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Abstract
In the present work we introduce a unified framework that allows for the very first
systematic construction of symmetric resonance-based integrators to approximate
a wide class of nonlinear dispersive equations at low-regularity. The inclusion
of symmetries in the construction of resonance-based schemes presents serious
challenges and induces a need for a significant extension of prior approaches
to allow for sufficient number of degrees of freedom in the resulting schemes
while preserving the favorable low-regularity convergence properties of prior
constructions. Motivated by recent work [15], we achieve this by introducing a
novel formalism based on forest formulae that allows us to encode a wider range
of possibilities of iterating Duhamel’s formula and interpolatory approximations
of lower order parts in the construction of these time-stepping methods. The
forest formulae allow for a simple characterisation of symmetric schemes and
provides a fascinating algebraic structure in its own right which echo those
used in Quantum Field Theory for renormalising Feynman diagrams and those
used for the renormalisation of singular SPDEs via the theory of Regularity
Structures. Our constructions lead to the development of several new symmetric low-
regularity integrators that exhibit remarkable structure preservation and convergence
properties which are witnessed in numerical experiments.
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1 Introduction

We consider a general class of dispersive differential equations of the form

i∂tu(t, x) + L
(
∇, 1

ε

)
u(t, x) = |∇|αp(u(t, x), u(t, x)),

u(0, x) = v(x),
(1.1)

equipped with periodic boundary conditions x ∈ Td. Throughout, we assume
that p is a polynomial nonlinearity, and that the structure of (1.1) implies at least
local well-posedness of the problem on a finite time interval ]0, T ], T <∞, in an
appropriate functional space. This class of equations captures a number of physically
important models, including the Korteweg de Vries (KdV) equation

∂tu− iL(∇)u =
1

2
∂xu

2, L(∇) = i∂3
x, |∇|α = ∂x, x ∈ T, (1.2)

and the nonlinear Schrödinger (NLS) equation,

i∂tu+ L(∇)u = |u|2u, L(∇) = ∆, x ∈ Td. (1.3)

Like those two examples many physical equations in this class possess conservation
laws, or are indeed integrable systems (for example the KdV equation is a completely
integrable parity-time invariant system). It is known that symmetric numerical
schemes have favourable long-time behaviour when applied to such reversible
integrable systems, such as linear (slow) growth in error as a function of the
integration time, and near conservation of first integrals over long times [35, 36, 8].
At the same time the numerical approximation of the Cauchy problem in low-
regularity regimes requires the design of designated methods, amongst which
resonance-based schemes have seen significant success over recent years. Firstly
developed for specific equations, including the KdV equation [39, 63, 47], the
NLS equation [55, 18, 4, 53, 54, 62, 6], the Gross–Pitaevskii equation [3] and the
Navier–Stokes equations [46], more recent work has started to establish a more
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general framework for resonance based low-regularity integrators [2, 1, 57]. The
key idea of these schemes lies in embedding the underlying structure of resonances -
triggered by the nonlinear frequency interactions between the leading differential
operator L

(
∇, 1

ε

)
and the nonlinearity p(u(t, x), u(t, x)) - into the numerical

discretisation. These nonlinear interactions are in general neglected by classical
approximation techniques such as Runge-Kutta methods, splitting methods or
exponential integrators. While for smooth solutions these nonlinear interactions are
indeed negligible, they do play a central role at low regularity and high oscillations.
The accurate resolution of these interactions has been achieved in broad generality
only in the recent few years in [15, 56, 2]. Yet, while the design of such schemes
has seen a wide range of developments, prior work has focussed mostly on explicit
schemes with desired convergence properties. A few recent results [7, 4, 29, 50]
have introduced first or second order implicit symmetric integrators at low-regularity
fitting the particular structure of the equation with better conservation properties.
Nevertheless, a central question remained unanswered: Can we systematically
construct structure preserving resonance based schemes up to arbitrary order which
preserve central symmetries of the underlying continuous equation?

For ordinary differential equations (ODEs) the theory of structure preservation
in numerical schemes is thoroughly established [36], specifically there is a extensive
amount of literature on the characterisation of symmetric and symplectic Runge–
Kutta methods [43, 59, 42] and, more broadly, B-series methods [9, 20]; on the
favourable long-time behaviour of such methods when applied for finite-dimensional
integrable reversible systems and Hamiltonian systems [35, 36, 8] respectively; and
even on the limitations on types of structure that can be preserved with B-series
methods [41]. Even though the long-time analysis of such methods in the case of
PDEs is much less straightforward [28, 30], these favourable structure preservation
properties have motived the study of symmetric methods for PDEs, for example in
the classification of symmetric splitting methods [51] and symmetric exponential
integrators [19].

In general, resonance based schemes are not structure preserving and do not
preserve the symmetries in the system. We can consider for example the second order
resonance based scheme introduced by [15, Section 5.1.2], referred to henceforth as
‘Bruned & Schratz 2022’, and given by

un+1 = eiτ∆un − iτeiτ∆
(

(un)2(ϕ1(−2iτ∆)− ϕ2(−2iτ∆))un
)

− iτ
(
eiτ∆un

)2
ϕ2(−2iτ∆)(eiτ∆un)− τ2

2
eiτ∆

(
|un|4un

)
,

(1.4)

where ϕ1(σ) = eσ−1
σ and ϕ2(σ) = eσ−ϕ1(σ)

σ . Symmetry of a numerical scheme is
defined by considering its adjointmethod: For a givenmethodun 7→ un+1 = Φτ (un)
its adjoint method is defined as Φ̂τ := Φ−1

−τ .

Definition 1 (See for example Definition V.1.4 in [36]) The method Φτ is called
symmetric if Φτ = Φ̂τ .



Introduction 4

The scheme (1.4) is not symmetric in the sense of definition 1 because the adjoint
method is given by

un+1 = eiτ∆un − iτ
((
un+1

)2
(ϕ1(2iτ∆)− ϕ2(2iτ∆))un+1

)
− iτeiτ∆

((
e−iτ∆un+1

)2
ϕ2(2iτ∆)(e−iτ∆un+1)

)
+
τ2

2

(∣∣un+1
∣∣4un+1

)
,

which is implicit as opposed to the original scheme (1.4), which is explicit.
The derivation of new schemes which are structure preserving and at the same

time allow for low-regularity approximations was first addressed in the specific
case of the KdV, the Klein-Gordon (KG), the NLS equation and the isotropic
Landau–Lifschitz equation in the recent work of [50], [61], [4] and [7] respectively.
A further symmetic low-regularity integrator with good long time behaviour was
introduced in [29]; see also [50] for the construction of symplectic resonance-based
schemes. Let us also highlight the work [62] which was the first low regularity
method which allowed for high order mass conservation (for fixed time). However,
all these results are yet again tailored to the particular structure of the equation, and
bespoke calculations made on individual resonance structure of the equation at hand.
Furthermore, they are restricted to second order and not always optimal in the sense
of regularity.

This motivates the study of systematic constructions of symmetric resonance
based schemes that we address in the present work. In particular, we develop a
unified framework of symmetric resonance based schemes which preserve central
symmetries of the system (1.1) while allowing for good approximation in the regimes
treated by [15]. We extend the resonance decorated trees approach introduced in [15]
to a richer framework by exploring different ways of iterating Duhamel’s formula,
capturing the dominant parts while interpolating the lower parts of the resonances
in a symmetric manner. This gives a range of new numerical schemes with more
degrees of freedom than the original framework from [15]. Our new framework
allows us to recover previously constructed low-regularity symmetric schemes such
as [4], but also introduce new symmetric low regularity schemes which are optimal
in the sense of regularity - in the spirit of [15]. An example of such a method
introduced in the present work is (4.18) matching the regularity obtained for the
non-symmetric scheme given in [15]. In addition, as opposed to the previous
works [15, 1, 2] the schemes we introduce here do not need to be accompanied
by well-chosen filter functions in order to obtain stability of the scheme. Indeed,
our construction based on interpolation rather than Taylor series expansion of the
non-dominant parts of the nonlinear frequency interactions directly leads to stable
schemes, see also [56, 3].

Our main result is the new general resonance based scheme presented in
Definition 3.13, with its error structure given in Theorem 3.19, the latter of which is
a consequence of [15]. We show that this scheme is symmetric in Theorem 4.3 and
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that it is contained within a forest formula in Theorem 3.15. Our general framework
is illustrated on concrete examples in Section 4.3 and simulations show the better
structure preserving properties as well as the convergence properties of the scheme.
This was only possible through a significant extension of the algebraic structures
proposed in [15] by introducing new forest formulae in Theorem 3.6 and Theorem
3.8. These formulae are used for finding new symmetric schemes and have their
own interest by providing a new parametrisation of low regularity schemes allowing
for implicitness in the schemes and thus resembling more closely the formulation
of classical schemes such as Runge–Kutta methods or exponential integrators. We
derive conditions on the coefficients of these formulae for having a symmetric
scheme, see Proposition 4.7.

Remark 1.1 Up to now we were faced with a choice between structure preservation
and low-regularity approximation properties. This is exhibited in Figure 1 where
we study the cubic NLS equation and compare the preservation of energy of the
Strang splitting (a symmetric splitting method) against previous resonance based
integrators (Bruned & Schratz 2022 [15]) for smooth C∞ and H2 data.
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(a) Smooth data, u0 ∈ C∞ andM = 64.
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(b) Low regularity data, u0 ∈ H2 andM = 64.

Figure 1: Long-time relative error in the energy of the NLS equation with time-step
τ = 0.02.

The Strang splitting almost preserves the energy over long times for smooth
solutions, but suffers from numerical energy blow up for rougher data. The
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resonance based integrator Bruned & Schratz 2022 [15] on the other hand only
achieves approximate energy preservation up to short times (for both smooth and
rougher data). Our novel resonance based midpoint method (4.18) bridges this
gap allowing for numerical long-time approximate energy conservation even at low
regularity, see Figure 1b.

Let us now take a closer look at smooth solutions, where we find a surprising
additional characteristic of our new scheme (4.18). Note that long-time structure
preservation properties apply only subject to a CFL condition for Strang splitting
methods applied to the NLS equation. More precisely the time step size τ has to
be chosen such that τ . M−2 whereM is the number of degrees of freedom in
the spatial discretisation, see for instance [28] and references therein for a detailed
discussion. This step size restriction is not only a theoretical technicality, but
also observed in numerical experiments. The long-time energy preservation in the
Strang splitting drastically breaks down if we start to increase the number of Fourier
modesM , i.e., move from “ODE to PDE”, see Figure 1a versus Figure 2, where we
double the Fourier modes in our discretisation. A very interesting feature of our
new resonance-based constructions appears to be that in numerical experiments the
long-time behaviour of the method seemingly does not depend on the numberM of
spatial modes used.
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(a) Long time interval t ∈ [0, 4000], smooth data u0 ∈ C∞ andM = 256.
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(b) Zoom on time interval t ∈ [0, 40], smooth data u0 ∈ C∞ andM = 256.

Figure 2: Long-time relative error in the energy of the NLS equation with time-step
τ = 0.02.
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(a) Long time interval t ∈ [0, 4000], low-regularity data u0 ∈ H2 andM = 256.
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(b) Zoom on time interval t ∈ [0, 40], low-regularity data u0 ∈ H2 andM = 256.

Figure 3: Long-time relative error in the energy of the NLS equation with time-step
τ = 0.02.

In summary, the long-time dynamics shown in Figures 1-3 is representative of
the behaviour of these methods and is observed in a large number of numerical
experiments. Namely, we have that the Strang splitting is able to approximately
preserve the energy over long times only for a small number of spatial discretisation
points and for smooth initial data (M � τ−1/2). In contrast, our proposed symmetric
low-regularity integrators can achieve this feat even for low regularity solutions and
with a large number of spatial discretisation points.

Outline of the article

The remainder of this manuscript is structured as follows. To begin with, in
section 2, we outline the main ideas in the construction of symmetric resonance
based schemes, before formalising those ideas more rigorously in the subsequent
sections. In particular, in section 3 we firstly recall the decorated tree framework
introduced in [15] for non-symmetric resonance based schemes. We then generalise
this framework in order to capture a broader class of resonance based integrators
allowing for polynomial interpolation of lower order parts in the approximation (cf.
section 3.1). This leads to a general framework taking the form of a forest formula
that can capture a wide class of implicit and explicit resonance based schemes
and which is introduced in section 3.2 followed by a generalisation in section 3.3.
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This forest formula motivates our consideration of a particular way of iterating
Duhamel’s formula to generate a subclass of resonance based schemes described by
this general framework in section 3.4 which turns out to be sufficiently general to
allow us to find symmetric resonance based schemes of arbitrary order in this class.
In section 4 we then describe how symmetric interpolation in the construction from
section 3.4 leads to symmetric schemes before classifying all symmetric schemes
captured by the general forest formula in section 4.2. We conclude the section with
examples of the new symmetric resonance based integrators that can be found using
our novel framework in section 4.3. In section 5, we provide numerical experiments
demonstrating the favorable practical performance of the new symmetric resonance
based schemes that we were able to develop using our formalism.
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2 Main ideas of the derivation of symmetric resonance based schemes

Before diving into a more abstract construction of the algebraic structures describing
our novel resonance based schemes let us begin by outlining the main assumptions
on the type of equation we consider as well as the blueprint for the construction of
implicit (and specifically symmetric) resonance based integrators for equations of
the form (1.1).

Assumptions

We impose periodic boundary conditions, i.e. x ∈ Td. We assume that the
differential operator L is real and that the differential operators L(∇) and |∇|α
shall cast in Fourier space into the form

L(∇)(k) = kσ +
∑

γ:|γ|<σ

aγ
∏
j

k
γj
j , |∇|α(k) =

∑
γ:|γ|<≤α

d∏
j=1

k
γj
j (2.1)

for some α ∈ R, σ ∈ N, γ ∈ Zd and |γ| =
∑

i γi, where for k = (k1, . . . , kd) ∈ Zd
andm = (m1, . . . ,md) ∈ Zd we set

kσ = kσ1 + . . .+ kσd , k ·m = k1m1 + . . .+ kdmd.
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Construction of implicit resonance based schemes

We first rewrite (1.1) in Duhamel’s form

u(t, x) = eitLv(0, x)− ieitL
∫ t

0
e−isL|∇|αp(u(s, x), ū(s, x))ds

where we have used L= L
(
∇, 1

ε

)
as a short hand notation. Then, if we move to

Fourier space by denoting uk and vk the k-th Fourier coefficients of u and v, one
obtains:

uk(t) = eitL(k)vk(0)− ieitL(k)

∫ t

0
e−isL(k)|∇|α(k)pk(u(s, x), ū(s, x))ds (2.2)

whereL(k) and |∇|α(k) are the differential operatorsLand |∇|α mapped in Fourier
space. The term pk(u(s, x), ū(s, x)) stands for the Fourier transform of the product.
For example, in the case of NLS we have α = 0, L= ∆, and p(u, ū) = u2ū. The
equation (2.2) becomes

uk(t) = e−itk
2
vk(0)− ie−itk2

∫ t

0
eisk

2

 ∑
k=−k1+k2+k3

ūk1(s)uk2(s)uk3(s)

ds.
The product |u|2u becomes a convolution on the coefficients in Fourier space, where
we note that the minus pre-multiplying k1 is due to the conjugate. We have also used
the fact that the Fourier transform of eit∆ is e−itk2 . The first step in the construction
of resonance based schemes consists in iterating (2.2) inside the nonlinearity which
produces a sum of oscillatory integrals that can be described by decorated trees as
introduced in [15]. Namely, in [15] we iterate only with (2.2) which corresponds to a
left end point iteration, meaning that given a time step τ , we always take the left end
point approximation in the linear part exp(−itk2)vk(0) on the interval [0, τ ]. Hence,
in general we do not obtain a symmetric scheme. Indeed, one has the possibility to
write Duhamel’s formula around any point in the interval [0, τ ]. In particular, if we
set for s ∈ [0, τ ]

I(k, u, s, t) = ei(t−s)L(k)uk(s) (2.3)

− ieitL(k)

∫ t

s
e−is̃L(k)|∇|α(k)pk(u(s̃, x), ū(s̃, x))ds̃

then we have the identity:

uk(t) = I(k, u, v, s, t).

From the identity (2.3), we will obtain implicit schemes. We can take a weighted
sum of the various Duhamel’s iterations (2.3) ultimately to arrive at schemes with a
large number of additional degrees of freedom. The sum that we will use for a large
part of this paper is the midpoint rule, that is:

uk(t) =
1

2
(I(k, u, 0, t) + I(k, u, τ, t)). (2.4)
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For example, to construct a symmetric resonance based scheme of a desired order
we can start the first iteration for uk(τ ) with the left end point Duhamel’s formula
and then we iterate the midpoint rule (2.4). We can express this iteration in terms of
the following tree series

U rmid,k(τ ) = eiτLuk(0) +
∑
T∈Vrk

Υp
mid(T )(u, τ )
S(T )

(ΠmidT )(τ ) (2.5)

where Vr
k is a set of decorated trees of size at most r + 1 which incorporate the

frequency k. These trees encode via (ΠmidT )(τ ), iterated integrals of depth at most
r + 1. The coefficient S(T ) is the symmetry factor associated to the tree T and
Υp

mid(T )(u, τ ) is the coefficient appearing in the iteration of Duhamel’s formulation
depending on the nonlinearity p. The coefficients Υp

mid(T )(u, τ ) depend on τ as with
our midpoint iteration, we finish always on terms of the form:

1

2

(
eisLukj (0) + ei(s−τ )Lukj (τ )

)
= eisL

1

2

(
ukj (0) + e−iτLukj (τ )

)
.

