
HAL Id: hal-04519890
https://hal.science/hal-04519890v1

Preprint submitted on 25 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse and invisible adversarial attacks using MIP
Optimization

Ramzi Ben Mhenni, Mohamed Ibn Khedher, Stéphane Canu

To cite this version:
Ramzi Ben Mhenni, Mohamed Ibn Khedher, Stéphane Canu. Sparse and invisible adversarial attacks
using MIP Optimization. 2024. �hal-04519890�

https://hal.science/hal-04519890v1
https://hal.archives-ouvertes.fr

ARTICLE TEMPLATE

Sparse and invisible adversarial attacks using MIP Optimization

Ramzi Ben Mhennia, Mohamed Ibn Khedhera and Stéphane Canub

a IRT SystemX, 2 boulevard Thomas Gobert, 91120 Palaiseau, France
b INSA Rouen Normandie, 685 Avenue de Universite 76800 Rouen, France

ARTICLE HISTORY
Compiled March 25, 2024

ABSTRACT
Deep Learning methods are known to be vulnerable to adversarial attacks where
malicious perturbed inputs lead to erroneous model outputs. From a safety perspec-
tive, highly sparse adversarial attacks are particularly dangerous. On the other hand
the pixel wise perturbations of sparse attacks are typically large and thus can be po-
tentially detected. Adversarial attacks during training have been early on proposed
as a potential defense, now known as adversarial training. Previous research has
shown that ℓ0-norm has good sparsity but is challenging to solve. We propose a
new technique to craft adversarial examples aiming at minimizing ℓ1 distance to the
original image regularized by the Total variation (TV) function. This will favor
the change of pixels in the region of high variation making the attacks almost in-
visible. A possible way to find the minimal optimal perturbation that change the
model decision (adversarial attack) is to transform the problem, with the help of
binary variables and the classical bigM formulation, into a Mixed Integer Program
(MIP). By formulating the problem as an MIP, we can ensure that the solution is
the globally optimal one, meaning that we can guarantee that the attack is both
sparse and invisible. In this paper, we propose a global optimization approach to
get the optimal sparse invisible perturbation using a using a dedicated branch-and-
bound algorithm. A specific tree search strategy is built based on greedy forward
selection algorithms. We show that each subproblem involved at a given node can
be evaluated via a specific convex optimization problem with box constraints and
without binary variables, for which an active-set algorithm is used. Our method is
more efficient than the generic MIP solver Gurobi and the state-of-the-art method.

KEYWORDS
Neural network; Sparse and invisible adversarial attacks; Mixed Integer
Programming.

1. Introduction

Cutting-edge neural networks are susceptible to adversarial attacks, which involve
manipulating input images to produce significantly different outputs while main-
taining a close similarity to the original images [4, 26, 33]. Adversarial attacks can
be classified as either white-box or black-box, depending on the attacker’s level of
knowledge of the target model. In white-box attacks, the attacker has access to
the model during the attack, whereas in black-box attacks, the attacker can only
query the output of the classifier or confidence scores of all classes. To address this
problem, researchers have proposed minimizing a distance metric that measures the
perceptual similarity between two input images.

A non-trivial adversarial attack is meant to be small and “imperceptible” in cer-
tain sense [24, 35]: in this manner, it has little impact on the semantic meaning of

CONTACT A. N. Author. Email: ramzi.ben-mhenni@irt-systemx.fr

the entry. In the most common pixel-level additive attack setting, the standard mea-
sure of attack magnitude is by the ℓp-norm of perturbations, with p “ 0, 1, 2, or 8.
Typically the attacks try to find points on or close to the decision boundary, where
the distance is measured in the pixels space, most often wrt the ℓ2-norm and the
ℓ8 minimize the confidence in the correct class in some ϵ-ball around the original
image [5]. These distances can be used to constrain the maximum perturbation size,
which is useful for ensuring the attack is not too aggressive. In the other hand, we
find the ℓ1-norm and the ℓ0-"norm". Contrary to the first ones, witch tend to bring
changes in the image of low value but with a high density, the ℓ1-norm and the
ℓ0-"norm" tend to create sparsity in the solution but with a generally very high
value [22, 35]. Several studies have investigated the vulnerability of neural networks
to adversarial sparse attacks and proposed various defense mechanisms. Nguyen et
al. (2015) explored the ℓ0-norm attack, which aims to minimize the number of per-
turbed pixels. Zhu et al. (2021) studied sparse adversarial attacks and introduced
a sparsefool algorithm for generating adversarial examples with sparse perturba-
tions. These studies contribute to the understanding of adversarial attacks and the
development of defense strategies.

In this paper we are dealing specifically with sparse adversarial attacks, that is
we want to modify the smallest amount of pixels in order to change the decision.
Our idea is the use of regularization techniques, such as total variation (TV), to en-
courage sparse perturbation and making the perturbations less noticeable to human
observers. By combining the ℓ1 distance minimization with TV regularization, we
can selectively alter pixels in regions of high variation, effectively camouflaging the
adversarial modifications. Section 2 describes the problem of adversarial attack and
how it can be formulated as a Mixed Integer Program (MIP). Section 3 describes
the branch-and-bound algorithm principle, details our implementation strategy and
links the node evaluation. Then, numerical results are given in Section 4, where the
running time of the proposed implementation is compared to the MIP resolution
with the Gurobi solver. A conclusion and directions for future work are finally given
in Section 5.

