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Abstract. We show that here standard decoding algorithms for generic
linear codes over a finite field can speeded up by a factor which is essen-
tially the size of the finite field by reducing it to a low weight codeword
problem and working in the relevant projective space. We apply this
technique to SDitH and show that the parameters of both the original
submission and the updated version fall short of meeting the security
requirements asked by the NIST.

1 Introduction

Code-based cryptography is based on the hardness of the decoding problem.
In its syndrome (and fixed weight) version it is given for the Hamming metric
(where we denote the Hamming weight of a vector x by ∣x∣) by

Problem 1.1 (Syndrome Decoding SD(H, s, t)). Given a matrix H ∈ F(n−k)×nq ,
a syndrome s ∈ Fn−k

q and a weight t ∈ J0, nK, find a vector e ∈ Fn
q such that He = s

and ∣e∣ = t.

In other words, it consists in solving a linear system with a constraint on
the weight of the solution. This non-linear constraint is commonly believed to
make the problem difficult on average over H for suitable values of t. Despite
that many efforts have been spent over the last 60 years [Pra62, Ste88, Dum91,
MMT11, BJMM12, MO15, BM17, BM18, CDMT22], the problem remains hard
in the range of parameters given above, even with the help of a quantum com-
puter [Ber10, KT17]. Thus, the decoding problem has raised interest among
cryptosystem designers. It is today the heart of the security of PKE and sig-
nature schemes submitted to the NIST competitions3 such as Classic McEliece
[AAB+22], BIKE [ABC+22], Wave [BCC+23] and SDitH [AMFG+23]. It is quite
common to study the binary version of the decoding problem but the non-binary
case also aroused interest [BLP10, BLP11] or more recently with the signature
schemes Wave [DST19] or SDitH [FJR22] for instance. The security of Wave is
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based on ternary codes and SDitH addresses the syndrome decoding over the
fields F256 and F251. In this article, we focus on the case where q is large, as is
the case in SDitH.

The best known decoding algorithms are Information Set Decoders (ISD)
initiated by Prange in [Pra62]. The idea of Prange basically consists in guessing
that e is zero on an information set, that is a set of k positions that determines
the whole vector e considering the linear relation He = s. If the guess does
not allow to find a vector of weight t, then we repeat the process changing the
information set until we make the right guess on it.

There have been numerous improvements to the Prange algorithm. One of
the first breakthrough in this domain uses the birthday paradox [Ste88, Dum91].
Basically, the ISD template is used here to reduce the decoding problem to a
collision search. Later, other techniques were introduced to improve ISD. For
instance, [MMT11] and [BJMM12] exploit the fact that a low weight vector can
be represented in multiple ways as the sum of two lower weight vectors, it is the
so-called representation technique introduced by Howgrave-Graham and Joux in
[HJ10]. In the SDitH specifications, it is noticed that the representation technique
was originally designed for the binary case and that it loses its interest when q is
large. This claim is supported by Meurer in his PhD thesis [Meu12] and also by
Canto-Torres in [Can17] where he shows that the MMT [MMT11] and BJMM
[BJMM12] complexity exponent tend to the Prange complexity exponent when
q tends to infinity. This is the reason why the algorithm on which SDitH focuses
on is Stern [Ste88] which is considered optimal by the authors of SDitH in their
particular context.

1.1 Our contribution

Our main observation here is that decoding over a big field can basically be
speeded up by a factor which is the size of the field by a simple homogenizing
trick (or what is the same by a reduction to the low weight codeword search
problem). The idea is that instead of looking for a vector e of weight t satisfying
He = s we look for a vector x of weight t such that Hx is proportional to s,
i.e. is such that Hx = λs for some λ ∈ Fq. If we find such a vector (and if λ ≠ 0
which will happen with large probability as we will see in what follows) then we
get from such an x our e by taking e = λ−1x. The point is that basically all the
collision search techniques used for solving the decoding problem get speeded by
essentially a factor q − 1 by identifying all vectors which are proportional. This
is particularly helpful in the case where we work with big field sizes as is the
case for the NIST submission SDitH [AMFG+23]. We will adapt this idea to one
of the simplest collision decoding technique, namely Stern’s decoding algorithm
over Fq [Pet10]. We call this variant, projective Stern’s algorithm since we work
here essentially in the projective space. We provide here a clean counting of
the complexity of this variant of Stern’s algorithm in the spirit of [Pet11, Ch.
6]. This precise complexity counting includes the use of the Canteaut-Chabaud
technique [CC98] to gain in the complexity of Gaussian elimination. This part
can not be neglected at all for giving tight security estimates in the case of SDitH
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because the list sizes in an optimal Stern algorithm are in this case really small.
In SDitH there is also a variant of the decoding which is considered, which is the
d-split variant: the support of the error is split into d equal parts and it asked
to find an error e of weight t/d on each of the part. We give an adaptation of
our projective Stern’s algorithm to this case too.

We will study in detail the impact of this technique to SDitH both for the
initial submission [AMFG+23] and for the recent update that can be found on
https://sdith.org/. The initial submission was unfortunately affected by a
mistake in the choice of parameters that corresponded to a region where there
were several hundred of solutions to the decoding problem whereas the anal-
ysis implicitly assumed that there was just one. The security claims made in
[AMFG+23] were incorrect because of this. The new algorithm presented here
also reduces the security of this proposal. All in all, this shows that the security
of the initial submission [AMFG+23] is below the NIST requirements by 9 to
14 bits depending on the SDitH variant. Three days after preliminary results of
this work were made public [CTH23], new parameters of SDitH were released
and announced on the NIST forum (see https://groups.google.com/a/list.
nist.gov/g/pqc-forum/c/OOnB655mCN8/m/rL4bPD20AAAJ). This new parame-
ter set corrected the initial error in the parameter choice (now the parameters are
chosen such that there is typically just one solution to the decoding problem).
The authors took a 4 bit security margin between the NIST security require-
ments and the estimate for the best attack provided in https://sdith.org/.
We show here that this is still a little bit short of meeting the NIST requirements
by roughly one bit. It should be noted that contrarily to [AMFG+23] which uses
(i) a non tight reduction from standard decoding to d-split decoding which gives
an overestimate on the attacks, (ii) neglects the cost of Gaussian elimination in
the attack, our security estimate is based on a precise count of the complexity
of the attack which does not neglect the cost of Gaussian elimination. It turns
out that the optimal parameters for the projective Stern algorithm are in the
regime where the cost of Gaussian elimination is non negligible.