It is natural to absorb the term eisL in the definition of (ΠmidT )(τ ) and

1

2

(
ukj (0) + e−iτLukj (τ )

)
into the definition ofΥp

mid(T )(u, τ ). These aforementioned quantities are described in
detail in Section 3.4. The sum (2.5) can be viewed as a first numerical approximation
by keeping only the iterated integrals of order below r of the infinite series describing
formally the solution of (1.1). In Proposition 4.1, we show that (2.5) is a symmetric
scheme.

In order for the scheme to have a suitable local error when applied to low-
regularity solutions, it is necessary to replace each oscillatory integral (ΠmidT )(τ )
appearing in the finite sum (2.5) by a low regularity approximation that embeds the
resonance structure into the numerical discretization. Our novel approach is to try
and perform this approximation in a symmetric manner. Let us explain briefly how
it works. Suppose we aim to discretise an oscillatory integral of the form∫ t

0
eisLds, L= Ldom + Llow,

where we have split the operator into a dominant part Ldom that we will integrate
exactly and a lower partLdom that we will approximate (cf. section 3.1 for a definition
of these quantities). A typical example arising in the case of NLS is

L= k2 + k2
1 − k2

2 − k2
3, Ldom = 2k2

1 Llow = −2k1(k2 + k3) + 2k2k3,

where k = −k1 + k2 + k3. We see that the exact integration of∫ t

0
eisLdomds =

e2isk21 − 1

2ik2
1
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can be mapped back to physical space as 1/k2 corresponds to ∆−1. This property
of being able to write the scheme in physical space is crucial for efficient numerical
implementation: If we have an expression in physical space the differential operators
can be computed quickly in frequency space using the Fast Fourier Transform (FFT)
while any polynomial-type nonlinear term can be computed quickly in physical
space since it corresponds to a local operation on the function values on a grid.
Now, it remains to approximate the lower part. For this task, we use a polynomial
interpolation with m + 1 points on [0, τ ] denoted by ajτ . We note that the error
incurred by this polynomial interpolation will be one of the determining factors of
the convergence order of our overall numerical scheme, and thus we highlight that
this interpolation can be done to any given order. We take r+1 distinct interpolation
points 0 ≤ a0 < a1 < · · · < ar ≤ 1 which are symmetrically distributed such that
aj = 1− ar−j , j = 0, . . . , r. Let us denote the corresponding nodal polynomials
by pj,r such that

pj,r(amτ ) = δj,m.

Then, we define the following approximation

p̃r(f, ξ) =
r∑
j=0

f (aj)pj,r(ξ), f (aj) = eiajτLlow .

We have the following local error

f (ξ)− p̃r(f, ξ) = O(
r∏
j=0

(ξ − ajτ )(iLlow)r+1) (2.6)

which requires less regularity than if we had chosen to base our approximation on
L instead of Llow as classical schemes do.

In order to arrive at a numerical scheme, we will in the following introduce
the low-regularity symmetric approximation operator of Πmid denoted by by Πn,r

mid .
Here, r corresponds to the order of the discretization and n is the a priori regularity
assumed on the initial data v. Namely, we assume v ∈ Hn, where Hn is a Sobolev
space. The general scheme then takes the form:

Un,rmid,k(τ, u) =
∑
T∈Vrk

Υp
mid(T )(u, τ )
S(T )

(Πn,r
mid T )(τ ). (2.7)

We will show in Theorem 4.3 that this scheme is symmetric. The local error structure
for each approximated iterated integral is given by

(ΠmidT −Πn,r
mid T )(τ ) = O

(
τ r+2Lr

low(T, n)
)
, (2.8)

where Lr
low involves only lower order derivatives. Its proof is exactly the same

as in [15]. The local error does not depend on the choice of Duhamel’s iteration
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and polynomial interpolations. The form of the scheme draws its inspiration
from the treatment of singular stochastic partial differential equations (SPDEs)
via Regularity Structures in [33, 12, 10, 13]. These decorated tree expansions are
generalization of the B-series widely used for ordinary differential equations, we
refer to [17, 19, 36, 52] and tree series used for dispersive equations [25, 31, 32, 48,
38]. In the end, one obtains an approximation of u under much lower regularity
assumptions than classical methods (e.g., splitting methods, exponential integrators
[21, 28, 36, 37, 40, 44, 49, 45, 51, 58]) require, which in general introduce the local
error

O
(
τ r+2Lr(T, n)

)
(2.9)

involving the full high order differential operator Lr. Indeed, denoting by D( · )
the domain of a given operator, we have that D(Llow) ⊃ D(L), meaning that the
local error structure (2.8) allows us to deal with a rougher class of solutions than the
classical error bound (2.9). Let us mention that the local error analysis can be nicely
understood via a Birkhoff factorisation of the character Πn,r

mid (see [15, 11]) that
involves a deformed Butcher-Connes-Kreimer coproduct (see [17, 23, 24, 15, 14]).
In the present work, we push further the algebraic perspective by writing several
forest formulae that can be used to represent a larger class of low regularity schemes.
These forest formulae take the following form:

u`+1
k = eiτLu`k + eiτL

∑
T∈Ṽrk

∑
a∈[0,1]ẼT

∑
χ∈{0,1}LT

∑
T0·T1...·Tm⊂T

CT

ba,χ,T,T0·...·Tm(τ, iτFdom(Tj), j ∈ {0, ...,m})∏
e∈ẼTj

eiτaeFlow(T ej ) Υp
χ(T )(u`+χvkv

, v ∈ LT , τ )
S(T )

.

(2.10)

Below, we give a brief description of the notation of this forest formula before
introducing each term in full detail in section 3. Here,L si the full operator of (1.1),
Ṽr
k is a finite set of decorated trees, ẼT denotes the edges of T that correspond

to a time integration. These time integrals are discretised with a low regularity
approximation. Therefore, we have to use a map a on these edges that specifies
which interpolation points have been used. This corresponds to the following term∏

e∈ẼTj

eiτaeFlow(T ej )

Here Flow(T ej ) denote the lower part of the various discretisations where T ej is
included into Tj . The set LT are the leaves of T associated to some uku and the
map χ specifies if they are evaluated at the right (u`ku) or left end point (u`+1

ku
).

The coefficients Υp
χ(T )(u`+χvkv

, v ∈ LT , τ ) depend on the structure of the equation
and the way one iterates Duhamel’s formula. One essential choice of this forest
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formula is the splitting of T into a forest T0 · ... · Tm where the Ti are decorated
trees. This allows us to encode all the lower parts of the resonances Flow(T ej ) and
all their dominant parts Fdom(Tj) that appear in the low regularity discretisation.
As we shall see below, this forest splitting is a crucial novelty necessary for the
construction and classification of symmetric low-regularity integrators. For the
splitting, one can use a Butcher-Connes-Kreimer coproduct (see Section 3.2) or a
deformed Butcher-Connes-Kreimer coproduct used for the local error analysis (see
Section 3.3). The difference between the two is that one provides more terms in
the deformed forest formula (deformed Butcher-Connes-Kreimer coproduct) and
therefore more degrees of freedom for finding new schemes. In our applications so
far, the forest formula without deformation is enough for finding symmetric schemes.
We derive a condition on the coefficients ba,χ,T,T0·...·Tm in Proposition4.7 that allows
to find symmetric schemes. The coefficents ba,χ,T,T0·...·Tm do not depend on the
frequencies that are node decorations of the trees T, Tj . One can see them only as
functions of the dominant parts of the various operators encountered during the
discretisation. The term CT is a structure term depending on the frequencies that
encode the various operators that appear in the iterated integral given by T . We
conclude this section with a few remarks concerning the structures introduced and
the properties of the resulting low-regularity schemes.

Remark 2.1 The forest formula appear in the BPHZ algorithm [16, 34, 64] for
renormalising Feynman diagrams and was later used for renormalising singular
SPDEs in [12, 22] with an extension of the algebraic structure.

Remark 2.2 The scheme (2.7) has been generalized to non-polynomial nonlinear-
ities and to parabolic equations in [2] with the use of nested commutators first
introduced in [56]. The Birkhoff factorisation discovered in [15] is not available in
this case. It is also not obvious to translate forest formulae into this context. Indeed,
due to the fact that the formula is written in Fourier space, there is no order on
the operators written in Fourier space. This is not the case in physical space. But
one can repeat the construction of the scheme Un,rk in this context and this scheme
should be symmetric as the recursive proofs in Section 4.1 seem robust to this case.

Remark 2.3 The schemes presented in [15] have been adapted to a probabilistic
setting by proposing a low regularity approximation [1] of the second moment of the
Fourier coefficient of the solution, i.e. E(|u(vη, τ )|2) where vη is a random initial
data. In this context, one has to work with paired decorated trees. It possible to
write symmetric schemes for approximating this second moment using our approach.
Also, one can set up an equivalent forest formula on these paired decorated trees.
One open direction is to understand the connection between the algebraic tools
developed for these numerical schemes and the tools used for the rigorous derivation
of the wave kinetic equation (WKE) for NLS is performed in [27, 26, 5]

Remark 2.4 The central novelty of the present work is the structured understanding
of implicit and, in particular, symmetric low-regularity integrators. The local error
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bounds we use in this paper often rely on the previous local error derivations first
introduced in [15]. Indeed, the scheme Un,rk (τ, u) is of the form (2.10) but the local
error analysis comes from the fact that it is defined recursively via the character
Πn,r

mid and therefore the tools from [15] are available. If one found a new scheme by
choosing the coefficients ba,χ,T,T0·...·Tm , it is not clear how to get directly the local
error analysis and check that the scheme is optimal in terms of regularity.

We also make the important remark that given that we derive schemes which are
of implicit nature, an additional fixed-point argument needs to be performed on the
numerical flow in order to rigorously buckle the local error bounds, we refer to the
works of [50, 4] where this analysis is made in detail.

Remark 2.5 On this forest formula, we have identified symmetric schemes and,
in addition, we have provided a general recursive mechanism to derive symmetric
schemes for a large class of PDEs. One can wonder if such an approach could be
repeated for other symmetries. Indeed, we believe that our techniques are fairly
general. The degrees of freedom offered by different Duhamel’s iterations and
interpolations should allow us to capture other symmetries at low regualrity using
variants of the recursive scheme Un,rk (τ, u). One degree of freedom which has not
been used in full generality is the splitting of the operator into dominant and lower
part :

L= Ldom + Llow.

Right now, it is governed by Definition 3.1 that guarantees to get a resonance-based
scheme and a scheme which can be written in physical space. For symplectic
schemes, one expects to have symmetries between the frequencies ofLdom and those
Llow. One should have the possibility of refining this splitting for encapsulating some
symmetries as has been done for the 1D NLSE and the KdV equation in recent work
[50]. The rest of the construction of the scheme remains unchanged. Consequently,
a natural line of future research is the study of such symmetries (%-reversibility,
preservation of quadratic invariants, etc.) directly on a structured tree or forest
expansion of the numerical schemes comparable to the use of B-series in the study
of structure preservation properties of methods for ODEs. We believe that the forest
formulae presented in the current work take a first step in this direction.

Remark 2.6 Let us close this section with an interesting, but crucial observation:
In the context of ODEs it is well known that symmetric methods are of even order
(cf. [36, Theorem IX.2.2]). In general this is, however, not the case for PDEs as the
rate of convergence depends intrinsically on the regularity of the solution, and hence
convergence at even order only holds if sufficient regularity requirements are met
by the solution. For instance, the resonance based midpoint method for the NLS
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equation takes the form (see Section 4.3.1 below for its derivation)

un+1 = eiτ∆un

− i τ
16
eiτ∆

(
(un + e−iτ∆un+1)2ϕ1(−2iτ∆)

(
un + eiτ∆un+1

))
− i τ

16

(
(eiτ∆un + un+1)2ϕ1(2iτ∆)

(
e−iτ∆un + un+1

))
.

(2.11)

This scheme is symmetric and first order with optimal local error structure in the
sense of [15], as its first order local error structure O(τ2∇u) does not require more
regularity on the solution than the asymmetric first order resonance based schemes
of [15, 55]. As the scheme (2.11) is symmetric it is, for C∞ solutions, naturally
of even order, hence, not only of order one, but also of order two. However, a
closer look shows that its second order convergence is only attained for sufficiently
regular solutions: With a similar error analysis as introduced in [4] one can show
that at second order the symmetric scheme (2.11) introduces a local error of type
O(τ3∇∆u) which requires the boundedness of three additional derivatives in order
to attain second order convergence. For initial data in lower order spaces thanH3,
one can obtain fractional convergence of order less than two, see [4]. We make
the additional remark that in view of [15], requiring a local error of O(τ3∇∆u)
is not optimal in the sense of regularity. Indeed, we recall that the second-order
non-symmetric resonance based integrators [15] obeys the favourable error structure
O(τ3∆u), hence asking for one less derivative on the solution.

3 Decorated trees and generalised resonance based schemes

The main object of this manuscript is to formalise the construction of symmetric
resonance based schemes as outlined in section 2. To achieve this we resort to a
new, generalised tree formalism which has already seen (in much simpler version)
significant success in the construction of explicit (asymmetric) resonance based
schemes (cf. [15]). In the present section we will begin by recalling some of the main
definitions in this framework before generalising the construction to incorporate the
possibility of implicit low-regularity integrators before ultimately culminating in
a forest formula (3.16) & (3.23) which captures a broad class of resonance based
numerical schemes in such way that we can later characterise those schemes in this
class which are symmetric in the sense of definition 1.

We recall briefly the structure of decorated trees introduced in [15, Sec. 2]. Let
L a finite set and frequencies k1, ..., km ∈ Zd. We suppose we are given a fixed
time step τ > 0. The set L parametrizes a set of differential operators with constant
coefficients, whose symbols are given by the polynomials (Pt)t∈L. These operators
are given in Fourier space and therefore the polynomials will be evaluated in the
frequencies ki. We define the set of decorated trees T̂ as elements of the form
T n,o
e = (T, n, o, e) where
• T is a non-planar rooted tree with root %T , node set NT and edge set ET . We
denote the leaves of T by LT . T must also be a planted tree which means that
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there is only one edge connecting the root to the rest of the tree.
• the map e : ET → L× {0, 1} are edge decorations. The set {0, 1} encodes the
action of taking the conjugate, and determines the sign of the frequencies at
the top of this edge. Namely, we have that 1 corresponds to a conjugate and to
multiplying by (−1) the frequency on the node above and adjacent to this edge.
• the map n : NT \ {%T } → N2 are node decorations. For every inner node v, this

map encodes a monomial of the form ξn1(v)τn2(v) where ξ is a free time variable
belonging to [0, τ ]. This is a novelty from [15] where we do not have factors in
τ . We need it as in the sequel, we will consider integrals of the form

∫ ξ
τ ...ds.

• the map o : NT \ {%T } → Zd are node decorations. These decorations are
frequencies that satisfy for every inner node u:

(−1)p(eu)o(u) =
∑

e=(u,v)∈ET

(−1)p(e)o(v) (3.1)

where e(e) = (t(e), p(e)) is the edge decoration of e with t(e) ∈ L and p(e) ∈
{0, 1} and eu is the unique edge outgoing from u which is part of the path
connecting u to the root. We denote this edge by (v, u). From this definition,
one can see that the node decorations at the leaves (o(u))u∈LT determine the
decoration of the inner nodes. One can call this identity Kirchhoff’s law. We
assume that the node decorations at the leaves are linear combinations of the ki
with coefficients in {−1, 0, 1}.
• we assume that the root of T has no decoration.
When the node decoration n is zero, we will denote the decorated trees T n,o

e as
T o
e = (T, o, e). The set of decorated trees satisfying such a condition is denoted by

T̂0. We set Ĥ (resp. Ĥ0) the (unordered) forests composed of trees in T̂ (resp. T̂0)
with linear spans Ĥand Ĥ0. The forest product is denoted by ·, the empty forest by
1. Elements in T̂are abstract representation of iterated time integrals and elements
in Ĥ are a product of them.

We now introduce how one can represent uniquely decorated trees by using
symbolic notations. We denote by Io, an edge decorated by o = (t, p) ∈ L×{0, 1}.
We introduce the operator Io(λ`k·) : Ĥ → Ĥ that merges all the roots of the
trees composing the forest into one node decorated by (`, k) ∈ N2 × Zd. The new
decorated tree is then grafted onto a new root with no decoration. If the condition
(3.1) is not satisfied on the argument thenIo(λ`k·) gives zero. If ` = 0, then the term
λ`k is denoted by λk as a short hand notation for λ0

k. The forest product between
Io1(λ`1k1F1) and Io2(λ`2k2F2) is given by:

Io1(λ`1k1F1)Io2(λ`2k2F2) := Io1(λ`1k1F1) ·Io2(λ`2k2F2).

The right hand side of the previous equality could be understood as a set where we
can repeat elements and the forest product is the disjoint union of these sets. Any
decorated tree T is uniquely represented as

T = Io(λ`kF ), F ∈ Ĥ.
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Given an iterated integral, its size is given by the number of integrations in time.
Therefore, we suppose we are given a subset L+ of L that encodes edge decorations
which correspond to time integrals that we have to approximate.

Example 2 We illustrate the definitions introduced above with decorated trees
coming from the NLS equation. We consider the following decorated tree:

T = I(t1,0)

(
λkI(t2,0)(λkI(t1,1)(λk1)I(t1,0)(λk2)I(t1,0)(λk3))

)
=

k1 k3

k2

,

where k = −k1+k2+k3,L = {t1, t2},L+ = {t2},Pt1(λ) = −λ2 andPt2(λ) = λ2.
We put the frequency decorations only on the leaves as those on the inner nodes are
uniquely determined by them. In the table below, we explain the coding of the edges

Edge Decoration Operator
(t1, 0) eitPt1 (k) = e−itk

2

(t1, 1) e−itPt1 (k) = eitk
2

(t2, 0) −i
∫ t

0 e
iξPt2 (k) · · · dξ = −i

∫ t
0 e

iξk2 · · · dξ
(t2, 1) −i

∫ t
0 e
−iξPt2 (k) · · · dξ = −i

∫ t
0 e
−iξk2 · · · dξ

In the end, T is an abstract version of the following integral:

−ie−itk2
∫ t

0
eiξk

2
eiξk

2
1e−iξk

2
2e−iξk

2
3dξ.

