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Abstract. We present a faster dual lattice attack on the Learning with
Errors (LWE) problem, based on ideas from coding theory. Basically,
it consists of revisiting the most recent dual attack of [MAT22] and
replacing modulus switching by a decoding algorithm. This replacement
achieves a reduction from small LWE to plain LWE with a very significant
reduction of the secret dimension. We also replace the enumeration part
of this attack by betting that the secret is zero on the part where we want
to enumerate it and iterate this bet over other choices of the enumeration
part. We estimate the complexity of this attack by making the optimistic,
but realistic guess that we can use polar codes for this decoding task. We
show that under this assumption the best attacks on Kyber and Saber
can be improved by 1 and 6 bits.
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1 Introduction

1.1 Background and Related Work

The LWE Problem. The Learning With Errors (LWE) problem was intro-
duced by Regev [Reg05] and has since become a major ingredient for construct-
ing basic and more advanced cryptographic primitives. It asks one to find s given
(A,b) with b ≡ A · s + e mod q where e has small entries. The variant where s
is also small is called small secret LWE.4 Its conjectured hardness against quan-
tum computers further makes all these constructions supposedly post-quantum.
It has become a central hardness assumption in cryptography and is frequently
used to build cryptosystems whose security relies on it. For instance, in NIST’s
Post Quantum Standardization Process, two out of four selected algorithms are
based on its conjectured hardness [SSTX09, LPR10].

4 Because of the reduction given in [ACPS09], when we speak of small LWE, this
generally means LWE where s is at least as short as e.



Dual attacks. The most efficient cryptanalysis techniques against LWE(-like)
problems are “primal” and “dual” lattice attacks, named depending on whether
lattice reduction is performed on the “primal” lattice related to A or the “dual”
lattice {x ∈ Zmq | x ·A ≡ 0 mod q}. Until recently, dual attacks were generally
considered less efficient for secrets s drawn from a sufficiently wide distribution.
They were introduced in [MR09]. In its simplest form, a dual attack is a distin-
guishing attack which is given either (A,A · s + e) or (A,u) where (A,u) are
uniform and e is short, and answers if we are in the first or second case. It starts
by computing many short xj such that xᵀ

j · A ≡ 0 mod q and the associated
〈xj ,b〉’s. Then, we either obtain 〈xj ,b〉 = xᵀ

j ·A · s+ 〈xj , e〉 ≡ 〈xj , e〉 mod q or
〈xj ,u〉. The former follows a distribution with small entries, i.e. the distribution
of |ej | for ej := 〈xj , e〉 is biased towards elements < q/2, and the latter follows
a uniform distribution mod q.

Without loss of generality, by the reduction [ACPS09] of standard LWE
(where s is uniformly distributed over Zq) to LWE where s and e follow the
same distribution, we may assume that s is also short and we will consider this
case from now on. In [ADPS16], the “normal form” of the dual attack was in-
troduced which finds short xj such that xᵀ

j ·A ≡ yᵀ
j mod q with yj which is also

short. We then obtain

〈x,b〉 ≡ xᵀ
j ·A · s + 〈xj , e〉 ≡ 〈yj , s〉+ 〈xj , e〉 mod q (1)

which follows a distribution with small entries when yj , s,xj and e are short.
There have been a sequence of developments in dual attacks which have

shown in the end their ability to surpass (at least theoretically) primal at-
tacks [GJ21, MAT22]. A first development [Alb17] was to combine these at-
tacks with a guessing stage. The idea is to split A = [Aen Alat] and the secret

s =

[
sen

slat

]
accordingly, so that

b ≡ Aen · sen + Alat · slat + e mod q. (2)

We only look now for short vectors x and ylat that are such that xᵀ · A ≡
yᵀ

lat mod q and define yen by yᵀ
en
4
= xᵀAen. The point is that looking for such

vectors is faster because of the dimension reduction. We combine this with a
guessing strategy for sen and check whether the 〈x,b〉 − 〈yen, sen〉’s are tilted
towards small values or not. This comes from the fact that

〈x,b〉 ≡ xᵀ ·Aen · sen + xᵀ ·Alat · slat + 〈x, e〉 mod q (3)

≡ 〈yen, sen〉+ 〈ylat, slat〉+ 〈x, e〉 mod q (4)

and here 〈ylat, slat〉 + 〈x, e〉 tends to take small values. In a sense, the gain
comes from splitting the original task into two less complex subtasks. In [EJK20]
this was generalized to more general secret distributions paired with additional
improvements on the exhaustive search over sen. In [GJ21] further improve-
ments were presented. In particular, the search over sen is realized using a Fast
Fourier Transform style algorithm and the search space is significantly reduced
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by roughly considering only the most significant symbols of sen. In [MAT22] this
last step is replaced by “modulus switching” [BV11, AFFP14, KF15, GJS15a]
which provides significant performance gains.5 Overall, these newer iterations of
the dual attack relate the search space to the underlying secret in such a way that
large dimensions can now be covered even when the norm of the secret vector
is not very small (previous versions of the dual attack relied on, say, coefficients
si ∈ {−1, 0, 1}).

Reduction from LWE to small LWE with many samples but high noise.
It is insightful to adopt the point of view of [CDMT22] that followed a very
similar path as these improvements on dual attacks, but this time for decoding
a linear code. Here too, small weight codewords (in the dual code) are used to
produce inner products that are biased and the problem at hand is split in two
or three pieces and the codewords are only required to be of low weight on one
of the pieces, which as in the lattice case decreases significantly the running
time for finding them. The algorithm is explained there by viewing the whole
approach as reducing the decoding problem to a very noisy LPN problem but
with an exponential number of samples which is then solved by a fast Fourier
approach which is quite reminiscent of the [GJ21, MAT22] approach. It is easier
to explain how this recent thread of work relates in some sense to a reduction
to a new LWE problem, if we use the [MAT22] approach and forget for one
moment about modulus switching. The matrix A is split here into three parts

A =
[
Aen Afft Alat

]
and the secret s is split accordingly s =

sen

sfft

slat

 so that

b ≡ Aen · sen + Afft · sfft + Alat · slat + e mod q. (5)

We perform again a search of short vectors x and ylat only on the Alat part,

that is such that xᵀ ·Alat ≡ yᵀ
lat mod q and define yen,yfft by yᵀ

en
4
= xᵀ ·Aen,

yᵀ
fft

4
= xᵀ ·Afft. Similarly to (4), we have

〈x,b〉 ≡ 〈yen, sen〉+ 〈yfft, sfft〉+ 〈ylat, slat〉+ 〈x, e〉 mod q

Assume that we have guessed the right sen, then obviously if we define

a′
4
= yfft (6)

s′
4
= sfft (7)

b′
4
= 〈x,b〉 − 〈yen, sen〉 (8)

e′
4
= 〈ylat, slat〉+ 〈x, e〉 (9)

5 Another significant gain reported in [MAT22] is due to an improvement to the lattice
sieving algorithm from [BDGL16] but discussing this is out of scope of this work.
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then clearly the (a′, b′) form LWE samples associated to the secret s′ (and the
rows of the matrix A′ of the new LWE problem are formed by the a′’s) since

b′ = 〈x,b〉 − 〈yen, sen〉 (10)

≡ 〈yfft, sfft〉+ 〈ylat, slat〉+ 〈x, e〉 mod q (11)

≡ 〈a′, s′〉+ e′ mod q (12)

and the e′’s tend to be small. We are really in the situation, where we have
many (actually exponentially many in the attacks) LWE samples coming from
our search of short vectors x and ylat, with a quite high noise on e′ (these
integers are only slightly tilted towards low values) and a short secret vector

s′
4
= sfft, therefore precisely in the small LWE regime. Of course, if we have made

the wrong guess on sen, then the (a′, b′)’s are independent and uniformly dis-
tributed. Our task after guessing sen is therefore really the task of distinguishing
many small LWE samples which are very noisy from the uniform distribution.
In [MAT22] this operation is performed by a modulo switching approach and a
fast Fourier transform. However, this approach is not able to take into account
that we are in the small LWE scenario here, namely that the secret s′ is way
shorter than e′ now.