2. Formulating Adversarial Attacks as a Mixed Integer Program

A feed-forward neural (FNN) network with ReLu (Rectified Linear Unit) is a type
of artificial neural network where information flows only in one direction, from the
input layer to the output layer. The input layer receives the initial input, which is
then propagated through one or more hidden layers, each consisting of several nodes
or neurons. These neurons perform a linear transformation on their inputs and then
apply a non-linear activation function, such as the ReLu function, to produce their
output. The ReLu activation function is defined as follows:

fpxq “ maxp0, xq

where x is the input to the neuron. It returns the maximum of 0 and the input value
x. This function has the advantage of being computationally efficient and provides a
sparse activation. Overall, feed-forward neural networks with ReLu have become a
popular choice for many machine learning tasks due to their ability to learn complex
non-linear relationships between inputs and outputs.

In this paper, we are focusing on Feed-Forward Neural Network where each neu-
ron in a layer is connected with all the neurons in the previous layer. To simplify the
process, we take a simple example of a network with one hidden layer. The problem
can be written as follows:

min
a,h,ĥ

dpa ´ xq s.t.

$

’

’

’

&

’

’

’

%

h “ Wa ` βw

ĥ “ maxph, 0q

s “ Vĥ ` βv

si ď sy

The decision variables of the problem include a, h, and ĥ : a represents the per-
turbation vector, h represents the input to the ReLU activation function, and ĥ

2

represents the output of the ReLU function. The constraints in the problem include:
The output of the ReLU function ĥ is greater than or equal to h, and greater than
or equal to 0. The output of the target class sy is greater than or equal to the out-
put of all other classes si. The objective function of the problem is to minimize the
distance dpa´xq between the original input vector and the perturbed input vector.

2.1. Formulating ReLU

Let ĥ “ maxph, 0q, where h is a vector of inputs to the ReLU and ´M ď h ď M .
In this context, M represents a constant value that bounds the range of inputs.
There are three possibilities for the phase of the ReLU. If ĥ “ 0, we say that such a
unit is stably inactive, meaning that the output of the unit is always zero. Similarly,
if h “ ĥ, we say that such a unit is stably active, meaning that the output is
always equal to the input. Otherwise, the unit is unstable and may switch between
being active or inactive depending on small perturbations in the input. To deal with
the instability of these units, we introduce an indicator decision variable bi, which
indicates whether the ReLU is active or not. Specifically, bi takes on a value of 1 if
the ReLU is active, and 0 if it is inactive. This formulation is referred to as Binary
ReLU.

bi “

#

1 ReLu is active
0 ReLu not active.

Then, evaluating the robustness of a neural network with ReLU activation functions
can be formulated as a Mixed Integer Program (MIP). The goal of this problem is
to minimize the distance between the original input and the perturbed input while
ensuring that the output of the network remains the same. The MIP involves opti-
mizing over the input perturbation and the binary variables bi, subject to constraints
that ensure the perturbation is within a certain distance from the original input and
that the output of the network remains the same.

P : min
a,h,ĥ,b

dpa ´ xq s.t.

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

b P t0, 1u

h “ Wa ` βw

ĥ ě h ; ĥ ě 0

ĥ ď Mb

ĥ ď h ` Mp1 ´ bq

s “ Vĥ ` βv

si ď sy

The MIP formulation presented is aimed at evaluating the robustness of a neural
network with ReLU activation functions. The problem, denoted by P, involves min-
imizing the distance dpa´xq between the original input vector x and the perturbed
input vector a, subject to several constraints. The decision variables b represents
the binary decision variable indicating whether a ReLU unit is active or not. The
constraints in the problem include: The binary variable b must take on a value of
either 0 or 1. The output of the ReLU function ĥ is bounded by Mb from above
and by h ` Mp1 ´ bq from below.

2.2. Distance metric for evaluating adversarial attacks

The choice of the distance is very important, both for the quality of the solution as
well as for the resolution time of the MIP. In the literature, the standard measure
of attack magnitude is by the ℓp-norm of perturbations, with p “ 0, 1, 2, or 8. A
vector that is sparse in the strictest sense of the term means that only a few of its
coefficients have non-zero values. Given this definition, it is clear that the ℓ0 norm,

3

which can also be seen as the limit of the "norm" ℓp
1 as p tends to zero:

||x||0 “ lim
pÑ0

}x}
p
p “ lim

pÑ0

n
ÿ

i“1

|xi|
p, (1)

is the most appropriate function for measuring sparsity. The discrete nature of the
ℓ0 norm often makes the problem computationally combinatorial and very difficult,
which has led to several alternative sparsity measures. It has been shown that replac-
ing the ℓ0 norm with a function of the form

řN
i“1 φp|xi|q produces sparse solutions,

i.e., solutions that contain zero values, if and only if φ is strictly increasing at 0 [23].
This is the case for the ℓp norm with 0 ă p ď 1. While the case p ă 1, which gener-
ates difficult optimization problems because they are non-convex, has been studied
in several works[17, 34], The ℓ1 norm (|x|1 :“

ř

i |xi|) remains the most commonly
used and easiest-to-consider sparsity measure due to its convex nature (see Figure 1).

xi

ℓ0.5

ℓ1

ℓ2

ℓ0

Figure 1. Functions of the scalar variable φpxiq involved in the definition of various ℓp norms, with }x}
p
p “

ř

i φp|xi|q, for p “ 0, 0.5, 1 and 2.

