synthetic vs real domain gap (domain adaptation),
thereby increasing the realism of synthetic datasets while
preserving fine-grained annotations.

Deviating from synthetic data employed for model
training, synthetic evaluation datasets have been utilized to
benchmark the performance of existing algorithms, pre-
trained models, and systems. This field of research is fu-
elled by the increasing representativeness of synthetically
generated samples, which allows interference with systems
and observed outcomes similar to those expected by real
evaluation datasets. The preparation of large-scale testing
databases intends to detect weaknesses in the human anal-
ysis pipeline without requiring expensive data collection
initiatives. Apart from the cost factor, real data from specific
(demographic) subgroups may not be accessible, so syn-
thetic samples could balance underrepresented categories.

1.2 Structure of paper
Given the increasing popularity of synthetic data, the main
contribution of this survey is to revisit current research in
human analysis, illustrating applications, benefits, and open
challenges to accelerate future research. We introduce basic
terminology and scope in Section 2, followed by Section 2.3,
which provides an overview of the main benefits associated
to synthetic data. Section 3 elaborates on techniques for
generating synthetic data, followed by the most prominent
application scenarios presented in Section 4. Section 3.5 sum-
marises synthetic datasets and data generation tools that are
publicly available across human analysis domains. Finally,
in Section 5 we discuss open challenges identified in the liter-
ature analysis with promising new DNN concepts outlined
in Section 6.

2 SYNTHETIC DATA IN HUMAN ANALYSIS

The vast progress of deep generative networks has brought
to the fore highly realistic synthetic data beneficial in
automated human-centred analysis. To avoid ambiguity
throughout this survey, we proceed to establish terminology
of basic concepts, as utilized in this overview article.

2.1 Synthetic data
In general, synthetic data can be defined as digital information
generated by computer algorithms to approximate information col-
lected or measured in the real world [13]. Synthetic data stems
generally from traditional modelling or deep generative models.

(a) F-S (b) S-S (c) Real

Fig. 2: Example images of a fully-synthetic (F-S), semi-
synthetic (S-S), as well as real samples. The S-S face image
(b) was generated with InterFaceGAN [20] by editing the
age of the real face image depicted on the right side [21]. The
F-S sample (a) was randomly generated with StyleGAN2 [5].

While traditional modelling generates real-world patterns
based on prior expert knowledge through the formulation of
mathematical models, deep generative models are designed
to automatically learn patterns from the training dataset. In
the last decade, deep generative models have outperformed
traditional modelling techniques, w.r.t. quality and general-
izability of the synthetic samples [14] [15]. In this survey, we
refer to generative models in the context of both mathematical
modelling and deep generative models.

Synthetic data samples can be fully-synthetic, as well as
semi-synthetic. Fully-synthetic samples are generated with-
out representing an underlying real-world object [16], gener-
ally by generative models, random sampling from a learned
distribution [17][18]. At the same time, semi-synthetic sam-
ples constitute representations of real subjects, whose se-
mantics have been manipulated [19]. For example, in human
analysis, predicting the future appearance of a real face
is considered semi-synthetic, as the image maintains the
identity information, while altering the age. In contrast,
fingerprint images synthesized by GANs based on random
noise vectors are defined as fully-synthetic. An example
image for each class is demonstrated in Figure 2.

In computer vision, real-world information is repre-
sented either at sample or feature level. In particular, we refer
to data samples as the analogue or digital representation of
human characteristics before feature extraction. According
to the harmonic biometric vocabulary of ISO/IEC 2382-
37:2017 [22], a feature vector is composed of numbers or labels
extracted from the data sample. Specifically, feature vectors are
treated as compressed sample representations, often encap-
sulating information, optimised for a specific downstream
task, such as biometric recognition. In practice, generative
models can either focus on generating “synthetic samples” [2]
or “synthetic features”[23], depending on the target applica-
tion.

2.2 Data replacement versus Data enrichment

While deep neural networks have achieved remarkable re-
sults in various computer vision tasks, it is still challenging
to unleash their full potential due to the limited availability
of large-scale datasets. The generation of synthetic samples
can improve scalability and diversity, motivated by the
following: Firstly, existing datasets being enriched with syn-
thetic samples can increase dataset diversity. In this context,
data enrichment (DE) imparts balancing of the proportions
of soft characteristics in order to reduce dataset biases [24].
Note that in this survey, data enrichment signifies minor data
perturbations such as image cropping, colour transformation,
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as well as noise injection [25]. Due to a plethora of data
augmentation techniques, distinction between synthetic and
augmented samples is often challenging. Therefore, we refer
to augmented samples as semi-synthetic, given that the
original sample is at hand. In addition, we here denote weak
supervision learning as a type of DE, as both synthetic and
real samples are jointly employed for model training (see
Section 4.5.3).

Secondly, data replacement (DR) refers to the replacement
of real data with synthetic data [26]. This is instigated by
privacy concerns in human analysis, where identity infor-
mation can be linked with the corresponding sample.

Training human analysis models on domain-adapted
synthetic datasets is considered a sub-category of DR, as
only high-level information from a small subset of real
data is being utilised (see Section 4.5.2). In contrast, the
initialisation or fine-tuning of model weights with synthetic
data is defined as a sub-category of DE due to the active
involvement of real data that remains part of the training
process (see Section 4.6).

Figure 4 introduces DNN-related training, evaluation,
and attack mechanisms in which synthetic data has been
employed including the following.

• Augmented Training refers to learning human anal-
ysis models or classifiers from a mixed training
dataset that includes both real and synthetic data
samples.

• Weakly-Supervised Learning signifies combined
training with weak labels (real data) and accurate
annotations (synthetic data).

• Model Initialisation denotes initial training on syn-
thetic data with subsequent fine-tuning on real data
towards reduction of the synthetic versus real domain
gap.

• Consistency Regularisation denotes the utilisation
of semi-synthetic data to enforce the consistency of
model predictions for similar training samples.

• Synthetic Training signifies the training of models
or classifiers on datasets composed of synthetic data
only.

• Unsupervised Domain Adaptation denotes the em-
ployment of models trained on synthetic data to do-
main adaptation techniques (e.g., Cycle-GAN), aim-
ing to close the gap between synthetic versus real
domain.

• Synthetic Performance Evaluation refers to assess-
ing synthetic datasets generated to test the scalabil-
ity and performance of systems, algorithms, or pre-
trained models.

• Digital Perturbation Attacks describe either fully-
synthetic or semi-semi-synthetic data generated to
maliciously interfere with automated human anal-
ysis systems (e.g., presentation attacks in biometric
systems [27])) or deceive the human perception in
recognizing individuals (e.g., Deepfakes [28]).

Motivated by the above, synthetic data has enabled a
number of applications, listed in Table 1 and elaborated
on in Section 4. Further, Figure 4 summarises application
scenarios derived from the forthcoming literature survey.

2.3 Benefits of synthetic data
Synthetic data can impart a performance boost to human
analysis models, augment controllability and scalability, and
mitigate privacy concerns. We here outline such benefits,
whereas Section 4 revisits relevant works.

Performance boost. One ample application of synthetic
data has been towards boosting the performance of hu-
man analysis models. Table 1 demonstrates such boost by
comparing the associated performance before and after the
use of synthetic data in several domains such as action
recognition, crowd counting, face recognition, pose estima-
tion, and gender classification. Moreover, Table 1 shows that
synthetic evaluation datasets, including controlled labels,
are exploited to evaluate the performance of new algorithms
and pre-trained models. In human analysis, the high fi-
delity of evaluation datasets has been mainly fuelled by
the remarkable progress in the domain of conditional image
synthesis, which enables the generation of synthetic mated
samples by manipulating single image semantics.

Controllability and scalability. The advances in generative
models have enabled the generation of synthetic data, incor-
porating fine-grained control over semantics. Consequently,
synthetic datasets can be created to balance important fac-
tors of variation (e.g., the proportion of images pertained
to male and female subjects), reducing biases caused by
the unequal class distributions often observed in real-world
datasets. Further, the employment of image synthesis mod-
els enables the generation of large-scale synthetic datasets,
a factor known to correlate with the performance of DNNs.

Mitigating privacy concerns. Finally, fully-synthetic
datasets reduce privacy concerns related to the distribution
and processing of sensitive human data. Despite known
incidents of information leaks of GANs [4], [29], [30], the
reconstruction of training samples remains a challenge, as
opposed to real data processing. We note that such in-
formation leakage is of concern and a set of related coun-
termeasures have been identified, such as the concepts of
differential privacy [31] and precision reduction [30]. While due
to legal and privacy concerns, large-scale biometric datasets,
such as MegaFace [32], have been withdrawn from public
channels, we envision that large-scale synthetic datasets will
be availed for DNN training and evaluation.

2.4 Human analysis
This survey defines human analysis as the analysis of human
characteristics, behaviour, and interaction with the physical
world. Such analysis has a myriad of applications, sum-
marised in Figure 4. To elaborate, we note the following
applications.

• Biometric recognition refers to the automated recog-
nition of individuals based on their biological and
behavioural characteristics [22].

• Emotion Classification refers to the process of clas-
sifying human emotion [33].

• Soft-biometric classification aims at automated clas-
sification of human characteristics in pre-defined
categories, such as demographic, anthropometric or
behavioural groups [34].

• Presentation attack detection (PAD) refers to the
automated determination of a presentation to the
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Fig. 3: Application types of synthetic data in human analysis.

biometric data capture subsystem to interfere with
the operation of the biometric system [35].

• Person Re-Identification is the task of identifying an
individual captured in images and videos acquired
from different cameras or camera angles [36] [37]

• Human interaction recognition is the task of
analysing human interactions of at least two in-
dividuals who are interrelated to each other (e.g.,
handshaking) [38].

• People detection/counting denotes the detection or
counting of individuals within a given image or
video [39][40].

• Semantic segmentation signifies the pixel-based im-
age classification with the goal of tracking human
bodies [8] or body parts [11] in a given image or
video.

• (3D) Pose estimation quantifies the transformation
of the human body [41] or head [42] from a reference
pose, given an image or a 3D scan [43]. In this
context, pose tracking refers to the temporal pose
estimation within video sequences [44].

• Optical Flow Estimation refers to tracking and vi-
sualizing the 2D motion of humans in videos by
tracking human-specific features [45], [46].

• Action recognition focuses on recognizing activity of
individual(s) from a series of observations from data
subjects and their environment [47].

• Anomaly detection refers to classifiers trained to de-
tect human behaviours, interactions, or movements
deviating from normality [48].

• Medical analysis refers to the automated analysis
of data collected in medical applications with the
greater goal of restoring and maintaining human
health. In this survey, synthetic data in medical ap-
plications is considered out-of-scope, and interested
readers are referred to the work of Chen et al. [49].

3 HOW CAN SYNTHETIC DATASETS BE GENER-
ATED?
Initial approaches for synthetic data generation generally
exploit mathematical modelling, 3D rendering tools or pertur-
bations using classical and hand-crafted means. However, the
success of deep neural networks in image generation has
catapulted dynamic perturbations and deep neural networks as
primary generation models. We proceed to provide details

on such generation methods for synthetic data, leaving the
reader with a selected choice of generation tools and openly
available synthetic datasets.

3.1 Mathematical modelling
Mathematical modelling constitutes an early approach for
generating human data aimed at approximating the distri-
bution of real human data through mathematical modelling.
Sampling from the approximated model can then be used to
generate synthetic samples and exploit such in downstream
human analysis tasks. Approximation of the mathematical
model pertaining to the human data requires domain ex-
pertise and a careful understanding of model parameters.
A popular mathematical modelling-based synthetic finger-
print generation (SFinGe) method is proposed by Cappelli
et al. [6]. The authors exploited domain expertise to define
a fingerprint orientation model characterized by the num-
ber and location of the fingerprint cores and deltas. The
synthetic fingerprint generation starts from initializing the
locations of core and deltas, followed by ridge orientation
and density generation. Subsequently, the authors applied
space-invariant linear filtering to obtain a binarized good
quality fingerprint image. Lastly, domain-specific noise was
introduced to simulate realistic greyscale fingerprint im-
ages. Approaches exploiting mathematical modelling using
domain knowledge for synthetic data generation include
finger vein recognition [73], hand shape recognition [74],
face recognition [75], and iris recognition [23].

3.2 3D rendering tools
Several studies exploit 3D modelling to create mathemati-
cal representations of the three-dimensional surface of the
object of interest. Subsequently, a 3D rendering tool is ex-
ploited to render images corresponding to a 3D model. Han
et al. [52] argued that the generation of synthetic samples in
3D space allows for the incorporation of extreme changes in
illumination, viewpoint, occlusion, scale, and background.
Additionally, rendering engines allow precise control over
environmental conditions such as pose variations, lighting,
and object geometry, leading to accurate annotations, which
are often acquired for a real dataset. Most popular 3D
rendering tools include Blender1, Maya2, 3ds Max3, Cinema

1. https://www.blender.org/
2. https://www.autodesk.fr/products/maya/overview
3. https://www.autodesk.com/products/3ds-max/overview
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Fig. 4: Application domains in human analysis

TABLE 1: Performance of human analysis models trained or evaluated with and w/o synthetic data. Numbers given in
%, except for MPJPE, which is reported in in mm (DE=data enrichment, DR=data replacement, EER=equal error rate,
MAE=mean absolute error, MSE=mean square error, FNMR=false non-match rate, MPJPE=mean per joint position error,
U=Illumination, E=Expression, P=Pose). For precise definitions of the metrics used, we refer to the referenced studies.