1.2 Contributions

A Coding Theoretic Approach. Our first contribution is a coding theoretic
approach which is inspired by the coded-BKW approach [GJS15b] to switch from
this small LWE problem to a standard LWE problem but with a huge reduction
in the dimension (but also somewhat higher noise) and then solve it with an FFT
technique combined or not with modulo switching (but where modulo switching
is used for other reasons than in [MAT22]). The use of lattice codes is however
different here. In [GJS15b], it was used to relax the collision condition in the
BKW steps, here it is really used for transforming the small LWE problem into
a standard LWE problem with a significant decrease in the dimension of the
secret.

Basically, the idea is to look for a linear space C of dimension kfft in Znfft
q ,

where nfft is the length of the vectors sfft and yfft:

C
4
=
{
Gu : u ∈ Zkfftq

}
(13)

that

(i) we can decode efficiently, meaning that for all yfft ∈ Znfft
q we are able to find

efficiently u ∈ Zkfftq such that Gu is close to yfft,
(ii) the decoding distance, namely the typical/average Euclidean distance be-

tween the Gu we produce by this decoding algorithm and yfft is as small as
possible. The product codes used in [BDGL16] or polar codes [Arı09, KU10,
Şaş11] are examples where this is possible to achieve.
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Note that here the operation Gu is performed over Zq (namely modulo q).
To explain what we have in mind here, consider an LWE sample of the form

(yfft, 〈yfft, sfft〉 + e′). We use our decoding algorithm on yfft and produce Gu

such that e′
4
= (yfft −Gu) mod q is small. Notice now that

〈yfft, sfft〉 ≡ 〈Gu + e′, sfft〉 mod q

≡ 〈u,Gᵀsfft〉+ 〈e′, sfft〉 mod q.

Since the new term 〈e′, sfft〉 is also tilted towards small values, we have a new
LWE problem given by samples (a”, b”) where

a”
4
= u (14)

s”
4
= Gᵀsfft mod q (15)

b”
4
= 〈x,b〉 − 〈yen, sen〉 mod q (16)

e”
4
= 〈ylat, slat〉+ 〈x, e〉+ 〈e′, sfft〉 mod q. (17)

The secret is Gᵀsfft which lives in Zkfftq has much smaller dimension (but is
not small anymore) and the noise term e” is somewhat bigger because of the
additional 〈e′, sfft〉 term.

It turns out that the modulo switching technique can also be viewed as using
a code in this context, it is basically the lattice code (q/pZ)

nfft where p is an
integer much smaller than q. It has a very simple decoding algorithm which
consists of rounding, however also very poor performance in terms of the norm
of the error vector e′ we produce. This translates into a bigger noise e” in the
new LWE problem and worse performance for the distinguisher.

The optimal distance we can afford here is given by the lattice-theoretic
analogue of the Gilbert-Varshamov quantity in coding theory, it corresponds to
the radius ω of a ball Bω in Rnfft such that

#C ·Vol (Bω) = qnfft . (18)

If we let ω0 be the radius of a ball which is of volume 1 in Rnfft , that is ω0 ≈
√

nfft

2πe ,

then this means that
(
ω
ω0

)nfft

= qnfft−kfft , that is

ω ≈
√
nfft

2πe
q

1− kfftnfft . (19)

The new LWE problem is solved similarly to [MAT22] after performing mod-
ulus switching, namely computing a Fourier transform. In [MAT22] this is done
by performing a Fourier transform over Znfft

p in our case, this is performed by

computing the Fourier transform over Zkfftq . Therefore it really makes sense to

compare both approaches when pnfft = qkfft and compare the decoding distance
we obtain. After renormalizing by multiplying by a factor q/p, it turns out that
the decoding distance ωMatzov in the case of Matzov is of the form

ωMatzov ≈
√
nfft

12
q

1− kfftnfft . (20)

5



We gain with our approach a factor of
√

2πe
12 ≈ 1.19 in the decoding distance

which has a definite impact.

Our approach can also be combined with modulus switching. But here the
purpose is totally different. We choose a new modulus where performing the
FFT is less complex (for instance a power of two does the job) and to help
finding a good choice for kfft. Indeed because q is often very big we are often
in a case where after optimizing the parameters of the attack we would like to
choose a decoding distance ω for which the kfft which satisfies (18) lies between
two integer values k and k + 1, but qk is way too small and qk+1 way too big.
In this case, changing the modulo q to a new modulo q′ which is of the same
order as q has two effects: (i) the added rounding noise is much smaller than
in [MAT22], (ii) we have the latitude of choosing an integer for which the FFT

is much more efficient and for which q′
kfft is closer to what the optimization of

parameters would like.

The Prange bet. An important ingredient used for speeding up dual attacks
in the coding context [CDMT22] is the Prange bet [Pra62]. It consists in making
the bet that the error is much lower (and actually even non existent) on some
parts of the word that we want to decode and using this bet to decode. Of
course, the bet might be wrong and we have to start all over again until making
the right guess, but we might hope to gain in complexity if the task we face by
making the right bet is much easier than the original decoding task. In the case
of [Pra62] it just amounts to solve a linear system. This idea can be used in our
setting in a natural way. One of them is to use it in the enumeration part of the
dual attack. It turns out that in this case the optimal bet we can make is that
the secret is equal to zero on this part (see Section 3.5). It turns out that this
results in a slightly improved attack.

Results. All in all, this approach gives in the end some improvement on the
most recent dual attack of [MAT22]. We estimate the complexity of this attack
by making the assumption that we can use polar codes for this decoding task.
We show that under this assumption the best attacks on Kyber and Saber can
be improved by 1 and 6 bits. We have validated this assumption experimentally
by implementing the polar code we need here and running the corresponding
decoder. Their decoding distance comes very close to the Gilbert Varshamov
distance as shown in Section D of the appendix.

2 Notation and Preliminaries

2.1 Notation

Recall that eix = cos(x)+i sin(x). For a complex number z = a+ib, <(z) denotes
its real part a. We write Jx, yK for the interval {x, x+ 1, . . . , y} ⊂ Z. We denote
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matrices by bold uppercase letters, e.g. A, and vectors by bold lowercase letters,
e.g. v. We treat vectors as column matrices. We write vT for the transpose of v.