2.2.1. MIPs Reformulation of the ℓp-norm
‚ The "norm" ℓ0 is not a true norm as it does not satisfy the triangle inequality. It is defined as

the number of non-zero elements in a vector or matrix. However, it can be reformulated exactly
by adding binary variables t P 0, 1 to the model. Let x be a vector, and ti be a binary variable
that takes the value 1 if xi ‰ 0 and 0 otherwise. Then, the ℓ0 norm of x can be expressed as
follows:

}x}0 “

n
ÿ

i“1

ti

Using this formulation, the problem of minimizing the ℓ0 norm of x subject to linear con-
straints can be converted into a MIP problem, which can be solved using a Branch-and-Bound
method. However, the ℓ0 norm is known to be non-convex and NP-hard, which makes it difficult
to solve for large-scale problems.

‚ The ℓ1 norm of a vector x, denoted by ||x||1, is the sum of the absolute values of its elements.
Mathematically, it can be expressed as:

}x}1 “

n
ÿ

i“1

|xi|

The ℓ1 norm is a convex function and is easier to minimize than the ℓ0 norm. It is also a good
proxy for the ℓ0 norm in many applications, because it encourages sparsity in a similar way.
In fact, minimizing the ℓ1 norm subject to linear constraints is a standard convex optimization

1The term "norm" ℓp for 0 ă p ă 1 is also an abuse of language: this function, not satisfying the triangular
inequality, is only a quasi-norm.

4

problem that can be solved efficiently using various optimization algorithms. To reformulate
the ℓ1 norm for use in a MIP solver, we can introduce additional variables and constraints.
Let x be a vector of decision variables that we want to minimize the ℓ1 norm of, subject
to some linear constraints. We can introduce a vector of non-negative variables t such that
ti “ |xi| for i “ 1, . . . , n. Then, we can express the ℓ1 norm as the sum of the variables
ti, i.e., }x}1 “

řn
i“1 ti. To ensure that ti “ |xi|, we can introduce the following constraints:

tti ě xi, ti ě ´xi, i “ 1, . . . , nu These constraints ensure that ti is greater than or equal
to the absolute value of xi, and that ti is also greater than or equal to the negative of xi.
Therefore, ti must be equal to |xi|. Finally, we can add these new variables and constraints to
our existing linear program and solve it using a mixed-integer linear programming solver.

‚ The ℓ8 norm of a vector x, denoted by }x}8, is the maximum absolute value of its elements.
Mathematically, it can be expressed as:

}x}8 “
n

max
i“1

|xi|

To reformulate the ℓ8 norm, we can introduce a scalar variable t that represents the maximum
absolute value of the elements of x. Then, we can express the ℓ8 norm as follows:

}x}8 “ t

To ensure that t is equal to the maximum absolute value of the elements of x, we can introduce
the following constraints: tt ě xi, t ě ´xi, i “ 1, . . . , nu These constraints ensure that t
is greater than or equal to each element of x and its negation. Therefore, t must be equal to
the maximum absolute value of the elements of x. Finally, we can add these new variables and
constraints to our existing linear program and solve it using a mixed-integer linear program-
ming solver. By minimizing the variable t subject to the linear constraints and the additional
constraints, we will obtain a solution that minimizes the ℓ8 norm of the vector x.

2.2.2. Total Variation (TV)
The Total Variation (TV) function is commonly used in image processing and is
defined as the sum of the absolute differences between neighboring pixels (spatial
variability). It was initially proposed for image denoising and reconstruction [25].
To calculate the total variation, the absolute differences of adjacent pixel values in
the input images are summed. This provides an estimate of the noise present in the
images, which can be employed as a loss function in optimization to reduce noise in
images.

Original image Noisy image TV denoising

Figure 2. Total Variation denoising example

The Noisy image in Figure 2 has a lot of noise in it, making it hard to see
the details of the objects in the image. To denoise the image we can use the total
variation denoising. As you can see, the denoised image is much clearer and easier
to see. The edges and details of the objects in the image are preserved, while the
noise has been removed. Mathematically, for an image represented by a matrix
X “ pxijqi“1,...,m,j“1,...,n, the TV function TV pXq can be expressed as:

TV pXq “

m´1
ÿ

i“1

n´1
ÿ

j“1

a

pxi`1,j ´ xi,jq2 ` pxi,j`1 ´ xi,jq2.

5

To reformulate the TV function for use in a MIP solver, we can introduce addi-
tional variables and constraints. We can introduce a set of non-negative variables lhi,j
(respectively lvi,j) that represent the absolute difference between horizontal (respec-
tively vertical) neighboring pixels, scaled by the binary variables yi,j,k. Specifically,
we have: lvi,j “ xi,j ´xi´1,j and lhi,j “ xi,j ´xi`1,j . We can express the TV function
as the sum of the variables lhi,j and lvi,j subject to the linear constraints and the

additional constraints. Specifically, we have TV pXq “
řm´1

i“1

řn´1
j“1

b

lh2
i,j ` lv2i,j .