The next combinatorial structure which we recall from [15] encodes abstract
versions of a discretization of an oscillatory integral. We denote by T the set of
decorated trees T n,o

e,r = (T, n, o, e, r) where

• T n,o
e ∈ T̂.

• The decoration of the root is given by r ∈ Z, r ≥ −1 such that

r + 1 ≥ deg(T n,o
e ) (3.2)

where deg is defined recursively by

deg(1) = 0, deg(F1 · F2) = max(deg(F1), deg(F2)),

deg(I(t,p)(λ`kF1)) = |`|+ 1{t∈L+} + deg(F1)

where ` = (`1, `2), |`| = `1 + `2, F1, F2 are forests composed of trees in T.
The quantity deg(T n,o

e ) is the maximum number of edges with type in L+,
corresponding to time integrations, and of node decorations n lying on the same
path from one leaf to the root.
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We call decorated trees in T approximated decorated trees. The order of the
approximation is encoded by a new decoration at the root r. We denote by H the
vector space spanned by forests composed of trees in Tand λ`, ` ∈ N2 where λ`
is the tree with one node decorated by `. When the decoration ` is equal to zero
we identify this tree with the empty forest: λ0 = 1. We now define the symbol
Ir
o (λ`k·) : H → H, as the same as Io(λ`k·), with the added adjunction of the

decoration r which constrains the time-approximations to be of order r. It is given
by:

Ir
o (λ`k(

∏
j

λmj
∏
i

Iri
oi (λ`ikiFi))) :=Ir

o (λ
`+
∑
j mj

k (
∏
i

Ioi(λ
`i
ki
Fi))).

We define a projection operator Dr which depends on r and which is used during the
construction of the numerical schemes in order to only retain the terms of order at
most r. We define the map Dr : Ĥ→ Hwhich assigns r to the root of a decorated
tree. This implies a projection along the identity (3.2). It is given by

Dr(1) = 1{0≤r+1}, Dr
(
Io(λ`kF )

)
= Ir

o (λ`kF ) (3.3)

and we extend it multiplicatively to any forest in Ĥ.

Example 3 We illustrate the action of themap Dr on the decorated treeT introduced
in Example 2. One has:

deg(T ) = 1, Dr(T ) = 0, r > 1, Dr(T ) =
r

k1 k3

k2

3.1 Dominant part and polynomial interpolation
Let us now introduce the operations used when approximating integrals represented
by tree formalism as described above. We first recall [15, Def.2.2] that select higher
degree terms in a polynomial of the frequencies.

Definition 3.1 Let P (k1, ..., kn) a polynomial in the ki. If the highest-degree
monomials of P are of the form

a
n∑
i=1

(aiki)m, ai ∈ {0, 1}, a ∈ Z,

then we define Pdom(P ) as

Pdom(P ) = a

(
n∑
i=1

aiki

)m
. (3.4)

Otherwise, it is zero.
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This definition is used for splitting an operator between a lower part and a
dominant part. Indeed, if we consider the polynomial

P (k1, k2, k3) = k2 + k2
1 − k2

2 − k3
3, k = −k1 + k2 + k3.

coming from the NLS equation, we observe that P can be rewritten into the form:

P (k1, k2, k3) = 2k2
1 − 2k1(k2 + k3) + 2k2k3.

Then, we set

Ldom = Pdom(P ) = 2k2
1, Llow = (id−Pdom)(P ).

We note that Ldom asks for boundedness of two derivatives due to the factor k2
1

and Llow only one because the latter consists only of cross products kikj , i 6= j.
Another main reason for this splitting is to be able to map back to physical space the
following integral: ∫ t

0
eisLdomds =

eitLdom − 1

iLdom
.

We observe that it is essential to map back to physical space the term 1
Ldom

equal to
1

2k21
. Such a term is given by ∆−1 in physical space.
The next definition extracted from [15, Def. 2.6] allows us to compute recursively

the various frequency interactions by extracting dominant and lower parts. Such a
definition is required for the local error analysis and the forest formula given in the
sequel.

Definition 3.2 We recursively define Fdom,Flow : Ĥ0 → R[Zd] as:

Fdom(1) = 0 Fdom(F · F̄ ) = Fdom(F ) + Fdom(F̄ )

Fdom(I(t,p)(λkF )) =

{
Pdom(P(t,p)(k) + Fdom(F )), if t ∈ L+,

P(t,p)(k) + Fdom(F ), otherwise
Flow(I(t,p)(λkF )) = (id−Pdom)(P(t,p)(k) + Fdom(F )),

where we recall that L+ is a subset of L that encodes edge decorations which
correspond to time integrals. We extend these two maps to Ĥ by ignoring the node
decorations n.

In a nutshell the above recursive definition means that in the setL\L+, i.e. operators
that do not correspond to integration, we collect all frequency contributions, and in
the set L+, i.e. operators that correspond to integration, we extract the dominant
frequencies of the full integrand.
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Example 4 We illustrate the previous definition on a simple decorated tree coming
from the NLS equation.

T =

k1
k2

k3

= I(t2,0)(λkF ), F = I(t1,1)(λk1)I(t1,0)(λk2)I(t1,0)(λk3).

with k = −k1 + k2 + k3. One has

Fdom(T ) = Pdom(P(t2,0)(k) + Fdom(F ))

because t2 ∈ L+. Then, we use the fact that

P(t2,0)(k) = k2, P(t1,0)(k) = −k2, P(t1,1)(k) = k2

and

Fdom(F ) = Fdom(I(t1,1)(λk1)) + Fdom(I(t1,0)(λk2)) + Fdom(I(t1,0)(λk3))

= P(t2,1)(k1) + P(t2,0)(k2) + P(t2,0)(k3)

= k2
1 − k2

2 − k2
3.

Therefore,

Fdom(T ) = Pdom

(
k2 + k2

1 − k2
2 − k2

3

)
= Pdom

(
2k2

1 − 2k1(k2 + k3) + 2k2k3

)
= 2k2

1

One observes that the projection Pdom projects to zero the cross terms kikj with
i 6= j.

A central novel idea which we introduce in our present work is that we proceed
to interpolate the exponential of the lower part of the operator in place of a direct
Taylor series expansion. The advantage of this procedure is firstly that it allows
us to immediately arrive at stable schemes without the need for filter functions
(the spectrum of iPlow = iP− iPdom typically lies on the imaginary axis so terms
involving the exponential of the operator are all bounded). Secondly, through this
interpolation process we are able to arrive at numerical schemes whose adjoint
has the same functional form which is essential in the construction of symmetric
methods. Classical Taylor expansion for the lower part gives:

eiξLlow =
∑
`≤r

ξ`

`!
(iLlow)` + O(ξr+1(iLlow)r+1)

Now, for reasons of stability, we would like to use a polynomial interpolation that
will give the same local error analysis. We suppose given r+ 1 distinct interpolation
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points 0 ≤ a0 < a1 < · · · < ar ≤ 1 associated to the polynomials pj,r(·, τ ) such
that

pj,r(amτ, τ ) = δj,m.

Then, we define the following approximation

p̃r(f, ξ) =
r∑
j=0

f (ajτ )pj,r(ξ, τ ), f (ajτ ) = eiajτLlow , j = 0, . . . , r,

where we have suppressed the implicit τ -dependency of p̃r(f, ξ) for notational
simplicity. One has the following local error

f (ξ)− p̃r(f, ξ) = O

 r∏
j=0

(ξ − ajτ )(iLlow)r+1

. (3.5)

In the sequel, we will write the polynomial interpolation as:

p̃r(f, ξ) =
r∑
j=0

p̂j,r(f, τ )ξj (3.6)

where the p̂j,r(f, τ ) are bounded in τ because they correspond to linear combinations
of terms of the form exp(iajτLlow). We provide below one example with two points
0 and τ

p̃1(f, ξ) = 1 +
s

τ

(
eisLlow − 1

)
, (3.7)

and

p̂0,1(f, τ ) = 1, p̂1,1(f, τ ) =
eisLlow − 1

τ
,

p0,1(f, ξ) =
τ − s
τ

, p1,1(f, ξ) =
s

τ
eisLlow .

When r = 0 we can, for example, pick

p0(f, ξ) = p̂0,0(f, τ ) = p0,0(f, ξ) = f
(τ

2

)
.

In practice, we will also consider

p̂0,0(f, ξ) =
f (0) + f (ξ)

2
.

The next definition is a slight modification of [15, Def. 3.1] where Taylor
expansions around zero are replaced by an interpolation on the interval [0, τ ] and
we take into account monomials in τ for the discretisation.
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Definition 3.3 Assume that G : ξ 7→ τmξqeiξP (k1,...,kn) where P is a polynomial
in the frequencies k1, ..., kn and let o2 = (t2, p) ∈ L+ × {0, 1} and r ∈ N. Let k
be a linear combination of k1, ..., kn using coefficients in {−1, 0, 1} and

Ldom = Pdom(Po2(k) + P ), Llow = Plow(Po2(k) + P )

f (ξ) = eiξLdom , g(ξ) = eiξLlow , g̃(ξ) = eiξ(Po2 (k)+P).

Then, we define for n ∈ N, r ≥ q, r̃ = r − q −m and n̄ = deg
(
Lr+1

dom

)
+ α

Kk,r
o2 (G,n)(s) =


− i|∇|α(k)

∑
`≤r̃

p̂`,r̃(g̃, τ )
∫ s

0
τmξq+`dξ, if n ≥ n̄,

− i|∇|α(k)
∑
`≤r̃

τmp̂`,r̃(g, τ ) Ψr
n,q(Ldom, `)(s), otherwise.

(3.8)
Thereby we set for (r − q −m− `+ 1) deg(Ldom) + ` deg(Llow) + α > n

Ψr
n,q(Ldom, `)(s) =

∫ s

0
ξq+`f (ξ)dξ. (3.9)

Otherwise,
Ψr
n,q(Ldom, `)(s) =

∑
j≤r̂

p̂j,r̂(f, τ )
∫ s

0
ξq+`+jdξ. (3.10)

Here r̂ = r−q−m−`, deg(Ldom) and deg(Llow) denote the degree of the polynomial
Ldom and Llow, respectively and |∇|α(k) =

∏
α=
∑
γj<deg(L) k

γj
j . If r < q +m, the

map Kk,r
o2 (G,n)(s) is equal to zero.

We perform an example to illustrate the polynomial interpolation.

Example 5 We consider Pt2(λ) = −λ2, p = 0, α = 0, k = −k1 + k2 + k3 and

G(ξ) = ξeiξ(k21−k22−k23).

With the notation of Definition 3.3 we observe that

Ldom = 2k2
1, Llow = −2k1(k2 + k3) + 2k2k3,

Furthermore, we observe as deg(Ldom) = 2, deg(Llow) = 1 and q = 1 that

(r − q − `+ 1) deg(Ldom) + ` deg(Llow) > n if 2r − n > `. (3.11)

We consider the polynomial interpolation given in (3.7) and focus on some cases

• Case r = 1 and n = 1 : We obtain

Kk,1
o2 (G,n)(s) = −ip̂0,0(f, τ )Ψ1

n,1(Ldom, 0)(s)
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= −ip̂0,0(f, τ )
∫ s

0
ξf (ξ)dξ

=
1

2ik2
1

(
se2isk21 − e2isk21 − 1

2ik2
1

)(
1 + eisLlow

2

)
as condition (3.11) takes for ` = 0 the form 2− n > 0.
• Case r = 2 and n = 2: We have that

Kk,2
α (G,n)(s) = −i

(
p̂0,1(g, τ )Ψ2

n,1(Ldom, 0)(s) + p̂1,1(g, τ )Ψ2
n,1(Ldom, 1)(s)

)
and condition (3.11) takes the form 4− n > `.
If ` = 1 we thus obtain

Ψ2
n,1(Ldom, 1)(s) =

∫ s

0
ξ2f (ξ)dξ =

s2

2ik2
2

(
e2isk21 − 2Ψ1

1,1(Ldom, 0)
)
.

If ` = 0, on the other hand, condition (3.11) holds. Henceforth, we have that

Ψ2
n,1(Ldom, 0)(s) =

∫ s

0
ξf (ξ)dξ.

Following a similar proof as for [15, Lem. 3.3] by using (3.5), one gets

Lemma 3.4 We keep the notations of Definition 3.3. We suppose that q +m ≤ r
then one has for s ∈ [0, τ ]

− i|∇|α(k)
∫ s

0
τmξqeiξ(Ldom+Llow)dξ −Kk,r

o2 (G,n)(s) = O(τ r+2kn̄) (3.12)

where n̄ = max(n, deg(Lr−q−m+1
low ) + α).

3.2 A forest formula for resonance based schemes
We recall the characters defined now on H and parametrised by n ∈ N where n
here the a priori regularity assumed on the initial value, that is v ∈ Hn where Hn

is the periodic Sobolev space of order n. These characters give a low regularity
discretisation of some iterated integrals:

Πn
(
F · F̄

)
(s, τ ) = (ΠnF )(s, τ )

(
ΠnF̄

)
(s, τ ), (Πnλ`)(s, τ ) = s`1τ `2 ,

(ΠnIr
o1(λ`kF ))(s, τ ) = s`1τ `2eisPo1 (k)(ΠnDr−|`|(F ))(s, τ ),(

ΠnIr
o2(λ`kF )

)
(s, τ ) = Kk,r

o2

(
Πn
(
λ`Dr−|`|−1(F )

)
(·, τ ), n

)
(s).

(3.13)
where o2 = (t2, p2) with t2 ∈ L+ and o1 = (t1, p1) with t1 ∈ L \ L+ and
` = (`1, `2) ∈ N2. We will use frequently the notations oi in the sequel. The main
difference with [15] is the use of the polynomial interpolation in Definition 3.3.
In the next theorem, we state a forest formula for the resonance scheme in the
sense that we exhibit a general formula for the terms (Πn,rF )(t) where Πn,r is
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short hand notation for ΠnDr. This new forest formula is a significant extension of
contributions in [15] since it incorporates not just the aforementioned polynomial
interpolants but also allows for implicit discretisations in the unknown v. We first
need to introduce some notations that are needed for its formulation. We denote by
ẼT the edges of T associated to an integration in time. They carry a decoration of
the type o2

ẼT = {e ∈ ET | e(e) ∈ L+ × {0, 1}}.

The notation T e means that we consider the planted tree above the edge e in T . This
tree has its root connected to the rest of its nodes by the edge e. ByF0 ·T1...·Tm ⊂ F ,
we mean that the forest

F0 · T1... · Tm ⊂ F (3.14)

is a splitting of F where :
• The Ti are planted trees with the edge connecting the root decorated by an edge

decoration of type o2.
• F0 is a forest either empty or taking the form:

F0 =

m0∏
j=1

T0,j

where the T0,j are subtrees at the root of some trees appearing in the decomposi-
tion of the forest F into product of planted trees.

Example 6 We provide an example of the forests such that F0 · T1... · Tm ⊂ F . Let
us consider F to be the following decorated trees coming from the NLS equation

T =

k4

k1 k3

k2

k5

, T̄ =

k4

k1 k3

k2

k5

Because T starts with a brown edge that is an edge decorated by (t1, 0), F0 is not
empty. Below, we list all the possible splitting respecting this rule and also that the
Ti with i ≥ 1 must be planted trees with a blue edge (decorated by (t2, 0)) at their
root.

k

·
k4

k1 k3

k2

k5

,
k

·
k4

`
k5

·
k1

k2
k3

,

k4
`
k5

·
k1

k2
k3

,

k4

k1 k3

k2

k5
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where ` = −k1 + k2 + k3 and k = −k4 + ` + k5. We also give below the
decomposition for the decorated tree T̄ . Notice that now T̄0 could be empty.