For any x ∈ Zq, denote by x̂ ∈ x+qZ the unique integer such that |x̂| 6 q−1
2 .

We extend this notion to vectors in x ∈ Znq componentwise. In other words, x̃ is
the lift from Zq to Z centered on 0. We define ‖x‖ for x ∈ Znq as ‖x̂‖.

For x ∈ R, [x] stands for the closest integer to x and {x}4=x − [x] (by con-
vention, we assume that for all n ∈ Z,

[
n+ 1

2

]
= n+ 1). Naturally, the notation

is extended to vectors ; that is for any x
4
=(x1, · · · , xn) ∈ Rn:

[x]
4
= ([x1], · · · , [xn])) ∈ Zn (21)

{x} 4= ({x1}, · · · , {xn}) ∈
[
− 1

2 ,
1
2

)n
(22)

We let φ(x)
4
= 1√

2π
exp(−x2/2), respectively Φ(x) = 1√

2π

∫ x
−∞ exp(−t2/2) dt

be the density and the cumulative distribution function (cdf) of the standard
normal distribution and Φ−1(x) : [0, 1) → R its inverse. We denote a random
variable X of distribution D by X ∼ D.

2.2 Lattices

A lattice L is a discrete subgroup of Rd. We can represent it as {
∑
xi ·bi|xi ∈ Z}

where bi are the columns of a matrix B, we may write L(B). If B has full column
rank, we call B a basis.

While the central object of this work, the dual attack, critically relies on
lattice reduction, such as the BKZ algorithm, we mostly make blackbox use
of these algorithms here. Thus, we refer the reader to e.g. [GJ21, MAT22] for
details. In particular, the blackbox use we make of lattice reduction algorithms
and, critically, lattice sieving algorithms is captured in Algorithm 1.

Algorithm 1: Short Vectors Sampling Procedure [GJ21]

Input: A basis B =
[
b0 . . . bd−1

]
for a lattice and 2 ≤ β0, β1 ∈ Z 6 d and N .

Output: A list of N vectors from the lattice.
1 L={}.
2 for i ∈ [0, dN/Nsieve(β1)e − 1] do
3 Randomise the basis B.
4 Run BKZ-β0 to obtain a reduced basis b′0, . . . ,b

′
d−1.

5 Run a sieve in dimension β1 on the sublattice spanned by b′0, . . . ,b
′
β1−1 to

obtain a list of Nsieve(β1) vectors and add them to L.

6 return L

In Algorithm 1 the BKZ-β0 call performs lattice reduction with parameter
β0 where the cost of the algorithm scales at least exponentially with β0. The
BKZ algorithm proceeds by making polynomially many calls to an SVP oracle.
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In this work, this oracle is instantiated using a lattice sieving algorithm which is
also called explicitly in Algorithm 1 with parameter β1. Such a sieving algorithm
outputs Nsieve(β1) short vectors in the lattice L(B) and has a cost exponential in
β1. The magnitude Nsieve(β1) also grows exponentially with β1 but slower than
the cost of sieving. We will write TBKZ(d, β0) for the cost of running BKZ-β0

in dimension d and Tsieve(β1) for the cost of sieving in dimension β1. We may
instantiate the lattice sieve with a classical algorithm [BDGL16] which has a
cost of 20.292 β1+o(β1). Thus, according to the best known algorithms we have
TBKZ(d, β0) ∈ poly(d) · 2Θ(β0) and Tsieve(β1) ∈ 2Θ(β1). More specifically, we take
these complexities from [MAT22, Lemma 4.1, Assumption 7.3].

Lemma 2.1 (Short Vectors Sampling Complexity). Let B be a basis
of a d-dimensional lattice. Then, the running time Tsample of Algorithm 1 for
outputting at least N short vectors is:

Tsample (d, β0, β1, N) =

⌈
N

Nsieve(β1)

⌉
· (TBKZ(d, β0) + Tsieve(β1)) (23)

where TBKZ(d, β0) = C2
prog · (d− β0 + 1) · TNNS(βeff

0 ) (24)

and Tsieve(β1) = Cprog · TNNS (β1) (25)

where Nsieve(β) =
(√

4
3

)β
is the expected number of sieve results, TNNS (β) is

the time complexity for finding all close pairs in dimension β (see [AGPS20]
with improvment of Matzov [MAT22, Section 6]), Cprog = 1/

(
1− 2−0.292

)
is

the number of close pairs search to run and βeff is the optimal sieve dimension
to use for solving SVP for lattices in dimension β.

Note that in [Duc18], βeff is estimated as βeff = β − β log(4/3)
log(β/(2πe)) whereas in

[ADH+19], it is estimated as βeff = β − (0.0757β + 11.46) for a certain range of
dimensions.

The lengths of the short vectors produced by Algorithm 1. Assuming that the
Gaussian Heuristic (GH) and the Geometric Series Assumption (GSA) [Sch03]
hold for a an m-dimensional lattice, applying BKZ-β to it produces vectors x of
length [Che13]

‖x‖ ≈ δm0 ·Vol (L)
1
m , (26)

where δ(β) =
(

β
2πe (πβ)

1
β

) 1
2(β−1)

is the root-Hermite factor. With these assump-

tions, the expected length of the short vectors produced by Algorithm 1 is given
by

Lemma 2.2 (Short Vectors Sampling Procedure’s Quality and Cor-
rectness [MAT22, Lemma 4.2]). Let Λ be a d-dimensional lattice. Then,
Algorithm 1 outputs at least N vectors of length ` given by

`
4
= det(Λ)1/d ·Nsieve(β1)1/β1 ·

√
β1

2πe
· (πβ1)1/β1 · δ(β0)d−β1 (27)

with Nsieve(β) =
(√

4
3

)β
.
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2.3 Learning with Errors

The Learning with Errors problem (LWE) is defined as follows.

Definition 2.3 (LWE). Let n,m, q ∈ N, and let χs, χe be distributions over
Zq. Denote by LWEn,m,χs,χe the probability distribution on Zm×nq ×Zmq obtained
by sampling the coordinates of the matrix A ∈ Zm×nq independently and uni-
formly over Zq, sampling the coordinates of s ∈ Znq , e ∈ Zmq independently from
χs and χe respectively, setting b := A · s + e mod q and outputting (A,b).

We define two problems:

– Decision-LWE. Distinguish the uniform distribution over Zm×nq × Zmq from
LWEn,m,χs,χe .

– Search-LWE. Given a sample from LWEn,m,χs,χe , recover s.

A popular distribution for χs and χe is the centered binomial distribution
whose definition is

Definition 2.4 (centered binomial distribution). The centered binomial
distribution Zs of parameter s is defined as:

Z ∼
s∑
i=1

Xi − Yi (28)

Where the Xi’s and Yi’s are identically and independently distributed according
to the uniform distribution over {0, 1}.