3. Branch-and-bound exploration

Separation and evaluation step. The branch-and-bound principle [29]
relies on alternating between a separation step and an evaluation step. The first one
consists in dividing a difficult problem into disjoint subproblems which are easier to
solve, building a binary search tree. In our case, each separation corresponds to the
decision: bkj “ 1 or bkj “ 0, for some variable bkj to be defined (see Figure 3.2). At
node i, decisions have been made concerning the nullity of some variables: variables
indexed by S1 are non-zero, those indexed by S0 are zero (and therefore are removed
from the optimization problem) and decisions must still be made concerning the
remaining undetermined variables, indexed by S̄.

The evaluation step is crucial in the Branch-and-Bound method, as it allows the
algorithm to efficiently prune the search space and focus on promising candidate
solutions. By discarding solutions that are guaranteed to be worse than the current
best solution, the algorithm can avoid exploring large portions of the search space,
leading to significant computational savings. For our example, the evaluation of
node i of the search tree is based on the computation of a lower bound on Ppiq, let
say z

piq

ℓ witch is obtained by the continuous Relaxation of the binary Variables. In
continuous relaxation, the integer constraints on the decision variables are relaxed
to allow them to take on any real value within a specified range. This transforms the
discrete optimization problem into a continuous optimization problem. For example,
if the decision variable b can only take on integer values, we relax this constraint
to allow b to take on any real value between 0 and 1. Continuous relaxation can be
written as follows:

PRpiq
: min
a,h,ĥ,b

dpa ´ xq s.t.

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

b P r0, 1s

h “ Wa ` βw

ĥ ě h ; ĥ ě 0

ĥ ď Mub

ĥ ď h ´ Mlp1 ´ bq

s “ Vĥ ` βv

si ď sy

The continuous Relaxation PRpiq will indicates if node i can contain an optimal so-
lution. More precisely, let zU denote the best known value of the objective function
in P at a current step of the procedure—which is an upper bound on the optimal
value. If z

piq

ℓ ě zU , then the node can be pruned. Otherwise, this node is sepa-
rated into two subproblems according to some new decision: bkj “ 1 or bkj “ 0.The
practical efficiency mostly depends on the tightness of the computed bounds (eval-
uation step) and on the branching and exploration strategies that are implemented
(branching step).

3.1. Evaluation step

Lower bound and convex relaxation. At any node i of the search tree,
a lower bound on Ppiq is obtained by solving PRpiq. Indeed, thanks to the box
constraint }h}

8
ď M and convexity property, one has therefore the continuous

6

relaxation PRpiq is equivalent to Rpiq.

PRpiq
ðñ Rpiq

with

Rpiq : min
a,h,ĥ

dpa ´ xq s.t.

$

’

’

’

’

’

&

’

’

’

’

’

%

h “ Wa ` βw

ĥ ě h ; ĥ ě 0

ĥ ď h`M
2

s “ Vĥ ` βv

si ď sy

Since both problems are defined on the same feasible domain, the set of constraints
tĥ ě h ; ĥ ě 0 ; ĥ ď h`M

2
u is a convex relaxation of the constraint ĥ “ maxph, 0q

(see. figure 3). Let us remark that this well-known result (the continuous, convex,
relaxation of the ReLu) is only valid under additional boundedness assumptions on
the solution space, such as the box constraints that were introduced in problem P. By

´M M

ĥk

hk

Figure 3. The tightest linear convex relaxation of the ReLU function under additional boundedness assump-
tions on the solution space.

using the convex relaxation of the ReLU function, one can benefit from the convexity
of the optimization problem and apply efficient convex optimization algorithms to
find the optimal solution.

3.2. Branching rules and exploration strategy

The branching rules and exploration strategy determine how the search space is
partitioned into smaller subproblems and how these subproblems are explored. The
branching rules and exploration strategy are crucial components of the algorithm
and can significantly impact its performance. The branching rule selects the index
j of the variable which is used in order to subdivide problem Ppiq (see Figure 3.2).
At each node of the search tree, the algorithm selects a variable to branch on and
creates two subproblems by adding a constraint that fixes the selected variable to a
specific value. We propose to exploit the solution of Rpiq, by selecting the variable
with the highest absolute value in the minimizer:

j “ argmax
nPS̄

ĥpiq
n .

This choice aims at selecting first the variables which are more likely to be nonzero
at the optimal solution. The exploration strategy determines how the algorithm
explores the search space and selects which subproblems to explore next. We use
depth-first search, and our branching rule is based on selecting the binary variable,
say bi, with the highest value in the solution of the relaxed problem. We branch up
first, that is, we first explore the branch corresponding to the decision bi “ 1.

7

Pp0q

Pp1q

bj0 “ 1

Pp3q

bj1 “ 1

Pp4q

bj1 “ 0

Pp2q

bj0 “ 0

Pp5q

bj2 “ 1

Pp6q

bj2 “ 0

Figure 4. Exploration strategy : Depth-first search. Each node corresponding to the optimization problem
Ppnq, is divided into two children nodes obtaining by constraining one variable to be zero or non-zero.

This strategy, similar to the principle of greedy forward selection algorithms [21],
aims at activating first the most prominent nonzero variables in xni ‰ 0, therefore fo-
cusing on quickly finding satisfactory feasible solutions and subsequent upper bounds
of good quality. Our proposed implementation is summarized in Algorithm 1, where
L contains the queue of subproblems and px denotes the best known solution along
the exploration. The Branch-and-Bound algorithm converge to the global minimum

(1) Initialization: L Ð{Pp0q}; zU “ `8 ; pa :“ 0.

(2) Optimality: if L“H, then return the optimal solution â.