2 Preliminaries

Vectors and matrices. Vectors and matrices are respectively denoted in bold
letters and bold capital letters such as v and M. The entry at index i of the
vector v is denoted by vi. M

⊺ stands for the transpose of the matrix M. To
limit the use of transposition notation as much as possible, we consider in this
paper that the vectors are column vectors; so v⊺ represents a row vector. Let
I be a list of indexes. We denote by vI the vector (vi)i∈I . In the same way, we
denote by MI the submatrix made up of the columns of M which are indexed
by I. The notation supp (v) stands for the support of v, that is the set of the
non-zero positions of v.

The double square brackets stand for a set of consecutive integers. For in-
stance, Ja, bK are the integers between a and b.
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Coding background. A linear code C of length n and dimension k over the
field Fq is a subspace of Fn

q of dimension k. We say that it is an [n, k]q-code. It

can be defined by a generator matrix G ∈ Fk×n
q whose rows form a basis of the

code:
C

def
= {G⊺u ∶ u ∈ Fk

q} . (2.1)

A parity-check matrix for C is a matrix H ∈ F(n−k)×nq whose right kernel is C:

C
def
= {c ∈ Fn

q ∶ Hc = 0} . (2.2)

A set of k positions that fully defines a code C is called an information set.

In other words, for I ⊆ J1, nK such that ∣I ∣ = k and J
def
= J1, nK∖ I, the subset I is

an information set if and only if GI is invertible or equivalently HJ is invertible.
In that case, J is called redundancy set.

In this paper, we address the decoding problem 1.1. We focus on the case
where the decoding distance t is lower than n− n

q
. We distinguish two particular

regimes: when the decoding problem has typically less than one solution and

when it has more. For H ∈ F(n−k)×nq and s ∈ Fn−k
q that are drawn uniformly at

random, the greatest distance t for which the decoding problem has less than
one solution on expectation is called the Gilbert-Varshamov distance and it is
denoted by:

dGV(n, k)
def
= sup({t ∈

r
0, n − n

q

z
∶ (

n

t
)(q − 1)t ⩽ qn−k}) (2.3)

How we measure complexities. Because one of our goals is to compare
our results to those of the SDitH specifications, we measure the complexities
in the same way as they do. In particular, we assume that the additions and
multiplications in Fq are implemented using lookup tables and that these two
operations therefore have the same cost. In the SDitH specifications, this cost
is considered as log2(q) which is the estimated cost of a memory access. In the
following, we count the complexities in number of additions/multiplications and
therefore we ignore the factor log2(q). However, the results of Section 7 are given
with this factor.

3 The Stern decoder and Peters’ improvements

In this section, we recall the main results of [Ste88] and [Pet10] that are used in
SDitH specifications to solve the decoding problem SD(H, s, t). Stern’s decoding
algorithm is an iterative algorithm that is parametrized by two integers p and
ℓ to optimize. Each iteration starts by selecting an information set I ⊆ J1, nK of

size k. We denote J
def
= J1, nK ∖ I. Then, we search for x ∈ Fk

q of weight 2p such
that:

∣Px − y∣ = t − 2p (3.1)

where
P

def
= H−1J HI and y

def
= H−1J s (3.2)
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We can easily verify that if we find such an x, then the vector e ∈ Fn
q defined by

eI
def
= x and eJ

def
= y −Px is a solution to the decoding problem. By making the

additional bet that the sought error e is such that eI is of weight p on each half
and eJ is 0 on its ℓ first positions, we can use collision search to find e more effi-
ciently. Indeed, using lookup tables, one can find all pairs (x1,x2) ∈ Fk

q ×Fk
q such

that x1 is zero on its second half (resp. x2 is zero on its first half), ∣x1∣ = p (resp.
∣x2∣ = p) and Px1 − y and Px2 collide on their ℓ first positions. Thus, for each

of these collisions, the vector e such that eI
def
= x1 +x2 and eJ

def
= y−P(x1 +x2)

is a potential solution to the SD problem because it has syndrome s and it is of
particular low weight on at least k+ℓ positions. Finally, Algorithm 1 summarizes
the Stern decoder.

Algorithm 1: Stern’s algorithm to solve SD(H, s, t)

Input: H ∈ F(n−k)×nq , s ∈ Fn−k
q and t ∈ J0, nK.

Parameters: p ∈
r
0, min(t,k)

2

z
and ℓ ∈ J0, n − k − t + 2pK.

Output: e ∈ Fn
q such that He = s and ∣e∣ = t.

1 repeat as many times as necessary
2 draw I ⊆ J1, nK of size k uniformly at random
3 J ← J1, nK ∖ I
4 P←H−1J HI /* if HJ is not invertible, go back to step 2 */

5 y ←H−1J s
6 R← the ℓ first rows of P
7 z← the ℓ first positions of s

8 L1 ← {Rx1 − z ∶ x1 ∈ F⌊k/2⌋q × 0k−⌊k/2⌋ and ∣x1∣ = p}

9 L2 ← {Rx2 ∶ x2 ∈ 0
⌊k/2⌋

× Fk−⌊k/2⌋
q and ∣x2∣ = p}

10 forall (Rx1 − z,Rx2) ∈L1 ×L2 such that Rx1 − z =Rx2 do
11 if ∣P(x1 − x2) − y∣ = t − 2p then

12 return e such that eI
def
= x1 − x2 and eJ

def
= y −P(x1 − x2)

Note that if a particular error vector e has the good weight distribution –
that is eI is of weight p on each half, eJ is 0 on its ℓ first positions and of weight
t− 2p on its n− k − ℓ other positions – then Stern’s algorithm will find e. So the
probability to find a particular solution is

ppart =
(
⌊k/2⌋
p
)(

k−⌊k/2⌋
p
)(

n−k−ℓ
t−2p )

(
n
t
)

(3.3)

Moreover, in the case where s has been produced as the syndrome of an error ẽ
of weight t – that means s has been drawn uniformly at random in {Hẽ ∶ ∣̃e∣ = t}
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– then, the expected number of solutions to the decoding problem we address4

is

Nsol
def
= EH (∣{e ∈ Fn

q ∶ ∣e∣ = t and He =Hẽ}∣) (3.4)

= 1 + ∑
e∈Fn

q ∖{ẽ}
∣e∣=t

PH (He =Hẽ) (3.5)

= 1 +
(
n
t
)(q − 1)t − 1

qn−k
(3.6)

Thus, the success probability of one iteration of Stern’s algorithm is

psucc = 1 − (1 − ppart)
Nsol (3.7)

So on average over the choice of H, we need to repeat Stern’s procedure 1
psucc

times before finding a solution to the decoding problem. To determine the com-
plexity of Stern’s algorithm, we still have to measure the time complexity of one
iteration. Using some of the tricks proposed in [Pet10], the designers of SDitH
claim to be able to perform each iteration of Stern with a running time

Titer =
1
2
(n − k)2(n + k)