2.4 Discrete Gaussian Distribution

Let σ > 0. For any x ∈ Rd, we let ρσ(x) := exp(−‖x‖2 /2σ2). Note that this is
different from the other (also commonly used) definition, where 1

2 is replaced by
π in the exponent. This change is inconsequential to our results. We extend the
definition of ρσ(·) to sets of vectors S by letting ρσ(S) :=

∑
x∈S ρσ(x). For any

lattice L ⊂ Rd, we denote by DL,σ the discrete Gaussian distribution over L,
defined by DL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L. Observing that DZn,σ(x) only
depends on ‖x‖, we abuse notation and for ` = ‖x‖ write ρσ(`) = exp(−`2/2σ2)
and DZn,σ(`) = ρσ(`)/ρσ(Zn).

We will also make use of the modular discrete Gaussian distribution. For any
q ∈ N, we denote by DZdq ,σ the modular discrete Gaussian distribution over Zdq
defined by

DZdq ,σ(x) =
ρσ(x + qZd)
ρσ(Zd)

. (29)

Note that the distribution DZdq ,σ is isomorphic to the distribution Dd
Zq,σ, a fact

that we will use often implicitly.
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2.5 Lattice codes and quantization

To analyze the performance of our coding technique, it is convenient to view it
as a lattice code through Construction A that we now recall.

Definition 2.5 (Construction A). Let C be a linear code of dimension k and
length n over Zq (where q is prime), that is a subspace of dimension k in Znq .
The lattice L obtained by Construction A applied to C is given by

L(C )
4
={x ∈ Rn : x = (c mod q), c ∈ C }. (30)

Clearly finding the closest point in Euclidean distance to some y ∈ Znq in C
also amounts to find the closest lattice point in L(C ) of y. The algorithm for
performing this task when y belongs to Rn is known as a mean-squared-error
(MSE) quantizer for L(C ). To analyze its performance, let Vor(L) be the fun-

damental Voronoi region of L, that is V
4
={v ∈ Rn : ‖v‖ ≤ ‖v − x‖ , ∀x ∈ L}.

Note that the volume of the Voronoi region V of a lattice L(C ) associated to
code C of dimension k over Znq is given by Vol (V ) = qn−k [CS88]. The average
distance provided by the mean-square quantizer for L can be assessed by the
normalized second moment G = G(L), which is defined as

G
4
=

1

Vol(V )
2
n · n

∫
V

‖v‖2

Vol(V )
dv. (31)

It is known that

G ≥ 1

2πe
(32)

and is achieved asymptotically for lattices generated by Construction A from q-
ary random codes when q gets big [ZF96]. It really corresponds to the case when

the square ω2 4=
∫
V
‖v‖2

Vol(V )dv of the average decoding distance ω is the lattice

analogue of the Gilbert-Varshamov, i.e. meets equality in (18) and corresponds
therefore to (19). Notice that this normalized second moment is much worse for
Zn, since in this case G(Zn) ≈ 1

12 which explains the rather bad performance of
modulus switching (20).

3 The algorithm

We assume in the whole section that we deal here with an LWE instance (A,b =
As + e) where A ∈ Zm×nq , b ∈ Zmq , s ∈ Znq , i.e. we have m LWE samples and
the secret is of size n. We assume that the secret distribution χs is of variance
σ2
s whereas the distribution of the error is of variance σ2

e . We start by giving an
overview of the whole algorithm.
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Algorithm 2: Skeleton of the dual attack

Input: parameters for Algorithm 3, real numbers β0, β1, integers R, N , nen,
ncode, nlat, a set Bet ⊆ Znen

q , and an LWE pair (A,b).
1 Choose once for all Ilat ⊂ J1, nK of size nlat

2 Compute the matrix B =

[
αIm 0
AT

lat qInlat

]
where α = σe

σs
.

3 Run Algorithm 1 on B with parameters β0, β1, N to get a list L of N short
vectors.

4 repeat R times
5 Choose nen positions among I \ Ilat to form Ien.
6 for every value s̃en ∈ Bet do
7 Check the validity of s̃en with the help of L.
8 if s̃en is valid then
9 return (s̃en, Ien)

10 return ⊥

3.1 Overview of the algorithm

Skeleton of the whole algorithm. The algorithm proceeds by partitioning

the set of coordinates I
4
= J1, nK of the secret s into Ien, Icode and Ilat of respective

sizes nen, ncode and nlat. The way this is done is explained by the procedure
describe by Algorithm 2 which gives the skeleton of the whole algorithm.

Roughly speaking, we perform lattice reduction in order to find short vectors
and make then several bets of what the secret s could be on Ien, where the bet
Bet is basically a small subset of vectors of very small norm of Znen

q . In other
words, we check here for R different subsets Ien if the the secret s could be of
very small norm on Ien. Of course, the choice of R is made in such a way that
with constant probability there should be such a subset of positions for which
the corresponding sen should belong to the restricted set of possibilities Bet. The
point is that for most secret distributions of interest the most likely secret error
vectors are vectors of very small norm (even if they have an exponentially small
probability to happen). Let us explain now the rationale behind checking that a
certain choice of sen is correct or not.

Checking the validity of the bet on s̃en in its naive version. The columns
of A are also partitioned according to Ien, Icode and Ilat to get Aen,Acode,Alat.
It follows that

b ≡ Aensen + Acodescode + Alatslat + e mod q. (33)

By lattice reduction and sieving, we got a list L of N pairs of short vectors

(αxj ,yj,lat) where α
4
= σe

σs
and yj,lat

4
= Aᵀ

latxj . For all j ∈ J1, NK}, we also let

yj,code
4
= Aᵀ

codexj , yj,en
4
= Aᵀ

enxj .
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The verification that we have found the right value for sen basically relies on
the following observation

〈xj ,b〉 − 〈yj,en, sen〉︸ ︷︷ ︸
known

≡ 〈yj,code, scode〉+ 〈yj,lat, slat〉+ 〈xj , e〉︸ ︷︷ ︸
modular Gaussian

mod q. (34)

In other words as explained in the introduction we have now N new LWE sam-
ples associated to a secret scode ∈ Zncode

q living in a much smaller space. One
naive way to perform this task is to compute for all z ∈ Zncode

q the correspond-
ing vector t(z) = ({〈xj ,b〉 − 〈yj,en, sen〉 − 〈yj,code, z〉} mod q)1≤j≤N and check
whether there is a vector of unusually small norm. This would cost Nqncode .
There is a way to amortize these computations with an FFT approach which
costs only qncode+1 log q and which is suggested in [MAT22]. There, the task
of verifying whether sen = s̃en is performed by computing the real part of the
Fourier transform, where z ranges over Zncode

q

Fplain(s̃en, z)
4
=<

 N∑
j=1

e
(〈xj ,b〉−〈yj,en,s̃en〉−〈yj,code,z〉)

2iπ
q

 . (35)

If we have made the wrong guess, the Fourier transform behaves like those of a
uniform distribution, whereas if we made the right guess for sen, this function of
z should have an unusually high value at z = scode. Therefore the distinguisher
just relies on the test:

Plain distinguisher test for the guess s̃en: Does there exist a value z ∈ Zncode
q

with Fplain(s̃en, z) > C where C is some well chosen cutoff value?

This approach is justified by the following lemmas, a proof of which is given
in the Appendix A.