Reference Application Domain Application Type Metric w/o synthetic data DE DR
Aranjuelo et al. [39] People detection Augmented Training Average Precision (↑) 70 82 -
Wang et al. [40] People counting Synthetic Training MAE (↓) 275.5 - 225.9
Yadav et al. [15] Iris PAD Augmented Training EER (↓) 25.18 18.52 -
Grosz and Jain [7] Fingerprint PAD Augmented and Synthetic Training Accuracy (↑) 99.52 100 36.53
Bird et al. [50] Speaker recognition Model Initialization Average Accuracy (↑) 95.48 99.35 -
Tapia et al. [51] Gender classification from periocular images Evaluation Accuracy (↑) 82.76 - 91.9
Han et al. [52] Face Detection Evaluation Average Precision (↑) 64 74.5
Basak et al. [53] Head pose estimation Domain Adaptation MAE (↓) 6.34 - 5.13
Bird et al. [54] Speaker recognition Model Initialization Accuracy (↑) 96.58 98.83
Dou et al. [10] Gait recognition Augmented Training Rank-1 Accuracy (↑) 95.0 96.4 -
Piplani et al. [55] Passthrough authentication Augmented Training Accuracy (↑) 90.8 95 -
Gouiaa et al. [56] Posture recognition Augmented Training Accuracy (↑) 94.58 99 -
Ruiz et al. [57] Signature recognition Augmented Training EER (↓) 11.11 4.9 -
Kim et al. [58] Face recognition Synthetic Training Average Accuracy (↑) 94.62 - 91.21
Chen et al. [59] Emotion Classification Augmented Training Accuracy (↑) 58.6 64.5 -
Meloet al. [60] Signature Recognition Synthetic Training EER (↓) 10.26 - 9.74

Öz et al. [61] Eye Segmentation Augmented Training mIoU (↑) 73 75.4 -
Wang et al. [62] People Counting Model Initialization MSE (↓) 14.3 13 -
Irtem et al. [12] Fingerprint Classification Augmented and Synthetic Training Classification accuracy (↑) 91.9 95.53 69.47
Engelsma et al. [17] Fingerprint Recognition Model Initialization True acceptance rate (↑) 73.37 87.03 -
Bozorgtabar et al. [33] Expression Recognition Domain Adaptation Accuracy (↑) 70.15 - 72.1
Qiu et al. [26] Face Recognition Augmented and Synthetic Training Accuracy (↑) 91.22 95.78 91.97
Kortylewski et al. [24] Face Recognition Model Initialization Accuracy (↑) 91.2 93.3 88.9
Colbois et al. [63] Face Recognition Evaluation False non-match rates U/E/P (↓) 11/3/55 - 12/25/51
Marriott et al. [64] Pose-invariant Face Recognition Augmented Training Accuracy (↑) 93.59 95.29 -
Wood et al. [11] Face Segmentation Synthetic Training F1 score (↑) 91.6 - 92
Ahmed et al. [65] Facial Expression Classification Augmented Training Accuracy (↑) 92.95 96.24 -
Niinuma et al. [66] Facial Expression Classification Synthetic Training Inter-rater reliability (↑) 48.9 - 52.5
Ranjan et al. [45] Optical Flow Estimation Evaluation Motion compensated intensity (↓) 158.3 − 71.5
Zhu et al. [67] Pose tracking Synthetic Training MPJPE (↓) - - 76.41
Cai et al. [68] Pose Estimation Augmented Training Procrustes-aligned MPJPE (↓) 65.7 57.9 61.7
Varol et al. [69] Action Recognition Augmented Training Accuracy 0◦/45◦/90◦ (↑) 88.8/78.2/57.3 90.5/83.3/68 -
Hatay et al. [70] (Phone) Action Recognition Model Initialization Accuracy (↑) 95.83 96.67 -
Souza et al. [71] Action Recognition Augmented Training Accuracy (↑) 93.3 92.7 -
Varol et al. [8] Human Body Segmentation Model Initialization Accuracy (↑) 58.54 67.72 56.51
Priesnitz et al. [72] Contactless Fingerprint Recognition Evaluation Average EER (↓) 30.93 - 3.55

Computers and Electrical Engineering 92 (2021) 107105
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Fig. 1. General scheme of the proposed methodology for the analysis and identification of the key features in synthetic data generation for DNN training.

3.1. Key features in synthetic data generation

In this section, we present the key features and parameters in the generation of synthetic data. We consider these parameters
for the generation of the databases, described in Section 3.2.

3.1.1. Camera lens distortion: Rectification algorithm
The cameras used to capture data introduce some artefacts into the image that are unique to the sensor. Simulating a camera

without considering this can contribute to a larger domain shift between the synthetic and real data. In omnidirectional cameras,
the lens distortion varies the captured data notably.

The closest camera model in most 3D computer graphics software is similar to a fish eye camera, which can be modelled in a
simpler way than an omnidirectional one [7]. In addition, these virtual models are often simplifications. This may not coincide with
the content captured by the camera in the real-world.

To check the possible matching, we prepare a scene with two calibration patterns of known dimensions and replicate the same
patterns in 3ds Max with the same camera parameters. Fig. 2(a) shows the image captured by the real camera. Fig. 2(b) is the result
of overlapping the simulated patterns and some person avatars on top of it. It can be seen that the patterns do not match, as the
rendered assets show a different distortion.

To solve this, we apply an image rectification algorithm (Algorithm 1). The input for the algorithm are the real and synthetic
images (𝐈𝑟 and 𝐈𝑠 respectively), as well as the position in pixels of 10 random markers we place on the calibration patterns (𝐦𝑟
and 𝐦𝑠). These markers represent the same spatial points, but their position in the images do not coincide because of the different

Fig. 2. (a) Image of a real scene; (b) The same scene virtually rendered on top of the real image (patterns do not match); (c) Virtual and real patterns match
after the rectification step.Fig. 5: Aranjuelo et al. [39] utilized 3ds Max software to

virtually render humans (right) on a real scene (left) for
detection of moving subjects.

4D4, Unity5, and Unreal Engine6. Despite the precise con-
trol over subject and environmental-related attributes, it is
still an open challenge to close the domain gap between
synthetic and real data in terms of visual quality and ap-
proximation of intricate details [76], [77].

Aranjuelo et al. [39] virtually rendered humans on real
scenes for application in the detection of individuals (see
Figure 5). Similarly, Öz et al. [61] used a 3D rendering tool
to generate synthetic eye images and exploit the generated
samples to learn eye region segmentation (see Figure 6).

4. https://www.maxon.net/en/cinema-4d
5. https://www.unity3D.com
6. https://www.unrealengine.com
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Equation (5) shows that a total of 16 coefficients (ai j) need to be calculated to find the interpolated area. 

Four of the coefficients are calculated using horizontal derivatives, four of the coefficients are calculated 

using vertical derivatives, four of the coefficients are calculated using diagonal derivatives, and the 

remaining coefficients are calculated for corner intensity values [25]. 

2.2.4. Blur 

Blur is a process to convolve the image with different kernel matrices to get a smoother image. Motion 

blur is a process to convolve the image with various kernels to give it a shaky look. It can be formulated as: 

𝐼𝑏(𝑥,𝑦) = 𝐼(𝑥, 𝑦) ∗ 𝐾(𝑠, 𝑠) (6) 

In our study, kernels used for blurring was a matrix filled with ones. For vertical motion blur, a matrix filled 

with ones in the middle vertical row, for horizontal motion blur, a matrix filled with ones in the middle 

horizontal row was used [25]. 

2.3. Evaluation 

Mean Intersection Over Union(IoU) metric was used as an evaluation metric to measure the proposed 

method's performance. IoU calculates the ratio of segmentation success by comparing correct segmentation 

results to the union of correct and incorrect segmentation results, as shown in (7).  

𝐼𝑜𝑈𝑐 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
=  

𝑃𝐿𝑐 ∩ 𝑇𝐿𝑐

𝑃𝐿𝑐 ∪ 𝑇𝐿𝑐
         (7) 

Correct segmentation of the calculated class results are represented by true labels (𝑇𝐿𝑐); predicted 

segmentation results are represented by predicted labels (𝑃𝐿𝑐). Intersection of these labels represents 

correctly segmented pixels. The union of those labels represents correct segmentation pixels alongside miss-

segmented pixels. With their division, we get the IoU value for a class. The total of each class IoU value is 

divided by the total number of classes to calculate the mIoU value. 

 3. Experiments 

Several experiments were conducted under differing conditions. The real-life images for the 

experiment were always kept at 280 images for the training set and 70 images for the testing set. However, 

the size of the training set varies to examine the effect of the additional data while maintaining the real-life 

image factor the same. Synthetic images are tested as processed and unprocessed categories, as shown in 

Fig 5. Synthetic images processed beforehand were called synp, and the non-processed image set was called 

syn for distinction.  

 
Figure 5. Synthetic data samples. a) Unprocessed. b) Processed. 

Different weight multipliers to each class to increase segmentation performance. Since we have non-

uniform eye regions, the multipliers are chosen in contrast to the region sizes in the images. The background 

class weights stayed the same, the sclera class weights multiplied by 10, the iris weights multiplied by 20, 

and the pupil weights multiplied by 30, empirically. All networks trained for 100,000 steps with the same 

settings: batch size was 10, crop size was 256×256, output stride was 16, the atrous convolution rates were 

6, 12, 18, momentum Optimizer with 0.9 rate was used, the learning rate was 1 × 10−3, and the decay rate 

was 1 × 10−3 for every 1000 steps. Thus, every 10,000 steps network was saved, and the best performing 

network was chosen. 

Fig. 6: Öz et al. [61] generated synthetic eye images employ-
ing UnityEyes [81], a 3D rendering tool. The synthetic data
is used for learning eye region segmentation.

Recently, 3D rendering tools employed in video games have
become a valuable source for collecting synthetic data, aim-
ing to improve performances across different human anal-
ysis tasks. Among others, Zhu et al. [67] and Cai et al. [68]
extracted training data from NBA2K2019 and GTA-V, in
order to achieve state-of-the-art performances in 3D human
body reconstruction. Other studies exploiting 3D rendering
tools for generating synthetic data spanned applications in
re-identification of individuals [78], face recognition [79],
[52], and gait recognition [80].

3.3 Input perturbations
Perturbations of a given input are widely used to generate
synthetic data. Such perturbations are either introduced
by noise using classical and hand-crafted methods or by
a learning-based approach. We proceed to provide a brief
discussion on both approach types.



6

6  Synthetic Fingerprint Generation 
 

288 

sure or wet skin (see Figure 6.18). The structuring element used is a square box whose size 
varies from 2 × 2 to 4 × 4, to modulate the magnitude of the ridge thickness variation. 

 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.18. Application of different levels of erosion/dilation to the same master fingerprint. 

6.5.2  Fingerprint distortion 

One of the main characteristics that distinguishes different impressions of the same finger is 
the presence of non-linear distortions, mainly due to skin deformations according to different 
finger placements over the sensing element (see Figure 6.19). In fact due to skin plasticity, the 
application of force, some of whose components are not orthogonal to the sensor surface, pro-
duces non-linear distortions (compression or stretching) in the acquired fingerprints (see Chap-
ter 4). 

SFinGe exploits the skin-distortion model introduced in Cappelli, Maio, and Maltoni 
(2001). Unlike in fingerprint matching, where the function distortion( ) (see Section 4.5.6) is 
applied to re-map minutiae points in order to improve fingerprint matching, here the mapping 
is applied to the whole image, in order to simulate realistic distorted impressions. For this pur-
pose, Lagrangian interpolation is employed to obtain smoothed gray-scale deformed images. 
Performing Lagrangian interpolation requires the inverse mapping function distortion−1( ) to 

Dilation 
simulation of high pressure or wet finger 

Erosion 
simulation of low pressure or dry finger

Original image 

Reprinted with permission from Cappelli, Maio, and Maltoni (2002b).  IEEE. ©Fig. 7: Cappelli et al. [6] exploited morphological operations
such as erosion and dilation to vary ridge thickness while
generating multiple impressions of a fingerprint image.
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TABLE 2: SOTA PAD Performance for Face, Fingerprint, and
Iris on known (seen during training) PA types

Trait Competition Accuracy

Fingerprint LiveDet 2019 96.17%1

Face 2020 Celeb-A
Spoof Challenge 100%2

Iris 2020 LivDet-Iris Challenge 97.82%1

1 Average accuracy reported in [95] and [96].
2 TDR @ FDR = 10−6 reported in [97].

after its deployment by the Vietnamese cybersecurity firm
Bkav10. All of these successful attacks come twenty years
after early successful spoof attacks were shown in [93, 94].

The continued success in spoofing modern day bio-
metric recognition systems is not a consequence of a lack
of research into developing presentation attack detection
(PAD) systems. Indeed the past couple of decades have
seen a plethora of research into developing PAD systems
which can automatically detect and flag a spoof attack prior
to performing authentication or identification [35, 36, 98–
100]. Typically these approaches are divided into hardware
or software based approaches detecting face, fingerprint,
and iris spoofs. Hardware approaches deploy additional
sensors (e.g. depth, IR cameras, multispectral illumination,
etc.) to capture features which differentiate bonafide ac-
quisitions from PAs [101–112]. In contrast, software based
solutions extract anatomical, physiological, textural, chal-
lenge response, or deep network based features to classify
an input sample as live (bonafide) or presentation attack
(spoof) [35, 36, 96, 98–100, 113–122]. The culmination of
these approaches can be seen in the high performances
of the various algorithms submitted as part of the IARPA
ODIN program11 and also the public fingerprint and face
liveness competitions (Table 2) [95, 97]. However, after years
of rigorous research into various PAD approaches, the con-
tinued success of spoof attacks against deployed biometric
recognition systems leads to the inevitable question, “What
can be done to more reliably secure the biometric sensing module
from spoof attacks?”. From our review of the literature, we
posit that there are a few different sub-problems of biomet-
ric PAD that remain unaddressed. Solving these problems
will close the spoofing loopholes remaining and will go a
long way towards building trust in biometric recognition
systems.

Perhaps the most significant outstanding problem with
deployed PAD systems is their lack of generalization to
spoofs fabricated from materials different than the spoofs
that were used to train the PAD system. This problem is
typically referred to as “unseen” or “cross” material gener-
alization. In the domain of fingerprint recognition, multiple
studies specifically showed that when a material is left
out of training a state-of-the-art spoof detector and then
subsequently used for evaluation, the detection accuracy
drops below 10% [91, 123]. Similar deterioration of unseen
material detection accuracy have been observed in the face

10https://www.theverge.com/2017/11/13/16642690/bkav-
iphone-x-faceid-mask

11https://www.iarpa.gov/index.php/research-programs/odin

Real AdvFaces FGSM PGD Semantic GFLM DeepFool

0.21 0.27 0.28 0.32 0.34 0.35ArcFace:

Fig. 7: (Top Row) Adversarial faces synthesized via 6 adversarial
attacks [147]. (Bottom Row) Corresponding adversarial perturbations
(gray indicates no change from the input). Notice the diversity in the
perturbations. ArcFace match scores between adversarial image and
the unaltered gallery image are given below each image. A score above
0.36 indicates that two faces are of the same subject. Zoom in for details.

domain [124]. In operational settings, the likelihood of a
hacker using a spoof made from a novel material can be high
and thus, without addressing this problem, spoof detectors
remain limited in their applicability. Unfortunately, many
papers continue to work on addressing “known-material”
spoof detection which already obtains nearly perfect accu-
racy (Table 2) while ignoring this more challenging problem.
There are a number of more recent and promising works
that focus specifically on addressing the “unseen material”
and “unseen sensor” challenge, however, the accuracy re-
mains insufficient for field deployment [90, 91, 115, 123, 125–
137]. Thus, we urge a stronger research push in this direc-
tion in an effort to build trustworthy biometric recognition
systems.