(3) Node selection: choose a subproblem i P L by depth-first search
and remove it from L.

(4) Node evaluation: compute z
piq
ℓ .

(5) Pruning:

‚ If zpiq
ℓ ě zU , prune node i and return to step 1.

‚ If zpiq
ℓ ă zU :

˝ If bRpiq P t0, 1u, then zU Ð z
piq
ℓ and pa Ð aRpiq. Prune node i

and return to step 1.

(6) Branching: subdivide node i by (3.2) and add the two subproblems
to L.

Algorithm 1: Branch-and-bound algorithm for P.

in a finite number of steps. In the worst case, an exhaustive search is done.

8

4. Performance Evaluation

Model Type units Layers Activation Function
C

IF
A

R
10 4×100 fully connected 140 4 ReLU

6×100 fully connected 610 6 ReLU
9×200 fully connected 1,810 9 ReLU

ConvSmall convolutional 4,852 3 ReLU
ConvMed convolutional 7,144 3 ReLU
MaxPool convolutional 53,938 9 ReLU

M
N

IS
T

3×50 fully connected 110 3 ReLU
3×100 fully connected 210 3 ReLU
6×100 fully connected 510 6 ReLU
9×200 fully connected 1,610 9 ReLU

ConvSmall convolutional 3,604 3 ReLU
ConvMed convolutional 5,704 3 ReLU
MaxPool convolutional 13,798 9 ReLU

Table 1. Neural networks used to analyze the MNIST and CIFAR10 datasets

We tested our approach on two image datasets: MNIST [7] and CI-
FAR [Krizhevsky et al.]. The original version MNIST dataset contains 60,000
grayscale images of handwritten digits, with a resolution of 28x28 pixels, and it
includes 10,000 additional images for testing. The digits in the images are white,
and they appear on a black background. CIFAR-10 is a commonly used benchmark
dataset that consists of 60,000 color images in 10 classes, with 6,000 images per class.
The images are 32x32x3 pixels in size and cover a wide range of objects, such as
animals, vehicles, and household items.In our experiments, we used neural networks
to analyze the MNIST and CIFAR10 datasets, as shown in Table 1. Our evaluation
included architectures with a maximum of 53K hidden units. We used both adver-
sarially trained networks, which are designed to withstand adversarial attacks, and
undefended networks.

To evaluate our approach, we selected the first 100 images from the test set of
each dataset. However, we only considered the images that were correctly classified
by the neural network from these 100 images.

4.1. Visualization

To illustrate the difference between a sparse and non-sparse adversarial attack, we
show three example images in Figure 5. The first image shows a non-sparse attack
generated using the MIP-ℓ2 attack, while the second image shows a sparse attack
generated using the MIP-ℓ1 attack, and the third one shows a sparse invisible attack
using our proposed MIP-ℓ2-TV attack. In the non-sparse attack on the top, the
perturbations are spread out across the entire image, affecting a large number of
pixels. This attack is unlikely to happen for real applications. On the other hand,
in the sparse attack in the middle, the perturbations are concentrated in a small
area of the image, affecting only a few pixels. The MIP-ℓ1 is easy to detect, as the
changes are more noticeable and the image may appear visibly distorted. Finally,
the MIP-ℓ1-TV attack on the bottom is both sparse and invisible, as it affects only
a few pixels and minimizes the total variation of the perturbations, making them
imperceptible to the human eye.

These examples highlight the importance of sparsity in adversarial attacks, as it
can greatly increase the stealthiness and effectiveness of the attack. By minimizing
the total variation of the perturbations, we can generate highly sparse adversarial
attacks that are almost invisible, making them a significant threat to the security
of deep neural networks.

9

Attack Noise Added

M
IP

-ℓ
2

M
IP

-ℓ
1

M
IP

-ℓ
1
`

T
V

Figure 5. Example images of non-sparse adversarial attack (MIP-ℓ2), sparse adversarial attack (MIP-ℓ1) and
sparse invisible attack (MIP-ℓ1-TV).

4.2. Evaluation of solution quality

We evaluated the performance of each method on the standard image classification
dataset CIFAR-10. We measured the success rate of the attacks in terms of the
percentage of images that were misclassified by the target model. Additionally, we
also evaluated the sparsity and invisibility of the attacks2, as these are important
criteria for the safety and security of deep neural networks. We compared the ef-
fectiveness of our proposed technique for crafting adversarial examples with several
other state-of-the-art methods. Specifically, we compared our approach with the fol-
lowing techniques:
FGSM: Fast Gradient Sign Method is a popular white-box attack that perturbs
the input image in the direction of its gradient with respect to the loss function.
PGD: Projected Gradient Descent Attack is another white-box attack that aims to
identify the adversarial examples by iteratively perturbing the input image in the
direction that maximizes the loss function, subject to a small perturbation budget.
C&W: Carlini and Wagner’s attack is a state-of-the-art optimization-based ap-
proach that finds the minimal perturbation that causes the image to be misclassified,

2Attack’s invisibility : it is important to note that no single metric or method can capture the invisibility
of an attack perfectly. The perception of visibility can be influenced by various factors, such as the complexity
of the image, the size and location of the perturbations, and the background of the image. Therefore, a
combination of different metrics and human evaluation are used to obtain a more accurate assessment of the
attack’s invisibility.

10

optimizing a non-convex objective function that measures the distance between the
original image and the perturbed image.