Lemma 3.1. Let (Xj)j∈J1,NK be N i.i.d random variables drawn according to a

modular Gaussian over Zq of mean 0 and variance σ2. Then <
(∑N

j=1 e
2iπXj
q

)
is approximately normally distributed with

E

<
 N∑
j=1

e
2iπXj
q

 ≥ Ne−2(πσq )
2

(36)

and if σ ≥
√

q log(2)
8π2 , then we have

V

<
 N∑
j=1

e
2iπXj
q

 ≤ N

2

(
1 + 2e−8(πσq )

2)
(37)

12



Lemma 3.2. Let (Xj)j∈J1,NK be N i.i.d random variables drawn according to a

uniform distribution over Zq. Then <
(∑N

j=1 e
2iπXj
q

)
is approximately normally

distributed with

E

<
 N∑
j=1

e
2iπXj
q

 = 0 (38)

and

V

<
 N∑
j=1

e
2iπXj
q

 =
N

2
(39)

The problem with this approach is we cannot afford to take large values of
ncode because of the O

(
qncode+1 log q

)
complexity of the whole algorithm and

this is unfortunate since we are hardly reducing the dimension of the lattice on
which we perform the reduction. [MAT22] circumvents this problem by choosing
to perform modulus switching to reduce by a large amount the value of q. Let
us explain what this means here.

Modulus switching. Modulus switching basically relies on the following idea.
Start again with (34) and rewrite it slightly as an equality over integers, i.e. for
any (αx,ylat) ∈ L, there exists k ∈ Z such that

〈x,b〉 − 〈yen, sen〉 = 〈ycode, scode〉+ e+ kq (40)

e ∼ DZq,σ (41)

We can basically rewrite (34) as an equality of the same type, but this time
for another modulo p and with a new noise which is the sum of the rounding
noise with the original noise. This can be verified by noticing that the previous
equality can be multiplied on both sides by p/q so that〈

p

q
x,b

〉
−
〈
p

q
yen, sen

〉
=

〈
p

q
ycode, scode

〉
+
p

q
e+ kp (42)

By writing that p
qycode =

[
p
qycode

]
+
{
p
qycode

}
and rearranging terms a little

bit we obtain〈
p

q
x,b

〉
−
〈
p

q
yen, sen

〉
=

〈[
p

q
ycode

]
, scode

〉
+ e′ + kp (43)

where e′
4
=

〈{
p

q
ycode

}
, scode

〉
+
p

q
e (44)

This can be considered as to be “almost” an LWE problem (mod p), where

a
4
=

[
p

q
ycode

]
(45)
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b
4
=

〈
p

q
x,b

〉
−
〈
p

q
yen, sen

〉
(46)

b = 〈a, scode〉+ e′ + kp (47)

What makes this different from an LWE problem, is the fact the b part of the
sample (a, b = 〈a, s〉+e′) is not necessarily an integer anymore. The new rounding

term
〈{

p
qycode

}
, scode

〉
has negligible effect when p is close to q, but is significant

in the case considered by Matzov, namely when p� q, because of the rescaling
of the samples by the multiplicative factor p/q.

Verifying whether the guess s̃en for sen is correct can be done with a similar
distinguisher as above, but this time with the Fourier transform being taken over
Zncode
p :

Fmod. switching(s̃en, z)
4
=<

 N∑
j=1

e
(〈 pq xj ,b〉−〈

p
q yj,en,s̃en〉−〈[

p
q yj,code],z〉)

2iπ
p

 . (48)

Here z ∈ Zncode
p and the cost of FFT is only O

(
pncode+1 log p

)
. This is precisely

the [MAT22] approach. We will proceed similarly here, but for completely other
reasons. We switch to a modulus p = 2s which is about the same order as q, in
order to get a significant saving in the FFT. However, we do not perform directly
the FFT over Zncode

p but perform a dimension reduction with a code approach
as we now explain.

Reduction of the dimension with a coding approach. The idea is to pick
up a code C of dimension nfft over Zncode

p generated by a matrix G ∈ Zncode×nfft
p ,

that is

C
4
=
{
Gu : u ∈ Znfft

p

}
(49)

such that

(i) we can decode efficiently, meaning that for all y ∈ Zncode
p we are able to find

efficiently u ∈ Znfft
p such that Gu is close to y,

(ii) the decoding distance, namely the typical/average Euclidean distance be-
tween the Gu we produce by this decoding algorithm and y is as small as
possible. The product codes used in [BDGL16] or polar codes [Arı09, KU10,
Şaş11] are examples where this is possible to achieve.

We use such a code to decode[
p
qycode

]
≡ Gucode + tcode mod p (50)

where tcode is of small norm, so that finally, after using this in (47) we obtain〈
p

q
x,b

〉
−
〈
p

q
yen, sen

〉
︸ ︷︷ ︸

b

= 〈Gucode + tcode, scode〉+ e′ + k′p (51)
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= 〈Gucode, scode〉+ 〈tcode, scode〉+ e′ + k′p (52)

=

〈
ucode︸ ︷︷ ︸
new a

, Gᵀscode︸ ︷︷ ︸
new secret

〉
+ 〈tcode, scode〉+ e′︸ ︷︷ ︸

e′′

+k′p.(53)

In other words, we have here a new “approximate” (because b is not necessarily
an integer) LWE problem where the new secret is only of size nfft over Zp for
which we use now the previous distinguisher, but this time we perform an FFT
just over Znfft

p :

F (s̃en, z)
4
=<

 N∑
j=1

e
(〈 pq xj ,b〉−〈

p
q yj,en,s̃en〉−〈uj,code,z〉)

2iπ
p

 (54)

where uj,code is the result of decoding
[
p
qyj,code

]
, that is

[
p
qyj,code

]
≡ Guj,code +

tj,code mod p where tj,code is small.

Wrapping everything up in an algorithm. If we sum up the whole discus-
sion, the distinguisher we use to check the validity of s̃en is given by:
Final distinguisher test for a bet s̃en: Does there exist a value z ∈ Znfft

p

where F (s̃en, z) > C where C is some well chosen cutoff value?

The corresponding algorithm is given by:

Algorithm 3: Verification of s̃en (Instruction 7 in Algorithm 2)

Input: s̃en ∈ Znen
q , LWE parameters (n,m, q, χs, χe), an LWE pair

(A,b) ∈ Zm×nq × Zmq and a list L of N pairs of short vectors

(αx,ylat) where α
4
= σe

σs
and such that ylat

4
= Aᵀ

latx.
Parameters: integers nen, nfft, nlat such that nen + ncode + nlat = n, an

integer p
4
= 2s 6 q, an integer nfft 6 ncode, integer N , a

real number C
Output: true if s̃en is the right bet, false otherwise.

1 Choose a code G ∈ Zncode×nfft
p

2 Initialize a table T of dimensions p× p× · · · p︸ ︷︷ ︸
nfft times

3 for every short vector (αx,ylat) in L do
4 Compute ycode = Aᵀ

codex.
5 Compute yen = Aᵀ

enx.

6 Decode
[
p
qycode

]
as Gucode + tcode.

7 Add exp
(

2iπ
p

(〈
p
qx,b

〉
−
〈
p
qyen, s̃en

〉))
to cell ucode of T .