+ℓ (k
2
− p + 1 + ((⌊k/2⌋

p
) + (

k−⌊k/2⌋
p
)) (q − 1)p)

+
q

q−1(t − 2p + 1)2p (1 +
q−2
q−1)

(
⌊k/2⌋
p
)(

k−⌊k/2⌋
p
)(q − 1)2p

qℓ

(3.8)

4 Reducing the decoding problem to the low weight
codeword search

Working in projective spaces is only interesting if the syndrome is zero. In that
case, we are actually looking for a low weight codeword instead of an error
vector. This can be readily achieved by a well known reduction from decoding
in an [n, k]q linear code to a low weight codeword search in an [n, k + 1]q linear
code (see for instance [NCBB10, Section 1, page 4]) that we now recall. Let H
be a parity check matrix of a code C. Without loss of generality, we can consider
that H is in systematic form5:

H
def
= [A∣In−k] where A ∈ F(n−k)×kq (4.1)

4 Simulations can be found on https://github.com/kevin-carrier/SDitH_security

to verify the Equation (3.6)
5 The first operation of Stern’s algorithm precisely consists in putting the parity-
check matrix in systematic form (up to a permutation). And therefore making this
assumption does not induce any additional cost.
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To solve the decoding problem SD(H, s, t), one can find a low weight codeword
in the new code

C
′ def
= ⟨C,z⟩

def
= {c + αz ∶ c ∈ C and α ∈ Fq} (4.2)

where z ∈ Fn
q is any solution of the equation Hz = s (without any weight con-

straint on z). Because H is in systematic form, we can take z⊺
def
= (0⊺, s⊺) ∈ Fn

q .
Then a generator matrix of C′ is

G′
def
= [

Ik −A
⊺

0⊺ s⊺
] (4.3)

By only one step of a Gaussian elimination (one column to eliminate), we
can find a parity-check matrix H′ of the augmented code C′.

By looking for a low weight codeword in C′ – i.e. a vector e such that H′e = 0
–, we actually find a low weight error e of C that has syndrome He = αs where α
can be any scalar in Fq. There are two possible situations: either α = 0 or α ≠ 0.
If α = 0 then we have actually found a codeword in C instead of an error vector
(we want to avoid this situation). On the contrary, if α ≠ 0 then a solution to our
original decoding problem is simply α−1e. We now claim that the probability to
get α = 0 is lower than 1

q
:

Theorem 4.1. Let a code C be the right kernel of a parity-check matrix H ∈

F(n−k)×nq and let s ∈ {Hẽ ∶ ∣̃e∣ = t} for t ∈ J0, nK. Let C′
def
= ⟨C,z⟩ be the code

generated by the codewords in C and any word z ∈ Fn
q such that Hz = s. We

denote by H′ a parity-check matrix of this augmented code. Then we can solve
the decoding problem SD(H, s, t) by solving, on average over H, at most q

q−1 low

weight codeword searches SD(H′,0, t).

Proof. First, by construction of s and z, we know there exists a codeword c ∈ C
and an error vector ẽ ∈ Fn

q of weight t such that z = c+ẽ. So we have ⟨C,z⟩ = ⟨C, ẽ⟩
and s =Hẽ.

Let e be any solution of the low weight codeword search problem SD(H′,0, t).
Then, as said before, e is an error vector of weight t such that He = αs for a
scalar α ∈ Fq, and e induces a solution of the original decoding problem if and
only if α ≠ 0. On average over H and for e drawn uniformly at random in the
solutions of SD(H′,0, t), the probability that α = 0 is

PH,e (α = 0) =
EH (∣C(t)∣)

EH (∣C
′(t)∣)

where

C(t)
def
= {e ∈ C ∶ ∣e∣ = t}

C′(t)
def
= {e ∈ C′ ∶ ∣e∣ = t}

7



We already know that

EH (∣C(t)∣) =
(
n
t
)(q − 1)t

qn−k
.

Let us count C′(t). We remark that C′ is the disjoint union of the cosets C +αẽ
for all the α ∈ Fq. So

EH (∣C
′
(t)∣) = ∑

α∈Fq

EH (∣C
′
α(t)∣)

where

C
′
α(t)

def
= {e + αẽ ∶ e ∈ C and ∣e + αẽ∣ = t} .

On one hand, we have that C′0(t) = C(t). On another hand, for all non-zero
α,α′ ∈ F∗q , the map x z→ α−1α′x is a bijection from C′α(t) to C

′
α′(t); so for all

α ∈ F∗q , ∣C′α(t)∣ = ∣C′1(t)∣ . Thus, we have

EH (∣C
′
(t)∣) = EH (∣C(t)∣) + (q − 1)EH (∣C

′
1(t)∣)

By doing a calculation similar to that of the Equation (3.6), we can show
that

EH (∣C
′
1(t)∣) = 1 +

(n
t
)(q−1)t−1
qn−k

= 1 − 1
qn−k +EH (∣C(t)∣) .

and so

EH (∣C
′
(t)∣) = qEH (∣C(t)∣) + (q − 1) (1 −

1
qn−k ) .

Finally, the probability that the reduction succeeds is

1 − PH,e (α = 0) = 1 −
1

q + (q−1)(1−1/q
n−k)

EH(∣C(t)∣)

⩾
q − 1

q
.

5 Stern’s algorithm in projective space

In Section 4, we gave a reduction of decoding to low weight codeword searching.
In this section, we address the second problem, that is given a parity-check matrix

H′ ∈ F(n−k−1)×nq of C′, we want to find e ∈ Fn
q such that ∣e∣ = t and H′e = 0.

We have to be careful about the distribution of H′ which has not been drawn
uniformly at random in F(n−k−1)×nq . Indeed, for an error ẽ ∈ Fn

q of weight t, H′

has been drawn such that ẽ is a codeword in C′, so H′ verifies H′ẽ = 0.
Essentially, our method consists in running a Stern procedure in the projective
space Fn

q /∼ . In particular, we show that Peters’ improvements of Stern [Pet11,
Ch. 6] are still applicable in the projective space.
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5.1 The algorithm

When the syndrome is zero, Stern’s algorithm essentially consists in finding pairs
(x1,x2) ∈ Fk+1

q × Fk+1
q such that x1 (resp. x2) is of weight p on its first ⌊k+1

2
⌋

(resp. last k + 1 − ⌊k+1
2
⌋) positions, zero elsewhere and

R′x1 =R
′x2 (5.1)

where R′ are the ℓ first rows of P′
def
= H′−1J H′I . Each pair (x1,x2) that collides

gives a candidate codeword e defined by

eI = x1 − x2 and eJ = P
′
(x1 − x2). (5.2)

One can remark that if the pair (x1,x2) is a solution to the collision search,
then for all α ∈ F∗q , αx1 and αx2 also collide.