Our experiments showed that our proposed technique achieved a higher success
rate than FGSM, PGD, and C&W. However, our technique was significantly more
sparse than the other methods, with a smaller percentage of pixels perturbed. This
indicates that our approach is more focused on identifying the most important pixels
to modify, rather than perturbing the image indiscriminately. Moreover, our tech-
nique was almost completely invisible, with the perturbations being imperceptible
to the human eye. This is an important characteristic for real-world applications,
as it means that the attacks are less likely to be detected and can therefore pose a
greater threat to the security of deep neural networks.

Table 2 summarizes the results of our experiments, showing the success rate,
sparsity, and invisibility of each method. To calculate the success rate, we first
generate adversarial examples, and then evaluate the accuracy of the targeted model
on the perturbed examples. If the accuracy drops significantly compared to the
accuracy on the original examples, then the attack is considered successful. The
success rate is calculated as the percentage of test examples that are misclassified
by the model after applying the attack. As can be seen, our proposed MIP-ℓ1-TV
technique achieved the highest sparsity and invisibility compared to GSM, PGD, and
C&W, while maintaining a best success rate as it’s a global optimization approach.
These results demonstrate the potential of our approach for improving the security
and safety of deep neural networks against adversarial attacks.

Method Success Sparsity Invisibility
rate (%) (%) (%)

FGSM 56 03 34
PGD 35 06 55
CW 61 11 85

MIP-ℓ1 88 92 05
MIP-ℓ1-TV 88 85 88

Table 2. Comparison of success rate, sparsity, and invisibility of different adversarial attack methods.

Compared to these methods, the proposed MIP-ℓ1-TV technique offer several
advantages. First, the MIP-based techniques can generate highly sparse and almost
invisible adversarial attacks, which can be particularly dangerous from a security
perspective. Second, the MIP-based techniques provide a principled optimization
framework for generating adversarial examples, which allows for better control over
the attack parameters and the generation process. Finally, the MIP-based techniques
offer a global optimization approach, which can ensure the optimality of the gen-
erated adversarial examples, unlike other methods such as PGD and FGSM, which
are susceptible to local optima.

4.3. Empirical Time Cost

We now evaluate the computational performance of our branch-and-bound strategy
using Cplex MIP solver. We name this algorithm B&BHOME. Computing times are
compared with the Gurobi Mixed quadratic programming solver (named MIPGurobi)
3 and MIPVerify

4. All methods are run on a UNIX machine equipped with 32Go
RAM and with four Intel Core i7 central processing units clocked at 2.6 GHz. For
each instance, the running time is limited to 1 000 s. Note that we only focus here on
the computational efficiency of algorithms which are guaranteed to find the global
optimum; due to the lack of space we do not compare the obtained solutions to that
of standard, suboptimal methods.

To provide a comprehensive comparison between the different algorithms pre-
sented in this article, we employ performance profiles, a powerful tool for visualizing
and analyzing algorithm performance. Performance profiles allow us to compare the

3https://www.gurobi.com/
4https://vtjeng.com/MIPVerify.jl/latest/

11

performance of multiple algorithms across a range of problem instances. In our eval-
uation, the performance profiles are constructed based on the computation times of
each algorithm for a set of problem instances. The computation time is limited to
1,000 seconds for each instance. The performance profile depicted in Figure 6 pro-

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Performance Ratio

P
ro

po
rt

io
n

of
In

st
an

ce
s

B&BHOME
MIPGurobi
MIPVerify

Figure 6. Performance Profile of B&BHOME, MIPGurobi, and MIPVerify. Computation time
is limited to 1,000 seconds for each instance.

vides valuable insights into the relative performance of the algorithms B&BHOME,
MIPGurobi, and MIPVerify. The graph reveals the proportion of instances for which
each algorithm achieved a certain performance ratio, represented by the x-axis.
We observe that B&BHOME consistently outperforms both MIPGurobi and MIPVerify
across the entire range of performance ratios. This indicates that B&BHOME achieves
better computational efficiency and finds solutions closer to the global optimum
within the given time limit. The higher proportion of instances where B&BHOME
has a lower performance ratio demonstrates its superior performance compared to
the other algorithms. On the other hand, MIPGurobi and MIPVerify exhibit slightly
lower performance ratios, indicating comparatively longer computation times and
potentially suboptimal solutions. However, it is worth noting that MIPVerify per-
forms better than MIPGurobi, as evidenced by its higher proportion of instances
with lower performance ratios. This suggests that MIPVerify is more efficient in
finding good-quality solutions compared to MIPGurobi. Moreover, the performance
profiles highlight the scalability challenges faced by all algorithms as the complex-
ity of the problem instances increases. The computation times for all algorithms
increase rapidly with larger and more complex models, indicating the inherent diffi-
culty of the problem. However, even under these challenging conditions, B&BHOME
demonstrates a notable advantage over the other algorithms.

In order to evaluate the behavior of our method regarding the complexity of
the model, we have varied the number of hidden layers. Results averaged over 100
instances of each problem are given in Table 3. B&BHOME is much faster then
MIPGurobi and MIPVerify revealing the efficiency of our strategy. Most of all, we
observe that the most important improvement achieved by B&BHOME is due to
the efficiency of our continuous relaxation: the computing time per node with the
proposed formulation is at least 4 times smaller than that of MIPGurobi.