In addition to the major vulnerability of “unseen mate-
rials”, other practical limitations of PAD systems must also
be addressed. For example, many PAD systems evaluated
in the literature train on one partition of a dataset captured
by a particular sensor or camera, and then test on a separate
partition of the same dataset (again captured by the same
sensor model or camera under the same capture conditions).
However, there can be a number of differences in the data
distribution observed in the actual deployment scenario
such as: sensor model, illumination, subject demographics,
and environmental conditions. As such, models reporting
near perfect accuracy on intra-dataset; intra-sensor perform
quite poorly when deployed into a inter-dataset and inter-
sensor scenario. We encourage PAD researchers to examine
more difficult evaluation scenarios (cross dataset, cross sen-
sor [132, 138–145]) which may be more indicative of how the
PAD system will perform in the wild.

Finally, from a practical perspective, many of the PAD
solutions place little emphasis on the efficiency of the PAD
solution. However, many of the biometric recognition sys-
tems we use today are deployed on resource constrained
devices (such as our smartphones) and as such, many of
the deep learning PAD systems are impractical for real
world applications. Research needs to be done to prune
the parameters of the deep learning based approaches and
perhaps combine deep learning approaches with simpler,
faster, and lighter weight handcrafted approaches [91, 146].

3.2 Adversarial Attacks

With unrestricted access to the rapid proliferation of face
images on social media platforms, such as FaceBook,

Fig. 8: Jain et al. [87] dynamically perturb a face image using
six different adversarial training mechanisms (top row). The
corresponding perturbations are provided in the bottom
row. The authors demonstrate that synthetic faces generated
using dynamic perturbations can increase face comparison
score (obtained using ArcFace) in non-mated comparison
trials.

3.3.1 Perturbations using classical and hand-crafted meth-
ods
Classical and hand-crafted methods can perturb a given
input to either introduce variations in the available data
or simulate cases that are difficult to capture otherwise.
Most prominent classical and hand-crafted methods include
Gaussian blurring, image blending, colour jittering, hori-
zontal and vertical flipping, rotation, translation, as well as
affine transformations. Some studies utilize morphological
operations such as erosion and dilation to generate syn-
thetic data samples. Following this direction of synthetic
data generation, Ibsen et al. [82] exploited image processing
techniques to synthetically blend tattoos on human faces.
Similarly, Cappelli et al. [6] generated synthetic multiple
impressions from a given input fingerprint using morpho-
logical operations (see Figure 7). Other studies that generate
synthetic data using classical methods have been instrumen-
tal in fingerprint recognition [83] [84], iris recognition [85] ,
and re-identification of individuals [86].

3.3.2 Dynamic perturbations
A dynamic perturbation is defined as an input-specific per-
turbation introduced through an adversarial training mech-
anism such that a learning-based human analysis model
is likely to make an erroneous prediction [87]. Training a
human analysis model with the synthetic data generated
using dynamic perturbations is beneficial for regularization
and improvement of robustness. Following this approach,
several studies generated synthetic data using adversarial
training. Jain et al. [87] generated synthetic non-mated fa-
cial images using dynamic perturbations that obtain high
comparison scores (see Figure 8). Other studies in human

analysis exploiting dynamic perturbations include applica-
tions in re-identification of individuals [88], face recognition
[89], iris recognition [90], and fingerprint recognition [91].

3.4 Deep neural networks
Deep neural networks (DNNs) represent state-of-the-art ar-
chitectures for generating synthetic data for among others,
applications in human analysis. By revisiting related litera-
ture, we identify following categories for doing so.

3.4.1 Sequence-based neural networks
Originally, a recurrent neural network (RNN) is a DNN
designed to process time-series, as well as sequential or
variable-length input data. Such models are designed for
applications, where input data samples depend on the
previous data samples, as RNNs are aimed at captur-
ing dependencies between data samples. Towards captur-
ing long-range dependencies, state-of-the-art RNNs exploit
long short-term memory (LSTM) and gated recurrent units
(GRU) [28] to store information from previous inputs or
states and generate the subsequent output of the input se-
quence. An LSTM comprises three gates: input, output and
forget gate, while a GRU incorporates a reset and an update
gate. These gates determine the most informative part of the
input to make a prediction in the future. Additionally, in the
realm of computer vision, vision transformers (ViTs) [92]
have been proposed as an effective architecture for image
data processing, leveraging self-attention mechanisms to
capture global patterns in high-resolution images.

One of the applications exploiting RNN to generate
synthetic data is the contribution of Bird et al. [54], where
a character-level RNN is exploited to generate audio sen-
tences for speaker identification. In addition, RNNs are em-
ployed for generating deep fakes, where these architecture
render continuous realistic flow in audio or video [28].

3.4.2 Auto-Encoders
Auto-Encoder (AE) based generative models constitute a
pair of encoder and decoder networks. While the encoder
network learns an efficient representation of the input, the
decoder network generates an output corresponding to the
given latent vector provided as output by the encoder net-
work. These models generate synthetic data by learning the
joint distribution of the latent space and the training data.
Such models are generally regularized by imposing a prior
distribution on the latent space to facilitate generation dur-
ing inference [93]. Prominent auto-encoder architectures for
synthetic data generation include variational auto-encoder
[93], adversarial autoencoder [94] and Wasserstein auto-
encoder [95], which includes a Gaussian prior. However,
the Gaussian prior is simplistic and might fail to capture
complex latent distributions. To alleviate this limitation,
rich classes of distributional priors have been explored
[96], [97]. Several research efforts have attempted to learn
disentangled representations in the latent space of the VAE
[98], [99]. Such a factored representation is beneficial in
interpolating the latent space, leading to the generation of
diverse samples and plausible modification in input data.
Despite offering interpretable inference, stable training, and
an efficient sampling procedure, the generation quality of
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StarGAN: Unified Generative Adversarial Networks
for Multi-Domain Image-to-Image Translation
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Figure 1. Multi-domain image-to-image translation results on the CelebA dataset via transferring knowledge learned from the RaFD dataset.
The first and sixth columns show input images while the remaining columns are images generated by StarGAN. Note that the images are
generated by a single generator network, and facial expression labels such as angry, happy, and fearful are from RaFD, not CelebA.

Abstract

Recent studies have shown remarkable success in image-
to-image translation for two domains. However, existing
approaches have limited scalability and robustness in han-
dling more than two domains, since different models should
be built independently for every pair of image domains. To
address this limitation, we propose StarGAN, a novel and
scalable approach that can perform image-to-image trans-
lations for multiple domains using only a single model.
Such a unified model architecture of StarGAN allows simul-
taneous training of multiple datasets with different domains
within a single network. This leads to StarGAN’s superior
quality of translated images compared to existing models as
well as the novel capability of flexibly translating an input
image to any desired target domain. We empirically demon-
strate the effectiveness of our approach on a facial attribute
transfer and a facial expression synthesis tasks.

1. Introduction

The task of image-to-image translation is to change a
particular aspect of a given image to another, e.g., changing
the facial expression of a person from smiling to frowning
(see Fig. 1). This task has experienced significant improve-
ments following the introduction of generative adversarial
networks (GANs), with results ranging from changing hair
color [9], reconstructing photos from edge maps [7], and
changing the seasons of scenery images [33].

Given training data from two different domains, these
models learn to translate images from one domain to the
other. We denote the terms attribute as a meaningful fea-
ture inherent in an image such as hair color, gender or age,
and attribute value as a particular value of an attribute, e.g.,
black/blond/brown for hair color or male/female for gender.
We further denote domain as a set of images sharing the
same attribute value. For example, images of women can
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Fig. 9: Choi et al. [14] proposed StarGAN, a generative
adversarial network that is able to alter attributes of a
given face image. The generated synthetic faces have been
commonly used as deepfakes.

VAEs is not as impressive as the one achieved by GANs
[97]. Next, we discuss the most widely used state-of-the-art
deep generative framework, namely GANs [100].

3.4.3 Generative adversarial networks (GANs)

Goodfellow et al. in their seminal work [100] proposed a
framework incorporating two networks, a generator and a
discriminator. The generator learns a distribution of training
samples, whereas the discriminator network is aimed at
classifying whether the input samples stem from the train-
ing set or are generated by the generator (real or fake). Both
networks are trained in an adversarial manner (zero-sum
game), and the framework targets to facilitate improved
approximation of true distribution by the generative model
[101]. Hence, the name generative adversarial network. GANs
are broadly categorized as noise to image translation or image
to image translation networks. The former aim at upscal-
ing a randomly sampled noise vector to a realistic image,
whereas the latter are trained to transform a given image
to another image. Although achieving photorealistic and
high-resolution image quality, GANs suffer from training
instability and mode collapse, constraining the diversity
by generating synthetic samples close to the average of a
training dataset.

Prominent noise to image translation GANs include DC-
GAN [102] and Wasserstein GAN [103], whereas frequently
empolyed image to image translation GANs include pix2pix
[104] and Cycle-GAN [105]. Several studies in human anal-
ysis exploited GANs to generate synthetic data [106], [55],
[107], [108], [33]. One such study includes the contribution
of Cao and Jain [109]. The authors generated synthetic fin-
gerprints using noise to image translation GAN. Similarly,
Choi et al. [14] proposed an image to image translation GAN
to modify attributes in facial images (see Figure 9).

3.4.4 Scene Graphs

Deng et al. [110] argued the necessity of understanding
the relationship between different objects in a scene to
generate synthetic data with multiple objects in a scene.
The authors proposed to represent a multi-object scene as a
tree-structured probabilistic scene graph that is trained with
variational inference. Scene graphs are additionally utilized
to generate moving objects [111]. For details on scene graph-
based generative models, the readers are referred to [112].
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form pθ(x0) :=
∫
pθ(x0:T ) dx1:T , where

x1, . . . ,xT are latents of the same dimensionality as the data x0 ∼ q(x0). The joint distribution
pθ(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ; 0, I):

pθ(x0:T ) := p(xT )
T∏

t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule β1, . . . , βT :

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [− log pθ(x0)] ≤ Eq
[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq

[
− log p(xT )−

∑

t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

]
=: L (3)

The forward process variances βt can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in pθ(xt−1|xt), because both processes have the same functional form when
βt are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation αt := 1− βt and ᾱt :=

∏t
s=1 αs, we have

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (4)

2

Fig. 10: Ho et al. [113] proposed to generate synthetic data
using a DPM that uses a directed graphical model at its core.

3.4.5 Diffusion Probabilistic Models

The most recent generative models for synthetic data gen-
eration include diffusion probabilistic models (DPMs) [113],
aiming to overcome the diversity constraints of GANs. A
DPM is parameterized through a Markov chain that exploits
variational inference to train the model towards generating
realistic data samples after a finite time. Transitions among
these chains are learnt via iteratively introducing noise into
the training set until the signal is destroyed. The overall
goal of noise injection has the goal to allow the model to
learn to reverse the diffusion process, and eventually to
learn to generate realistic data samples from a given noise
vector (see Figure 10). In addition, DPMs are exploited for
conditional data generation [114], as well as image-to-image
translation [115].

3.5 Open-Source Availability

Finally, we provide an overview of synthetic datasets and
synthetic data generation tools available for public usage.
We emphasize the importance of sharing datasets and tools
within the research community for improved reproducibil-
ity of results. As such, Table 2 presents publicly-available
datasets comprised of synthetic data only. Further, Table
3 introduces synthetic data generation tools to enable new
researchers in the field of human analysis to build custom-
generated datasets tailored to their needs.

In summary, we find that DNNs and 3D rendering tools
are frequently used techniques for generating synthetic data
for human analysis. However, the major challenge in syn-
thetic data generation remains related to ensuring diversity,
representation and preventing identity leakage (discussed
in Section 5).

4 HOW CAN SYNTHETIC DATA BE UTILIZED?

Synthetic data is frequently used to simulate complex scenarios
for which the data collection is particularly challenging, to
overcome privacy issues observed for collection of real human
analysis datasets, increase the size and diversity of training
datasets, as well as to mitigate bias in real training datasets.
Furthermore, looking at the challenge in collecting large-
scale datasets, synthetic data is widely used in scalability
analysis of systems. Additionally, as obtaining annotations
can be both time-consuming and expensive, synthetic data,
whose annotations can be automatically derived is prominently
used. With consistency regularization techniques, synthetic
data is used to learn generalizable models. Synthetic data
can also be employed to produce presentation attacks on hu-
man authentication systems. We proceed to provide details
on different uses of synthetic data.
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TABLE 2: Publicly available synthetic datasets.

Reference Name Application Domain Year Data Type Dataset Size
Wood et al. [11] Microsoft Face Synthetics Landmark localization, Face parsing 2021 Images 100, 000
Falkenberg et al. [116] HDA-SynChildFaces Child-based Face Recognition 2023 Images 188, 832 Frames
Varol et al. [8] SURREAL Human Pose Estimation 2017 Video Frames 6, 000, 000
Fabbri et al. [44] Joint Track Auto (JTA) Human Pose Tracking 2018 Videos 512
Barbosa et al. [117] SOMASet Person Re-identification 2017 Images 100, 000
Varol et al. [69] SURREACT Action Recognition 2021 Videos 106, 000
Da et al. [118] Mixamo Kinetics Action Recognition 2020 Videos 36, 195
Ariz et al. [119] UPNA Synthetic Head Pose Database Head Pose Estimation 2016 Videos 120
Roitberget al. [120] Sims4Action Action Recognition 2021 Videos 625.6 minutes
Hwanget al. [9] KIST SynADL Elderly Action Recognition 2020 Videos 462, 000
Ranjanet al. [45] MHOF Multi-Human Optical Flow 2020 Video Frames 111, 312 Frames

TABLE 3: Publicly available synthetic data generation mod-
els (MM=Mathematical Modelling).