Remark 5.1. Note that this trick, inspired by Minder and Sinclair [MS09], is
specific to the fact that the syndrome is zero. If the syndrome is non-zero, then
given a pair (x1,x2) that is such that R′x1 − y′ = R′x2, we can no longer
guarantee that for any non-zero α, we still have αR′x1 − y

′ = αR′x2. That is
the reason why the reduction in Section 4 is essential. Note that a related trick
is used in [NCBB10, Section 2] and [NPC+17, Section 3.1.1]. However, they do
not use the reduction from Section 4 and so they need to deal with the non-zero
syndrome; this leads to a different method which only allows to gain a factor of
order

√
q − 1 at best on the overall complexity. This gain is questioned by Peters

in her PhD thesis [Pet11, Section 6.2.3, Remark 6.11] where it is argued that
this trick is not likely to gain a lot in practice and that is not backed up by a
proper operation count.

Moreover, αx1 and αx2 respectively share the same support as x1 and x2

so the Stern procedure enumerates all the collinear equivalents of x1 and x2

and consequently, it explores all the candidate codewords that are collinear to
e. However, we only need one of them. Indeed, if e is in C′ but not in C – that
is H′e = 0 but He ≠ 0 – then there is a unique α ∈ F∗q such that the syndrome
αHe is exactly s and not a multiple of it. The solution αe can be found from
any vector that is collinear to e and so, we only need to find one of them.

From the discussion above, we remark that when the syndrome is zero, Stern’s
algorithm can be run in the projective space. For a space E over Fq, the projective
space E/∼ is the quotient set of E by the equivalence relation ∼:

∀x,y ∈ E , x ∼ y ⇐⇒ ∃α ∈ F∗q , x = αy. (5.3)

The equivalence class of a vector x ∈ E is denoted by:

[x]
def
= {y ∈ E ∶ y ∼ x} . (5.4)

And so
E/∼

def
= {[x] ∶ x ∈ E} . (5.5)
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Now, if x1,x2 ∈ Fk+1
q are such that R′x1 =R

′x2 then we also have R′ [x1] =

R′ [x2] where [x1] and [x2] live in Fk+1
q /∼ . But we have to note that if R′ [x1] =

R′ [x2] then we do not necessarily have R′x1 = R′x2. So we need to choose
representatives x1 ∈ [x1] and x2 ∈ [x2] which guarantee

R′x1 =R
′x2 (5.6)

To do that, we distinguish a particular class representative:

Definition 5.2 (Particular class representative). Let R′ ∈ Fℓ×(k+1)
q . For all

[x] ∈ Fk+1
q /∼ , if R

′x = 0 then the vector x is any representative of [x], otherwise
it is the unique representative of [x] such that the first non-zero symbol of R′x
is 1.

Lemma 5.3. For any x1,x2 ∈ Fk+1
q ,

R′ [x1] =R
′
[x2] ⇐⇒ R′x1 =R

′x2. (5.7)

Proof. If R′x1 = R
′x2 = 0 then the proof is trivial. Otherwise, for either i = 1

or 2, R′ [xi] is made of all the vectors that are collinear to R′xi. Thus, all the
elements in R′ [xi] share the same support, in particular they have the same
first non-zero position, and there is a unique vector in R′ [xi] for which this first
non-zero position contains a 1. So, we first notice that x1 and x2 exist and they
are unique.

Assume R′ [x1] = R′ [x2]. That means R′x1 ∈ R
′ [x2]. On another hand,

the first non-zero symbol in R′x1 is a one and the only element of this kind in
R′ [x2] is R

′x2, so we necessarily have R′x1 =R
′x2.

Conversely, R′x1 =R
′x2 ⇒ [R

′x1] = [R
′x2] ⇒ R′ [x1] =R

′ [x2].

Now we are ready to describe our adaptation of Stern’s algorithm to the pro-
jective space. Algorithm 2 gives the pseudo code of the method. Note that unlike
Algorithm 1, here the syndrome is zero and x1,x2 ∈ Fk+1

q are some particular

representatives of [x1] , [x2] ∈ F
k+1
q /∼ . Moreover, we must treat differently the

case where R′x1 =R
′x2 = 0 because this case generates q − 1 collisions that are

not collinear with each other. Lemma 5.3 guarantees that a collision in projective
space is still a collision when using the good representative so that guarantees
the correctness of the algorithm.

5.2 Reducing the cost of Gaussian elimination

For large q and p, the Gaussian elimination step is negligible and so, we can
afford to perform it on n− k − 1 columns drawn independently at each iteration.
Thus, Gaussian elimination needs (n − k − 1)2(n + k + 2) operations. However,
in the context of SDitH, we are far away from this regime and the Gaussian
elimination is actually one of the most expensive operation we have to perform.
In this sub-section, we present two modifications of our original projective Stern

10



Algorithm 2: Projective Stern’s algorithm to solve SD(H′,0, t)

Input: H′ ∈ F(n−k−1)×nq and t ∈ J0, nK.
Parameters: p ∈

r
0, min(t,k+1)

2

z
and ℓ ∈ J0, n − k − 1 − t + 2pK.

Output: e ∈ Fn
q such that H′e = 0 and ∣e∣ = t.

1 repeat as many times as necessary
2 draw I ⊆ J1, nK of size k + 1 uniformly at random
3 J ← J1, nK ∖ I
4 P′ ←H′−1J H′I /* if H′J is not invertible, go back to step 2 */

5 R′ ← the ℓ first rows of P′

6 L ′
1 ← {R

′x1 ∶ [x1] ∈ (F
⌊ k+1

2
⌋

q × 0k+1−⌊
k+1
2
⌋
)/∼ and ∣x1∣ = p}

7 L ′
2 ← {R

′x2 ∶ [x2] ∈ (0
⌊ k+1

2
⌋
× Fk+1−⌊ k+1

2
⌋

q )/∼ and ∣x2∣ = p}

8 forall (R′x1,R
′x2) ∈L ′

1 ×L ′
2 such that R′x1 =R

′x2 do
9 if R′x1 = 0 and ∃α ∈ F∗q , ∣P′(αx1 − x2)∣ = t − 2p then

10 return e such that eI = αx1 − x2 and e⊺J = P
′
(αx1 − x2)

11 else if ∣P′(x1 − x2)∣ = t − 2p then
12 return e such that eI = x1 − x2 and e⊺J = P

′
(x1 − x2)

algorithm that allow to reduce the impact of the Gaussian elimination step.
Those tricks are inspired by [Pet10] and [BLP08] and have been adapted to our
situation.