1 ·
k4

k1 k3

k2

k5

, 1 ·
k4

`
k5

·
k1

k2
k3

,

k4
`
k5

·
k1

k2
k3

,

k4

k1 k3

k2

k5

We can obtain these terms by iterating a Butcher-Connes-Kreimer type copoduct
∆BCK : Ĥ0 → Ĥ0 ⊗ Ĥ0, a simple version of the one introduced in [15]. It is defined
recursively by

∆BCKIo1(λ`kF ) =
(
Io1(λ`k·) ⊗ id

)
∆BCKF,

∆BCKIo2(λ`kF ) =
(
Io2(λ`k·) ⊗ id

)
∆BCKF + 1⊗Io2(λ`kF ).

and then extended multiplicatively for the forest product. Below, we provide some
examples of computations:

∆BCK

k4

k1 k3

k2

k5

=

k4

k1 k3

k2

k5

⊗ 1 + 1⊗
k4

k1 k3

k2

k5

+

k4
`
k5

⊗
k1

k2
k3

∆BCK

k1
k2

k3

=

k1
k2

k3

⊗ 1 + 1⊗
k1

k2
k3

Below, we introduce recursive maps ψBCK and ψ̃BCK that can compute the splitting
describe above with the coproduct ∆BCK:

ψBCK =
(

id⊗ ψ̃BCK

)
∆BCK,

ψ̃BCK = M
(
ψ̃BCK ⊗ P1

)
∆BCK, ψ̃BCK(1) = 1

(3.15)

where M is the forest product and P1 = id − 1∗ is is the augmentation projector.
Here 1∗ is the co-unit which is non-zero and equal to one only on the empty forest.
The projector P1 forces at least one cut at each iteration and therefore the recursion
is well-defined. If we apply ψ to T , we obtain a linear combination of the terms
of the form T0 ⊗ T1 · ... · Tm that corresponds exactly to the splitting described
above. We do not get a forest in the end but a term with a tensor product. This is for
distinguishing the root as it is needed in our splitting. As an example of computation
of those maps, one has

ψ̃(
k1

k2
k3

) =

k1
k2

k3
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ψ̃(
k4

k1 k3

k2

k5

) =

k4

k1 k3

k2

k5

+ ψ̃

k4
`
k5

 · k1
k2

k3

=

k4

k1 k3

k2

k5

+

k4
`
k5

·
k1

k2
k3

Theorem 3.5 For every forest F ∈ Ĥ0, (Πn,rF )(t, τ ) takes the form:

∑
a∈[0,1]ẼF

∑
F0·T1...·Tm⊂F

CF e
itFdom(F0)

m∏
j=0

∏
e∈ẼTj

eiτaeFlow(T ej )

ba,F,F0·...·Tm(t, τ, iτFdom(Tj), iτFdom(T0,j̄))

(3.16)

with the convention T0 = F0. The coefficients CF depend only on the node
decorations of F . The coefficients b are polynomial in t and are non zero only for
a finite number of values of a. They are uniformly bounded in τ . Moreover, they
do not depend on the node decorations of the Ti, F0 and F that correspond to the
frequencies.

We recall that in the above notation the parameters n and r in (Πn,rF )(t, τ ) denote
the regularity requirements and maximum length of trees in the approximation
respectively.

Proof. We proceed by induction on the size of the forest F . For the empty forest,
the sum is equal to one by convention and

(Πn,r1)(t, τ ) = 1.

Let F1, F2 two decorated forests with F = F1 · F2 for which we have (3.16). We
apply the induction hypothesis and get

(Πn,rF )(s, τ ) = (Πn,rF1)(s, τ )(Πn,rF2)(s, τ )

=
∑

a1∈[0,1]ẼF1

∑
a2∈[0,1]ẼF2

∑
F1,0·T1,1...·T1,m1⊂F1

∑
F2,0·T2,1...·T2,m2⊂F2

CF1CF2

eit(Fdom(F1,0)+Fdom(F2,0))
m1∏
j=0

∏
e∈ẼT1,j

eiτa1,eFlow(T e1,j ) ×
m2∏
j=0

∏
e∈ẼT2,j

eiτa2,eFlow(T e2,j )

ba1,F1,F1,0·...·T1,m1
× ba2,F2,F2,0·...·T2,m2

.

By using Definition 3.2, we have

Fdom(F1,0) + Fdom(F2,0) = Fdom(F0), F0 = F1,0 · F2,0.
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Then, we can perform the disjoint sum of a1 and a1:

a = a1 + a2

by extending a1 (resp. a2) on the edges of F2 (resp. F1) by zero. Then, a is defined
on the edges of F . We can gather the sum on the forests by:∑

F1,0·T1,1...·T1,m1⊂F1

∑
F2,0·T2,1...·T2,m2⊂F2

=
∑

F0·T1,1...·T1,m1 ·T2,1...·T2,m2⊂F

=
∑

F0·T1...·Tm⊂F

and we can also set

ba,F,F0·...·T1·...·Tm = ba1,F1,F1,0·...·T1,m1
× ba2,F2,F2,0·...·T2,m2

CF = CF1 × CF2

and see that the properties of the coefficient b are preserved by multiplication. Indeed,
we have a bijection between partitions of F = F1 · F2 into a product of trees and
the forest product of partitions of Fi. For a tree of the form Io1(λ`kF ), one has

(ΠnIr
o1(λ`kF ))(t, τ ) = t`1τ `2eitPo1 (k)(Πn,r−`F )(t, τ ).

We multiply the formula for F obtained by the induction hypothesis by eitPo1 (k):

∑
a∈[0,1]ẼF

∑
F0·T1...·Tm⊂F

CF e
it(Fdom(F0)+Po1 (k))

m∏
j=0

∏
e∈ẼTj

eiτaeFlow(T ej )

t`ba,F,F0·...·Tm(t, τ, iτFdom(Tj), iτFdom(T0,j̄)).

From Definition 3.2, we have

Fdom(F0) + Po1(k) = Fdom(Io1(λ`kF0)).

Moreover, for Io1(λ`kF ), the forest at the root must be of the form Io1(λ`kF0). For
the coefficients b, we have

t`1τ `2ba,F,F0·...·Tm = ba,Io1 (λ`kF ),Io1 (λ`kF0)·...·Tm , CIo1 (λ`kF ) = CF

It remains to prove the forest formula for a tree of the form Io2(λ`kF ). We have(
ΠnIr

o2(λ`kF )
)

(t, τ ) = Kk,r
o2

(
Πn
(
λ`Dr−|`|−1(F )

)
(·, τ ), n

)
(t).

We apply the induction hypothesis on Πn,r−|`|−1. Then, the proof boils down
to understand how the operator Kk,r

o2 acts on the forest formula. This operator
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computes first the dominant part of the oscillation. It is given for a fixed forest
F0 · T1... · Tm ⊂ F by

Pdom(Po2(k) + Fdom(F0)) = Fdom(Io2(λ`kF0)).

If this dominant part is integrated exactly, we obtain a factor of the form

eitFdom(Io2 (λ`kF0)).

This will correspond to forests Io2(λ`kF0) · ... · Tm. In this exact integration, we
have terms without this factor which corresponds to the forest 1 ·Io2(λ`kF0) · ... ·Tm
as the forest connected to the root could be the empty forest. For the lower part
given by

(id−Pdom)(Po2(k) + Fdom(F )) = Flow(Io2(λ`kF0))

we perform an interpolation that produces terms of the form

eiτaFlow(Io2 (λ`kF0))), a ∈ [0, 1].

The operator Kk,r
o2 depends on n which is the a priori regularity assumed on the

initial data. With this information, if n is sufficiently big, we can perform a full
Taylor expansion via an interpolation that will produce terms of the form:

eiτaFlow(Io2 (λ`kF0)))eiτa
′Fdom(Io2 (λ`kF0))), a, a′ ∈ [0, 1].

These terms will be associated to a forest of the form 1 ·Io2(λ`kF0) · ... · Tm. The
factor eiτa′Fdom(Io2 (λ`kF0))) will be inside the coeffcients b. The interpolation also
produces monomials in t and τ which implies the polynomial structure of the
coefficients b in t. Also, it produces coefficients bounded in τ such as the p̂j,r(f, τ )
given in (3.6). The choice of the a ∈ [0, 1] are fixed by the interpolation method
and one uses only a finite number of them which implies that the coefficients b are
non-zero on a finite set of the a. Finally, we have

CIo2 (λ`kF ) = −i|∇|α(k)CF .

Theorem 3.6 For every decorated tree T = Io2(λkF ), (Πn,rT )(τ, τ ) takes the
form:∑
a∈[0,1]ẼF

∑
T0·T1...·Tm⊂T

CT

m∏
j=0

∏
e∈ẼTj

eiτaeFlow(T ej )ba,T,T0·...·Tm(τ, iτFdom(Tj)) (3.17)

where the coefficients b are polynomial in τ with bounded coefficient in τ and
are non zero for finite values of a. Moreover, they do not depend on the nodes
decorations of the Ti, F0 and F that correspond to the frequencies.

Proof. The proof works mostly in the same way as for Theorem 3.5 but with t = τ .
The main difference is that when we apply the operator Kk,r

o2 , we put factors of the
form eitFdom(Io2 (λkF0)) in the coefficients b.



Decorated trees and generalised resonance based schemes 29

3.3 A more general forest formula
While we will observe that the above forest formula is sufficient for the charac-
terisation of symmetric resonance based schemes, we can actually allow for an
even larger number of degrees of freedom in the context of this algebraic structure.
This idea leads to a more general forest formula, introduced in the present section,
which might be exploited in finding schemes more general than the resonance based
methods discussed in the present work. We first introduce a new space of decorated
forests with trees having an extra decoration at the root. A tree in T+ is of the form

I(r,m)
o (λ`kF ), Ir

o (λ`kF ) ∈ T,

withm ∈ N2 and the additional constraint that |m| ≤ r + 1 in order to be non zero.
We also assume that λ` does not appear in T+. We set H+ to be the linear span of
H.

We define an extension of ∆BCK using the symbolic notation given by ∆ : H→
H⊗H+ and ∆+ : H+ → H+ ⊗H+

∆1 = 1⊗ 1, ∆λ` = λ` ⊗ 1

∆Ir
o1(λ`kF ) =

(
Ir
o1(λ`k·)⊗ id

)
∆Dr−|`|(F )

∆Ir
o2(λ`kF ) =

(
Ir
o2(λ`k·)⊗ id

)
∆Dr−|`|−1(F ) +

∑
|m|≤r+1

λm

m!
⊗I(r,m)

o2 (λ`kF )

∆+I(r,m)
o2 (λ`kF ) =

(
I(r,m)
o2 (λ`k·)⊗ id

)
∆Dr−|`|−1(F ) + 1⊗I(r,m)

o2 (λ`kF )
(3.18)

and it is extended multiplicatively for the forest product. This coproduct is useful
for providing a nice factorisation of the discretisation Πn given in [15]:

Πn =
(

Π̂n ⊗An
)

∆ (3.19)

where the character Π̂n singles out oscillations and it is recursively defined by

Π̂n
(
F · F̄

)
(s, τ ) =

(
Π̂nF

)
(s, τ )

(
Π̂nF̄

)
(s, τ ), (Π̂nλ`)(s, τ ) = s`1τ `2 ,

Π̂n(Ir
o1(λ`kF ))(s, τ ) = s`1τ `2eiτPo1 (k)Π̂n(Dr−|`|(F ))(s, τ ),

Π̂n(Ir
o2(λ`kF ))(s, τ ) = K

k,r
o2,+(Π̂n(λ`Dr−|`|−1(F ))(·, τ ), n)(s)

(3.20)
with

K
k,r
o2,+ := (id− Q) ◦Kk,r

o2 (3.21)

and Q is the projection that send to zero functions of the form

z 7→
∑
j

Qj(z)eizPj (k1,...,kn), Pj 6= 0.
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The character An : H+ → C applied to I(r,m)
o2 (λ`kF ) is extracting the coefficient of

tm1τm2 multiplied bym! in ΠnIr
o2(λ`kF ). In (3.19), we do not need a multiplication

because An(F ) ∈ C for every F ∈ H+ and C is a C-vector space. Therefore, we
use the identification C⊗ C ∼= C. One main property observed in [15] about Π̂n

is the following factorisation: For every forest F ∈ Ĥ, there exists a polynomial
Bn(Dr(F ))(ξ, τ ) such that

Π̂n(Dr(F ))(ξ, τ ) = Bn(Dr(F ))(ξ, τ )eiξFdom(F ) (3.22)

where Fdom(F ) is given in Definition 3.2.

Proposition 3.7 For every forest F =
∏
j Tj with Tj planted trees, (Π̂n,rF )(t, τ )

takes the form:∑
a∈[0,1]ẼF

CF e
itFdom(F )

∏
e∈ẼF

eiτaeFlow(F e)ba,F (t, τ, iτFdom(Tj)). (3.23)

We assume the coefficients b are polynomial in t, τ with bounded coefficients in τ
and that they are non zero for finite values of a. They also do not depend on the
nodes decorations of F that correspond to the frequencies.

Proof. The proof follows the same lines as for Theorem 3.5 by using the recursive
definition (3.20) of the character Π̂n. It can be seen as a refinement of (3.22).

Theorem 3.8 For every forest F , (Πn,rF )(t, τ ) takes the form:

∑
a∈[0,1]ẼF

∑
F0·T1...·Tm⊂F

CF e
itFdom(F0)

m∏
j=0

∏
e∈ẼTj

eiτaeFlow(T ej )

ba,F,F0·...·Tm(t, τ, iτFdom(Tj), iτFdom(T0,j̄))

(3.24)

with the convention T0 = F0. We assume the coefficients b are polynomial in t, τ
with bounded coefficients in τ and that they are non zero for finite values of a. They
also do not depend on the node decorations of the F, F0 and the Tj that correspond
to the frequencies. Now, the forest F0 ·T1... ·Tm correspond to the splitting obtained
by iterating ∆ and ∆+ not ∆BCK in (3.15). The forest is produced using the map ψ
below:

ψ =
(

id⊗ ψ̃
)

∆, ψ̃ = M
(
ψ̃ ⊗ P1

)
∆+, ψ̃(1) = 1.

Proof. We proceed in the same way as in the proof of Theorem 3.5. The main
difference happens on a tree of the form Io2(λ`kF ). We have(

ΠnIr
o2(λ`kF )

)
(t, τ ) = Kk,r

o2

(
Πn
(
λ`Dr−|`|−1(F )

)
(·, τ ), n

)
(t).
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We apply the induction hypothesis on Πn,r−`−1. Then, the proof boils down to
understand how the operator Kk,r

o2 acts on the forest formula. If the dominant part
Fdom(Io2(λ`kF0)) is integrated exactly, we obtain a factor of the form

eitFdom(Io2 (λ`kF0)).

and this corresponds to forestsIo2(λ`kF0) · ... ·Tm. In this exact integration, we have
terms without this factor and a monomial tq1τ q2 which corresponds to the forest
λq ·I(r,q)

o2 (λ`kF0) · ... · Tm. Then, the coefficent b factors out in the following form:

ba,Iro2 (λ`kF ),λq ·I(r,q)
o2

(λ`kF0)·...·Tm(t, τ, iτFdom(Tj), iτFdom(T0,j̄)) = tq1τ q2

b̃a,Iro2 (λ`kF ),I(r,q)
o2

(λ`kF0)·...·Tm(τ, iτFdom(Tj), iτFdom(T0,j̄))

where the term on the right hand side is bounded in τ . The treatment for the lower
part is exactly the same. If n is sufficiently big, we can perform a full Taylor
expansion via an interpolation that will produce terms of the form:

eiτaFlow(Io2 (λ`kF0)))eiτa
′Fdom(Io2 (λ`kF0))), a, a′ ∈ [0, 1].

These terms will be associated to forests of the form λq ·I(r,q)
o2 (λ`kF0) · ... · Tm. The

factor eiτa′Fdom(Io2 (λ`kF0))) will be inside the coeffcients b.

Remark 3.9 The forest formula given in (3.23) contains more terms than the one
given in (3.16), and therefore more degrees of freedom that could be exploited for
finding new schemes. In the sequel, we will use the first forest formula instead of
this one as one can notice that the dominant part Fdom(F0) does not change if we
change monomial decorations inside F0.

Remark 3.10 While the general forest formula (3.37) is suitable for characterising
symmetric resonance based schemes (cf. Proposition 4.7) it does not (at the current
point) permit a direct analysis of the local error of the scheme, which for a general
symmetric resonance based scheme has to be performed on a case-by-case basis.
On the other hand, the direct construction of explicit resonance based schemes in
[15] automatically allows for local error estimates, which motivates the study of
general Duhamel iterates and a description of the midpoint iterates using decorated
tree series in the following section. It turns out (cf. Section 4) that these iterations
lead to a subclass of symmetric schemes captured by the general formula (3.37)
(cf. Theorem 3.15) which allows us to construct and analyse a class of symmetric
low-regularity integrators of arbitrary given order in a structured way. We will see
in Theorem 3.19 that this iterative approach allows us to derive general estimates
on the local error, even in the case of implicit schemes (implicitness is required for
symmetry of the scheme).
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Example 7 Below, we provide some examples of computations with ∆+:

∆+

(r, r′)

k4

k1 k3

k2

k5

=

(r, r′)

k4

k1 k3

k2

k5

⊗ 1 + 1⊗
(r, r′)

k4

k1 k3

k2

k5

+
∑
m

1

m!
(r, r′)

k4

m
`

k5

⊗
(r − 1,m)

k1
k2

k3

∆+

(r, r′)

k1
k2

k3

=

(r, r′)

k1
k2

k3

⊗ 1 + 1⊗
(r, r′)

k1
k2

k3

where a node of the form m
` in the example above corresponds to the frequency `

and the monomial λm. As an example of computation of ψ̃, one has

ψ̃


(r, r′)

k4

m
`

k5

 =

(r, r′)

k4

m
`

k5

ψ̃(
(r, r′)

k4

k1 k3

k2

k5

) =

(r, r′)

k4

k1 k3

k2

k5

+
∑
m

1

m!
ψ̃


(r, r′)

k4

m
`

k5

 ·
(r − 1,m)

k1
k2

k3

=

(r, r′)

k4

k1 k3

k2

k5

+
∑
m

1

m!
(r, r′)

k4

m
`

k5

·
(r − 1,m)

k1
k2

k3

.

3.4 Midpoint general resonance based schemes
In this section, we introduce new resonance based schemes where we iterate
Duhamel’s formula in slightly different manner. The iteration chosen follows the
mid point rule. These schemes turn out to be a subclass of the general forest
formula (3.37). In this subclass it is also possible to work with a fairly general
framework more closely aligned with [15] which allows for an automatic handle
on the local error of these schemes. In particular, in order to incorporate the
midpoint iterations and subsequent lower part interpolations we need to add more
edge decorations on the trees representing the iterated integrals. For example, we
can consider decorated trees of the form T n,o

e,χ = (T, n, o, e, χ) where χ : ET → D.
Here D is a finite set and encodes the following information for an edge e ∈ NT

decorated by (t, p) :
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• For t /∈ L+, the edge e is associated with a term of the form eiP(t,p)(kv). Then,
χ(e) corresponds of a way of iterating Duhamel’s formula not only using the
leftmost point of the interval but a weighted sum of iterations on various points
in [0, τ ].
• For t ∈ L+, the edge e is associated with a term of the form

∫ t
aτ e

iP(t,p)(kv) · · · ds
where a ∈ [0, 1] and it corresponds to a different Duhamel’s iteration. Now, χ(e)
gives a choice of a polynomial interpolation for the lower part of the resonance
in the discretisation.