Reference Generation tool Year Method
Drozdowski et al. [23] Synthetic Iris Code Generator 2017 MM
Li et al. [76] 3D Face Model Generation (FLAME) 2019 3D MM, DNN
Feng et al. [121] 3D Face Model Encoder (FLAME) 2021 DNN
Chan et al. [122] 3D-Aware Face Image Generation 2022 DNN
Karras et al. [2] Face Image Generation (StyleGAN3) 2021 DNN
Maltoni et al. [6] Fingerprint Image Generator (SFinGe) 2009 MM
Priesnitz et al. [72] Contactless Fingerprint Image Generator 2022 MM
Sun et al. [37] Person Re-Identification (PersonX) 2019 3D MM
Hwang et al. [9] Elderly Action Recognition 2020 3D MM
Zhu et al. [67] 3D Pose Estimation 2020 DNN

VersatileGait: A Large-Scale Synthetic Gait Dataset with Fine-Grained
Attributes and Complicated Scenarios
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Abstract

With the motivation of practical gait recognition appli-
cations, we propose to automatically create a large-scale
synthetic gait dataset (called VersatileGait) by a game en-
gine, which consists of around one million silhouette se-
quences of 11,000 subjects with fine-grained attributes in
various complicated scenarios. Compared with existing
real gait datasets with limited samples and simple scenar-
ios, the proposed VersatileGait dataset possesses several
nice properties, including huge dataset size, high sample di-
versity, high-quality annotations, multi-pitch angles, small
domain gap with the real one, etc. Furthermore, we inves-
tigate the effectiveness of our dataset (e.g., domain transfer
after pretraining). Then, we use the fine-grained attributes
from VersatileGait to promote gait recognition in both accu-
racy and speed, and meanwhile justify the gait recognition
performance under multi-pitch angle settings. Additionally,
we explore a variety of potential applications for research.
Extensive experiments demonstrate the value and effective-
ness of the proposed VersatileGait in gait recognition along
with its associated applications. We will release both Ver-
satileGait and its corresponding data generation toolkit for
further studies.

1. Introduction

As an important and challenging problem in computer
vision, gait recognition [9, 11, 15, 16, 31, 32, 38, 42] aims
to identify the individual walking pattern, and has a wide
range of applications such as visual surveillance [7], secu-
rity checks [10], and video retrieval [34]. Compared with
other biometric recognition approaches, it has the follow-
ing advantages: 1) non-explicit cooperation with humans;
2) long-distance perception; 3) robustness to changes in ac-
cessories.

*Corresponding author. E-mail: xilizju@zju.edu.cn.
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Figure 1. The comparison of real and synthetic datasets generation.
VersatileGait differs in the fine-grained attributes and complicated
scenarios, which are highlighted with yellow color.

In principle, a gait pattern in the wild is usually rep-
resented as a sequence of human silhouettes (i.e., binary
masks without textures), which vary greatly with respect to
many complicated intrinsic and extrinsic factors. Specif-
ically, intrinsic factors usually refer to individual-specific
attributes (e.g., genders, walking styles, and complex acces-
sories), which affect the silhouettes intrinsically due to the
differences in muscle action and body appearance. Extrinsic
factors often correspond to camera settings (e.g., horizon-
tal views and pitch angles), which may lead to silhouette
distortion. Therefore, effective gait recognition in the wild
requires datasets to cover a wide variety of fine-grained at-
tributes and complicated scenarios.

However, existing datasets are confronted with the fol-
lowing three limitations: 1) simple annotations with only ID

1

ar
X

iv
:2

10
1.

01
39

4v
1 

 [
cs

.C
V

] 
 5

 J
an

 2
02

1

Fig. 11: Dou et al. [10] discussed the limitations of existing
real databases for video-based gait recognition in capturing
complex scenarios. For instance, the authors discussed that
(a) real datasets are only acquired with a single camera pitch
angle and (b) on the other hand, the synthetic dataset is
generated with a diverse range of camera pitch angles. Thus,
synthetic data can be used to simulate complex scenarios,
which are otherwise difficult to acquire for a real dataset for
human analysis.

4.1 Simulating complex scenarios

Although suffering from the real-vs-synthetic domain gap,
synthetic datasets for augmented training or model ini-
tialization of DNNs are employed to improve associated
robustness towards complex scenarios across various ap-
plications, where collection of real data is particularly dif-
ficult. Dou et al. [10] argued that existing real databases
for video-based gait recognition do not possess examples of
complex scenarios that can be crucial for obtaining satisfac-
tory performance in real-world applications. For instance,

(a) KL-D: 0.702 (b) KL-D: 0.107 (c) KL-D: 0.007

Fig. 3. Comparison of impostor distributions between StyleGAN and StyleGAN2 using Arcface [6] (threshold=0.25 @ FMR=0.1% on LFW [18] dataset).
(a) FaceQnet v1 (b) Random Forest Regressor (ISO/IEC TR 29794-5) (c) SER-FIQ

(a) KL-D: 0.008 (b) KL-D: 0.003 (c) KL-D: 0.116

Fig. 4. Comparing the quality score distributions from various face quality algorithms between StyleGAN and StyleGAN2. (a) FaceQnet v1 (b) Random
Forest Regressor (ISO/IEC TR 29794-5) (c) SER-FIQ

Fig. 5. Impostor comparison score distributions of randomly selected Style-
GAN and FRGC image pairs using Arcface [6] (threshold=0.25 @ FMR=0.1%
on LFW [18] dataset). KL-D: 0.184.

of comparing synthetic face data generated by StyleGAN and
StyleGAN2 shows that their utility for biometric recognition
is similar. In this context, both the impostor comparison scores
and the quality scores are consistent in their results and
indicate that as the truncation factor increases, the differences
vanish. By comparing various truncation factors, it is also
demonstrated that while the image quality increases with
smaller truncation values, the variety of the generated face
images decreases at the same time. In other words, a low
truncation factor leads to face images with similar identities
and is therefore not suitable for biometric performance in

border control scenarios, such as the EES.
The second part of the experiments is focusing on the

comparison between the synthetic and real face images. The
impostor distribution of synthetic data is slightly offset to
the right, which means that the similarity between non-mated
samples is slightly higher compared to real face images. The
analysis of the FaceQnet v1 quality scores has not revealed any
major differences between images stemming from StyleGAN2
or FRGC. However, the comparison of the SER-FIQ quality
scores revealed a minor drop in quality for synthetic face
images, which can be explained by the wider range of pose
rotations. Further, the assessment of the ISO/IEC TR 29794-
5:2010 features has shown a high blurriness score for FRGC
images, caused by capturing some face images in motion.
Finally, we conclude that StyleGAN2 and FRGC images have
shown the minor differences in face quality, which means
the evaluated synthetic data can achieve a similar quality as
biometric samples in EES cases and allows us to exploit both
domains for realistic biometric performance tests.

REFERENCES

[1] International Organization for Standardization, “ISO/IEC 2382-37:2017
Information technology — Vocabulary — Part 37: Biometrics,” 2017.

[2] Council of European Union, “Council regulation (EU) no 2226/2017:
Establishing an Entry/Exit System (EES),” 2017,
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32017R2226.

Fig. 12: Zhang et al. [127] compared the distribution of non-
mated comparison scores of real (FRGC-V2 face database
[21]) versus synthetic faces generated. Only minor differ-
ences in non-mated comparison scores corresponding to
synthetic data were observed, as seen in real data. These
results illustrated the potential of synthetic data being uti-
lized instead of real data, alleviating privacy issues.

real datasets are captured under ideal settings with only a
single camera pitch angle (see Figure 11). Specifically in the
OU-MVLP dataset [123] for gait recognition subjects only
walk twice without the change of bag or clothing, with
only one subject appearing per video frame. However, real-
world scenarios naturally include multiple walking indi-
viduals. Towards bridging this gap, the authors generated
approximately one million synthetic silhouette sequences of
11,000 subjects. The resulting synthetic dataset VersatileGait
comprises of gait sequences with a diverse range of cam-
era pitch angles and fine-grained annotations of attributes.
Furthermore, to promote the design of multi-person gait
recognition algorithms, the authors also generated multi-
person walking scenarios with up to three people walking
simultaneously.

Similarly, Aranjuelo et al. [39] argued that existing real
datasets for human detection do not exploit omnidirectional
cameras to capture a 360° view in surveillance videos. To
take advantage of the 360° view, the authors proposed the
subject detection model to be trained with synthetic data.
Other applications, exploiting synthetic data to simulate
complex scenarios include the contributions of Lai et al. [124]
for generating synthetic skilled forgery attacks, Tabassi et
al. [125] for simulating altered fingerprints and the contri-
butions of Arifoglu and Bouchachia [126] for simulation of
(abnormal) behaviour observed for dementia patients.

4.2 Addressing privacy concerns
Data collection is often governed by strict rules to pre-
serve the privacy of individuals. For settings in which
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Fig. 3. Facial images rendered from one 3D face scan, with yaw rotation
from −50◦ to 50◦ at 10◦ intervals and with pitch rotation from −30◦ to
30◦ at 15◦ intervals.

in CCR are capable of overcoming the difficulty caused by
pose variation. The last few weak regressors mainly trained
on a relatively small number of real faces refine the rough
shape estimates output by the first few elements, to create a
more versatile model.

A. Face synthesis using 3DMM

As a means of augmenting the training dataset, we gen-
erate training samples synthetically, using a 3D morphable
face model (3DMM) [37], [38], [41], [52]. We captured
163 3D face scans [53], [54] and registered them us-
ing the Iterative Multi-resolution Dense 3D Registration
(IMDR) approach [55]. After registration, the 3D shape
information of a 3D face scan can be expressed by V
3D vertices v = [x1, y1, z1, · · ·xV , yV , zV ]T, where vv =
[xv, yv, zv]

T are the coordinates of the vth vertex. The cor-
responding vertex colour information is represented by t =
[r1, g1, b1, · · · , rV , gV , bV ]T, where [rv, gv, bv]

T are the RGB
intensities of the vth vertex.

To project the 3D vertices to a 2D image plane, a perspective
camera is used. Specifically, each vertex vv can be mapped to
the position wv = [wvx , wvy , wvz ]

T in a camera-centred 3D
coordinate system by the rigid transformation:

wv = RθzRθyRθxvv + τ , (5)

where Rθx , Rθy and Rθz denote the 3D rotation matrices with
the Euler angles θx, θy and θz around the X, Y and Z axes
of the virtual camera coordinate system, and τ ∈ R3 defines
the spatial translation of the camera with respect to the model.
Then wv is projected on the 2D image plane coordinates pv =
[pvx , pvy ]

T by a perspective projection:

pvx = ox + f
wvx
wvz

, pvy = oy − f
wvy
wvz

, (6)

where f is the focal length in the camera-centred coordinate
system, and [ox, oy]

T is the image-plane position of the optical
axis. Given a registered 3D face scan (v and t) and the rotation
parameters θx, θy and θz , we can calculate the 2D coordinates
of each vertex on the 2D image plane coordinate system and
obtain the rendered 2D image using the corresponding 3D
RGB intensities. In general, a registered 3D face scan can
be rendered as 2D faces with arbitrary poses by changing the

rotation parameters θx, θy and θz . Fig. 3 shows some rendered
2D faces under different pose variations from one 3D face
scan. Although the number of the vertices of a 3D face scan
exceeds 30,000 in our model, we only need a small number of
2D landmarks for FLD. In our case, we select 34 landmarks
(Fig. 8c) from the registered 3D scans and use their projected
2D coordinates as the ground truth shapes.

Note that the texture details of synthesised faces are not as
good as real ones, e.g. the synthesised facial images have a
uniform background. Also, the synthesised faces lack variety
of appearance compared with real faces, such as expression,
illumination and occlusion by other artefacts. Thus simply
using only synthesised facial images as a training dataset is
insufficient. To overcome this problem, one straightforward
solution is to synthesise more realistic facial images. For ex-
ample, we can use randomly selected background as suggested
by [32], [35], and add a Phong model to generate virtual
facial images with illumination variations [37], [38]. However,
neither of them can solve the problem fundamentally due to
the rich variations in appearance of human faces. Another way
is to directly train a CR-based model on a mixed training
dataset including both real and synthesised faces. We use the
term ‘one-off’ training for this approach. However, the model
obtained by this one-off training does not fit to a real face very
accurately, due to the preponderance of the synthesised faces
in the mixed training dataset. The synthesised faces dominate
the trained model, especially when the size of the synthetic
dataset is much bigger than that of the real face dataset. Thus
we propose a CCR approach trained using the mixed dataset
with dynamic mixture weighting, so that the synthetic and real
face datasets are complementary. In our proposed CCR, the use
of dynamic multi-scale HOG features leads to further robust-
ness in these variations, especially in illumination, because it
operates on image gradient orientations rather than raw pixel
values.

B. CCR training

Given a mixed training dataset with T synthesised images
{Ĩ(1), · · · , Ĩ(T )} and R real images {I(1), · · · , I(R)}, and
the corresponding ground truth shapes {s̃∗(1), · · · , s̃∗(T )} and
{s∗(1), · · · , s∗(R)}, we first generate the initial shape esti-
mates {s̃0(1), · · · , s̃0(T )} and {s0(1), · · · , s0(R)} by putting
a reference shape in the detected face bounding box, similar
to [9], [17]. The reference shape is either the mean shape or
a randomly selected face shape across all the training shapes.

Then we recursively learn the weak regressors from m = 1
to M . In the training phase, the initial shape estimates s0 are
used to obtain the first weak regressor R1 = {A1,b1}, and
then we apply this trained weak regressor to update all initial
shapes to train the next weak regressor, until all the weak
regressors in Φ = {R1, · · · ,RM} are obtained. To be more
specific, the cost function of learning the mth weak regressor
Rm = {Am,bm} by CCR is:

J(Am,bm) =
ω(m)Jt + (1− ω(m))Jr

2N
+ λ‖Am‖2F , (7)

0 < ω < 1,

Fig. 13: Feng et al. [79] generated synthetic faces with 11
yaw rotations (ranging from −50° to 50° over a step size of
5°) and 5 pitch rotations (ranging from −30° to 30° over a
step size of 5°). Therefore, augmenting the synthetic dataset
with the real training set increased the size of the training
set. Furthermore, synthetic data provided face images with
diverse pose variations. As a result, facial landmark detec-
tion performance improved w.r.t. variations in facial poses.

data collection is challenging due to time, cost, or privacy
constraints, the generation of synthetic data can be seen
as an efficient and privacy-preserving alternative [127].
However, a challenge with these applications has been to
ensure that synthetic data has a similar distribution (for
instance, distribution of minutiae in fingerprints [109], or
distribution of sample quality scores [109], [127]) as the
real data. Many studies demonstrated that synthetic data
with similar characteristics to the real data can be generated
and used, rather than the privacy-constrained real data. One
such study includes the generation of 50, 000 synthetic face
images each using StyleGAN [18] and StyleGAN2 [5] for
face recognition applications in face recognition systems at
the Schengen border [127]. The authors demonstrated that
realistic face images with image quality scores similar to real
faces can be generated. In addition, the authors compared
face recognition performance of models trained on synthetic
and real data and reported only minor differences, see
Figure 12. Similar to Zhang et al. [127], Bozkir et al. [128] and
Hillerström et al. [129] proposed to generate synthetic data
for applications implying gaze estimation and finger vein
recognition, respectively, in order to circumvent privacy
issues, occurring when publicly sharing human data. How-
ever, the privacy-preserving property of synthetic datasets is
closely related to the underlying generation model as recent
studies have shown that DPMs can leak information from
their training datasets [130] by learning to copy individual
samples. Likewise, concerns over identity leakage have been
raised for GANs [29].