Even with this improvement, the results in Figure 7 show the limit of our ap-
proach especially when the number of ReLU in the model increases. We can see
that the complexity increases exponentially and becomes unfeasible in a reasonable
time for complex models. The complexity of a MIP problem depends on the num-
ber of decision variables, constraints, and the type of problem formulation. One
approach to formulating the adversarial attack problem as an MIP is to use binary
variables. However, the number of possible combinations of binary variables grows
exponentially with the number of ReLU. This leads to a combinatorial explosion
in the number of feasible solutions, which makes it challenging to find the optimal
solution using standard optimization techniques. As a result, specialized algorithms
such as branch-and-bound methods are often required to solve large-scale MIP prob-
lems efficiently. However, even with these algorithms, the computational cost can
become prohibitively expensive as the size of the problem increases, which limits the
scalability of MIP-based approaches for adversarial attacks.

12

B&BHOME MIPGurobi MIPVerify
CIFAR10 T Nds F T Nds F T Nds F

4x100 90.8 1,125 0 150.9 2,879 0 120,2 1,987 0
6x100 840.5 7,343 42 885 7,855 48 872.8 7,256 48
ConvSmall 802 6,955 47 850 7,102 47 - - -
ConvMed 1,000 - 50 1,000 - 50 - - -

no
rm

L2

MaxPool 1,000 - 50 1,000 - 50 - - -
4x100 289.7 12,759 1 426.8 18,245 14 470.2 16,975 6
6x100 481.5 3,743 5 609.2 3,512 31 672.8 3,856 17
ConvSmall 601 256 32 645 301 35 - - -
ConvMed 980 1,350 49 1000 1,546 50 - - -

no
rm

L1

MaxPool 1,000 - 50 1,000 - 50 - - -
4x100 325.2 14,222 6 483.4 20,885 11 - - -
6x100 809.2 44,743 37 881.5 53,512 41 - - -
ConvSmall 860 2,498 47 945 3,767 47 - - -
ConvMed 1,000 - 50 1,000 - 50 - - -

L1
+

T
V

MaxPool 1,000 - 50 1,000 - 50 - - -

MNIST T Nds F T Nds F T Nds F
3x50 55.2 57,932 0 74,3 96,876 0 52.7 10,122 0
6x100 87.3 91,003 9 110.8 120,483 9 101 98,478 9
ConvSmall 328.4 12,393 28 442,2 39,888 33 - - -
ConvMed 995 42,676 49 1,000 - 50 - - -

no
rm

L2

MaxPool 1,000 - 50 1,000 - 50 - - -
3x50 25.3 9,988 0 30.1 10,983 0 39.9 14,451 0
6x100 38.8 13,819 0 52.4 21,332 0 40.1 16,383 0
ConvSmall 220 10,223 20 375,2 22,378 28 - - -
ConvMed 925 82,339 49 1,000 - 50 - - -

no
rm

L1

MaxPool - - 50 - 50 - - -
3x50 62.7 10,122 0 83.5 13,326 0 - - -
6x100 98.2 102,30 30 128 123,84 38 - - -
ConvSmall 377 14,762 28 517,3 58,020 33 - - -
ConvMed 998 51,736 49 1,000 - 50 - - -

no
rm

L2

MaxPool 1,000 - 50 1,000 - 50 - - -

Table 3. Computational efficiency for robustness problems averaged over 50 instances. Com-
puting time (T), number of explored nodes (Nds), and number of instances that did not
terminate in 1,000 s (F).

13

200 300 400 500 600
0

100

200

300

400

500

Number of ReLu functions
M

in
ut

es

B&BHOME

Figure 7. Computing time (Minutes) for robutness problems as a function of the number of ReLU in the
model, average over 10 instances.

5. Conclusion

In this paper, we have proposed a new method for generating adversarial examples
that are both highly sparse and almost invisible. Our approach is based on Mixed
Integer Programming (MIP), which provides a principled optimization framework
for generating adversarial examples with controlled sparsity and visibility. We have
demonstrated the effectiveness of our method by comparing it with other state-of-
the-art adversarial attack methods. Our results show that our MIP-based techniques
can generate highly sparse and almost invisible adversarial examples that are capable
of fooling deep learning models with high success rates. One of the key advantages
of our method is that it provides a global optimization approach, which can ensure
the optimality of the generated adversarial examples. Overall, our proposed method
represents an important step towards the development of more robust and secure
deep learning models that are less vulnerable to adversarial attacks. Future work
could investigate the application of our method to other domains and tasks, as well
as the development of more advanced defense mechanisms that can mitigate the
impact of adversarial attacks. In addition to proposing a new method for generat-
ing adversarial examples using MIP, we have also developed a branch-and-bound
algorithm to solve the resulting optimization problem. Our algorithm is designed to
efficiently explore the combinatorial space of binary variables and find the optimal
solution to the MIP problem. The key advantage of our algorithm is that it provides
a principled and efficient approach to solving the MIP relaxation problem.

While our approach has demonstrated promising results in generating sparse and
invisible adversarial examples using MIP, there are still limitations to the scalability
of the method. Specifically, as the number of ReLU units in the neural network
model increases, the complexity of the optimization problem grows exponentially,
making it increasingly difficult to find the optimal solution within a reasonable
amount of time. Despite these challenges, we believe that the approach proposed in
this article represents a significant step forward in the field of adversarial attacks,
and that it has the potential to be applied in a wide range of practical applications
in machine learning and computer vision. By continuing to develop new algorithms
and techniques for generating robust and secure models, we can help to ensure that
the benefits of deep learning can be realized in a safe and reliable manner.