For reasons of presentation we focus on the midpoint rule, however, we could also
follow other types of Duhamel iterations. Moreover, in this subclass we take the
polynomial interpolation to be fixed.

To illustrate the central idea of a different way of iterating Duhamel’s formula,
let us first consider the Nonlinear Schrödinger equation. The usual iteration is given
by

u(tn + s) = eiτ∆u(tn)− ieiτ∆

∫ τ

0
e−is∆

(
|u(tn + s)|2u(tn + s)

)
ds.

In Fourier space, we obtain

uk(tn + τ ) = e−iτk
2
uk(tn) (3.25)

− ie−iτk2
∑

k=−k1+k2+k3

∫ τ

0
eisk

2
ûk1(tn + s)uk2(tn + s)uk3(tn + s)ds.

We can now choose to iterate this expression using two possible ways:

uk(tn + s) = e−isk
2
uk(tn) (3.26)

− ie−isk2
∑

k=−k1+k2+k3

∫ s

0
eis̃k

2
uk1(tn + s̃)uk2(tn + s̃)uk3(tn + s̃)ds̃.

and

uk(tn + s) = e−i(s−τ )k2uk(tn + τ ) (3.27)

− ie−isk2
∑

k=−k1+k2+k3

∫ s

τ
eis̃k

2
uk1(tn + s̃)uk2(tn + s̃)uk3(tn + s̃)ds̃.

The iteration (3.26) corresponds to the left end point of the interval [0, τ ] while
(3.27) is the right end point. We now have a choice over each term in (3.25) if we
want the iteration of Duhamel’s formula to begin with (3.26) or (3.27). The average
of the two iterations gives the midpoint rule.

There are quite a lot of degrees of freedom as one can choose various linear
combinations of Duhamel’s formulae in different points. Let us mention that the
tree structure is not modified if one changes the iteration but the definition of Π has
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to reflect this new formulation. The midpoint rule oscillatory integrals are given by

Πmid

(
F · F̄

)
(s, τ ) = (ΠmidF )(s, τ )

(
ΠmidF̄

)
(s, τ ),

(ΠmidIo1(λkF ))(s, τ ) =
1

2
eisPo1 (k)((Πmid,1F )(s, τ ) + (Πmid,2F )(s, τ )),

(Πmid,1Io2(λkF ))(s, τ ) = −i|∇|α(k)
∫ s

τ
eiξPo2 (k)(ΠmidF )(ξ, τ )dξ,

(Πmid,2Io2(λkF ))(s, τ ) = −i|∇|α(k)
∫ s

0
eiξPo2 (k)(ΠmidF )(ξ, τ )dξ.

(3.28)

We notice that, in this definition, we have to keep track of the time step τ in order to
remember the interval [0, τ ]. In this definition, we have assumed that the Duhamel
iteration corresponds to edges decorated by t1. Moreover, we have supposed that F
is not empty for (ΠmidIo1(λkF ))(s, τ ) and s 6= τ . If F is empty, we set

(ΠmidIo1(λk1))(s, τ ) = eisPo1 (k). (3.29)

If τ = s, we set

(ΠmidIo1(λkF ))(τ, τ ) = (ΠmidIo1(λkF ))(τ ) = eiτPo1 (k)(Πmid,2F )(τ, τ ). (3.30)

The last two specific cases are necessary for building up the scheme. Indeed, (3.29)
corresponds to the leaves of our trees or when we terminate on an initial data uki .
Here, we will apply the midpoint rule in the sequel (see (3.33) in the definition of
Υp

mid(T )(v, τ ))
1

2
ukj (0) + e−iτPo1 (kj ) 1

2
ukj (τ ).

The second condition (3.30) corresponds to the fact that the first is not the midpoint
rule approximation as we do not need to perform it as τ = s.

Remark 3.11 This approach also works for the more general scheme given in [2].
The main difference is that now Υp

mid(T )(v, τ ) defined in the sequel is part of the
definition of Πmid.

The scheme Πn,r
mid is defined as the same as for Πmid but now we discretise the

time integrals:(
Πn,r

mid,jIo2(λkF )
)

(s, τ ) = K
k,r
o2,j

(Πn,r
mid (F )(·, τ ), n)(s, τ ), j ∈ {1, 2}

where the map Kk,r
o2,1

(·)(s, τ ) uses the exact integration
∫ τ
s ...dξ and K

k,r
o2,2

the one
given by

∫ s
0 ...dξ. We first introduce some notations:

Definition 8 • For a decorated tree Te = (T, e) with only edge decorations, we
define the symmetry factor S(Te) inductively by S(1) =1, while if T is of the
form ∏

i,j

I(tti ,pi)(Ti,j)
βi,j ,
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with Ti,j 6= Ti,` for j 6= `, then

S(T ) :=
(∏
i,j

S(Ti,j)βi,jβi,j !
)
. (3.31)

We extend this definition to any tree T n,o
e in Tby setting:

S(T n,o
e ) :=S(Te).

Let us stress that the symmetric factor depends only on the edges decorations
but not on the nodes decorations given by the frequencies.
• Then, we define the map Υp

mid(T )(v, τ ) for

T = I(t1,a)

λkI(t2,a)(λk
n∏
i=1

I(t1,0)(λkiTi)
m∏
j=1

I(t1,1)(λk̃j T̃j))

, a ∈ {0, 1}

by

Υp
mid(T )(v, τ ) :=∂nv ∂

m
v̄ pa(v, v̄)

n∏
i=1

Υp
mid(I(t1,0)(λkiTi))(v, τ ) (3.32)

m∏
j=1

Υp
mid(I(t1,1)(λk̃j T̃j))(v, τ )

and

Υp
mid(I(t1,0)(λk))(v, τ ) :=

1

2
vk(0) +

1

2
e−iPo1 (k)τvk(τ )

Υp
mid(I(t1,1)(λk))(v, τ ) :=

1

2
v̄k(0) +

1

2
eiPo1 (k)τ v̄k(τ ).

(3.33)

Above, we have used the notation:

p0(v, v̄) = p(v, v̄), p1(v, v̄) = p(v, v̄)

In the sequel, we will use the following short hand notation:

Υp
mid(T )(v, τ ) = Ῡp

mid(T )(v, τ ).

• We set

T̂0(R) = {I(t1,0)(λkI(t2,0)(λk
N∏
i=1

Ti

M∏
j=1

T̃j)),I(t1,0)(λk)

Ti ∈ T̂0(R), T̃j ∈
¯̂
T0(R), k ∈ Zd}

¯̂
T0(R) = {I(t1,1)(λkI(t2,1)(λk

N∏
i=1

Ti

M∏
j=1

T̃j)),I(t1,1)(λk)



Decorated trees and generalised resonance based schemes 36

Ti ∈
¯̂
T0(R), T̃j ∈ T̂0(R), k ∈ Zd}

T̂2(R) = {I(t2,0)(λk
N∏
i=1

Ti

M∏
j=1

T̃j), Ti ∈ T̂0(R), T̃j ∈
¯̂
T0(R), k ∈ Zd}

For a fixed k ∈ Zd, we denote the set T̂k
0 (R) (resp. ¯̂

Tk
0 (R) and T̂k

2 (R)) as
the subset of T̂0(R) (resp. ¯̂

T0(R) and ¯̂
Tk

2 (R)) whose decorated trees have
decorations on the node connected to the root given by k. For r ∈ Z, r ≥ −1,
we set:

T̂
r,k

0 (R) = {T o
e ∈ T̂k

0 (R) , n+(T o
e ) ≤ r + 1}.

In the previous space, we disregard iterated integrals which have more than r+ 1
integrals and will be of order O(τ r+2). The set T̂r,k

2 (R) is defined as the same
from T̂k

2 (R). In the sequel, we will use the short hand notation for T ∈ T̂k
2 (R):

Υp
mid(T )(v, τ ) = Υp

mid(I(t1,0)(λkT ))(v, τ ).

This truncation leads exactly to the current local error behaviour as shown in
the following proposition which forms the basis of our local error analysis in
Theorem 3.19.

Proposition 3.12 The tree series given by

U rmid,k(τ, v) =
∑

T∈T̂r,k0 (R)

Υp
mid(T )(v, τ )
S(T )

(ΠmidT )(τ ) (3.34)

where o1 = (t1, 0), is the k-th Fourier coefficient of a solution of (3.25) with the
midpoint rule expansion up to order r + 1.

Proof. The proof follows the same lines as the one given in [15, Prop. 4.3].

We are now able to define the main resonance based scheme:

Definition 3.13 The midpoint resonance based scheme is given by:

Un,rmid,k(τ, v) =
∑

T∈T̂r,k0 (R)

Υp
mid(T )(v, τ )
S(T )

(Πn,r
mid T )(τ ) (3.35)

It is obtained by replacing the character Πr
mid by Πn,r

mid in (3.34).

The new scheme (3.35) can be described by the same type of forest formula
introduced before.

Proposition 3.14 For every forest F , (Πn,r
mid F )(t, τ ) is of the form of (3.16). For

every decorated tree T = Io1(λkIo2(λkF )), (Πn,r
mid T )(τ ) is of the form (3.17).
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Proof. The proof follow by induction as in Theorem-3.5 and Theorem 3.6.

Before stating our main result connecting the midpoint resonance based schemes to
our earlier forest formula, we need to introduce a new map

Υp
χ(T )(un+χv

kv
, v ∈ LT , τ )

defined as the same as Υp
mid(T )(v, τ ) except that for the leaves we use

e−iχuτPoeu (ku)un+χu
ku

, (3.36)

where eu is the outgoing edge of u in T and oeu corresponds to the edge decoration
of eu. The map Υp

χ(T ) allows to parametrise implicit schemes as the scheme given
by the midpoint rule.

Theorem 3.15 The low regularity scheme Un,rmid,k is of the form:

un+1
k = eiτPo1 (k)unk + eiτPo1 (k)

∑
T∈T̂r,k2 (R)

∑
a∈[0,1]ẼF

∑
χ∈{0,1}LT

∑
T0·T1...·Tm⊂T

CT ba,χ,T,T0·...·Tm(τ, iτFdom(Tj), j ∈ {0, ...,m})∏
e∈ẼTj

eiτaeFlow(T ej ) Υp
χ(T )(un+χv

kv
, v ∈ LT , τ )

S(T )
,

(3.37)

where T̂r,k
2 (R) was introduced in Definition 8.

Proof. First, we notice that

Un,rmid,k(τ, v) = eiτPo1 (k)unk + eiτPo1 (k)
∑

T∈T̂r,k2 (R)

Υp
mid(T )(v, τ )
S(T )

(Πn,r
mid T )(τ ).

Then, the result is just a consequence of Theorem 3.6 applied to each of the
(Πn,r

mid T )(τ ). Indeed, one multiplies the coefficents for a decorated trees (3.17) with
Υp

mid(T )(v, τ ).

For the local error, we can adapt [15, Def. 3.11].

Definition 3.16 Let n ∈ N, r ∈ Z. We recursively define Lr
low(·, n) as

Lr
low(F, n) = 1, r < 0.

Else, when r ≥ 0, we let:

Lr
low(1, n) = 1, Lr

low(F · F̄ , n) = Lr
low(F, n) + Lr

low(F̄ , n)

Lr
low(Io1(λ`kF ), n) = L

r−|`|
low (F, n)
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Lr
low(Io2(λ`kF ), n) = kαL

r−|`|−1
low (F, n) + 1{r−|`|≥0}

∑
j

kn̄j

where

n̄j = max
m

(
n, deg

(
P(F (1)

j ,F (2)
j ,m)Flow(I(t2,p)(λ`kF

(1)
j ))r−|`|+1−m + α

))
with

∆Dr−|`|−1(F ) =
∑
j

F (1)
j ⊗ F

(2)
j ,

An(F (2)
j )Bn

(
F (1)
j

)
(ξ, τ ) =

∑
|m|≤r−|`|−1

P(F (1)
j ,F (2)

j ,m)

Q(F (1)
j ,F (2)

j ,m)
ξm1τm2

and Flow is defined in Definition 3.2.

Remark 3.17 The main difference between the definition above and [15, Def. 3.11]
is the fact that we deal with monomials of the form sm1τm2 due to the fact that τ
appears in the exact integrations. These modifications are minor from the original
structure as the formalism is robust from moving from decorations on the edges in
N to N2.

With the previous definition, one is able to give the local error of the approximations
of the oscillatory integrals and for the schemes. The proofs are exactly the same as
in [15, Section 3.3].

Theorem 3.18 For every T ∈ Tone has,

(ΠmidT −Πn,r
mid T )(τ ) = O

(
τ r+2Lr

low(T, n)
)
.

The numerical scheme (3.34) approximates the exact solution locally up to order
r + 2. More precisely, the following Theorem holds:

Theorem 3.19 (Local error) The numerical scheme (3.34) with initial value v =
u(0) approximates the exact solution Uk(τ, v) up to a local error of type

Un,rmid,k(τ, v)− Uk(τ, v) =
∑

T∈T̃r,k0 (R)

O
(
τ r+2Lr

low(T, n)Υp
mid(λkT )(v, τ )

)
where the operator Lr

low(T, n), given in Definition 3.16, embeds the necessary
regularity of the solution.

Remark 3.20 The local error of the resonance based low regularity schemes does
not depend on the choice of the polynomial interpolation and the iteration of
Duhamel’s formula but only on the structure of the resonances.

Remark 3.21 As in [15, Prop. 3.18], one can always map back to physical space
the scheme Un,rmid,k. This due to the fact that the structure of the resonances and their
exact integration is the same in this context.
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4 Symmetric schemes

Having introduced the general forest formula in (3.16) & (3.23) and the general
subclass of midpoint general resonance based schemes, we now seek to answer the
central question of this manuscript: “Which schemes in these classes are symmetric
in the sense of definition 1?” For this we take two routes: Firstly, for the subclass
of midpoint general resonance based schemes it turns out that symmetry of the
interpolation nodes is sufficient for the symmetry of the schemes. Secondly, for
schemes captured by the forest formula (3.16) we can study the form of their adjoint
method and find conditions on the coefficients of these schemes under which the
methods are symmetric. We recall the adjoint method of a numerical scheme
vn+1 = Φτv

n is defined by Φ̂τ := Φ−1
−τ and the method is said to be symmetric if

Φ̂τ = Φτ . We can find the adjoint method of a scheme simply by the operations
n ↔ n + 1 and τ ↔ −τ . The swapping of n and n + 1 corresponds in our case
to changing vk(0) into vk(τ ). We define Υ̃p

mid(T )(v, τ ) as the same as Υp
mid(T )(v, τ )

exept that we exchange vk(0) and vk(τ ) in the definition:

Υ̃p
mid(I(t1,0)(λk))(v, τ ) :=

1

2
vk(τ ) +

1

2
eiPo1 (k)τvk(0)

Υ̃p
mid(I(t1,1)(λk))(v, τ ) :=

1

2
v̄k(τ ) +

1

2
e−iPo1 (k)τ v̄k(0).

4.1 Symmetric interpolation
We prove in the next proposition that the Duhamel’s midpoint iteration truncated up
to order r + 1 gives a symmetric scheme. The proof uses the recursive construction
of the iterated integrals.

Proposition 4.1 The scheme defined by (3.34) is symmetric.

Proof. We first observe that the scheme is given by

uk(τ ) = eiτPo1 (k)uk(0) +
∑

T∈T̂r,k0 (R)\{I(t1,0)(λk1)}

Υp
mid(T )(u, τ )
S(T )

(ΠmidT )(τ ).

Now we swap n and n+ 1, and we also send τ onto −τ , we obtain

uk(τ ) = eiτPo1 (k)uk(0)− eiτPo1 (k)
∑

T∈T̂r,k0 (R)\{I(t1,0)(λk1)}

Υ̃p
mid(T )(u,−τ )
S(T )

(ΠmidT )(−τ ).

Then, one has to show that two sums coincide for proving that the scheme is
symmetric. We prove that this is the case for each term of the sum namely, one has:

−e−iτPo1 (k) Υ̃p
mid(T )(u,−τ )
S(T )

(ΠmidT )(−τ ) =
Υp

mid(T )(u, τ )
S(T )

(ΠmidT )(τ ). (4.1)
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Weproceed by induction on the construction of the trees for showing (4.1). Decorated
trees in T̂

r,k
0 (R) \ {I(t1,0)(λk1)} are necessarily of the form

T = I(t1,0)(λkI(t2,0)(λkF )).

We notice that

(ΠmidT )(−τ ) = −i|∇|α(k)eiτP(t1,0)(k)
∫ −τ

0
e−isP(t1,0)(k)(ΠF )mid(s,−τ )ds.

By performing the change of variable s = s+ τ , one gets

(ΠmidT )(−τ ) = i|∇|α(k)
∫ τ

0
eisP(t1,0)(k)(ΠmidF )(s− τ,−τ )ds.