4.3 Increasing the size and diversity of training dataset
Training DNNs requires a tremendous amount of data. At
the same time, datasets in human analysis have often very
limited samples. However, training with smaller datasets
may lead to poor generalization onto real-world test ex-
amples. Therefore, several studies in human analysis advo-
cated augmentation through synthetic data. Augmentation
with synthetic data improves diversity by introducing more
variations in training data, as well as increases the size of
the training set. Training with a more extensive and diverse
set leads to improved training and generalizability of the
trained model on the test data.
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TABLE II
A COMPARISON OF DIFFERENT FLD ALGORITHMS IN TERMS OF

ACCURACY, MEASURED BY THE AVERAGE ERROR USING 34 LANDMARKS
AND 5 ROBUST LANDMARKS (ID 24, 25, 28, 30, 31 IN FIG. 8C),

NORMALISED BY INTER-OCULAR DISTANCE.

34-landmark (%) 5-landmark (%)

View-AAM 7.83 ± 0.73 6.08 ± 0.56
CR + DT-HOG 4.68 ± 0.13 3.97 ± 0.12
CR + F-HOG 4.25 ± 0.13 3.52 ± 0.12
CR + M-DTHOG (C=2) 4.43 ± 0.11 3.56 ± 0.11
CR + M-FHOG (C=2) 4.08 ± 0.12 3.25 ± 0.12

Human 9.62 4.31

0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shape error normalised by inter−ocular distance

fr
a

c
ti
o

n
 o

f 
a

ll 
te

s
t 

s
a

m
p

le
s

 

 

CR + 3D Syn.

CR + MPIE−Fro.

CR + 3D Syn. & MPIE−Fro.

CCR + 3D Syn. & MPIE−Fro.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.065

0.07

0.075

0.08

0.085

0.09

0.095

proportion of the trainig set of all images

a
v
e

ra
g

e
 e

rr
o

r 
n

o
rm

a
lis

e
d

 b
y
 i
n

te
r−

o
c
u

la
r 

d
is

ta
n

c
e

 

 

CR + MPIE−Fro.

CR + 3D Syn. & MPIE−Fro.

CCR + 3D Syn. & MPIE−Fro.

(b)

Fig. 9. A comparison of the detectors trained from the proposed CCR and the
one-off CR in terms of accuracy on Multi-PIE, using three different training
datasets (3D Syn.: 3D synthesised faces, MPIE-Fro.: Multi-PIE faces with
only 5 near-frontal pose variations and 3D Syn. & MPIE-Fro.: a combined one
with all above): (a) the cumulative distribution curves of different algorithms
when 10% of selected Multi-PIE faces are used as the training subset; (b)
the average normalised errors of different algorithms with respect to the
proportion of the training subset of all selected Multi-PIE faces.

accuracy initialised by the dynamic multi-scale F-HOG CR is
superior to all the others, especially to the manually annotated
2D facial landmarks. The main reason is that the trained CR-
based model estimates the landmarks of the self-occluded
face parts better. In contrast, it is very hard to estimate the
landmarks of the occluded facial parts manually.

C. Experiments on Multi-PIE

The experiments on Multi-PIE explore the effectiveness
of the use of the synthesised faces as a complementary
training set for our proposed CCR algorithm. We evaluated
the algorithms in confirmation with different types of training
data varying both in quantity and quality. Here, the term
‘quantity’ stands for the number of the training samples and
the term ‘quality’ stands for the variety of the poses and
face appearance in the training set. To vary the quantity and
examine the quantitative relationship between the size of train-
ing data and the algorithm performance, we split the selected
subset into training and test sets with different proportions. We
randomly selected a training subset with different proportions
(10%, 20%, · · · , 90%) of the available identities and used the
remaining identities as the test set. To vary the quality, we
designed two different protocols: one had a training subset
with incomplete pose variations and the other had a training
subset with all pose variations. The first protocol used 5 near-
frontal poses in the training set for landmark detector training,
whereas the second protocol used all 9 poses. Thus the size
of the real training dataset varies from around 2500 to 22500
images for the first protocol, and from around 4500 to 40500
for the second protocol. We repeated each random selection
10 times and reported the average value. As the relative
performance of different HOG descriptors has already been
shown in the last section, we only use the proposed dynamic
multi-scale F-HOG in this part.

1) Training set with incomplete pose variations: In this
protocol, to examine the effectiveness of the use of 3D
synthesised faces, we generate three different training datasets
using: a) only 3D synthesised facial images; b) only Multi-PIE
faces with 5 near-frontal poses; c) a combination of a) and b)
with mixed training samples. For the first two training sets,
we use the classical CR training, because they only contain
either real or synthesised faces. For the last one with mixed
training images, we use the one-off CR and the proposed CCR
methods.

First, note that the detection results obtained using only 3D
synthesised faces do not adapt to real faces well (Fig. 9a),
because the latter contains a wide range of variations in
appearance exhibited by real faces. Second, as expected, in-
creasing the number of training samples improves the accuracy
of the FLD (Fig. 9b). This confirms that a large amount
of training data is crucial to the success of a regression-
based facial landmark detector training. However, this large
training data is not always available in practical applications.
Third, the use of the 3D synthesised faces as additional
training samples improves the performance of the existing
linear-regression-based CR approach. Last, the proposed CCR
algorithm improves the performance in accuracy even further,
especially when we have a small number of training samples
(Fig. 9b).

In this part, we also evaluated the performance of the
proposed CCR method using different dynamic weighting
functions and parameters, as shown in Fig. 10. We investigated
the effectiveness of the proposed dynamic weighting function
ω(m) as a function of the shrinking rate parameter K in

Fig. 14: Feng et al. [79] selected 44, 820 images from the
Multi-PIE [131] as the training set and augmented it with
8, 965 synthetic 2D face images. The authors demonstrated
that the face detection error of the cascaded regression (CR)
based method significantly decreased, when trained with
augmented data (plot in red) compared to when the land-
mark detection model was trained on only real faces (plot
in blue). Motivated by this observation, the augmented data
was used to train the proposed method based on cascaded
collaborative regression (CCR, plot in black) to achieve the
best face detection performance.

Feng et al. [79] discussed the limited availability of an-
notated datasets to train a facial landmark detection model.
The authors generated 8, 965 synthetic 2D face images to
address this limitation with 11 different yaw rotations and
five pitch rotations (see Figure 13). The authors augmented
the training set for landmark detection and found that the
face detection error reduced significantly after training on
the augmented dataset (see Figure 14). Similarly, Masi et
al. [132] augmented the training set of face images using
augmentations that introduce variations in pose and shape.
The authors demonstrated that rank-1 face recognition ac-
curacy on the IJB-A dataset [133] improved from 94.6% to
96.2% after augmentation with synthetic samples. Several
other studies additionally advocated augmenting the train-
ing set with synthetic data. Some of these studies include
applications in human posture recognition [56], brain-based
authentication [55], face photo-sketch recognition [134] , and
cross spectral face recognition [135].

We observe that due to the simplicity and low compu-
tational requirements, perturbation of training samples to
generate semi-synthetic data remains the most frequently
used method towards increasing size and diversity of a
training dataset.

4.4 Assessing scalability of systems
Evaluation of scalability of large-scale systems such as the
Aadhar database maintained by the unique identification
authority of India requires assessment of a system’s perfor-
mance for a colossal number of enrollees, sometimes up to
a billion (Aadhar has 1.32 billion enrollments till 31 October
20217). Scalability analysis of automated systems is crucial
to assess whether these can be deployed for large-scale real-
world applications. However, the collection of such large-
scale datasets pertaining to humans is often challenging.
To address this problem, researchers proposed to generate
large-scale synthetic data. Such synthetic data is instrumen-
tal for scalability analyses of human analysis systems.

7. https://uidai.gov.in/
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Figure 9. Rank-20 identification accuracies on NIST SD4 and
NIST SD14 against real fingerprint images and synthesized fin-
gerprint images with different augmented gallery sizes.

average time for generating a 512 × 512 rolled fingerprint
image is about 12ms. Synthesizing rolled fingerprint im-
ages, not done previously, is essential for evaluating large-
scale fingerprint search, particularly in law enforcement and
forensic applications. Based on distributions of minutiae
configurations and impostor scores by Verifinger SDK 6.3,
the proposed synthetic fingerprints are closer to the corre-
sponding distributions for real fingerprints. Future work in-
cludes (i) incorporating diversity criteria in training process
and (ii) evaluating capacity of deep learning-based finger-
print recognition using GANs.
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Fig. 15: Cao and Jain [109] generated synthetic fingerprints
and augmented the gallery of standard real fingerprint
databases to assess the scalability of state-of-the-art fin-
gerprint search algorithms [136]. The authors found that
the rank-20 identification accuracies dropped as the gallery
was augmented with synthetic fingerprints. These results
signified the usefulness of synthetic data, in order to assess
the scalability of systems.

We note that the scalability can either be evaluated with
system-relevant metrics (e.g., throughput rate) or metrics
that reflect the employed algorithms’ performance or pre-
trained models. According to the work of Sumi et al. [137],
synthetic evaluation datasets have to comply with following
three criteria.

1) Privacy. There shall not be a link between a syn-
thetic sample to one of the individuals contained in
the training dataset.

2) Precision. The performance of a pre-trained model
evaluated with synthetic data shall be equal to the
performance reported based on real data.

3) Universality. The precision shall be consistent
across the evaluation of different pre-trained mod-
els.

Wilson et al. [138] demonstrated that the identification
performance of a fingerprint recognition system drops lin-
early with the increase of enrolment records in the gallery.
This observation motivated Cao and Jain [109] to generate
10 million synthetic rolled fingerprints using I-WGAN [139]
in order to evaluate the scalability of fingerprint search
algorithms. Similar to the trend observed for real data [138],
the authors found that the rank-20 accuracy on NIST SD48

accuracy drops from 98.7% to 96.1% after the gallery was
augmented with 250K synthetic fingerprints generated by
the authors. Related to that, the report NIST SD14 [140]
indicated that the rank-20 accuracy drops from 98.7% to
95.0% (see Figure 15).

Recently, Colbois et al. [63] analysed the verification
accuracy and privacy of synthetic face images generated
with StyleGAN2 [5] and InterFaceGAN [20]. The authors
introduced a synthetic version of the Multi-PIE dataset [131]
(Synth-Multi-PIE), representing the same factors of varia-
tion. The precision was assessed following the evaluation
protocol of [131], identifying only minor performance differ-
ences between Synth-Multi-PIE and Multi-PIE. Similar stud-
ies on scalability analysis using synthetic data have been
conducted for hand-shape biometrics recognition [141], face

8. https://www.nist.gov/srd/nist-special-database-4
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Figure 1: Sample sequences from the Mixamo and the Kinetics datasets. Keypoints are also provided for the Mixamo dataset.

Abstract
Unsupervised domain adaptation (UDA) methods have

become very popular in computer vision. However, while
several techniques have been proposed for images, much
less attention has been devoted to videos. This paper
introduces a novel UDA approach for action recogni-
tion from videos, inspired by recent literature on con-
trastive learning. In particular, we propose a novel
two-headed deep architecture that simultaneously adopts
cross-entropy and contrastive losses from different net-
work branches to robustly learn a target classifier. More-
over, this work introduces a novel large-scale UDA dataset,
Mixamo→Kinetics, which, to the best of our knowledge,
is the first dataset that considers the domain shift aris-
ing when transferring knowledge from synthetic to real
video sequences. Our extensive experimental evaluation
conducted on three publicly available benchmarks and on
our new Mixamo→Kinetics dataset demonstrate the effec-
tiveness of our approach, which outperforms the current
state-of-the-art methods. Code is available at https:
//github.com/vturrisi/CO2A.

1. Introduction

Visual recognition models are built under the assump-
tion that the training and test data are drawn from the same

distribution. Unfortunately, this assumption rarely holds in
practice, leading to a drop in performance on the test data.
To address this problem, over the years, several unsuper-
vised domain adaptation (UDA) methods [11] have been
developed. UDA approaches leverage relevant knowledge
from labelled data in a source domain to learn a model
for a different, but related, target domain where no anno-
tations are provided. These methods have already proved
to be effective in several image-related tasks, ranging from
object recognition [30, 41, 50, 29] to semantic segmenta-
tion [19, 57, 18, 8] and object detection [24]. However, so
far much less attention has been devoted to video analysis
which, compared to image-related applications, is undoubt-
edly more challenging. In particular, videos introduce one
more level of variation in the data, i.e. the temporal dimen-
sion, which increases the demand for hardware and leads
to additional complexity. To address UDA in the context
of video analysis, researchers have proposed to rethink the
traditional strategies for images in order to learn robust clas-
sifiers for videos, using domain-invariant deep feature rep-
resentations [9, 10, 34, 35, 5].

Action recognition [13, 58, 48, 4] is one of the funda-
mental problems in video analysis. This task is inherently
challenging as actions can vary over time according to sev-
eral factors, such as speed, duration, relative movement be-
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Fig. 16: Costa et al. [118] introduced a large-scale synthetic
human action recognition dataset to promote the design of
unsupervised domain adaptation methods for minimizing
the cost and human effort in acquiring a large annotated
dataset for human action recognition.

recognition [75], and iris verification [23]. However, as also
noted in Section 5, synthetic data may not always be truly
representative of real data. Hence, assessing scalability us-
ing synthetic data may suffer from reliability issues.

4.5 Providing annotated data for supervision
4.5.1 Supervised Learning
Numerous applications can be formulated as a supervised
learning problem, for which annotation might be challeng-
ing to obtain. For such applications, representative synthetic
samples and their annotations are generated in order to
train models in supervised learning manner [83], [142], [8],
[143], [144], [145], [146], [82], [147], [148]. Feng et al. [79]
argued that manually annotated facial landmarks are often
inaccurate for occl5uded facial regions. The annotations of
synthetic faces generated from a 3D model are correct for
all different pose variations as these are direct projections
to 2D from 3D. Therefore, the authors used a synthetic
dataset to obtain reliable and consistent annotations for
various image variations. Some applications have exploited
synthetic data to learn a transformation from distorted to
clean samples. Associated to this direction, Dieckmann et
al. [149] proposed to learn the pre-aligning of fingerprint
images through horizontally and vertically translated and
rotated synthetic fingerprints. Likewise, Zhang et al. [150],
and Joshi et al. [151] utilized synthetic data to learn blind
inpainting of face images, and enhancement of fingerprints,
respectively.