Factorizing the Gaussian elimination step. An iteration of Algorithm
2 begins with selecting an information set I and a window of size ℓ. Let denote
by I1 (resp. I2) the first half of I (resp. the second half of I) and Jℓ the ℓ first

positions of J
def
= J1, nK∖ I. The iteration succeeds in finding the particular error

vector e of weight t if it verifies

∣eI1 ∣ = ∣eI2 ∣ = p and ∣eJℓ
∣ = 0. (5.8)

To save some Gaussian elimination steps, we can test several partitions
(I1, I2, Jℓ) for one given information set. In other words, the main loop in Al-
gorithm 2 can be divided into an outer loop and an inner loop. The outer loop
consists in selecting an information set I and performing a Gaussian elimina-
tion on it (steps 2-4). The inner loop starts by partitioning I into (I1, I2) and
selecting a window Jℓ ⊂ J of size ℓ, then it performs the steps 5-12 with

R′
def
= The rows of P′ indexed by Jℓ (5.9)

L ′
1

def
= {R′x1 ∶ [x1] ∈ F

k+1
q /∼ and supp (x1) ⊆ I1 and ∣x1∣ = p} (5.10)

L ′
2

def
= {R′x2 ∶ [x2] ∈ F

k+1
q /∼ and supp (x2) ⊆ I2 and ∣x2∣ = p} (5.11)

11



For a given information set I, we choose the partition (I1, I2, Jℓ) uniformly
at random and independently from one iteration to another. Assuming we are
looking for a t-weight codeword e ∈ C′ that verifies ∣eI ∣ = 2p, then the success
probability of finding this particular codeword during an iteration of the inner
loop is

qin =
(
⌊ k+12 ⌋

p
)(

k+1−⌊ k+12 ⌋
p

)(
n−k−1−ℓ

t−2p )

(
k+1
2p
)(

n−k−1
t−2p )

. (5.12)

So the number of trials needed to get e follows a geometric distribution of
parameter qin and so, by iterating N tmp

in times the inner loop, we will find e with
probability

pin
def
= 1 − (1 − qin)

Ntmp
in (5.13)

Note that taking

N tmp
in

def
=

1

qin
(5.14)

allows to achieve a success probability pin for the inner loop that is exponentially
close to 1.

Reusing pivots in the Gaussian elimination. In [CC98], Canteaut and
Chabaud propose to simplify the Gaussian elimination step by changing only
one index in the information set I. Thus, only one pivot is necessary from one
iteration of the outer loop to another. This idea is generalized in [BLP08] where
this time, the number of columns to eliminate from one iteration to another can
be greater than 1. By doing this, we reduce the cost of Gaussian elimination but
we also induce some dependencies between the selected information sets that
impact the number of iterations of the outer loop that is needed.

To estimate the impact of the technique described above, we lean on the
analysis in [BLP08, Pet10]. We first introduce the parameter c which represents
the number of columns to eliminate in each iteration6. Thus, the cost of Gaussian
elimination per iteration of the outer loop is

TGauss = 2
c

∑
i=1
(n − k − 1)(k + 1 + i) (5.15)

= c(n − k − 1)(2k + c + 3) (5.16)

Note that if a t-weight codeword e ∈ C′ is such that ∣eI ∣ = 2p, then the
corresponding iteration of the outer loop will find a representative of [e] with
probability pin. So we need to count the average number of iterations of the outer
loop that we need for having this particular weight distribution. However, there
are some dependencies between the iterations that must be taken into account.
Indeed, we do not draw the k + 1 positions of the information set independently
from one iteration to another (k + 1 − c positions are kept).

6 In [BLP08], another parameter r is introduced but its interest is only for small field.
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The situation can be modeled by a (t + 2)-state absorbing Markov chain.
Given a t-weight codeword e ∈ C′, let Xi be the random variable that represents
the weight of eI at iteration i ∈ N of the outer loop or “Done” if the previous iter-
ation succeeds. For the first iteration, the information set I is chosen uniformly
at random as a subset of J1, nK of size k. So the distribution of X0 is given by

∀v ∈ J0, tK , P (X0 = v) =
(
k+1
v
)(

n−k−1
t−v )

(
n
t
)

and P (X0 = Done) = 0. (5.17)

Let Π be the transition matrix of the Markov chain. It is defined as the
following stochastic matrix:

∀(u, v) ∈ {Done,0,⋯, t}2, Π[u, v]
def
= P (Xi+1 = v ∣Xi = u) (5.18)

The state Done is the absorbing state, that means when we are in this state,
we cannot get out anymore. So we have

∀v ∈ J0, tK , Π[Done, v] = 0 and Π[Done,Done] = 1. (5.19)

From an iteration to another, the information set I is updated by swapping
c indexes drawn uniformly at random in I with c indexes drawn uniformly at
random in J . So an iteration moves from state u to state v with probability

Π[u, v] =∑
j

(
u
j
)(

k+1−u
c−j )(

t−u
v−u+j)(

n−k−1−t+u
c−v+u−j )

(
k+1
c
)(

n−k−1
c
)

(5.20)

except for u = 2p because then the algorithm succeeds with probability:

Π[2p,Done] = pin. (5.21)

So for all v ∈ J0, tK:

Π[2p, v] = (1 − pin) ⋅∑
j

(
2p
j
)(

k+1−2p
c−j )(

t−2p
v−2p+j)(

n−k−1−t+2p
c−v+2p−j )

(
k+1
c
)(

n−k−1
c
)

. (5.22)

Finally, to determine the number of iterations needed to get the first success,
one only has to compute the fundamental matrix associated to Π:

F
def
= (It+1 −Π

′
)
−1

(5.23)

where It+1 is the identity matrix of size t + 1 and Π′ is the (t + 1) × (t + 1)
sub-matrix of Π such that

∀(u, v) ∈ {0,⋯, t}2, Π′[u, v]
def
= Π[u, v]. (5.24)

Then, the average number of iterations of the outer loop needed to find a repre-
sentative of [e] is

N tmp
out =

t

∑
u=0

t

∑
v=0

P (X0 = v)F[u, v]. (5.25)

13



Finding one solution from many. With N tmp
out ⋅N

tmp
in repetitions of the

inner loop, we are able to find one particular t-weight projective codeword [e] ∈
C′/∼ . But there is potentially more than one such projective codeword since this
number is

Nsol = EH′ (∣{[e] ∈ F
n
q /∼ ∶ ∣e∣ = t and H′ [e] = [0]}∣) (5.26)

= 1 +
(
n
t
)(q − 1)t−1 − 1

qn−k−1
(5.27)

Because we want to find only one solution from the Nsol ones, we actually need
to approximately iterate the outer loop Nout times and for each iteration of the
outer loop, we iterate the inner loop Nin times where

Nout
def
= max(1,

N tmp
out

Nsol
) (5.28)

Nin
def
= max(1,N tmp

in ⋅min(1,
N tmp

out

Nsol
)) . (5.29)

5.3 Complexity of our projective Stern decoding

Finally, considering the modifications of the previous sub-section and using the
implementation tricks of Peters [Pet10], we are able to state the following The-
orem 5.4 that gives the complexity of Stern’s algorithm in projective space.