8 Perform FFT on T

9 if the real part of T [s̃Gfft] is larger than C for every s̃Gfft ∈ Znfft
p then

10 return true.
11 return false
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3.2 Correctness of the algorithm

Let us first summarize in Table 1 all parameters of the algorithm and quantities
which will appear in this section.

Table 1. Dual attack parameters.

parameters explanation

n, m, χs, χe LWE parameters as in Definition 2.3.
β0, β1 BKZ block size β0 and sieving dimension β1.

p modulus switching target modulus (p
4
= 2s ≤ q).

µ the target success probability 0 < µ < 1.
σ2
s , σ2

e variances of χs and χe respectively.
sen, scode, slat components of s covered by exhaustive search, FFT and lattice

reduction.

s̃en, s̃code, s̃
G
fft guesses for respectively sen mod q, scode mod p and sGfft

4
=Gᵀsfft

mod p.
Nen(sen) number of vector s̃en to enumerate.
nen, nfft, nlat dimension of sen, scode or slat respectively.
Aen,Afft,Alat A · s = Aen · sen + Afft · scode + Alat · slat.

α scaling/normalization factor α
4
=σe/σs.

L, N list/number of short vectors returned by sieving oracle N := ]L.
R the number of different subsets of size nen we test for the bet

sen ∈ Bet.

ψ (scode) = exp(
2πicq′
p

∑
t st) where q′ = q/ gcd(p, q), cq′ := 0 when q′ is

odd and cq′ := 1/2q′ when q′ is even.
C FFT cutoff value for scoring function.
Φ the cumulative distribution function of the standard normal dis-

tribution Φ(x)
4
= 1

2
+ 1

2
erf
(
x√
2

)
.

φfp(µ), φfn(µ) = Φ−1
(

1− µ
2·Nen(sen)·pnfft

)
, Φ−1

(
1− µ

2

)
.

Neq exponential factor coming from the original LWE error.
Nround exponential factor coming from the rounding when performing

modulus switching.
Ncode exponential factor coming from the code based treatment.
Narg ≈ 1/2, improvement factor coming from considering the complex

argument of the Fourier coefficient rather than only the magni-
tude.

Nfpfn a polynomial factor controlling false positives and negatives.
|x|0 number of entries of x equal to 0.

Under assumptions which are similar to Assumption 5.8 in [MAT22] plus
additional assumptions on the decoding, we can prove the correctness of our
algorithm.

Assumption 3.3
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– All assumptions in [MAT22, Assumption 5.8] hold.
– for a uniformly random vector y, if we decode it as Gu+t then u is uniform

and t is (approximately) uniform in a ball of radius d where d is the radius
ω of a ball attaining equality in (18), that is Vol (Bω) = qncode−nfft . We call
d the decoding distance.

– The vectors tj,code are approximately independent from xj ,yj,lat,yj,code and
yj,en.

– The vectors yj,code are approximately uniform modulo q.
– The coordinates of tj,code are approximately independent and distributed ac-

cording to a modular Gaussian of standard deviation d√
ncode

where d is the

aforementioned decoding distance of G.

Under these assumptions, plus an additional assumption that we give in the
proof which follows (see Assumption 3.6), we give now a theorem proving that
when sen belongs to the betting set Bet, then the algorithm will return it with
a certain probability that we control

Theorem 3.4. Let (n,m, q, χs, χe) be LWE parameters, let (β0, β1, nen, nfft,
nlat, ncode, Bet, p, C, D) be a tuple of parameters for Algorithm 3, and let
0 < µ < 1 be the desired failure probability. Fix (s, e) ∈ Znq × Zmq . If sen ∈ Bet
then Algorithm 3 with parameters

N > Neq · < (ψ(scode))
−2
Nround ·Ncode ·Narg ·Nfpfn (55)

C = φfp

√
N ·Narg (56)

returns sen with probability at least 1−µ, otherwise it returns ⊥ with probability
at least 1− µ/2. Above, we have

N
− 1

2
round

4
=

ncode∏
t=1

(scode)t 6=0

sin
(
π(scode)t

p

)
π(scode)t

p

, N
− 1

2
eq

4
= e
−2
(πτeq

q

)2

, τeq
4
=
α−2 ‖e‖2 + ‖slat‖2

m+ nlat
`2,

Narg
4
=

1

2

(
1 + 2e−8(πτeqq )

)
, N

− 1
2

code

4
= e
−2
(
πτcode
p

)2

, τcode
4
= ‖scode‖

p
1− nfft

ncode

√
2πe

,

Nfpfn = (φfp + φfn)
2
, φfn = Φ−1

(
1− µ

2

)
, φfp = Φ−1

(
1− µ

2·|Bet |·pnfft

)
,

ψ(scode)
4
= e

2iπc
q′

p

∑ncode
j=1 (scode)j , cq′

4
=

{
0 if q′ odd
1

2q′ otherwise
, q′

4
=

q

gcd(p, q)
,

Ωs is the universe of χs and ` is the average length of the vectors given by the
short vectors sampling algorithm.

Proof. In this proof, we index j all variables that depend on the short vector
(xj ,yj,lat), namely yj,code, yj,en, uj,code and tj,code. Recall that for every guess
(s̃en, s̃

G
fft), the algorithm computes the sum

F (s̃en, s̃
G
fft)
4
=<

 N∑
j=1

e
(〈 pq xj ,b〉−〈

p
q yj,en,s̃en〉−〈uj,code,s̃

G
fft〉)

2iπ
p
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via the FFT on T . When (s̃en, s̃
G
fft) = (sen, s

G
fft), we have

F (sen, s
G
fft) = <

 N∑
j=1

e

(
〈tcode,scode〉+〈

{p
q yj,code

}
,scode〉+〈

p
q yj,lat,slat〉+〈

p
q xj ,e〉

)
2iπ
p


=

N∑
j=1

< (εj,eq · εj,round · εj,code)

where

εj,eq = e
(〈yj,lat,slat〉+〈xj ,e〉)

2iπ
q , εj,round = e

(
〈
{p
q yj,code

}
,scode〉

)
2iπ
p

and

εj,code = e
(〈tj,code,scode〉)

2iπ
p . (57)

By Assumption 3.3, those are independent and identically distributed variables
so when N is large, the distribution of F (sen, s

G
fft) is approximately normal with

mean and variance determined by the distribution of εj,eq, εj,round and εj,code.
We now remark that the definition of εj,eq and εj,round is exactly the same

as in [MAT22], except that we did not include the correcting factor 1
ψ(scode) in

εj,round, as well as the definition of xj , yj,lat and yj,code. Therefore we apply the
results of [MAT22] directly. Specifically, by [MAT22, Lemma 5.3],

E[εj,eq] > e
−2
(πτeq

q

)2
4
=N

− 1
2

eq , E
[
ε2
j,eq

]
6 2e

−8
(πτeq

q

)2

where τeq = α−2‖e‖2+‖slat‖2
m+nlat

`2 and ` is the average length of the vectors given by
the short vectors sampling algorithm. Note that εj,eq has real expected value.
Also by [MAT22, Lemma 5.4], recall that our εj,round did not include the cor-
recting factor 1

ψ(scode) in εj,round,

E
[
εj,round

ψ(scode)

]
>

nfft∏
t=1:st 6=0

sin
(
π(scode)t

p

)
π(scode)t

p

4
=N

− 1
2

round.