4.5.2 Unsupervised domain adaptation
Supervised DNNs require a massive amount of manually
annotated training data. However, collection, and partic-
ularly annotation of such is tedious, time-consuming and
expensive. Furthermore, many human analysis applications
require annotations by domain experts [152], or reliable
annotations cannot be obtained for the real data [153]. To
address this challenge, researchers proposed to train models
on a synthetic training dataset whose annotations can be
computationally acquired. However, a huge gap in model
performance was observed between real and synthetic data
due to the visible domain shift (see Figure 16). Researchers
adapted models to unannotated real-world datasets, in
order to reduce the performance gap between real and
synthetic data. An important application of unsupervised
domain adaptation of human analysis models includes the
contributions of Wang et al. [40] [62]. The authors exploited
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Fig. 2. Target dataset adaptation. (a) Source dataset with point-wise
annotations is used to train the counting network. (b) Target dataset with only
image-level annotations is used to fine-tune the pre-trained counting network.

In addition to improving the count performance, another
major issue in the crowd counting research community is
the poor generalization performance of the existing networks.
This is due to the fact that CNN-based methods are highly
data-driven and suffer from inherent dataset bias. Hence, they
cannot be applied directly to new scenes without further fine-
tuning. A simple solution to this would be to train the model on
the target dataset in a fully-supervised fashion, which requires
expensive ground-truth annotations. Several earlier works such
as [1], [5] address this issue by proposing different semi-
supervised or unsupervised fine-tuning methods in addition to
their novel network designs. For instance, Zhang et al. [1]
presented a cross-scene counting approach where they use
perspective maps to retrieve candidate scenes from source
dataset that are similar to the target set, which are then
used to fine-tune the network. However, perspective maps
may not be always available. Additionally, it is dependent
on the assumption that their pre-trained model provides good
estimates of count in the target patches. Liu et al. [5] proposed
a self-supervised method based on image ranking to adapt
to different datasets. While it achieves better generalization
performance, their method is still limited since they use only
unlabeled data.

To address this generalization issue, we take a different
approach as compared to earlier attempts ([1], [5]) by propos-
ing a novel weakly supervised learning setup. We leverage
image-level labels, which are much easier to obtain as com-
pared to point-wise annotations,1 in a weakly supervised
fashion for fine-tuning networks to newer datasets/scenes.
To achieve this weak supervision, we use the idea of image-
level labeling of crowd images into different density levels by
Sindagi et al. [4] and Fu et al. [20]. While these methods
[4], [20] employ image-level labels in conjunction to point-
wise annotations to train their networks, we propose to use
only image-level labels in the weakly supervised setup while
adapting to new datasets, thereby avoiding the labor intensive
point-wise annotation process. Fig. 2 illustrates the different

1Crowd counting datasets are usually provided with point-wise (x,y) location
annotations, which are converted to pixel-wise density maps.

types of annotations used for training the network. Fig. 2(a)
represents samples from a source dataset, which consists of
images and corresponding point-wise ground-truth annota-
tions. The source dataset is used to pre-train the counting
network. Fig. 2(b) represents samples from the target set to
which we intend to adapt the pre-trained counting network.
The pre-trained network is then fine-tuned on the target dataset
using image-level labels via the proposed weakly supervised
approach. During testing, the estimated density map from the
fine-tuned network is compared with the ground-truth using
standard metrics as described later.

To summarize, the following are our key contributions in
this paper:

• A new network design that employs attention mechanisms
at various levels for selectively enhancing the features
from different layers of VGG16 network to increase the
effectiveness of multi-scale concatenation.

• A novel setup to adapt existing crowd counting models to
new scenes and datasets via weakly supervised learning.
To the best of our knowledge, this is the first attempt
to perform weak supervision using image-level labels for
crowd counting.

In the following sections, we discuss related work
(Section II) and the proposed method in detail (Section III).
Details of experiments and results of the proposed method
along with comparison on different datasets are provided in
Section V, followed by conclusions in Section VI.

II. RELATED WORK

A. Crowd Counting

Early approaches for crowd counting are based on
hand-crafted representations and different regression tech-
niques [21]–[27]. A comprehensive survey of these early
methods can be found in [23], [28], [29]. Recent focus in
the crowd counting community has been towards exploiting
the advances in CNN-based methods and in this attempt,
methods such as [1]–[4], [30]–[36], [36]–[40] have demon-
strated significant improvements over the traditional methods.
Majority of the existing work is focused on addressing the
problem of large scale variations in crowd images through
different techniques such as multi-resolution network [33],
multi-column networks [2], selective regression [3], context-
aware counting [38].

Sam et al. [8] proposed an automatically growing CNN
to progressively increase the capacity of the network based
on the dataset. Shen et al. [7] used adversarial loss similar
to [4] to attenuate blurry effects in the estimated density
maps. Shi et al. [6] proposed deep negative correlation based
learning of more generalizable features. In another interesting
approach, Liu et al. [5] proposed to leverage unlabeled data
for counting by introducing a learning to rank framework.
Li et al. [41] proposed CSR-Net, that consists of two compo-
nents: a front end CNN-based feature extractor and a dilated
CNN for the back-end. Ranjan et al. [10] proposed a network
with two branches that estimates density map in a cascaded
fashion. Cao et al. [9] proposed an encoder-decoder network
with scale aggregation modules. They use a combination of
Euclidean loss and a newly introduce local pattern consistency
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Fig. 17: Sindagi et al. [156] studied domain adaptation of
a crowd counting model. While the source had pixel-level
annotations, the target data was annotated on image level
and only provided weak supervision.

15, 212 synthetic labelled crowd scene images containing
more than 7, 000, 000 subjects for the purpose of training
a model for pixel-level understanding in a crowd. However,
instead of directly using the synthetic data, the authors
firstly translated synthetic images into realistic images us-
ing a GAN. This was beneficial in reducing the domain
gap between synthetic and real data. Next, the model was
trained on translated images instead of actual real images.
The authors reported that the structural similarity index
measure (SSIM) value improved from 0.554 to 0.660 after
exploiting the synthetic crowd counting dataset.

Joshi et al. [152] highlighted the dependence of state-
of-the-art fingerprint segmentation models on annotated
data as a means to obtain satisfactory performance on a
newly introduced fingerprint capture device. To mitigate
this limitation, the authors only used synthetic data (source
domain) annotations to learn fingerprint segmentation. To
adapt the model to a new fingerprint capture device (target
domain), the authors aligned the source and target domain
features using recurrent adversarial learning. Extending the
theme of unsupervised domain adaptation, Bondi et al.
[153] argued that annotations of thermal infrared videos
were often erroneous and therefore proposed to train the
detection and tracking model on a synthetic dataset, adapt-
ing subsequently to a real dataset. Several applications
spanning areas such as face recognition [154], person re-
identification [36], human action recognition [118] and head
pose estimation [155] successfully exploited synthetic data
to eliminate the need for annotations of real data through
unsupervised domain adaptation.

4.5.3 Weakly supervised learning
Synthetic annotated data has been utilized in weakly su-
pervised learning (see Figure 17) aiming to introduce a
higher degree of supervision. For instance, Mequanint et al.
[157] highlighted the unavailability of annotated data for
training an eye-openness estimation model (see Figure 18).
To alleviate this issue, the authors generated 1.3 million
annotated synthetic eye images with varying levels of eye
openness to enable supervised learning. Furthermore, to
counter the domain shift between real and synthetic eye im-
ages, the authors exploited weak supervision (eyes simply
open or closed). It was demonstrated that the classification
(open/close) accuracy improves from 96.30% to 100% after
utilizing synthetic data. Deviating from the above, Zhang
et al. [158] generated weakly labelled face images (labels

Figure 1. Left: eye portion of synthetic faces with labeled degree of openness (100 and 0 refers fully open and fully closed respectively).
Right: cyan simulates results of available eye openness detection and red simulates results from our proposed approach.

Figure 2. The proposed architecture for estimating degree of eye openness (training upper and inference bottom). (a) raw face image with
landmarks (could be real or synthetic), (b) normalized version of the face, and (c) last stage of the preprocessing, contains cropped eye
portion of the face. The preprocessed real and synthetic data are separated into two different groups with their corresponding labels (L R
and L S). ‘Conv’, ‘FC1’ and ‘FC2’ represent a shared convolution block, and two fully connected blocks respectively. The output of FC2
estimates the degree of eye openness. O1 S = output of the synthetic data at FC1, O1 R = output of the real data at FC1, O2 S = output
of the synthetic data at FC2, O2 R = output of the real data at FC2. O2 is a scalar which represents openness amount and O1 is feature
vector of size 256.

Fig. 18: Mequanint et al. [157] proposed weakly supervised
learning in an eye-closeness estimation model. The model
exploited synthetic annotated data that provided a degree
of openness of eyes, whereas the real data only provided
weak supervision, whether the eye is open or closed. Thus,
annotated synthetic data can be used to enable learning in
weakly supervised learning.

as bounding box and class) using a deep convolutional
generative adversarial network (DCGAN) [102] and used a
limited amount of fully annotated real data (labels as land-
mark vector, bounding box and class). A weakly supervised
learning framework was used to train the facial landmark
detection model, which improved the average error distance
for landmark detection on the labelled face parts in the
wild (LFPW) dataset [159] from 4.25 to 3.12 after utilizing
synthetic faces.

Synthetic data offers a remarkable substitute for an
array of applications where annotations are not available.
However, as we note in Section 5, such datasets are often
not made publicly available, leading to unfair comparison
among different baselines, as well as rendering reproducibil-
ity challenging.

4.6 Model initialization
DNNs impart a large number of parameters and, therefore,
require a large amount of training data to avoid over-
fitting, e.g., ImageNet incorporates approximately 1.2 mil-
lion annotated images. However, in human analysis often
only limited annotated training sets are publicly available,
including hundreds or thousands of images. Therefore, once
again synthetic data is advantageous in alleviating the need
for a large amount of training data required for training
data-hungry DNNs. It is common practice to generate an-
notated synthetic datasets and use such to pre-train deep
models, which are then fine-tuned with annotated real data.
A number of studies demonstrated that such pre-training
with synthetic datasets leads to better performance than
training directly on the real dataset. In one of the recent
studies, Engelsma et al. [17] demonstrated that performance
gain was observed by a DNN-based fingerprint recognition
model (DeepPrint) [160] that was pre-trained on synthetic
fingerprints and fine-tuned on real fingerprints. The au-
thors generated 525K synthetic fingerprints for pre-training
DeepPrint and fine-tuned it on 25K fingerprints from the
NIST SD302 database [161]. The authors then assessed the
fingerprint recognition performance of DeepPrint on NIST
SD4 database9, with and without pre-training with synthetic

9. https://www.nist.gov/srd/nist-special-database-4
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data. The authors observed that the true acceptance rate
(TAR) @ false acceptance rate (FAR)=0.01% improves from
73.37% to 87.03%, when pre-trained with synthetically gen-
erated fingerprints.

Similarly, Wang et al. [40] trained a pixel-level crowd
understanding model on large-scale synthetic data (15, 212
images of 7, 625, 843 subjects) and fine-tuned it on labelled
real data. The mean square error decreased by 14.1% after
pre-training on synthetic data was noted, compared to the
performance of the crowd counting model pre-trained on
ImageNet dataset [162]. Similar trends were observed for
other applications analyzing human data including speech
recognition [50], hand shape recognition [163], head pose
estimation [53], eye gaze tracking [164], re-identification of
individuals [117] and face recognition [165].

4.7 Enforcing consistency regularization

4.7.1 Contrastive Learning

Contrastive learning is a learning paradigm that ensures
that representations of similar samples must be close,
whereas representations of dissimilar samples are far apart
in the latent space. Various studies exploited synthetically
augmented data to generate similar samples for a given
input. Subsequently, using contrastive learning, the model
was encouraged to have similar representations for the
original and the augmented input samples. Ryoo et al. [166]
introduced different low resolution (LR) transformations
into videos and trained an activity recognition model such
that the images obtained from the same scene, pertaining
to different pixel values due to LR transformation, shared
a common embedding (see Figure 19). The authors demon-
strated that the classification accuracy under low-resolution
constraints improves from 31.50% to 37.70% after using
synthetic data. Neto et al. [167] applied augmentation tech-
niques to generate synthetically masked faces. Contrastive
learning brought then representations of masked and un-
masked faces of the same data subject close to each other.
The authors demonstrated that the model trained using the
synthetically masked images outperformed existing stan-
dard face recognition systems on masked face recognition.
Several other applications in speaker recognition [168], face
recognition [169], person re-identification [106], [170] and
electrocardiogram (ECG) based authentication [171], pro-
posed to generate synthetic data for exploiting contrastive
learning.

4.7.2 Self-supervision

Self-supervision is an unsupervised learning paradigm,
through which a model can be regularized by introducing
an auxiliary task. Several approaches in human analysis
have introduced transformations to an input data to gener-
ate synthetic labelled data for training the auxiliary task in a
supervised manner. For example Zhou et al. [172] proposed
rotate-and-render, an augmentation technique that rotates
faces back and forth in 3D space and subsequently ren-
ders them back in 2D (see Figure 20). Such augmentation
strategy ensured consistency regularization, while training
face recognition models. As a result, TAR@FAR = 0.001
on the IJB-A dataset improved from 80.00% to 82.48% after

Extreme Low Resolution Activity Recognition
with Multi-Siamese Embedding Learning

Michael S. Ryoo,1,2 Kiyoon Kim,1,3 Hyun Jong Yang 1 ,3

1EgoVid Inc., Daejeon, South Korea
2Indiana University, Bloomington, IN, USA

3Ulsan National Institute of Science and Technology, Ulsan, South Korea
{mryoo, hjyang}@egovid.com

Abstract

This paper presents an approach for recognizing human ac-
tivities from extreme low resolution (e.g., 16x12) videos. Ex-
treme low resolution recognition is not only necessary for an-
alyzing actions at a distance but also is crucial for enabling
privacy-preserving recognition of human activities. We de-
sign a new two-stream multi-Siamese convolutional neural
network. The idea is to explicitly capture the inherent prop-
erty of low resolution (LR) videos that two images originated
from the exact same scene often have totally different pixel
values depending on their LR transformations. Our approach
learns the shared embedding space that maps LR videos with
the same content to the same location regardless of their trans-
formations. We experimentally confirm that our approach of
jointly learning such transform robust LR video representa-
tion and the classifier outperforms the previous state-of-the-
art low resolution recognition approaches on two public stan-
dard datasets by a meaningful margin.