It remains to show that

Υ̃p
mid(Tj)(u,−τ )
S(Tj)

(ΠmidTj)(s− τ,−τ ) =
Υp

mid(Tj)(u, τ )
S(Tj)

(ΠmidTj)(s, τ ),

where Tj = Io1(λkjFj) is a decorated tree appearing in the decomposition of F
into a product of planted trees. If Fj = 1, with loss of generality, we suppose that
o1 = (t1, 0), then

Υp
mid(Tj)(u, τ )
S(Tj)

(ΠmidTj)(s, τ ) =

(
1

2
e−iτPo1 (kj )ukj (τ ) +

1

2
ukj (0)

)
eisPo1 (kj )

=
1

2
ei(s−τ )Po1 (kj )ukj (τ ) +

1

2
eisPo1 (kj )ukj (0)

and

Υ̃p
mid(Tj)(u,−τ )
S(Tj)

(ΠmidTj)(s− τ,−τ ) =

(
1

2
eiτPo1 (kj )ukj (0) +

1

2
ukj (τ )

)
ei(s−τ )Po1 (kj )

=
1

2
ei(s−τ )Po1 (kj )ukj (τ ) +

1

2
eisPo1 (kj )ukj (0).

For (t1, 1), we proceed analogously with the conjugate. For a more general Fj , we
have:

(ΠmidTj)(s− τ,−τ ) =
1

2
ei(s−τ )Po1 (kj )((Πmid,1Fj)(s− τ,−τ ) + (Πmid,2Fj)(s− τ, 0)).

Then Fj is of the form Io2(λkj F̂j). Thus, we have(
Πmid,1Io2(λkj F̂j)

)
(s− τ,−τ ) = −i|∇|α(kj)

∫ s−τ

−τ
eiξPo2 (kj )(ΠmidF̂j)(ξ,−τ )dξ,

= −i|∇|α(kj)
∫ s

0
ei(ξ−τ )Po2 (kj )(ΠmidF̂j)(ξ − τ,−τ )dξ
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and(
Πmid,2Io2(λkj F̂j)

)
(s− τ, 0) = −i|∇|α(kj)

∫ s−τ

0
eiξPo2 (k)(ΠmidF̂j)(ξ,−τ )dξ

= −i|∇|α(kj)
∫ s

τ
ei(ξ−τ )Po2 (k)(ΠmidF̂j)(ξ − τ,−τ )dξ.

We conclude by applying the induction hypothesis on F̂j that is

Υ̃p
mid(Fj)(u,−τ )
S(Fj)

(ΠmidF̂j)(s− τ,−τ ) =
Υp

mid(Fj)(u, τ )
S(Fj)

(ΠmidF̂j)(s, τ ).

We recall the scheme given by the midpoint rule (3.35)

Un,rmid,k(τ, v) =
∑

T∈T̂r,k0 (R)

Υp
mid(T )(v, τ )
S(T )

(Πn,r
mid T )(τ ). (4.2)

The terms (Πn,r
mid T )(τ ) are constructed in a similar way as (ΠmidT )(τ ). The main

difference happens for the computation of the time integrals. Indeed, (Πn,r
mid T )(τ )

performs an approximation with a polynomial interpolation and we need to do it in
a symmetric way. We need the following lemma on the polynomial interpolation in
order to guarantee this property:

Lemma 4.2 If the interpolation nodes aj ∈ [0, 1], j = 0, . . . , r are symmetrically
distributed, i.e. aj = 1− ar−j , j = 0, . . . , r, then

p̃r(s− τ,−τ ) =
r∑
j=0

e−iajτLlowpj(s− τ,−τ ) = e−iτLlow p̃r(s, τ ), (4.3)

where we have used the short hand notation

p̃r(s, τ ) := p̃r(exp(isLlow), τ ).

Proof. To begin with, for any j = 0, . . . , r we have by definition of the interpolating
polynomials p̃r(s, τ ) and p̃r(s,−τ )

p̃r(ajτ, τ ) = eiajτLlow , p̃r(−ajτ,−τ ) = eiajτLlow .

Thus in particular we have

p̃r(ajτ − τ,−τ ) = p̃r(−ar−jτ,−τ ) = eiar−jτLlow

= eiτLlowe−iajτLlow = eiτLlow p̃r(ajτ, τ ),

for each j = 0, . . . , r. Thus, for any given τ , p̃r(s− τ,−τ ) and e−iτLlow p̃r(s, τ ) are
two polynomials in s of degree ≤ r which match at r+ 1 distinct points, so they are
identical.
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Theorem 4.3 The scheme given by (3.35) is symmetric.

Proof. The proof works in the same manner as for Proposition 4.1. The main
difference is the use of the operator Kk,r

o2,j
. We suppose that

Υ̃p
mid(Fj)(u,−τ )
S(Fj)

(Πn,r
mid F̂j)(s− τ,−τ ) =

Υp
mid(Fj)(u, τ )
S(Fj)

(Πn,r
mid F̂j)(s, τ ) (4.4)

and we consider(
Πn,r

mid,1Io2(λkj F̂j)
)

(s− τ,−τ ) = K
kj ,r
o2,1

(
(Πn,r

mid F̂j)(·,−τ ), n
)

(s− τ,−τ ).

From (4.4), we know that Πn,r
mid F̂j is of the form

(Πn,r
mid F̂j)(s, τ ) = ei(s−τ )Fdom(F̂j )A(s− τ ) + eisFdom(F̂j )A(s).

Now, when we apply the operator Kk,r
o2,j

, we get among various cases the exact
integration

r∑
`=0

∫ s−τ

−τ
eiξLdome−iajτLlowp`,r(ξ,−τ )

(
eiτFdom(F̂j )A(ξ + τ ) +A(ξ)

)
dξ

=

r∑
`=0

∫ s

0
ei(ξ−τ )Ldome−iajτLlowp`,r(ξ − τ,−τ )

(
eiτFdom(F̂j )A(ξ) +A(ξ − τ )

)
dξ

=

∫ s

0
ei(ξ−τ )Ldome−iτLlow p̃r(s, τ )

(
eiτFdom(F̂j )A(ξ) +A(ξ − τ )

)
dξ

where from the second to the third line, we have used the assumption (4.3) and we
have

Ldom + Llow = Po2(kj) + Fdom(F̂j).

Therefore, we obtain in the end

e−iτPo2 (kj )
∫ s

0
eiξLdom p̃r(s, τ )

(
A(ξ) + e−iτFdom(F̂j )A(ξ − τ )

)
dξ

which allows us to conclude the symmetry of the method.

4.2 Conditions for symmetry
Based on the general expression of the scheme (3.37) we can arrive at sufficient
conditions for the methods to be symmetric. The following observation is crucial:

Lemma 4.4 Let T a decorated tree in T̂k
0 (R) as introduced in (3.14). We have

Fdom(T ) +
∑
e∈ẼT

Flow(T e) =
∑
v∈LT

Poev (kv)

where ev is the outgoing edge of v in T and oev corresponds to the edge decoration
of ev. The kv are the leaves decorations corresponding to the frequencices. The
dominant part Fdom(T ) and the lower parts Flow(T e) depend on them.
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Before proving this statement let us briefly exhibit the meaning based on a simple
example already introduced in Example 4.

Example 9 We consider the simple decorated tree from the NLSE

T = I(t1,0)(λkT̃ ) =

k1
k2

k3

,

with k = −k1 + k2 + k3 we use the fact that

P(t1,0)(k) = −k2, P(t1,1)(k) = k2

to find∑
v∈LT

Poev (kv) = P(t1,1)(k1) + P(t1,0)(k2) + P(t1,0)(k3) = k2
1 − k2

2 − k2
3.

Moreover we have already established in Example 4 that

Fdom(T ) = Fdom(T̃ ) + P(t1,0)(k) = 2k2
1 − k2

On the other hand, we have

Flow(T̃ ) = k2 − k2
1 − k2

2 − k2
3

and the set ẼT is composed of only one edge which is the only blue edge in T . We
have T e = T̃ . In the end

Fdom(T ) +
∑
e∈ẼT

Flow(T e) = Fdom(T ) + Flow(T )

= 2k2
1 − k2 + k2 − k2

1 − k2
2 − k2

3

= k2
1 − k2

2 − k2
3

=
∑
v∈LT

Poev (kv).

Proof of Lemma 4.5. We proceed by induction on the size of the trees. If T is of
the form I(t1,a)(λk1) then

Fdom(I(t1,a)(λk1)) = P(t1,a)(k)

which allows us to conclude the desired result since ẼT is empty and this tree has only
one leaf giving a contribution P(t1,a)(k). If T is of the form I(t1,a)(λkI(t2,a)(λkF ))
then

Fdom(T ) +
∑
e∈ẼT

Flow(T e) = P(t1,a)(k) + Fdom(I(t2,a)(λkF ))
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+ Flow(I(t2,a)(λkF )) +
∑

e∈ẼT \{ē}

Flow(T e)

where ē denotes the edge such that T ē = I(t2,a)(λkF ). Now, we use Definition 3.2
to notice that

Fdom(I(t2,a)(λkF )) + Flow(I(t2,a)(λkF )) = P(t2,a)(k) + Fdom(F ).

By definition, we have also

P(t2,a)(k) + P(t1,a)(k) = 0. (4.5)

We got in the end

Fdom(T ) +
∑
e∈ẼT

Flow(T e) = Fdom(F ) +
∑

e∈ẼT \{ē}

Flow(T e)

= Fdom(F ) +
∑
e∈ẼF

Flow(F e).

We continue the induction by observing that F is a product of trees in T̃
r,k

0 (R). We
apply the induction hypothesis on each of these trees and use the fact that Fdom is
additive for the forest product in order to conclude.

Lemma 4.5 Let T0 · T1... · Tm ⊂ I(t2,0)(λkF ) ∈ T̂k
2 (R) be a splitting of F as

introduced in (3.14). Then we have

m∑
j=0

Fdom(Tj) +
∑
e∈ẼTj

Flow(T ej )

 =
∑
v∈LF

Poev (kv) + P(t2,0)(k). (4.6)

Proof. This is a consequence of Lemma 4.4 applied to each of the Tj . In the end,
we do not get all the leaves of the Tj but only the ones in F because the root of the
Tj (j ≥ 0) is associated with a leaf in a Ti. Indeed, this introduced a cancellation of
the type (4.5).

Example 10 Let us consider the following forest

F = k4 ·

k1 k3

k2

· k5

such that T = I(t2,0)(λkF ) is identified with

T =

k4

k1 k3

k2

k5
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with k = −k1 − k4 + k2 + k3 + k5. We consider the following forest splitting of T ,
with T0 · T1 ⊂ T :

T0 =

k4
`
k5

, T1 =

k1
k2

k3

with k = k4 − ` − k5 and ` = −k1 + k2 + k3. Let us compute both sides of the
identity (4.6) for this forest splitting: Beginning with the left hand side where we
have

Fdom(T0) = 2k2
4.

Moreover, since the tree has just one single blue edge the sum simplifies and we find∑
e∈ẼT0

Flow(T0) = Flow(T e0 ) = −k2
4 − k2

5 − `2 + k2,

and, similarly for T1 we have

Fdom(T1) = 2k2
1,∑

e∈ẼT1

Flow(T e1 ) = −k2
1 − k2

2 − k2
3 + `2.

For the right hand side on the other hand we obtain∑
v∈LF

Poev (kv) = k2
4 + k2

1 − k2
2 − k2

3 − k2
5,

P(t2,0)(k) = −k2.

Combining all of the above expressions clearly shows that the identity (4.6) is indeed
satisfied in the present example.

Remark 4.6 The appearance of the term P(t2,0)(k) in (4.6) is due to the fact that
here we consider forest splittings of trees inside T̂k

2 (R). Had we instead chosen to
work with trees inside T̂k

0 (R) this term would disappear from the above identity.
Essentially, like in the previous proof, if we want to express the sum of the dominant
and lower order parts in a forest splitting we can take advantage of cancellations of
the form (4.5), meaning as soon as a blue dotted and brown solid edge are adjacent
this leads to cancellation of the contribution from the nodal decoration in the overall
identity. This means the only terms left are those which cannot be paired with an
edge of conjugate colour, in particular the root and all the leaves of the resulting tree.

Proposition 4.7 If the coefficients b, satisfy the following simple relation

−

 m∏
j=0

ezj

ba,χ,T,T0·...·Tm(−τ,−zj) = b1−a,1−χ,T,T0·...·Tm(τ, zj) (4.7)
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for every a ∈ [0, 1]ẼF , χ ∈ {0, 1}LT and any splitting T0 · T1... · Tm ⊂ T , then the
method (3.37) is symmetric.

Proof. Let us consider the adjoint method Φ̂n→n+1 = Φ−1
n+1→n, which can be

expressed as follows

un+1
k = eiτPo1 (k)unk −

∑
T∈T̂r,k2 (R)

∑
a∈[0,1]ẼF

∑
χ∈{0,1}LT

∑
T0·T1...·Tm⊂T

CT

ba,χ,T,T0·...·Tm(τ, iτFdom(Tj), j ∈ {0, ...,m})∏
e∈ẼTj

eiτaeFlow(T ej ) Υp
χ(T )(un+χv

kv
, v ∈ LT ), τ

S(T )
.

By using Lemma 4.5, we have

un+1
k = eiτPo1 (k)unk − eiτPo1 (k)

∑
T∈T̃r,k0 (R)

∑
a∈[0,1]ẼF

∑
χ∈{0,1}LT

∑
T0·T1...·Tm⊂T

CT

 m∏
j=0

eiτFdom(Tj )

ba,χ,T,T0·...·Tm(−τ,−iτFdom(Tj), j ∈ {0, ...,m})

∏
e∈ẼTj

eiτ (1−ae)Flow(T ej ) Υp
χ(T )(un+1−χv

kv
, v ∈ LT , τ )

S(T )

∏
v∈LT

e−iτPoev (kv).

(4.8)

Here we have used the fact that

Υp
χ(T )(un+1−χv

kv
, v ∈ LT , τ )

∏
v∈LT

e−iτPoev (kv) = Υp
χ(T )(un+χv

kv
, v ∈ LT , τ )

which can be proved easily by induction on T using the recursive definition of Υp
χ.

We have also used the identity

Po1(k) = −P(t2,0)(k).

By comparing (3.37) and (4.8) we immediately obtain the conditions (4.7) for
symmetry.

4.3 Examples
In this section we illustrate the general framework introduced previously on two
examples: the nonlinear Schrödinger equation (see Section 4.3.1) and the Korteweg-
de Vries equation (see Section 4.3.2).
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4.3.1 The Nonlinear Schrödinger equation

As a first example let us consider the cubic nonlinear Schrödinger (NLS) equation

i∂tu(t, x) + ∆u(t, x) = |u(t, x)|2u(t, x) (t, x) ∈ R× Td (4.9)

with an initial condition
u|t=0 = u0. (4.10)

We start with the construction of a first-order symmetric low-regularity scheme for
(4.9) and illustrate how our general framework covers both the previous explicit
low-regularity schemes [15], [2] and the case of symmetric low-regularity schemes
for NLS which was recently introduced and studied in [4], [29], [50]. We then exhibit
our new symmetric midpoint rule framework (3.35), which in particular allows for a
symmetric second order scheme which is optimal in the sense of regularity.

Note that the Schrödinger equation (4.9) fits into the general framework (1.1)
with

L

(
∇, 1

ε

)
= ∆, α = 0 and p(u, u) = u2u.

HereL= {t1, t2}, Pt1 = −λ2 and Pt2 = λ2, and the structure constantCT = 1

for all T ∈ T̂
r,k

0 (R), for any r ∈ N. Then, we denote by an edge decorated by
(t1, 0), an edge denoted by (t1, 1) by an edge decorated by (t2, 0) and by an edge
decorated by (t2, 1). The set T̂0,k

0 (R) is given by:

T̂
0,k

0 (R) =
{
T0, T1, ki ∈ Zd

}
, T0 =

k

, T1 =

k1
k2

k3

, (4.11)

and T̂
1,k

0 (R) is given by:

T̂
1,k

0 (R) =
{
T0, T1, T2, T3, ki ∈ Zd

}
, T2 =

k4

k1 k3

k2

k5

, T3 =

k4

k1 k3

k2

k5

.(4.12)

If we take all coefficients equal to zero whenever T is not given by

T =

k1
k2

k3

,

and we consider only the forest F = T , then the general formula (3.37) reduces to a
single term of the form:

un+1
k = e−iτk

2
unk + e−iτk

2
∑
a∈[0,1]

∑
χ∈{0,1}LT

ba,χ(τ, iτFdom(T ))
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eiτaFlow(T ) Υp
χ(T )(un+χv

kv
, v ∈ LT )

S(T )
.

Note here |LT | = 3 so we can equivalently write the above expression in the
following form in Fourier coordinates. Indeed, by noting that Fdom(T ) = 2k2

1 ,
Flow(T ) = 2k2k3 − 2k1k2 − 2k1k3 we have

un+1
k = e−iτk

2
unk + e−iτk

2
∑

k=−k1+k2+k3

∑
a∈[0,1]

∑
χ∈{0,1}3

ba,χ(τ, 2iτk2
1)

eiτa2(k2k3−k1k2−k1k3)v̂n+χ1

k1
v̂n+χ2

k2
v̂n+χ3

k3
.

(4.13)

First of all we note that the first order integrator developed in [55] falls in this
category: Take b0,(0,0,0)(τ, z) = −iτϕ1(z) and all other coefficients to zero then we
find

un+1
k = e−iτk

2
unk − ie−iτk

2
∑

k=−k1+k2+k3

τϕ1(2iτk2
1)unk1u

n
k2u

n
k3 ,

which is exactly equal to the integrator introduced in [55, (4)]. In physical space the
above scheme is given by

un+1 = Φτ
NLS,1(un) =eiτ∆un − ieiτ∆

(
(un)2ϕ1(−2iτ∆)un

)
, (4.14)

where the filter function ϕ1 is defined as ϕ1(σ) = eσ−1
σ .