Theorem 5.4. Let ẽ ∈ Fn
q be such that ∣e∣ = t. On average over the choice of

H′ ∈ F(n−k−1)×nq that is such that H′ẽ = 0, we can solve the low weight codeword
search problem SD(H′,0, t) with a running time of order

TStern−proj = Nout(TGauss +Nin(Tlists + Tcheck)) (5.30)

where Nout, Nin and TGauss are given by Equations (5.28), (5.29) and (5.16),
and

L1 = (
⌊k+1

2
⌋

p
)(q − 1)p−1 (5.31)

L2 = (
k + 1 − ⌊k+1

2
⌋

p
)(q − 1)p−1 (5.32)

Tlists = ℓ (k + 2p − 1 + 2 (L1 +L2)) (5.33)

Ncollisions =
(q − 1)L1L2

qℓ
(5.34)

Tcheck = (2p +
q

q−1(t − 2p + 1)2p (1 +
q−2
q−1)) ⋅Ncollision (5.35)

Proof. According to the Sub-section 5.2, we have to iterate Nout times the outer
loop which consists in a Gaussian elimination over c columns and Nin iterations
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of the inner loop. All that remains is to determine the cost of one iteration of
the inner loop. To perform this iteration optimally, we will use Peters’ imple-
mentation tricks [Pet10].

To build the lists L1 and L2, we need to define another representative of

an equivalence class in Fk+1
q /∼ . Let x ∈ Fk+1

q , we denote by x̂, the representative
of [x] whose first non-zero symbol is 1. Thus, for L1, we produce successively
the representatives x̂1 that have a weight p on the first half and zero elsewhere
using exactly the same trick as Peters (except we fix the first non-zero symbol to
1 and that there is no syndrome to add). So we can compute successively P′x̂1

by only adding one column or two consecutive columns (except for the first
element that needs 2p− 2 column additions). The single column additions allow
to browse all the vectors of a same support and the two columns additions allow
to move from one support to another. The two columns additions can actually
be replaced by single column additions if we pre-compute all the sums of two
consecutive columns in P′. This costs k + 1 column additions. By fixing the first
non zero symbol to one, we browse only one representative per equivalence class.
However, it is not the good representative that we defined in Definition 5.2. But
it is quite easy to find the factor α ∈ F∗q such that x1 = αx̂1 by multiplying one
column by a scalar. Then, we do not compute x1 but we save the pair (α, x̂1)

instead. We proceed similarly for the list L2. So finally, the cost of producing
L1 and L2 is

Tlists = ℓ(k + 1) + ℓ(2p − 2) + 2ℓ((
⌊k+1

2
⌋

p
) + (

k + 1 − ⌊k+1
2
⌋

p
))(q − 1)p−1(5.36)

= ℓ(k + 2p − 1 + 2((
⌊k+1

2
⌋

p
) + (

k + 1 − ⌊k+1
2
⌋

p
))(q − 1)p−1) (5.37)

To deal with the collisions we first need to count them. On average, there are

Ncollision =
(
⌊ k+12 ⌋

p
)(

k+1−⌊ k+12 ⌋
p

)(q − 1)2p−2

1 + (qℓ − 1)/(q − 1)
(5.38)

⋅ ((q − 1)P (P′x1 = 0) + P (P′x1 ≠ 0)) (5.39)

=
(
⌊ k+12 ⌋

p
)(

k+1−⌊ k+12 ⌋
p

)(q − 1)2p−2

1 + (qℓ − 1)/(q − 1)
⋅ (

q − 1

qℓ
+ 1 −

1

qℓ
) (5.40)

=
(
⌊ k+12 ⌋

p
)(

k+1−⌊ k+12 ⌋
p

)(q − 1)2p−1

qℓ
(5.41)

For each collision, we must first apply the scalar multiplication to change the
representative of the equivalence class. This costs 2p multiplications. Then we
can apply the same trick as Peters and check for only q

q−1(t − 2p + 1) rows on

average. The cost to treat a row is 2p additions and 2p q−2
q−1 multiplications. So

the cost to check all the candidates (each coming from a collision) is

Tcheck = (2p +
q

q−1(t − 2p + 1)2p (1 +
q−2
q−1)) ⋅Ncollision. (5.42)
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6 The d-split decoding problem

The security of SDitH is actually based on the d-split decoding problem. Before
stating this problem, let us bring in the following notation:

Notation 6.1. Let v ∈ Fn
q . For d that divides n and for all i ∈ J1, dK, we denote

by v[i] the ith piece of v of length n
d
. More formally,

v[i]
def
= vJ(i−1)nd +1,in

d K
def
= (vj)j∈J(i−1)nd +1,in

d K (6.1)

Then the d-split syndrome decoding problem can be stated as follows:

Problem 6.2 (d-split Syndrome Decoding SD(d,H, s, t)). Given a matrix

H ∈ F(n−k)×nq , a syndrome s ∈ Fn−k
q and a distance t ∈ J0, nK, find a vector e ∈ Fn

q

such that He = s and ∀i ∈ J1, dK, ∣e[i]∣ = t/d.

The d-split decoding problem is quite similar to the standard decoding prob-
lem but with the additional constraint that the error weight must be regularly
distributed over d blocks. Note that the syndrome s was actually produced using
an injected solution ẽ whose weight is precisely regularly distributed. In other
word, there exists at least one ẽ ∈ Fn

q such that s =Hẽ and ∀i ∈ J1, dK, ∣̃e[i]∣ = t/d.
In the SDitH specifications, the hardness of the d-split syndrome decoding

problem is lower bounded by a quantity that depends on the complexity to solve
the standard decoding problem. This lower bound is based on the following
theorem:

Theorem 6.3 ([FJR22]). Let H be drawn uniformly at random in F(n−k)×nq

and let s ∈ Fn
q . If an algorithm can find any particular solution of the d-split

syndrome decoding problem SD(d,H, s, t) in time T with probability εd, then there
is an algorithm that can find any particular solution of the syndrome decoding
problem SD(1,H, s, t) in time T with probability ε1 with

ε1 ⩾
(
n/d
t/d)

d

(
n
t
)

εd (6.2)

Using Theorem 6.3, it can be argued that the best average complexity to solve

SD(d,H, s, t) cannot be lower than (n/d
t/d)

d
/(

n
t
) times the best average complex-

ity to solve SD(1,H, s, t). SDitH measures the difficulty of the d-split decoding
problem with this lower bound on the complexity together with the complexity
of the best known attack on SD(1,H, s, t). However, this bound is not tight and
gives optimistic security levels. Indeed, it is considered here that we are only
looking for a particular solution; the number of solutions to the problem is not
taken into account. But recall that if there are many solutions, we just want to
find one of them. We therefore state the following theorem that gives a more
precise lower bound on the complexity we can expect to achieve:
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Theorem 6.4. Let H be drawn uniformly at random in F(n−k)×nq and let s ∈ Fn
q .