References

[1] Akhtar, N. and Mian, A. (2018). Threat of adversarial attacks on deep learning in computer
vision: A survey. CoRR, abs/1801.00553.

[2] Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A. V., and Criminisi,
A. (2016). Measuring neural net robustness with constraints. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, pages 2621–

14

2629, USA. Curran Associates Inc.
[3] Bunel, R., Turkaslan, I., Torr, P. H., Kohli, P., and Kumar, M. P. (2018). A unified view

of piecewise linear neural network verification. In Proceedings of the 32Nd International
Conference on Neural Information Processing Systems, NIPS’18, pages 4795–4804, USA.
Curran Associates Inc.

[4] Carlini, N. and Wagner, D. (2017). Towards Evaluating the Robustness of Neural Networks.
Number: arXiv:1608.04644 arXiv:1608.04644 [cs].

[5] Carlini, N. and Wagner, D. (2018). Audio adversarial examples: Targeted attacks on
speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW), pages 1–7.

[6] Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., and Mukhopadhyay, D. (2018).
Adversarial attacks and defences: A survey. CoRR, abs/1810.00069.

[7] Deng, L. (2012). The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142.

[8] Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A., and Kohli, P. (2018). A dual
approach to scalable verification of deep networks. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA,
August 6-10, 2018, pages 550–559.

[9] Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks.
CoRR, abs/1705.01320.

[10] Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., and Vechev, M.
(2018). Ai 2: Safety and robustness certification of neural networks with abstract interpre-
tation. In Security and Privacy (SP), 2018 IEEE Symposium on.

[11] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial
examples. ICLR, 1412.6572v3.

[12] Jang, U., Wu, X., and Jha, S. (2017). Objective metrics and gradient descent algorithms
for adversarial examples in machine learning. ACSAC2017, 262-277.

[13] Katz, G., Barrett, C. W., Dill, D. L., Julian, K., and Kochenderfer, M. J. (2017). Re-
luplex: An efficient SMT solver for verifying deep neural networks. In Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I, pages 97–117.

[14] Kolter, J. Z. and Wong, E. (2017). Provable defenses against adversarial examples via
the convex outer adversarial polytope. CoRR, abs/1711.00851.

[Krizhevsky et al.] Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian institute for
advanced research).

[16] Kurabin, A., Goodfellow, I. J., and Bengio, S. (2017). Adversarial examples in the physical
world. ICLR, 1607.02533v4.

[17] Lai, M. and Wang, J. (2011). An unconstrained ℓq minimization with q ď 1 for sparse
solution of underdetermined linear systems. SIAM Journal on Optimization, 21(1):82–101.

[18] Lomuscio, A. and Maganti, L. (2017a). An approach to reachability analysis for feed-
forward relu neural networks. CoRR, abs/1706.07351.

[19] Lomuscio, A. and Maganti, L. (2017b). An approach to reachability analysis for feed-
forward relu neural networks. CoRR, abs/1706.07351.

[20] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards deep
learning models resistant to adversarial attacks.

[21] Mhenni, R. B., Bourguignon, S., and Idier, J. (2020). A greedy sparse approximation
algorithm based on l1-norm selection rules. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5390–5394.

[22] Modas, A., Moosavi-Dezfooli, S.-M., and Frossard, P. (2019). Sparsefool: a few pixels
make a big difference. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9087–9096.

[23] Moulin, P. and Liu, J. (1999). Analysis of multiresolution image denoising schemes using
generalized Gaussian and complexity priors. IEEE Transactions on Information Theory,
45(3):909––919.

[24] Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily fooled:

15

High confidence predictions for unrecognizable images. In 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 427–436.

[25] Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268.

[26] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. (2014). Intriguing properties of neural networks. Number: arXiv:1312.6199
arXiv:1312.6199 [cs].

[27] Tjeng, V. and Tedrake, R. (2017). Verifying neural networks with mixed integer program-
ming. CoRR, abs/1711.07356.

[28] Tjeng, V., Xiao, K. Y., and Tedrake, R. (2019). Evaluating robustness of neural networks
with mixed integer programming. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

[29] Wolsey, L. A. (1998). Integer Programming. Wiley, New York, NY, USA.
[30] Wong, E. and Kolter, J. Z. (2018). Provable defenses against adversarial examples via

the convex outer adversarial polytope. In Dy, J. G. and Krause, A., editors, Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 5283–5292. PMLR.

[31] Xiang, W., Tran, H., and Johnson, T. T. (2018). Output reachable set estimation and
verification for multilayer neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 29(11):5777–5783.

[32] Xiang, W., Tran, H.-D., and Johnson, T. T. (2018). Reachable set computation and safety
verification for neural networks with relu activations. In Submission.

[33] Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., and Song, D. (2018). Generating adversarial
examples with adversarial networks. arXiv preprint arXiv:1801.02610.

[34] Xu, Z., Zhang, H., Wang, Y., Chang, X., and Liang, Y. (2010). L1/2 regularization.
Science China Information Sciences, 53(6):1159–1169.

[35] Zhu, M., Chen, T., and Wang, Z. (2021). Sparse and imperceptible adversarial attack via
a homotopy algorithm.
[0]

16