Introduction
Although there has been a large amount of progress in hu-
man activity recognition research in the past years (Ag-
garwal and Ryoo 2011; Simonyan and Zisserman 2014;
Ng et al. 2015; Tran et al. 2015), most of the existing
works assume that region-of-interest (ROI) in videos are
large enough. The assumption is that each video region cor-
responding to an activity has a high enough resolution, al-
lowing the recognition model to capture detailed motion
and appearance changes. However, there are several cases
where this assumption does not hold. For instance, in far-
field recognition scenarios (i.e., detecting human activities
at a distance), humans are usually very far away from the
camera and each ROI often has just a few pixels within. This
happens commonly in visual surveillance cameras (Efros et
al. 2003; Reddy et al. 2012), required to cover a large area
while having a low native resolution due to their cost.

Furthermore, there are situations where one wants to in-
tentionally avoid taking high-resolution (HR) videos be-
cause of a privacy concern. High resolution cameras includ-
ing robot cameras and wearable cameras are becoming in-
creasingly available at both public and private places, and
we are afraid of them recording privacy-sensitive videos

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example LR images generated by applying differ-
ent LR transforms (with slightly different translations) to a
single HR image. Red boxes indicate pixels of the humans.
Although these LR images (right) are all from the identical
HR frame (left), their pixel values become very different.

of us without consent. For example, if such camera sys-
tem at home (for home security or smart home services) is
cracked by a hacker, there is a risk of one’s 24/7 private life
being monitored/recorded by someone else. The paradigm
of using extreme low resolution (e.g., 16x12) anonymized
videos for privacy-preserving activity recognition is able
to address such societal concern of unwanted video tak-
ing at the fundamental-level. Human faces in extreme LR
videos are not identifiable (e.g., they are much smaller than
5x5), naturally prohibiting the recognition process from ac-
cessing privacy-sensitive face information. This allows de-
signing the device (e.g., a robot) that does not record HR
videos while still recognizing what is going on around it
for its operation. Although extreme low resolution videos
are not the only privacy-preserving data (e.g., super-pixeled
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Fig. 19: Ryoo et al. [166] exploited different low-resolution
transformations towards synthetically generating videos
with the same scene and different pixel values due to
changes in resolution. Later, a Siamese network was trained
that ensures that the feature representations of the original
and augmented video frames were similar. Thus, synthetic
data can be used to ensure consistency among representa-
tions learnt by a human analysis model.

tation [42, 14, 33, 12, 32]. Due to the information loss
when encoding the given face to bottleneck embeddings,
reconstruction-based methods often suffer from the loss of
local details such as known facial textures and shapes. It
further leads to the confusion of identity information. More-
over, the most notable drawback of existing reconstruction-
based methods is that multi-view data of the same person
has to be provided as direct supervisions in most cases. To
this end, the datasets used for training are constraint to ones
in controlled environments such as Multi-PIE [7], and syn-
thetic ones such as 300W-LP [48]. Models trained on con-
trolled datasets can only generate results within a specific
domain, lacking the desired generalization ability. Also,
their generated resolutions are normally limited to under
128 × 128, far from perceptually satisfying.

To overcome these challenges, we propose a novel un-
supervised framework that can synthesize photorealistic ro-
tated faces using only single-view image collections in the
wild, and can achieve arbitrary-angle face rotation. While
details and ID information tend to degrade during the en-
coding process of 2D-based methods, we propose to keep
as much known information about the given face as possi-
ble with 3D model.

Our key insight is that rotating faces in the 3D space
back and forth, and re-rendering them to the 2D plane
can serve as a strong self-supervision. We take the advan-
tage of both 3D face modeling and GANs by using off-the-
shelf 3D-fitting network 3DDFA [49] and the neural ren-
derer [18]. Invisible parts would appear to one fixed 2D
view when a face is rotated from one pose to another. While
previous methods require both images to form an {input,
ground truth} pair, we use the self-supervision of one sin-
gle image. The key is to create and then eliminate the ar-
tifacts caused by rotations. Given one face at pose Pa, we
rotate its 3D-mesh firstly to another arbitrary pose Pb, and
render it to the 2D space to get a 2D-rendered image Rdb.
Then we rotate it back to its original position and render
it to be Rda′ using textures extracted from Rdb. Finally,
we use an image-to-image translation network to fill the in-
visible parts and map the rendered image to real image do-
main. The overview of our pipeline is shown in Fig. 2. In
this way, existing local texture information can be preserved
while GAN is responsible for fixing the occluded parts. As
the whole pipeline rotates and renders a face forward and
backward, we term it Rotate-and-Render framework.

Remarkably, our proposed framework does not rely on
paired data or any kind of label, thus any face image can be
used as our training source. With unlimited training data,
our model can be leveraged to boost large-scale face recog-
nition, providing augmentations and alignments for profile
faces. While previous methods are often evaluated on small
datasets with moderate baselines, we validate the effective-
ness of our approach for large-scale face recognition on

Rd𝑏𝑏

Rd𝑎𝑎′

F𝑏𝑏F𝑎𝑎′

I𝑎𝑎
Rotate-and-Render

Rotate-and-RenderRender-to-Image

Reconstruction

Render-to-Image

Pose: P𝑎𝑎

Pose: P𝑏𝑏

Pose: P𝑎𝑎

Pose: P𝑏𝑏

Figure 2: Overview of our unsupervised face rotation
framework from only single-view image collections. We
rotate the 3D-mesh firstly to an arbitrary pose Pb, and ren-
der it to the 2D space to get a 2D-rendered image Rdb. Then
we rotate it back to its original position Pa and render it to
be Rda′ using textures extracted from Rdb. Finally we use
an render-to-image translation network to fill the invisible
parts and map the rendered image to real image domain.

strong baseline models.
Our contributions are summarized as follows: 1) We

propose a novel Rotate-and-Render framework for train-
ing face rotation in a fully unsupervised manner under in-
the-wild scenarios. No paired data or any label is needed.
2) We convert incomplete rendered images to real images
using an image-to-image translation network, with which
photo-realistic face rotation results can be generated. 3) We
validate that our generation results benefit large-scale face
recognition even on strong baseline models.

2. Related Work
2.1. Face Rotation and Multi-View Synthesis

The problem of face rotation aims to synthesize multi-
view faces given a single face image regardless of its view-
point. Among all views, the frontal view particularly at-
tracts much more research interests. Traditionally, this
problem is tackled by building 3D models and warping tex-
tures on 3D or 2D [9, 48]. OpenGL can also be used to
also easier cases [24]. However, their synthesized results
are usually blurry and not photorealistic.
Reconstruction-based Methods. Recently, with
the progress of deep learning [22] and GANs [6],
reconstruction-based models have revolutionized the
field of face frontalization [33, 14, 12, 34, 29, 30]. DR-
GAN [33, 34], for the first time, adopts GAN to generate
frontal faces with an encoder-decoder architecture. Al-
though they do not use multi-view data, the generated
results are not satisfying and have perceptually-visible
artifacts. Then TP-GAN [14] utilizes global and local
networks together with a multi-task learning strategy to
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Fig. 20: Zhou et al. [172] proposed rotate-and-render aug-
mentation that given a face image generates a synthetic face
image with a varying pose. Later, the synthetic face was
rendered back to the original pose. Such an augmentation
ensured self-supervision in face recognition models. As a
result, the model learned to preserve consistency in identity
information while varying facial poses.

introducing self-supervision through the proposed augmen-
tation strategy. Other applications utilizing synthetic data
for self-supervision include deepfake detection [173], fa-
cial expression recognition [174], face recognition [175] and
sleep recognition [176].

4.7.3 Few-shot learning

Few-shot learning is characterized by learning with a lim-
ited number of samples. Specifically, in order to compen-
sate for limited availability of data and to promote the
learning to learn paradigm, augmentation strategies simulate
challenging real-world scenarios and ensure consistency in
prediction for real and augmented input sample. Ge et
al. [177] proposed in this context a knowledge distillation
framework to improve face recognition performance under
limited data and low resolution constraints. The face recog-
nition model was trained on high-resolution face images,
serving as teacher network. The authors then synthetically
generated low-resolution face images and trained the stu-
dent model such that the output of the student model on
the synthetic low-resolution face was close to the output
of the teacher model on the real high-quality face image
(see Figure 21). The associated performance of face ver-
ification on the UMDFace dataset [178] improved from
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Figure 2: The few-shot distillation framework, which consists of two steps. The knowledge distillation step extracts the learned
knowledge about facial details from high-resolution faces with a pretrained teacher network φt , and transfers to supervise
the learning of the student network φs = (φe ,φc ) on synthesized low-resolution faces. The learning is performed by jointly
mimicking the distilled teacher knowledge and classifying low-resolution faces in the classification module φc in a multi-
task way. Then, few-shot fine-tuning step incorporates the relation module φr to refine the embedding module φe on a small
number of low-resolution faces from the real-wild scenarios by minimizing the relation loss measured on face pairs.

can map a small labelled support set and an unlabelled example to
its label. Snell et al. [32] proposed prototypical networks that learn
a metric space to shift the classification problem to the distance
comparisons to prototype representations of each class. Satorras
and Estrach [8] recently defined a graph neural network structure
that generalizes some few-shot learning models by assimilating
generic message-passing inference with their neural-network coun-
terparts. Such an approach demonstrated the ability of graph-based
models to operate well on “relational” tasks. Finn et al. [7] proposed
model-agnostic meta-learning approach that can be compatible
with any model trained with gradient descent. This approach ex-
plicitly trained the model parameters such that a small number of
gradient steps with a small amount of training data will produce
impressive generalization capability in the target scenarios. Ravi et
al. [28] proposed an LSTM-based meta-learner to learn the exact
optimization algorithm for training another learner network. The
proposed approach thus allowed to learn an appropriate parameter
update strategy as well as a general initialization of the learner
network.

3 FEW-SHOT DISTILLATION
3.1 Problem Formulation
Our setting refers to transfer knowledge across models operating
at different resolutions. It needs to address two main subproblems:
1) poor face quality due to resolution degeneration and 2) insuf-
ficient face quantity due to the lack of annotated faces in the real
wild scenarios. Thus, few-shot distillation performs step-wise trans-
fer via knowledge distillation and few-shot fine-tuning. Knowledge
distillation adopts a teacher-student scheme to distill knowledge
from a pretrained high-resolution teacher network φt (X ;wt ) into
a much simpler low-resolution student network φs (x ;ws ) by using
the high-resolution face datasetDS = {Xi ; {x j

i }d
j=1;yi } |DS |i=1 as train-

ing examples. Here, φs = (φe ,φc ) consists of an embedding module
φe for feature extraction and a classification module φc for fea-
ture classification. X and x are high-resolution and low-resolution
faces, respectively. wt and ws = (we ,wc ) denote model param-
eters of teacher and student, respectively. |DS | is the number of
high-resolution faces. For each high-resolution face Xi , its identity
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Fig. 21: Ge et al. [177] proposed a knowledge distillation
framework for few-shot face recognition in the wild. The
authors exploited consistency regularization among the out-
put of the teacher model for the high-quality input and
output of the student model for synthetic low-quality face
images. Therefore, synthetic data can be used to enforce
consistency regularization for improved performance of the
human analysis model in few-shot learning scenarios.

67.59% to 73.58% after knowledge distillation compared to
training the student model directly on synthetic faces. Thus,
consistency regularization between real and synthetic data
improved the face recognition performance with few-shot
learning. Other studies utilizing synthetic data for few-shot
learning in human analysis include applications in attribute-
based person search [179], deepfake detection [180], login
authentication [181], signature verification [182], and gaze
estimation [134].

4.8 Mitigating dataset bias and ensuring fairness

Human datasets often contain demographic bias w.r.t. at-
tributes such as ethnicity, gender, or age [184]. In addition,
collected datasets might be biased to a certain group of
labels [66]. Synthetic data is able to balance and unbias
datasets beneficial in training and designing fair and un-
biased human analysis models. Georgopoulos et al. [183]
exploited an attribute-transfer based approach to balance
underrepresented demographic groups in training datasets.
Attributes such as skin tone, gender, and age were trans-
ferred into given training samples (see Figure 22) towards
creation of an unbiased training dataset. In the related study
the accuracy of face recognition on dark-skinned women
over 60 years old characterized by true positive rate (TPR)
improved by 20% on the UNCW dataset [185] after training
on the training set augmented with synthetic faces.

Similarly, Niinuma et al. [66] discussed that real datasets
employed for facial action detection are not balanced w.r.t.
action unit (AU) intensity labels. To address this limitation,
the authors generated a balanced training set using GANi-
mation [186]. The generated balanced training dataset was
used to train the facial action detector, with the related inter-
rater reliability score of AU intensity level estimation, im-
proving from 48.90% to 52.50% after training the model on
synthetic data, as opposed to training on real data. Several
other studies in face recognition [24] [108] confirmed the
ability of synthetic data to train unbiased and fair models.

Again, as the representation ability of synthetic samples
can be questionable (see Section 5), using synthetic samples

for under-representated classes or demographics can affect
the reliability of models trained on such datasets and may
adversely impact related deployment in real-world.

4.9 Inducing digital perturbation attacks
Synthetic data is particularly instrumental in creating novel
attacks on biometric systems. One prominent study in-
troduced DeepMasterPrints [27], which aimed to generate
one masterprint, namely a synthetic fingerprint that was
designed to impersonate a set of fingerprints and falsely
match with a large number of non-mated enrollees in the
enrolment database (see Figure 23). This presentation attack
for fingerprint recognition systems employed a GAN, where
the latent input variables in the generator network were
obtained using a covariance matrix adaptation evolution
technique. The associated false match rate (FMR) of 0.1%
increased via DeepMasterPrints to 8.61% on the NIST 9
dataset [140], as well as to 22.50% on the FingerPass DB7
dataset [187]. Additional attacks facilitated by synthetic
data include those in iris recognition [15], [188], [189], face
recognition [190] and fingerprint recognition [191].

A related direction has to do with digital human creation
[2], [18], [192], as well as with manipulation of human faces
[193], [194], [195]. Specifically, a face image of a target indi-
vidual being superimposed on a video of a source individ-
ual has been widely accepted and referred to as deepfake (see
Figure 24). Deepfakes entail several challenges and threats,
given that (a) such manipulations can fabricate animations
of subjects involved in actions that have not taken place
and (b) such manipulated data can be circumvented nowa-
days rapidly via social media. Deepfakes are considered in
human analysis as digital perturbation attacks, attracting
large interest by their own right, with overview articles
focusing on deepfake creation and detection [28], [196],
[197], as well as adversarial attacks and defences in images,
graphs, and text [198]. We note that similarly morphing
attacks can be introduced using synthetic data [199]. A
morphing attack is characterized by a synthetic image for
which the authentication system is compelled to match
with two contributing subjects instead of one. A morphed
image is usually generated by aligning and blending images
of two different contributors. For a comprehensive survey
on published morphing attacks and associated detection
methods, we refer to related overview articles [200], [201].