If an algorithm can solve SD(d,H, s, t) in time T with probability pd, then there
is an algorithm that can solve SD(1,H, s, t) in time T with probability p1 with

pd ⩽ 1 −
⎛
⎜
⎝
1 −

(
n
t
)

(
n/d
t/d)

d
(1 − (1 − p1)

1/N1)
⎞
⎟
⎠

Nd

≈
(
n
t
)

(
n/d
t/d)

d

Nd

N1
p1 (6.3)

where N1 is the expected number of solutions to the problem SD(1,H, s, t) and
Nd is the expected number of solutions to the problem SD(d,H, s, t).

Proof. Let Ad be an algorithm which finds a particular solution in SD(d,H, s, t)
in times T with probability εd. From Theorem 6.3, there exists an algorithm A1

which finds a particular solution in SD(1,H, s, t) in times T with probability ε1
with

1 − (1 − εd)
Nd ⩽ 1 − (1 −

(n
t
)

(n/d
t/d)

d ε1)

Nd

We end the proof by noticing that

pd = 1 − (1 − εd)
Nd and p1 = 1 − (1 − ε1)

N1

In Theorem 6.4, since we address the d-split syndrome decoding problem
where s is the syndrome of a d-split error vector of weight t, we have:

Nd = 1 +
(
n/d
t/d)

d
(q − 1)t − 1

qn−k
. (6.4)

Moreover, the algorithm A1 consists essentially in repeating the algorithm Ad

by permuting the code randomly so this algorithm solves the standard decoding
problem where s is the syndrome of any t-weight error vector. So we have:

N1 = 1 +
(
n
t
)
d
(q − 1)t − 1

qn−k
. (6.5)

Remark 6.5. Note that when t is smaller than the Gilbert-Varshamov distance,
then the only solution to SD(1,H, s, t) is the injected solution and has a prob-

ability (n/d
t/d)

d
/(

n
t
) to be a solution for SD(d,H, s, t). So we get the same lower

bound as in SDitH since p1 ≈ ε1 and pd ≈ εd. On the contrary, if t is such that
we have many solutions, then the injected solution has little impact and so we
only have pd ⩽ p1(1 + o(1)). Note that when the number of solutions is large,
pd is close to p1 because it is simpler to find a particular solution to the d-split
decoding problem but there are also less solutions in proportion.
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Adapting the projective Stern algorithm for d-split. Theorem 6.4
induces a lower bound on the complexity of d-split decoding, but we cannot
guarantee that it is actually possible to reach this bound. It is possible to give
an actual algorithm to solve the d-split decoding problem. Indeed, we can apply
the reduction of Section 4 and adapt our projective Stern algorithm to take into
account the regularity of the weight of the solution we are looking for. More
precisely, at each iteration of Algorithm 2, one can choose the information set
as

I
def
= I1 ∪ ⋅ ⋅ ⋅ ∪ Id (6.6)

where each Ii is a subset of
q
(i − 1)n

d
+ 1, in

d

y
of size k

d
. At each iteration, we bet

that at least one sought solution e is such that for all i ∈ J1, dK, ∣eIi ∣ =
p
d
.

Note that, in the context of SDitH, when adapting projective Stern to d-split,
the optimal parameter p increases: it goes from 1 to 2. So the cost to produce the
lists L1 and L2 increases quadratically. Consequently, the Gaussian elimination
step becomes negligible, especially if we factorize it. It follows that the Canteaut-
Chabaud technique is not relevant because it increases the number of iterations
but it does not substantially reduce their cost. This is why finally, for d > 1, we
do not use the Canteaut-Chabaud’s trick. Appendix A, gives the formulas for
the 2-split projective Stern algorithm.

7 Application to SDitH

In this section, we analyze the security of SDitH and we compare our results with
those given in the SDitH specifications document [AMFG+23]. In the context of
the NIST competition7, the authors tried to reach different security levels:

- category I: at least 143 bits of security (≈ AES-128);
- category III: at least 207 bits of security (≈ AES-192);
- category V: at least 272 bits of security (≈ AES-256).

Table 7.1 summarizes the parameters proposed in the NIST submission [AMFG+23]
of SDitH to achieve the above security levels.

In the SDitH specifications, it is considered that the best algorithm to solve
the decoding problem is Peters’ version of Stern’s algorithm of Section 3. How-
ever, there is a mistake in SDitH v1.0: it is considered that there is only one
solution to the syndrome decoding problem when in fact there are several hun-
dred for the parameters that have been chosen. Moreover, Theorem 6.3 which
lower bounds the complexity of solving the d-split is not tight when there are
many solutions. In Table 7.2 we give (i) the results claimed in the specifications
of SDitH v1.0, (ii) the lower bound on the security when considering the multiple
solutions and a tighter lower bound obtained from Theorem 6.4, (iii) the lower
bound on the security we achieve with our projective Stern decoding used in
conjunction with Theorem 6.4 and (iv) the security we achieve with the actual
d-split Stern’s algorithm described at the end of Section 6. The security is ex-
pressed in number of bits. Note that the last column corresponds to an actual

7 https://csrc.nist.gov/projects/post-quantum-cryptography
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Table 7.1: Parameters of SDitH v1.0 for various security levels.
Parameter

sets
NIST

recommendations
d-split SD
parameters

category
target
security

q n k t d

SDitH L1 gf256 v1.0 I 143 bits 256 230 126 79 1

SDitH L1 gf251 v1.0 I 143 bits 251 230 126 79 1

SDitH L3 gf256 v1.0 III 207 bits 256 352 193 120 2

SDitH L3 gf251 v1.0 III 207 bits 251 352 193 120 2

SDitH L5 gf256 v1.0 V 272 bits 256 480 278 150 2

SDitH L5 gf251 v1.0 V 272 bits 251 480 278 150 2

attack on the scheme. Comparing (ii) and (iii), we can see in particular that
the projective method is responsible for the loss of around 5 bits of security. In
summary:

– even by improving the lower bound of [AMFG+23], this methodology for
proving the security fails to meet the NIST requirements by around 11-14
bits, (column (iii))

– there is an actual attack on the scheme showing that its complexity is below
the NIST requirements by around 9-14 bits, (column (iv)).

Table 7.2: Security level of SDitH v1.0.