Note in particular that
εj,round
ψ(scode) has real expected value. Therefore,

< (E[εj,round]) = <
(
ψ(scode)E

[
εj,round

ψ(scode)

])
> < (ψ(scode))N

− 1
2

round.

Finally, for the lattice-code part, we have the following. (See proof in Ap-
pendix B)

Lemma 3.5. E[εj,code] > e
−2
(
πτcode
p

)2
4
=D

− 1
2

code and E
[
ε2
j,code

]
6 2e

−8
(
πτcode
p

)2

where τcode = ‖scode‖ p
1−

nfft

ncode√
2πe

.
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With this lemma, plus the following additional assumption

Assumption 3.6 εj,round and εj,code are independent.

we have that

E
[
F (sen, s

G
fft)
]

=

N∑
j=1

E[< (εj,eq · εj,round · εj,code)]

=

N∑
j=1

< (E[εj,eq] · E[εj,round] · E[εj,code])

=

N∑
j=1

E[εj,eq] · < (E[εj,round]) · E[εj,code]

> N ·
(
Neq · < (ψ(scode))

−2
Nround ·Ncode

)− 1
2

where we have used that εj,eq and εj,code have real expected value. Recall that
this computation was for a correct guess, i.e. (s̃en, s̃

G
fft) = (sen, s

G
fft). On the

other hand, if s̃en 6= sen, i.e. an incorrect guess, we write s̃en = sen + ∆sen and
s̃code = scode +∆scode. It follows that

F (s̃en, s̃
G
fft)

= <

 N∑
j=1

e

(
〈pq xj ,b〉−〈

p
q yj,en,(sen+∆sen)〉−〈uj,code,(s̃Gfft+Gᵀ∆scode)〉

)
2iπ
p


=

N∑
j=1

<
(
e

(
〈tcode,scode〉+〈

{p
q yj,code

}
,scode〉+〈

p
q yj,lat,slat〉+〈

p
q xj ,e〉−〈

p
q yj,en,∆sen〉−〈uj,code,Gᵀ∆scode〉

)
2iπ
p

)

=

N∑
j=1

<
(
e
−(〈yj,en,∆sen〉)

2iπ
q e2iπWj

)

where Wj is independent of yj,en by Assumption 3.3. Furthermore, by Assump-
tion 3.3, yj,en is uniform mod q and ∆sen is nonzero so yTj,en∆sen is uniform
mod q, hence has expected value 0. This shows that

E
[
F (s̃en, s̃

G
fft)
]

= 0 when s̃en 6= sen.

We have shown that E
[
F (s̃en, s̃

G
fft)
]

is zero for wrong guesses and bounded away
from zero for good guesses. We now need to study the variance of this quantity
to quantify how many samples we need to distinguish between those two cases.
Let s̃en, s̃

G
fft be arbitrary. Again write s̃en = sen +∆sen and s̃fft = scode +∆scode

for some (possibly zero) ∆sen and ∆scode. The computation above shows that

F (s̃en, s̃
G
fft)
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= <

 N∑
j=1

e

(
〈tcode,scode〉+〈

{p
q yj,code

}
,scode〉+〈

p
q yj,lat,slat〉+〈

p
q xj ,e〉−〈

p
q yj,en,∆sen〉−〈uj,code,Gᵀ∆scode〉

)
2iπ
p


=

N∑
j=1

<
(
e
−
(
〈pq yj,lat,slat〉+〈

p
q xj ,e〉

)
2iπ
q e2iπZj

)

=

N∑
j=1

<
(
εj,eq · e2iπZj

)
where Zj is independent of εj,eq by Assumption 3.3. Furthermore, note that Zj
is a real number. Therefore,

Var
(
F (s̃en, s̃

G
fft)
)

=
N∑
j=1

Var
(
<
(
εj,eq · e2iπZj

))
6

N∑
j=1

E
[
<
(
εj,eq · e2iπZj

)2]

=

N∑
j=1

E

[(
εj,eq · e2iπZj + εj,eq · e−2iπZj

2

)2
]

=

N∑
j=1

E

[
ε2
j,eq · e4iπZj + 2 + ε2

j,eq · e−4iπZj

4

]

=

N∑
j=1

1

2

(
1 + <

(
E
[
ε2
j,eq

]
E
[
e4iπZj

]))
6

N∑
j=1

1

2

(
1 +

∣∣E[ε2
j,eq

]∣∣ · ∣∣E[e4iπZj
]∣∣)

6
N∑
j=1

1

2

(
1 + 2e−8(πτeqq )

)
since |e4iπZj | = 1

= N ·Narg

where Narg = 1
2

(
1 + 2e−8(πτeqq )

)
. In summary, we have shown about F (s̃en, s̃

G
fft)

that:

– for an incorrect guess s̃en 6= sen, it has expected value 0,

– for a correct guess (s̃en, s̃
G
fft) = (sen, s

G
fft), it has expected value at least

D · (Deq · < (ψ(scode))Dround ·Dcode)
− 1

2

– it has variance bounded by D ·Darg.
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Furthermore, F (s̃en, s̃
G
fft) is the sum of many independent and identically dis-

tributed variables and thus approximately distributed according to a normal
distribution with mean and variance described just above. As a result, we have
(for good guesses) that

Pr
[
F (sen, s

G
fft) 6 C

]
6 Pr

[
N (N · (Neq · < (ψ(scode))Nround ·Ncode)

− 1
2 , N ·Narg) 6 C

]

= 1− Φ

N · (Neq · < (ψ(scode))Nround ·Ncode)
− 1

2 − C√
N ·Narg


6 1− Φ

(√
Nfpfn −

C√
N ·Narg

)
= 1− Φ(φfn)

=
µ

2

where we have used our assumption that N > Neq ·< (ψ(scode))
−2
Nround ·Ncode ·

Narg · Nfpfn and the last two equalities are exactly the same as in [MAT22,
Lemma 5.7]. On the other hand, for a bad guess (s̃en, s̃

G
fft) with s̃en 6= sen, the

mean is zero so

Pr
[
F (s̃en, s̃

G
fft) > C

]
6 Pr[N (0, N ·Narg) > C]

= 1− Φ

(
C√

N ·Narg

)
= 1− Φ(φfp)

=
µ

2 · |Bet | · pnfft

again by the same computation as in [MAT22, Lemma 5.7].
Assume that sen ∈ Bet, i.e. that the code will eventually consider a good

guess (sen, s
G
fft). Then for the algorithm to return a wrong value, it must either

fail to pass the check when considering (sen, s
G
fft), or wrongly accepts a bad

guess (s̃en, s̃
G
fft) that appears before (sen, s

G
fft) in the enumeration. In total, the

algorithm considers at most |Bet | · pnfft pairs (s̃en, s̃
G
fft). Therefore, by a union

bound, we have

Pr[the algorithm does not return sen] 6
µ

2
+
µ · |Bet | · pnfft

2 · |Bet | · pnfft
= µ.