4.10 Learning by synthesis
A machine learning model can be categorized as a discrimi-
native or generative model. The former learns a conditional
distribution p(y|x; θ), where y denotes the output y for
the input sample x and θ signifies model parameters. A
generative model learns the joint distribution p(x, y) and
hence learns the distribution of data by learning to generate
synthetic data. Such model is able to generalize on new
and unseen test examples. A related seminal work [202]
presented a hierarchical generative model, which jointly
synthesizes eye images in a top-down approach, while
estimating eye gaze in a bottom-up approach. A further
generative modelling-based approach includes a relativistic
average standard GAN (RaSGAN) [203] by Yadav et al..
RaSGAN was trained to generate synthetic iris images,
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Fig. 5 Our method successfully preserves the intra-class diversity for all of the attributes (for (a) age, (b) skin tone, and (c) gender)

Fig. 6 Intra-class attribute enhancing: the proposed method can accen-
tuate the input class of an attribute label to generate synthetic datasets
with distributions with more support on the tails or for the underrepre-
sented classes. The age of the images are evaluated with Face++

4.6 Mitigating Classifier Bias

In this section, we investigate the effect that a lack of
diversity entails with respect to model performance. To
this end, we fine-tune and test a state-of-the-art gender
recognition model (Rothe et al. 2018) on the MORPH and
KANFace datasets. By measuring the True Positive Rate
(TPR) for each demographic subpopulation, we are able
to uncover the bias of the model with regards to age and
skin tone. In particular, Figs. 7 and 8 show that the model
trained on MOPRH is biased against dark-skinned females
(TPR of 40% for dark-skinned females over 60 years old),
while the model trained on KANFace is biased against
male faces under 18 (TPR of 64%). Age and skin tone
bias has been studied for the task of face recognition in
Nagpal et al. (2019), as well as in human perception in
psychology literature (Schaich et al. 2016; Bothwell et al.
1989).

We propose to mitigate the bias in both models by
augmenting the training set using the proposed image
translation method. In particular, we train the models
on the diverse augmented sets and evaluate the fairness
of the trained classifiers. The MORPH dataset is aug-
mented using the models trained on MORPH in Sect. 4.4.1.
For the KANFace dataset we use the models trained on
CACD.

Of the various fairness metrics discussed in Sect. 2.3,
we opt to quantify fairness using Equality of Opportu-
nity (EO) (Hardt et al. 2016), which is defined as the
difference in TPRs between the subpopulations.In partic-
ular, we report the EO score between each (age, gen-
der) class for KANFace and (age, gender, skin tone) for
MORPH.

We present the TPRs (↑) and EO (↓) on the ground-truth
and synthetic test-sets in Figs. 8 and 7 forMORPHandKAN-
Face respectively. Despite StarGAN’s images having strong
class-discriminative features as established in Sect. 4.4, we
demonstrate here that training on their artifact-ridden images
leads to even more biased classifiers. Similarly, whilst train-
ing on AttGAN-generated training sets can improve the
TPR for dark-skinned women over 60 years old by 20% for
MORPH, the dataset bias is exacerbated in KANFace when
training on augmentations from this model (compared to our
augmentations that lead to almost half the EO formales under
18).

Overall, the results indicate that the proposed framework
is the only method able to mitigate all of the demonstrated
dataset biases in generating more diverse data that can be
used to train fairer classifiers.
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Fig. 22: Georgopoulos et al. [183] improved intra-class diversity in the training set by transferring demographic attributes
(left to right): age, skin tone and gender. The authors demonstrated that training with diverse synthetic samples of the
same subject is instrumental in mitigating demographic bias observed in face recognition models.

Figure 4: Evolved DeepMasterPrints for rolled fingerprints
(top) and for capacitive fingerprints (bottom). Left to right,
each fingerprint is optimized for an FMR of 0.01%, 0.1%,
and 1%, respectively.

development. It would, therefore, be expected to be more
resilient to attacks using DeepMasterPrints. Surprisingly,
the capacitive DeepMasterPrint is consistent here and gets
similar results to what it did on Bozorth3. One hypothesis
here is that the capacitive DeepMasterPrint has found some
universal patterns that are not specific to a particular veri-
fication system. The rolled DeepMasterPrint actually does
worse than the capacitive one in spite of performing so well
on Bozorth3. It is evident that these two matchers handle
rolled fingerprints very differently. The training data used
to train the fingerprint generator definitely makes a differ-
ence here. The DeepMasterPrints are roughly 10 times more
effective than a random image.

Table 2: The DeepMasterPrints optimized for the highest
security levels were found to generalize the best. The two
DeepMasterPrints optimized for 1% FMR are tested on the
Bozorth3 and Innovatrics matchers. They are both tested at
three different security levels, with the percentage of suc-
cessful matches on the capacitive test set reported.

Verification System MasterPrint Matches
FMR Rolled Capacitive

Bozorth3
0.01% 0.00% 0.00%

0.1% 23.06% 2.78%
1% 89.72% 31.39%

Innovatrics
0.01% 0.00% 0.83%

0.1% 0.83% 3.61%
1% 10.56% 25.28%

5.4. Comparative Results

In our work, we created a DeepMasterPrint that is in-
tended to spoof an arbitrary identity in a single try. Previous
work had much worse results when given only a single at-
tempt. Besides providing an image, LVE creates a much
more effective MasterPrint. Table 3 has the results of the
minutiae-only approaches and the capacitive DeepMaster-
Print image [23]. In the previous work by Roy et al. [25], the
authors generated a suite of five fingerprint templates that
were used sequentially to launch an attack, assuming five
attempts. Our results for a single DeepMasterPrint is compa-
rable to this suite of multiple MasterPrints. We expect LVE
to do very well in creating sequential DeepMasterPrints.

Table 3: Percentage of subjects matched using the Deep-
MasterPrint compared to the previous method for generating
MasterPrints. The results are on the capacitive dataset and
uses the VeriFinger matcher.

0.01% FMR 0.1% FMR 1% FMR
Single MasterPrint 1.88% 6.60% 33.40%
MasterPrint Suite 6.88% 30.69% 77.92%
Single DeepMasterPrint 1.11% 22.50% 76.67%

6. Conclusion
This paper presents Latent Variable Evolution as a method

for generating DeepMasterPrints: partial fingerprint images
which can be used for launching dictionary attacks against
a fingerprint verification system. The first step is to train a
GAN using images from a fingerprint dataset. Then LVE
searches the latent variables of the generator network for
an image that maximizes the number of fingerprints which
are successfully matched with it. The method proposed in
this paper was found to (1) result in DeepMasterPrints that
are more successful in matching against fingerprints pertain-
ing to a large number of distinct identities, and (2) generate
complete images - as opposed to just minutiae templates -
which can potentially be used to launch a practical DeepMas-
terPrint attack. Experiments with three different fingerprint
matchers and two different datasets show that the method is
robust and not dependent on the artifacts of any particular
fingerprint matcher or dataset.

Beyond the application of generating DeepMasterPrints,
this paper successfully shows the usefulness of searching
the latent space of a generator network for images, or other
artifacts, that meet a given objective. This idea is surpris-
ingly under-explored and could be useful in computational
creativity research as well as other security domains. Initial
work on using a similar approach for aesthetic purposes in
an interactive setting can be found in [4].
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Fig. 23: DeepMasterPrints [27] by Bontrager et al. constitutes
a synthetic fingerprint masterprint aimed at presentation
attacks on fingerprint recognition systems. The top and
bottom illustrate the masterprints for the rolled fingerprints
and fingerprints acquired using a capacitive capture device.
The first, second and third columns represent the master-
print to achieve a false match rate (FMR) of 0.01%, 0.1%,
and 1%, respectively.The Creation and Detection of Deepfakes: A Survey 7:3

Fig. 3. Examples of reenactment, replacement, editing, and synthesis deepfakes of the human face.

and provide the networks’ schematics to give the reader a deeper understanding of the various
approaches (Sections 4 and 5). Finally, after reviewing the countermeasures (Section 6), we dis-
cuss their weaknesses, note the current limitations of deepfakes, suggest alternative research, con-
sider the adversary’s next steps, and raise awareness to the spread of deepfakes to other domains
(Section 7).

Scope. In this survey, we will focus on deepfakes pertaining to the human face and body. We
will not be discussing the synthesis of new faces or the editing of facial features because they do
not have a clear attack goal associated with them. In Section 7.3, we will discuss deepfakes with
a much broader scope, note the future trends, and exemplify how deepfakes have spread to other
domains and media such as forensics, finance, and healthcare.

We note to the reader that deepfakes should not be confused with adversarial machine learn-
ing, which is the subject of fooling machine learning algorithms with maliciously crafted inputs
(Figure 2). The difference being that for deepfakes, the objective of the generated content is to fool
a human and not a machine.

2 OVERVIEW AND ATTACK MODELS
We define a deepfake as

“Believable media generated by a deep neural network.”

In the context of human visuals, we identify four categories: reenactment, replacement, editing,
and synthesis. Figure 3 illustrates some examples facial deepfakes in each of these categories and
their sub-types. Throughout this article, we denote s and t as the source and the target identities.
We also denote xs and xt as images of these identities and xд as the deepfake generated from s
and t .

2.1 Reenactment
A reenactment deepfake is where xs is used to drive the expression, mouth, gaze, pose, or body
of xt :

Expression reenactment is where xs drives the expression of xt . It is the most common form
of reenactment since these technologies often drive target’s mouth and pose as well, pro-
viding a wide range of flexibility. Benign uses are found in the movie and video game
industry where the performances of actors are tweaked in post, and in educational media
where historical figures are reenacted.
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Fig. 24: Synthetic videos called Deepfakes with varying
attributes, can be generated with th induce an attack to ruin
the public perception of an individual [28].

demonstrating the ability of its discriminator to generalize
better on new and unseen presentation attacks. Several
approaches learning to synthesize data for improved model
performance were proposed for re-identification of individ-
uals [204] [106] and face recognition [205] [206].

5 OPEN CHALLENGES AND DISCUSSION

We discussed benefits and means to generate and use
synthetic datasets, placing emphasis on synthetic datasets
being instrumental in mitigating challenges associated to
real datasets. Despite related advances, there are a number
of open research problems in this expanding field.

1) Identity leakage. Studies that advocate using syn-
thetic data for alleviating the privacy issues related

to human data frequently do not conduct support-
ing experiments to show that there is no identity
leakage from the training dataset [29], [130]. Such
an assessment is critical to address privacy concerns
related to sharing data for applications in human
analysis. For instance, Engelsma et al. [17] computed
comparison scores between training samples and
the synthetically generated fingerprints. Only 0.04%
of the training samples obtained comparison scores
above a threshold, and all such samples were re-
moved from the synthetic dataset before introduc-
ing it in the public domain. Similar practices need
to be adopted by the research community working
in human analysis to mitigate any identity leakage.

2) Lack of diversity. The development of synthetic
datasets in human analysis, generally speaking re-
quires the generation of mated and non-mated sam-
ples. Recently, Grimmer et al. [207] emphasised the
challenge of approximating the full intra-identity
variation of real datasets. Mated samples were ob-
tained through minor manipulations of various se-
mantic attributes in a given sample. However, the
generated datasets still lacked diversity compared
to real-world datasets. Another challenge has to
do with creating synthetic datasets balanced w.r.t.
demographics. Generative models are often trained
on biased datasets, thus lowering the generation
quality of synthetic samples from underrepresented
classes. We note that the current working draft of
ISO/IEC 19795-10 [208] aims at quantifying the
biometric system performance variation across de-
mographic groups, hence providing a standardized
and consistent evaluation framework to assess the
diversity of synthetic datasets.

3) Representation ability. Numerous scientific work, par-
ticularly in biometrics [127], [109], have observed
that while the generated synthetic data appears
realistic, its characteristics represent notable differ-
ences from real biometric samples. Such observa-
tions question the representation ability of gener-
ated synthetic data and motivate the design of rep-
resentative synthetic data generation methods. For
instance, synthetic videos (deepfakes) frequently
incorporate artefacts e.g., in the eye or lip region.
In addition, characteristics/semantics in synthetic
data differs from those in real samples. For instance,
Gottschlich and Huckemann [209] demonstrated the
distribution of minutiae in synthetic fingerprints
generated by SFinGe [6] was different from the
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Fig. 25: First row: synthetically distorted training samples.
Second row: real testing samples for fingerprint enhance-
ment algorithms, as used in [84]. The performance of the
fingerprint enhancement model was directly dependent on
how well the synthetic data modelled the noise observed in
real fingerprints. Therefore, synthetically distorted training
data must be publicly available to ensure fair comparison
among different fingerprint enhancement algorithms.

one observed for real fingerprints. Therefore, the
representation ability of synthetic data needs to
be carefully validated before exploiting it for real-
world applications.

4) Lack of comparison. While state-of-the-art works in
human analysis have gradually exploited synthetic
data, related datasets are often not shared pub-
licly. This is crucial, as the performance of human
analysis models is directly dependent on how well
synthetic data aligns with the testing dataset (see
Figure 25). In the case of Figure 25, the fingerprint
enhancement performance is dependent not only
on the enhancement model but also on how care-
fully curated synthetic training data is. Therefore, to
foster reproducibility and ensure a fair comparison
among different methods, there is a need to share
synthetic datasets publicly.

6 CONCLUSIONS AND FUTURE APPLICATIONS

A review of the human analysis literature suggests that
research in synthetic data is on the rise. This expansion
is due to the large number of associated benefits in set-
tings including enrichment and replacement of existing real
datasets. In this article, we revisited methods that have been
developed for generation and exploitation of synthetic data
in human analysis. In particular, we discussed techniques
for generating semi-synthetic and fully synthetic data.

In addition, we provided examples of related applica-
tions, elaborating on simulation of complex scenarios, miti-
gating bias and privacy concerns, increasing the size and di-
versity of training datasets, assessing scalability of systems,
providing additional data for supervision, pre-training and
fine-tuning of DNNs, enforcing consistency regularization,
as well as adversarial attacks. Finally, we discussed open
research problems in synthetic data research. We believe
that synthetic data has the ability to mitigate issues related
to privacy, scalability, and generalization of unseen data.
Although currently synthetic data is abundantly utilized
in human analysis, we believe that additional research di-
rections including active learning, knowledge distillation
and source-free domain adaptation will benefit in future
from synthetic data. Furthermore, upcoming synthetic data

generation mechanisms such as scene graphs and diffusion
models will be exploited in future to generate data for
applications in human analysis.
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