Parameter
sets

(i) Claimed
in the

specification
document

(ii) Correction
from Section 3

and
Theorem 6.4

(iii) Projective
Stern and

Theorem 6.4

(iv) d-split
projective

Stern

p ℓ security p ℓ security p ℓ c security p ℓ security

SDitH L1 gf256 v1.0 1 2 ⩾ 143.46 1 2 ⩾ 135.29 1 2 1 ⩾ 129.23 1 2 129.23

SDitH L1 gf251 v1.0 1 2 ⩾ 143.45 1 2 ⩾ 134.58 1 2 1 ⩾ 128.52 1 2 128.52

SDitH L3 gf256 v1.0 2 5 ⩾ 207.67 2 5 ⩾ 202.43 1 2 1 ⩾ 196.76 2 4 199.30

SDitH L3 gf251 v1.0 2 5 ⩾ 207.61 2 5 ⩾ 201.30 1 2 1 ⩾ 195.68 2 4 198.19

SDitH L5 gf256 v1.0 2 5 ⩾ 272.35 2 5 ⩾ 267.40 1 2 1 ⩾ 262.63 2 4 264.30

SDitH L5 gf251 v1.0 2 5 ⩾ 272.29 2 5 ⩾ 265.91 1 2 1 ⩾ 261.19 2 4 262.84

Recently, after we communicated preliminary results in [CTH23], the SDitH de-
signers proposed a new version 1.1 in https://groups.google.com/a/list.

nist.gov/g/pqc-forum/c/OOnB655mCN8/m/rL4bPD20AAAJ with updated param-
eters. Table 7.3 presents the new parameters. Then, Table 7.4 compares the se-
curity claimed in SDitH v1.1 and our projective Stern decoder on the updated
parameters. Our projective Stern’s algorithm is around 25 times faster than the
complexity claimed in SDitH v1.1. However, the SDitH designers took a margin
of error of 4 bits compared to the NIST recommendations and therefore our
attack is only one bit under the NIST recommendations for the category I pa-
rameters. For the other parameters, the lower bound methodology of [AMFG+23]
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Table 7.3: Parameters of the d-split decoding problem in SDitH v1.1 for various
security levels.

Parameter
sets

NIST
recommendations

d-split SD
parameters

category
target
security

q n k t d

SDitH L1 gf256 v1.1 I 143 bits 256 242 126 87 1

SDitH L1 gf251 v1.1 I 143 bits 251 242 126 87 1

SDitH L3 gf256 v1.1 III 207 bits 256 376 220 114 2

SDitH L3 gf251 v1.1 III 207 bits 251 376 220 114 2

SDitH L5 gf256 v1.1 V 272 bits 256 494 282 156 2

SDitH L5 gf251 v1.1 V 272 bits 251 494 282 156 2

(even after improvement) fails to meet the NIST criterion by about one bit in all
cases (column (iii)). It remains to see whether the attack on the d-split version
can be improved (this is used in category III and V parameters) because our
corresponding attack (column (iv)) is just one bit above the required security
level. The SageMath program which made it possible to compute the results is
available on https://github.com/kevin-carrier/SDitH_security.

Table 7.4: Security level of SDitH v1.1.

Parameter
sets

Target
security

(i-ii) Claimed
in the

specification
document

(iii) Projective
Stern and

Theorem 6.4

(iv) d-split
projective

Stern

p ℓ security p ℓ c security p ℓ security

SDitH L1 gf256 v1.1 143 1 2 ⩾ 147.73 1 2 1 ⩾ 141.54 1 2 141.54

SDitH L1 gf251 v1.1 143 1 2 ⩾ 147.72 1 2 1 ⩾ 141.54 1 2 141.54

SDitH L3 gf256 v1.1 207 2 5 ⩾ 211.05 1 2 1 ⩾ 205.59 2 4 207.90

SDitH L3 gf251 v1.1 207 2 5 ⩾ 210.99 1 2 1 ⩾ 205.59 2 4 207.86

SDitH L5 gf256 v1.1 272 2 5 ⩾ 276.33 1 2 1 ⩾ 271.69 2 4 273.26

SDitH L5 gf251 v1.1 272 2 5 ⩾ 276.28 1 2 1 ⩾ 271.68 2 4 273.23
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A Formulas for the 2-split projective Stern algorithm

Here we address the 2-split decoding problem which is one of the instances of
SDitH. In Section 6, we explained how to adapt our projective Stern’s algorithm
to d-split by splitting the support of the error into d equal parts and looking for
an error e of weight t/d on each of the part.

We just give the formulas which differ from those we presented for the stan-
dard version 1-split in Section 5. In particular, for the 2-split version of our
projective Stern’s algorithm, Equations (5.12), (5.25), (5.16) (5.27), (5.31) and
(5.32) become respectively:

qin =
(
⌊(k+1)/4⌋
⌊p/2⌋ )(

⌊(k+1)/2⌋−⌊(k+1)/4⌋
p−⌊p/2⌋ )

(
⌊(k+1)/2⌋

p
)

⋅
(
⌊(k+1)/2⌋−⌊(k+1)/4⌋

⌊p/2⌋ )(
k+1−2⌊(k+1)/2⌋+⌊(k+1)/4⌋

p−⌊p/2⌋ )

(
k+1−⌊(k+1)/2⌋

p
)

⋅
(
⌊(n−k−1)/2⌋−⌊ℓ/2⌋

t/2−p )(
n−k−1−⌊(n−k−1)/2⌋−ℓ+⌊ℓ/2⌋

t/2−p )

(
⌊(n−k−1)/2⌋

t/2−p )(
n−k−1−⌊(n−k−1)/2⌋

t/2−p )

(A.1)

N tmp
out =

(
⌊n/2⌋
⌊t/2⌋)

2

(
⌊(k+1)/2⌋

p
)(

k+1−⌊(k+1)/2⌋
p

)(
⌊(n−k−1)/2⌋

t/2−p )(
n−k−1−⌊(n−k−1)/2⌋

t/2−p )
(A.2)

TGauss = 2(n − k − 1)
n−k−1
∑
i=1
(n − i + 1) = (n − k − 1)2(n + k + 2) (A.3)

Nsol = 1 +
(
n/2
t/2)

2
(q − 1)t−1 − 1

qn−k−1
(A.4)

L1 = (
⌊(k+1)/4⌋
⌊p/2⌋ )(

⌊(k+1)/2⌋−⌊(k+1)/4⌋
p−⌊p/2⌋ )(q − 1)p−1 (A.5)

L2 = (
⌊(k+1)/2⌋−⌊(k+1)/4⌋

⌊p/2⌋ )(
k+1−2⌊(k+1)/2⌋+⌊(k+1)/4⌋

p−⌊p/2⌋ )(q − 1)p−1 (A.6)
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