Let us now consider symmetric schemes. Following Proposition 4.7 the scheme
(3.37) is symmetric if the following equality is satisfied for all a ∈ [0, 1], χ ∈ {0, 1}3:

−ezba,χ(−τ,−z) = b1−a,1−χ(τ, z). (4.15)

Intuitively speaking the above equations provide a sufficient condition relating the
coefficients ba,χ and b1−a,1−χ therefore allowing us to find symmetric schemes
if we specify one of the two for each value of a, χ. There are a large class
of first order schemes in this form, but perhaps one of the simplest ones is the
following symmetrised version of the integrator from [55] which was recently
introduced in [4]: Take b0,(0,0,0)(τ, z) = i/2τϕ1(z/2), then by (4.15) we should
choose b1,(1,1,1)(τ, z) = i/2τϕ1(−z/2). We take all other coefficients equal to zero,
which results precisely in the following integrator:

un+1 = Φτ
NLS,2(un) =eiτ∆un − iτ

2
eiτ∆

(
(un)2ϕ1(−iτ∆)un

)
− iτ

2

(
(un+1)2ϕ1(iτ∆)un+1

)
.

(4.16)

Note this is not the only symmetric first order integrator that can be found in this
way. For example we could have taken

b0,(1,0,0)(τ, z) = i/2τϕ1(z/2), b1,(0,1,1)(τ, z) = i/2τϕ1(−z/2),
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and all other coefficients zero.
Next we choose the coefficients

ba,(χ1,χ2,χ3)(τ, z) = −i τ
16
ϕ1(z)

for every a, χj ∈ {0, 1}. The other coefficients are set to be zero which leads to the
following symmetric scheme (4.9)

un+1 = Φτ
NLS,3(un) (4.17)

= eiτ∆un − i τ
16
eiτ∆

(
(un + e−iτ∆un+1)2ϕ1(−2iτ∆)

(
un + eiτ∆un+1

))
− i τ

16

(
(eiτ∆un + un+1)2ϕ1(2iτ∆)

(
e−iτ∆un + un+1

))
.

The above scheme can also be recursively derived by the general framework of the
midpoint rule (3.35) and therefore allows for higher order symmetric counterparts
which are optimal in the sense of regularity. Our characterisation of symmetric
schemes in Proposition 4.7 immediately confirm this method to be symmetric, since
for all a, χ we have

−ezba,χ(−τ,−z) = −i τ
16
ezϕ1(−z) = −i τ

16

1− ez

−z
= ϕ1(z)b1−a,1−χ(τ, z).

Proposition 4.8 The scheme (4.17) can be derived from the general tree series
expansion (3.35).

Proof. At first order it follows from (3.35) that we have

U rk (τ, u) =
∑

T∈T̂0,k
0 (R)

Υp
mid(T )(u, τ )
S(T )

(Πn,r
mid T0)(τ )

=
Υp

mid(T0)(u, τ )
S(T0)

(Πn,r
mid T0)(τ ) +

∑
k=−k1+k2+k3

Υp
mid(T1)(u, τ )
S(T1)

(Πn,r
mid T1)(τ )

From the definition of the symmetry factor, one has

S(T0) = 1, S(T1) = 2

for S(T1) the factor two is due to the fact that we have two solid brown edges
attached to the same node in T1. Moreover, we have:

Υp
mid(T0)(u, τ ) = u`k

Υ̂p
mid(T0)(u, τ ) =

1

2
(eiτk

2
u`+1
k + u`k)

where we have used ` instead of n such that to not create confusion with Πn,r. By
multiplicativity, for the following tree:

T̃1 = k1
k2

k3 ,
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we have

Υp
mid(T1)(u, τ ) = Υ̂p

mid(T̃1)(u, τ )

= 2
1

2
(e−iτk

2
1 ū`+1

k1
+ ū`k1)

1

2
(eiτk

2
2u`+1

k2
+ u`k2)

1

2
(eiτk

2
3u`+1

k3
+ u`k3)

On the other hand, we have

(Πn,r
mid T0)(τ ) = e−iτk

2
, (Πn,r

mid T̃1)(s, τ ) = ei(k
2
1−k22−k23),

Then,

(Πn,r
mid T1)(τ ) = e−iτk

2
Kk,r
o2 ((Πn,r−1

mid T̃1)(·, τ ), n)(τ )

We compute the scheme for n = 1 and r = 0. We obtain the following term:

Kk,r
o2 ((Πn,r−1

mid T̃1)(·, τ ), n)(τ ) = −i
∫ τ

0
eisLdomds

(
1 + eiτLlow

2

)
where

Ldom = 2k2
1, Llow = k2 − k2

1 − k2
2 − k2

3.

In the end, we have

(Πn,r
mid T1)(τ ) = −iτϕ1(2iτk2

1)

(
e−iτk

2
+ e−iτ (k21+k22+k23)

2

)
.

We note that

ϕ1(2iτk2
1)e−2iτk21 = ϕ1(−2iτk2

1).

Therefore, we have∑
k=−k1+k2+k3

Υp
mid(T1)(u, τ )
S(T1)

(Πn,r
mid T1)(τ ) = −i

∑
k=−k1+k2+k3

e−iτk
2

2
τϕ1(2iτk2

1)

1

2
(e−iτk

2
1 ū`+1

k1
+ ū`k1)

1

2
(eiτk

2
2u`+1

k2
+ u`k2)

1

2
(eiτk

2
3u`+1

k3
+ u`k3)

+ τ
ϕ1(−2iτk2

1)
2

1

2
(ū`+1
k1

+ eiτk
2
1 ū`k1)

1

2
(u`+1
k2

+ e−iτk
2
2u`k2)

1

2
(u`+1
k3

+ e−iτk
2
3u`k3).

In physical space this leads to the first order symmetric low regularity integrator for
the NLS equation (4.17).

Remark 4.9 The derivation of the scheme (4.17) from the generalmidpointDuhamel
iterations exhibits an interesting recipe for resonance based schemes that are
constructed for equations of the form

i∂tu(t, x) + L
(
∇, 1

ε

)
u(t, x) = |∇|αp(u(t, x), u(t, x)),

u(0, x) = v(x).
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Indeed, suppose we have already obtained an explicit first-order resonance based
scheme for the above equation (cf. [55, 39] etc.) of the general form

un+1 = Φτ (un),

where Φτ is a general nonlinear map representing the time step, then this can be
easily converted to a second order symmetric method simply by considering instead

un+1 = Φτ

e−iτL(∇,1ε)un+1 + un

2

.
Remark 4.10 In similar vein to Proposition 4.8 we could derive the scheme (4.16)
from a generalised tree series expansion. However, instead of using a midpoint
iteration of Duhamel’s formula as introduced in Section 3.4 we would have to iterate
in the following way: By averaging (3.26) and (3.27) we find

uk(tn + s) =
e−isk

2
uk(tn) + e−i(s−τ )k2uk(tn + τ )

2

− i

2
e−isk

2
∑

k=−k1+k2+k3

∫ s

0
eis̃k

2
uk1(tn + s̃)uk2(tn + s̃)uk3(tn + s̃)ds̃︸ ︷︷ ︸

=:I1

− i

2
e−isk

2
∑

k=−k1+k2+k3

∫ s

τ
eis̃k

2
uk1(tn + s̃)uk2(tn + s̃)uk3(tn + s̃)ds̃︸ ︷︷ ︸

=:I2

.

Instead of iterating this midpoint expression throughout all appearances of uj(tn+ s̃)
in the above expression (as we do for the Duhamel midpoint iterates) we could just
as well choose to iterate the left endpoint Duhamel formula (3.26) in the terms from
I1 and the right endpoint Duhamel formula (3.27) in the terms from I2. Repeating
this process can be captured with a decorated tree series in analogous manner to
the midpoint iterations and truncating such an expansion again leads to symmetric
low-regularity schemes, including (after one such iteration and truncation of all
terms involving at least double integrals) the scheme (4.16).

Proposition 4.11 The schemes (4.14), (4.16) and (4.17) have a local error of order
O(τ2∇u).

Proof. First, for the explicit scheme (4.14) the local error directly follows from
Theorem (3.19) and can be computed using Definition 3.16 as it is performed
in the proof of [15, Cor. 5.1]. In order to obtain the local error bounds of the
implicit schemes (4.16), (4.17) one needs to apply Theorem (3.19) and to combine
it with a fixed-point argument on the numerical flow. To go further, the first order
convergence of these schemes follow by combining the local error bound with a
stability argument, we refer to the works [50, 4] which perform this analysis in full
detail.
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Remark 4.12 The symmetric scheme (4.16) was first rigorously analysed in [4]. In
particular it was shown in [4] that the local error of the scheme is of order O(τ2∇u),
which is optimal in regard of the regularity assumptions. Indeed, the scheme
(4.16) does not require more regularity on the solution than previously constructed
asymmetric low regularity integrators such as (4.14) introduced in [55, 15]. As the
scheme (4.16) is symmetric it is naturally also of second order; however, not under
optimal regularity assumptions (see also Remark 2.6). More precisely, by exploiting
the tools presented in [4] one can show that the scheme (4.16) (as well as (4.17)) is
of second order with a local error of order O(τ3∇∆u). This error structure imposes
more regularity on the solution than asymmetric low-regularity integrators such as
the ones proposed in [15] which only require the boundedness of two additional
derivatives instead of three due to the local error of the form O(τ3∆u).

Our new symmetric midpoint rule framework (3.35) allows for a symmetric
second order scheme which is optimal in the sense of regularity, i.e., has a local
error structure of the form O(τ3∆u), see the scheme (4.18) below.

Proposition 4.13 The second order scheme coming from (3.35) is given by:

un+1 = ϕτNLS,4(un) = eiτ∆un (4.18)

− iτ
8
eiτ∆

(
(un + e−iτ∆un+1)2(ϕ1(−2iτ∆)− ϕ2(−2iτ∆))

(
un + eiτ∆un+1

))
− iτ

8

(
(eiτ∆un + un+1)2ϕ2(−2iτ∆)

(
eiτ∆un + e2iτ∆un+1

))
with a local error structure of the form O(τ3∆u) and ϕ2(σ) = eσ−ϕ1(σ)

σ .

Remark 4.14 In practice the computational effort required to compute un+1 in
(4.18) is not significantly larger than the solution of (2.11) or other previous
symmetric low-regularity methods for the NLSE. In particular, a similar analysis to
that presented in [4, Section 3], [7, Appendix A] and [50] shows that the implicit
equations can be solved efficiently using fixed point iterations, and that the number
of iterations required is independent of the number of spatial discretisation points.

Remark 4.15 One can find the coefficients b for the scheme (4.18) such that it is of
the form given by (3.37).

Proof of Proposition 4.13. For the scheme of order two (r = 1) and n = 2, one has
to consider:

Un,1k (τ, u) =
∑

T∈T̂1,k
0 (R)

Υp
mid(T )(u, τ )
S(T )

(Πn,1
mid T0)(τ )

=
Υp

mid(T0)(u, τ )
S(T0)

(Πn,1
mid T0)(τ ) +

∑
k=−k1+k2+k3

Υp
mid(T1)(u, τ )
S(T1)

(Πn,1
mid T1)(τ )

+
∑

k=−k1+k2+k3−k4+k5

Υp
mid(T2)(u, τ )
S(T2)

(
Πn,1

mid T2

)
(τ )
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+
∑

k1−k2−k3+k4+k5=k

Υp
mid(T3)(u, τ )
S(T3)

(
Πn,1

mid T3

)
(τ ).

From the definition of the symmetry factor, we have

S(T2) = 1× 2 = 2, S(T3) = 2× 2 = 4,

for S(T2) the factor one corresponds to the fact that for the node on top of the first
blue edges the symmetry factor is one. Indeed, the trees on top of the brown edges
are different: a leaf decorated by k5 is different from a tree having three leaves.
Moreover, we have:

Υp
mid(Tj)(u, τ ) = Υp(Tj)(

1

2
(eiτk

2
un+1 + un)), j ∈ {2, 3},

where

Υp(T2)(u) = 4ūk1uk2uk3 ūk4uk5 , Υp(T3)(u) = 4uk1 ūk2 ūk3uk4uk5 .

The factor 4 in both expressions comes from the two brown edges that appear twice
inside the decorated trees T2 and T3. For the term (Π2,1

mid T1)(τ ), we proceed with
interpolation at two nodes (a0 = 0, a1 = 1):

p2(s, τ ) = 1 +
s

τ

(
eisLlow − 1

)
,

where

Ldom = 2k2
1, Llow = k2 − k2

1 − k2
2 − k2

3.

We obtain

Kk,1
o2 ((Π2,0

mid T̃1)(·, τ ), 2)(τ ) = −i
∫ τ

0
eisLdomds− i

∫ τ

0
seisLdomds

(
eiτLlow − 1

τ

)
− iτϕ1(2iτk2

1)− iτϕ2(2iτk2
1)
(
eik

2−k21−k22−k23 − 1
)
.

Therefore, ∑
k=−k1+k2+k3

Υp
mid(T1)(u, τ )
S(T1)

(Π2,1
mid T1)(τ )

=
(
−iτϕ1(2iτk2

1)− iτϕ2(2iτk2
1)
(
eik

2−k21−k22−k23 − 1
))

× (e−iτk
2
1 ūn+1

k1
+ ūnk1)

1

2
(eiτk

2
2un+1

k2
+ unk2)

1

2
(eiτk

2
3un+1

k3
+ unk3)

For the decorated tree T2, we have(
Π2,1

mid T2

)
(τ ) = e−iτk

2
Kk,1
o2

(
(Π2,0

midF2)(·, τ ), 2
)

(0, τ ) (4.19)
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where

F2 = I(t1,1)(λk4)I(t1,0)(λk5)T1.

Then,

(Π2,0
mid I(t1,1)(λk4)I(t1,0)(λk5))(s, τ ) = eis(k24−k25)

and for k̃ = −k1 + k2 + k3

(Π2,0
mid T1)(s, τ ) =

1

2
e−isk̃

2
(
Kk̃,0
o2 ((Π2,−1

mid T̃1)(·, τ ), 2)(s, τ )

+Kk̃,0
o2 ((Π2,−1

mid T̃1)(·, τ ), 2)(s, 0)
)
,

Now, because of n = 2, we perform a direct interpolation of the full operator which
gives

Kk̃,0
o2 ((Π2,−1

mid T̃1)(·, τ ), 2)(s, τ ) = −i
∫ s

τ
ds

(
1 + eiτ (k̃2+k21−k22−k23)

2

)
.

We obtain

(Π2,0
mid T1)(s, τ ) = −i (2s− τ )

2
e−isk̃

2

(
1 + eiτ (k̃2+k21−k22−k23)

2

)
.

Therefore, we find

(Π2,0
midF2)(s, τ ) = −i (2s− τ )

2
eis(k24−k25−k̃2)

(
1 + eiτ (k̃2+k21−k22−k23)

2

)
and by performing again an interpolation of the full operator:(

Π2,1
mid T2

)
(τ ) = −

∫ τ

0

(2s− τ )
2

ds

e−iτk
2

(
1 + eiτ (k2+k24−k25−k̃2)

2

)(
1 + eiτ (k̃2+k21−k22−k23)

2

)
= 0

because we have ∫ τ

0

(2s− τ )
2

ds = 0.

A similar computation shows that(
Π2,1

mid T3

)
(τ ) = 0.

The local error analysis follows from the proof of [15, Cor. 5.3].
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Example 11 To illustrate how the general formula can be used to express more
general higher order resonance based schemes, let us consider the following low-
regularity integrator

un+1 = eiτ∆u− iτ
2
eiτ∆

(
(un)2(ϕ1(−iτ∆)− ϕ2(−iτ∆))un

)
− iτ

2

((
un+1

)2
(ϕ1(iτ∆)− ϕ2(iτ∆))un+1

)
− iτ

2
ei
τ
2

∆
(
ei
τ
2

∆un
)2
ϕ2(−iτ∆)ei

τ
2

∆un

− iτ
2
ei
τ
2

∆
(
e−i

τ
2

∆un+1
)2
ϕ2(iτ∆)e−i

τ
2

∆un+1

− τ2

8
|un|4e−iτ∆un+1 +

τ2

8

∣∣un+1
∣∣4eiτ∆un

(4.20)

which is motivated from [15, (5.16)] and has a local error of the form O(τ3∆). We
will see that this scheme is in the form of the general formula (3.37) with r = 1.
Indeed, we already saw at the beginning of this section that

T̂
1,k

0 (R) =
{
T0, T1, T2, T3, ki ∈ Zd

}
where Ti, i = 0, 1, 2, 3, were defined in (4.11) and (4.12). In the interest of brevity
we will not derive all the coefficients b in the expression of (4.20) in the form (3.37).
Instead let us focus on the coefficients arising from the contribution to (3.37) arising
from T = T̂2 where T̂2 is obtained by removing the brown edge attached to the
root. To understand this we first recall the forest splittings of this choice of T from
Example 6:

1 ·
k4

k1 k3

k2

k5

, 1 ·
k4

`
k5

·
k1

k2
k3

,

k4
`
k5

·
k1

k2
k3

,

k4

k1 k3

k2

k5

Let us now consider the contribution from the second of these splittings, T̃0 · T̃1 · T̃2

with

T̃0 = 1, T̃1 =

k4
`
k5

, T̃2 =

k1
k2

k3

where from Kirchhoff’s law we have k = −k4 + l + k5 and l = −k1 + k2 + k3.
The dominant and lower order operators arising in these splittings are given by

Fdom(T̃0) = 0,Flow(T̃0) = 0

Fdom(T̃1) = 2k2
4,Flow(T̃1) = k2 − k2

4 − l2 − k2
5 = 2(−k4l − k4k5 + lk5)

Fdom(T̃2) = 2k2
1,Flow(T̃2) = l2 − k2

1 − k2
2 − k2

3 = 2(−k1k2 − k1k3 + k2k3),
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Moreover we have |ẼT | (there are only two blue edges in T corresponding to
time-integration) and |LT | = 5 (T has 5 leaves), and given the above splitting,
|ẼT̃0 | = 0, |ẼT̃1 | = |ẼT̃2 | = 1. Thus the contribution from this term to the overall
sum in (3.37) is of the form (recall that CT = 1 for all T in the NLSE case)∑

a∈[0,1]2

∑
χ∈{0,1}5

ba,χ,T,T̃0·T̃1·T̃2(τ, iτFdom(T̃0), iτFdom(T̃1), iτFdom(T̃2))

eiτa1Flow(T̃1)eiτa2Flow(T̃2) Υp
χ(T )(un+χv

kv
, v ∈ LT , τ )

S(T )

From the derivation in the proof of Proposition 4.13 and (3.36) we have that

Υp
χ(T )(un+χv

kv
, v ∈ LT , τ )

S(T )

= 2e−iτχ1k21uχ1

k1
eiτχ2k22uχ2

k2
eiτχ3k23uχ3

k3
e−iτχ4k24uχ4

k4
eiτχ5k25uχ5

k5

Thus the contribution to (3.37) equals∑
a∈[0,1]2

∑
χ∈{0,1}5

ba,χ,T,T̃0·T̃1·T̃2(τ, 0, 2iτk2
4, 2iτk

2
1)

eiτa1(k2−k24−(−k1+k2+k3)2−k25)eiτa2((−k1+k2+k3)2−k21−k22−k23)

2e−iτχ1k21uχ1

k1
eiτχ2k22uχ2

k2
eiτχ3k23uχ3

k3
e−iτχ4k24uχ4

k4
eiτχ5k25uχ5

k5

Let us now show that the quintic terms in (4.20) arise precisely from these contribu-
tions: Indeed suppose we choose

b0,(0,0,0,0,1),T,T̃0·T̃1·T̃2(τ, z0, z1, z2) = −τ
2

16
, (4.21)

b(1,1),(1,0,0,0,0),T,T̃0·T̃1·T̃2(τ, z0, z1, z2) = −ez0+z1+z2 τ
2

16
(4.22)

and all other coefficients b in the above expression equal to zero then we arrive
precisely at the contributions of the form

−τ
2

8
|un|4e−iτ∆un+1 +

τ2

8

∣∣un+1
∣∣4eiτ∆un

in the overall scheme, corresponding to the quintic terms in (4.20). The remaining
terms in the scheme can be expressed similarly from contributions from lower rank
trees T0, T1. Moreover, we note that the coefficients as given by (4.21) clearly satisfy
(4.7) and that the same holds for the coefficients of lower order contributions, thus
confirming that the scheme (4.20) is symmetric.
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4.3.2 The Korteweg–de Vries equation

The Korteweg–de Vries (KdV) equation is given by

∂tu+ ∂3
xu =

1

2
∂xu

2 (4.23)

It fits into the general framework with

L

(
∇, 1

ε

)
= i∂3

x, α = 1 and p(u, u) = p(u) = i
1

2
u2.

Here L = {t1, t2}, Pt1 = −λ3 and Pt2 = λ3. Moreover, in this case the
structure constant CT reflects the presence of the Burger’s nonlinearity in the
iterations of Duhamel’s formula, which means

CT =
∏

e=(v,u)∈ẼT
u∈NT \{%T }

(−1)p(e)io(u)

where we recall e(e) = (t(e), p(e)) is the edge decoration of e with t(e) ∈ L and
p(e) ∈ {0, 1}. Note by Kirchhoff’s law the above definition is invariant under the
choice of node u or v for an edge e = (u, v) in the product, so long as the node
is an interior one. Then, we denoted by an edge decorated by (t1, 0) and by an
edge decorated by (t2, 0). Following the formalism given in [12], we can provide
the rules that generate the trees obtained by iterating Duhamel’s formula:

R( ) = {( , )} , R( ) = {( ), ()} .

The general framework (3.34) derived in Section 3.4 builds the foundation of
the first- and second-order resonance based schemes presented below for the KdV
equation (4.23). The structure of the schemes depends on the regularity of the
solution.

Corollary 4.16 For the KdV equation (4.23) the general midpoint scheme (3.34)
takes at first order the form

u`+1 = e−τ∂
3
xu` +

1

24

(
e−τ∂

3
x∂−1
x u` + ∂−1

x u`+1
)2

− 1

24
e−τ∂

3
x

(
∂−1
x u` + eτ∂

3
x∂−1
x u`+1

)2
(4.24)

with a local error of order O
(
τ2∂2

xu
)
at first-order and with a local error of order

O
(
τ3∂4

xu
)
at second order.

Remark 4.17 Note that this schemes has been obtained in [50]. It was shown that
this scheme is of even order for higher regularity in H4 (see [50, Thm 5.2]). By
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embedding this scheme into our general framework, we know that it has the same
local error analysis as the second-order scheme introduced in [15].

u`+1 = e−τ∂
3
xu` +

1

6

(
e−τ∂

3
x∂−1
x u`

)2
− 1

6
e−τ∂

3
x

(
∂−1
x u`

)2

+
τ2

4
e−τ∂

3
xΨ(iτ∂2

x)
(
∂x

(
u`∂x(u`u`)

)) (4.25)

with a local error of order O
(
τ3∂4

xu
)
and a suitable filter function Ψ satisfying

Ψ = Ψ
(
iτ∂2

x

)
, Ψ(0) = 1, ‖τΨ

(
iτ∂2

x

)
∂2
x‖r ≤ 1.

Proof. The proof follows the line of argumentation to the analysis for the Schrödinger
equation. For the first-order scheme, we have

Un,0k (τ, v) =
Υp

mid(T0)(τ, v)
S(T0)

Πn,0
mid (T0)(τ ) (4.26)

+
∑

k=k1+k2

Υp
mid(T1)(τ, v)
S(T1)

Πn,0
mid (T1)(τ ).

where the trees of interest are

T̂
0,k

0 (R) = {T0, T1, ki ∈ Zd}, T0 =
k

and T1 =

k1 k2

and in symbolic notation takes the form

T1 = I(t1,0)(I(t2,0)(λkF1)) F1 = I(t1,0)(λk1)I(t1,0)(λk2) with k = k1 + k2.

For the first term we readily obtain that

Υp
mid(T0)(τ, v)
S(T0)

Πn,0
mid (T0)(τ ) = e−iτk

3
v̂k.

It remains to compute the second term. Note that thanks to (3.13) we have that

Πn,0(T1)(τ ) = e−iτk
3
Πn,0(I(t2,0)(λkF1))(τ ) (4.27)

= e−iτk
3
K
k,0
(t2,0)

(
Πn,−1(F1), n

)
(τ )

= e−iτk
3
K
k,0
(t2,0)

(
eiξ(−k31−k32), n

)
(τ ).

where we have used for the third line

(Πn,−1F1)(τ ) = (Πn,−1I(t1,0)(λk1))(τ )(Πn,−1I(t1,0)(λk2))(τ ) = e−iτk
3
1e−iτk

3
2 .

Next we observe that

P(t2,0)(k)− k3
1 − k3

2 = k3 − k3
1 − k3

2 = 3k1k2(k1 + k2)
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such that
1

P(t2,0)(k)− k3
1 − k3

2

can be mapped back to physical space. Therefore, we set

Ldom = P(t2,0)(k)− k3
1 − k3

2 = 3k1k2(k1 + k2)

and integrate all frequencies exactly. This implies

Πn,0(T1)(τ ) = e−iτk
3 i(k1 + k2)
3ik1k2(k1 + k2)

(
eiτ (k3−k31−k32) − 1

)
=

1

3k1k2

(
e−iτ (k31+k32) − e−iτk3

)
.

Together with (4.26) this yields the scheme (4.24). For the second-order scheme, we
first notice that

Πn,0
mid (T0)(τ ) = Πn,1

mid (T0)(τ ), Πn,0
mid (T1)(τ ) = Πn,1

mid (T1)(τ ).

Indeed, for the tree T1, we perform an exact integration without any discretisation.
Then, we need to take into account the following trees

T̂
1,k

0 (R) = {T0, T1, T2, ki ∈ Zd}, T2 =

k1 k2

k3

Then we can proceed as in the second-order schemes for the Schrödinger equation
to show its contribution is zero that is

Π4,1
mid (T2)(τ ) = 0.

5 Numerical Experiments

We now test the practical performance of our new symmetric schemes in practical
experiments evaluating both their low-regularity convergence properties and their
ability to correctly preserve constants of motion in the relevant equations. In fitting
with our above construction our spatial discretisation is a Fourier spectral method
throughout withM modes. In order to understand the low-regularity convergence
properties of our methods we follow [55] and consider the following types of initial
data:
1. Smooth inital data,

u0(x) =
cos(x)

2 + sin(x)
. (5.1)
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2. Low-regularity initial data u0 of the following form. Firstly we choose a
vector sampled from a uniform distribution Um ∼ U ([0, 1] + i[0, 1]), m =
−M/2 + 1, . . . ,M/2 and then we define

u0(x) := U0 +

M/2∑
m=−M/2+1

m 6=0

eimx|m|−ϑUm, (5.2)

for a given value of ϑ > 0, which corresponds to u0 ∈ Hϑ.
Both choices of initial data are rescaled such that u0 7→ u0/‖u0‖L2 .

5.1 The Nonlinear Schrödinger equation
To begin with we look at our new symmetric integrators for the NLSE ((4.17) and
(4.18)). In the following numerical experiments we compare the performance of our
new schemes to the following state-of-the-art reference schemes for the NLSE:
• The Strang splitting [51], as an example of a classical symmetric numerical
technique;
• The first and second order resonance based integrators introduced by Ostermann
& Schratz [55] and Bruned & Schratz [15, Section 5.1.2] respectively, as
examples of asymmetric low-regularity schemes;
• The symmetrised low-regularity integrator introduced by Alama Bronsard [4],
as an example of previous structure preserving low-regularity schemes.

In the following numerical experiments we focus on the 1d case, i.e. the NLSE
formulated on T, but our methods equally apply to higher dimensional settings
where their favourable performance can also be observed.

In the first instance we consider the long-time structure preservation properties
of our newly designed symmetric low-regularity integrators. For this we consider
two first integrals of the cubic NLSE, the normalisation

I [NLSE]
0 [u] =

∫
T
|u|2dx,

and the energy

I [NLSE]
1 [u] =

∫
T
|∇u|2 +

1

2
|u|4dx.

Symmetric numerical schemes are typically unable to preserve such conservation
laws exactly, however it is known for the ODE case [36, Chapter XI] (and also
observed numerically for the PDE case, for example in [19]) that symmetric methods
can exhibit very good approximate long-time preservation of such first integrals. In
the following numerical experiments we test this behaviour by looking at the error
in these quantities for a fixed time step τ = 0.02 and highest frequencyM = 1024,
over a long time interval, much larger than O(1/τ ). Firstly, in figures 4&5 we
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observe that the normalisation appears to be preserved really well, in particular (the
example is representative of a host of numerical experiments for various time steps
which we performed) the preservation is much better than previous asymmetric
resonance based schemes. We note that the Strang splitting conserves quadratic
first integrals, i.e. the normalisation, to machine accuracy and thus undoubtedly
outperforms our schemes on the level of normalisation preservation.
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(a) Long-time interval t = nτ ∈ [0, 4000],M = 128.
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(b) Long-time interval t = nτ ∈ [0, 4000],M = 1024.
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(c) Magnification of t = nτ ∈ [0, 50],M = 1024.

Figure 4: Error in the normalisation ‖un‖L2 , for time step τ = 0.02 and H2 data.
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(a) Long-time interval t = nτ ∈ [0, 4000],M = 1024.
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(b) Magnification of t = nτ ∈ [0, 50],M = 1024.

Figure 5: Error in the normalisation ‖un‖L2 , for time step τ = 0.02 and C∞ data.

Our next numerical result for the NLSE, presented in Figure 6&7, shows the
error in the NLSE energy over a long time interval, for a fixed time step τ = 0.02.
Albeit rigorous theory exists for the ODE case [36], there is again no theoretical
guarantee for the long-time preservation of the energy under symmetric methods.
Indeed in practical experiments it can be seen that symmetric schemes are able
to clearly outperform asymmetric integrators in the long-time approximate energy
preservation. For the Strang splitting this behaviour was rigorously analysed in [28]
where a CFL condition was necessary to guarantee long-time approximate energy
preservation beyond the realms of forward error analysis. This CFL condition
is indeed observed even for smooth data in our experiments. Perhaps somewhat
surprisingly our new symmetric resonance based scheme do not appear to suffer
from comparable CFL conditions and, as expected, perform well for both smooth
and low-regularity solutions.
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(a)M = 128.

0 500 1000 1500 2000 2500 3000 3500 4000

t

10-10

10-8

10-6

10-4

10-2

100

102

R
el
.
er
ro
r
in

en
er
gy

Ostermann & Schratz
New midpoint -rst order (3.14)
New midpoint second order (3.15)
Bruned & Schratz
Alama Bronsard
Lie
Strang

(b)M = 1024.
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(c)M = 1024.

Figure 6: Error in the Hamiltonian, for time step τ = 0.02 and H2 data.

Finally, we performed experiments to confirm that the low-regularity convergence
properties of our symmetric schemes are at least as good as in prior asymmetric
methods. In the following numerical experiments our reference solutions were
computed with M = 214 Fourier modes and a time step τ = 10−6 with the
symmetrised method from [4]. In Figures 8 & 9 we choose to measure the error in
H1-norm, and observe the convergence properties of our methods for initial data
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(b)M = 1024.
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(c)M = 1024.

Figure 7: Error in the Hamiltonian, for time step τ = 0.02 and C∞ data.

of various levels of regularity. In all of these experiments the number of spatial
discretisation modes was taken to beM = 1024 and the initial data chosen according
to (5.2) & (5.1). In Figure 8 we observe that our new methods have exactly the
predicted convergence properties at those levels of regularity: The integrator (4.17)
is optimal for first order convergence in the sense of regularity, meaning it converges
at first order inH1 withH2 data, while the integrator (4.18) is optimally convergent
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in the sense of regularity up to second order meaning it converges at O(τ ) in H1

for data inH2 and at O(τ2) in H1 for data inH3. For smaller values of τ the error
forms a plateau around 10−4 and 10−7 in Figures 8a and 8b respectively. This is
due to the error made by the pseudo-spectral space discretisation, which decreases
as the regularity of the initial data is increased.
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Figure 8: H1-error at T = 1 as a function of the timestep τ for low-regularity initial
data.

The behaviour of the splitting methods observed in these experiments matches
exactly with the convergence analysis given by [49, 60] and suffers from significant
order reduction in low-regularity regimes.
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(a) H4-initial data, ϑ = 4 in (5.2).
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Figure 9: H1-error at T = 1 as a function of the timestep τ for more regular initial
data.
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5.2 The Korteweg–de Vries equation
As a final numerical example we consider the resonance based midpoint rule (4.24)
introduced in [50] which our midpoint iterates (section 3.4) are able to recover. This
rule has excellent low-regularity convergence properties and at the same time is able
to conserve momentum and energy of the KdV equation over long times even in the
low-regularity regime. With permission we reproduce some of the numerical results
presented in [50] to recall the favourable properties of the method (4.24), for further
evaluation and results the interested reader is referred to [50]. Here we compare the
performance of our new schemes to the following state-of-the-art reference schemes
for the KdV:
• The Strang splitting [51], as an example of a classical symmetric numerical

technique, by splitting the KdV equation into the two subproblems ∂tu = −∂3
xu

and ∂tu = u∂xu. In our implementation the resulting Burgers equation is solved
using an explicit RK4 scheme with small time step τRK4 = τ10−3 such that
in essence the error observed in the following experiments is only due to the
splitting of the problem.
• The first and second order low-regularity schemes introduced by Hofmanova &
Schratz [39] and Bruned & Schratz [15, Section 5.2] respectively, as examples
of asymmetric low-regularity integrators.
To begin with, we can consider the momentum, which is a quadratic first integral

in the flow.

I [KdV ]
0 [u] =

∫
T
u2dx.

Seeing as the Strang splitting is a symplectic integrator we expect the momentum
to be preserved to machine precision for C∞ solutions which is indeed observed in
Figure 10b. Note in [50] it was actually shown that the method (4.24) is symplectic
and preserves the momentum exactly, which explains the preservation of momentum
to machine accuracy in that same graph. On the other hand, for low-regularity data
we see in Figure 10a that this preservation is lost in the Strang splitting for rougher
data, but that the symmetric scheme (4.24) is able to deal with rough solutions as
well.

In addition to this favourable long-time behaviour, in Figures 11&12 we observe
the excellent low-regularity convergence properties of our method. For this example
all reference values were computed withM = 214 Fourier modes and a time step
τ = 10−6 with the second order method from [15]. The classical Strang splitting
suffers in this case from a CFL condition, which requires τ . 1/M in order to
resolve the Burgers nonlinearity, as a result we chose to include numerical results
with only a small number of Fourier modes, since the classical integrator was
found to be unstable whenever the aforementioned CFL condition is not satisfied.
Perhaps somewhat surprisingly we see that in practice the integrator (4.24) appears
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Figure 10: Error in the momentum I [KdV ]
0 [u] for τ = 0.005 andM = 64.
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Figure 11: H1-error at T = 1 as a function of the timestep τ for low-regularity
initial data.
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Figure 12: H1-error at T = 1 as a function of the timestep τ for C∞-initial data
(5.1).

to converge even faster than the method introduced by Bruned & Schratz for solutions
in H3, this was also observed in [50].
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