Now assume that sen ∈ Bet does not hold. Then the algorithm should return
⊥ and all pairs (s̃en, s̃

G
fft) should fail. Therefore the algorithm fails if it wrongly

accepts a bad guess. In total, the algorithm considers at most |Bet | · pnfft pairs
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(s̃en, s̃
G
fft). Therefore, by a union bound, we have

Pr[the algorithm does not return ⊥] 6
µ · |Bet | · pnfft

2 · |Bet | · pnfft
=
µ

2
.

ut

To analyze now the whole algorithm, the following lemma analyzing the whole
success probability over the R iterations of Algorithm 2 will be helpful.

Lemma 3.7. Let (n,m, q, χs, χe) be LWE parameters, let (β0, β1, nen, nfft,
nlat, ncode, Bet, p, C, N , R) be a tuple of parameters for Algorithm 2, and
let 0 < ν < 1 be the desired failure probability. Fix (s, e) ∈ Znq × Zmq . Let
T (s) = { permutation τ of J1, nen + ncodeK : sτen ∈ Bet }. We assume that we
have chosen these parameters so that if for one of the R iterations of Algo-
rithm 2 (that is Instruction 6) we have sen ∈ Bet, then the probability that sen

is output by Algorithm 3 is at least 1 − µ. If |T | > 0 then Algorithm 2 with
parameters as in Theorem 3.4 and

R >
ln(ν2 )

ln(1− pτ ) + ln(1− µ)
, µ 6

νpτ
νpτ + 2− ν

, pτ
4
=

|T (s)|
(nen + ncode)!

returns sτen with probability at least 1 − ν. If |T | = 0 then Algorithm 2 with
parameters as in Theorem 3.4 and

R 6
ln(1− ν

2 )

ln(1− µ)
, µ arbitrary

returns ⊥ with probability at least 1− ν
2 .

Proof. Assume that |T | > 0. Then at each round of the algorithm, the random
permutation τ has a probability pτ to be such that sτen ∈ Bet. By Theorem 3.4,
when this is the case, the algorithm will return sτen with probability at least
1−µ. When this is not the case, the algorithm will return ⊥ with probability at
least 1 − µ and continue to the next round. Therefore the probability that the
algorithm returns the correct value within R iterations is at least

psucc
4
=

R−1∑
k=0

bad τ go to next iteration︷ ︸︸ ︷
(1− pτ ) (1− µ)︸ ︷︷ ︸

:=α

k good τ pass︷ ︸︸ ︷
pτ (1− µ)

= pτ (1− µ)
1− αR

1− α

=
pτ (1− µ)

pτ (1− µ) + µ
(1− αR).

Let x = ν
2−ν and assume that µ 6 xpτ

1+xpτ
= νpτ

νpτ+2−ν . Then a straightforward

calculation shows that pτ (1−µ)
pτ (1−µ)+µ > 1− ν

2 . It follows that

psucc > (1− ν
2 )
(
1− xR

)
> (1− ν

2 )(1− ν
2 ) > 1− ν
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when R >
ln(

ν
2 )

ln(1−pτ )+ln(1−µ) .

Assume now that |T | = 0, then the algorithm should return ⊥. For this to
happen, all the calls to Algorithm 3 must return ⊥ at each of the R iterations.
By Theorem 3.4, since the condition sτen ∈ Bet is never satisfied, Algorithm 3
returns ⊥ with probability at least 1−µ. Therefore, the algorithm will correctly
return ⊥ with probability at least

(1− µ)R = eR ln(1−µ) > 1− ν
2

when R 6
ln(1−ν2 )

ln(1−µ) . ut

Finally, if we put everything together, we obtain the following result analyzing
the success probability of Algorithm 2. We give a proof in the Appendix C for
reference.

Theorem 3.8. Let (n,m, q, χs, χe) be LWE parameters, (β0, β1, nen, nfft, nlat,
ncode, Bet, p, C, N , R, µ) be a partial tuple of parameters and 0 < ν < 1 be the
desired failure probability. Then Algorithm 2 with parameters

N > Ñeq · Ñround · Ñcode · Ñarg · Ñfpfn,

C = φ̃fp

√
D · Ñarg,

R >
ln(ν2 )

ln(1− p̃τ ) + ln(1− µ)
,

µ 6
νp̃τ

νp̃τ + 2− ν

returns sen with probability at least 1−ν
4 . Above, we have

Ñround
4
=
∏
s̄6=0

 sin
(
πs̄
p

)
πs̄
p

−2nfftχs(s̄)

, Ñeq
4
= e4(πσs`q )

2

, Ñarg ≈
1

2
,

Ñcode
4
= exp

(
2
πσ2

s

e
ncode · p

− nfft

ncode

)
,

Ñfpfn =
(
φ̃fp + φ̃fn

)2

, φ̃fn = Φ−1
(
1− µ

2

)
, φ̃fp = Φ−1

(
1− µ

2·|Bet |·pnfft

)
,

p̃τ such that Pr
s

[pτ (s) > p̃τ ] > 3/4, pτ (s) =
|T (s)|

(nen + ncode)!

T (s) = { permutation τ of J1, nen + ncodeK : sτen ∈ Bet }

Ωs is the universe of χs and ` is the average length of the vectors given by the
short vectors sampling algorithm.
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3.3 Which Codes Should We Use?

In terms of the decoding distance alone, the answer would be, just use a random
code of dimension nfft in Zncode

p . In this case, we would obtain the decoding dis-

tance d ≈ p1− nfft
ncode

√
ncode

2πe (see (19)) attaining the bound (32) or (18). However,
the decoding algorithm we could use in this case would be too complex for our
purpose. We could instead use a product code structure as in [BDGL16]. How-
ever, contrary to what happens in the latter case, where spherical codes can be
used, we are in a situation where more stuctured codes could do the job better.
A natural answer that comes to mind, would be to use polar codes [Arı09] for
this purpose. When p = 2, such codes are known to be asymptotically optimal
[KU10] for lossy source coding (basically a version of our problem where the
alphabet is binary and we take the Hamming distance instead of the Euclidean
distance). Such a result is expected to carry over for other prime size alphabets,
basically because

– The proof that polar codes are optimal for this problem relies on the same
crucial argument (namely the proof of the polarization phenomenon for the
successive cancellation decoder) as proving that polar codes attain the ca-
pacity of any symmetric binary input discrete memoryless channel.

– Non-binary polar codes defined over any prime alphabets have been found
out to attain capacity (see for instance [Şaş11, Ch.5]).

Remarkably, the construction of polar codes generalizes trivially to other alpha-
bets, be it prime or not, be it a finite field or a ring. In particular, it applies

to Zp where p
4
= 2s. Moreover, the successive cancellation decoder which is used

to decode them in the error correction scenario can be turned with a simple
modification into an algorithm for finding a close codeword (but not necessarily
the closest one) [KU10]. This is precisely what is needed in our context. It needs
a noise model to instantiate it, and this can be done for our Euclidean metric
by using the Gaussian noise model. Essentially, the complexity of this type of
decoding is of order ncode log2 ncode times twice the complexity of the FFT over
Zp, because the most consuming part of the algorithm consists of computing
the convolution of two probability distributions over Zp and this ncode log2 ncode

times. This explains the optimistic cost we give for decoding in Subsection 3.4.
namely Tdec (N, p, n) = 3 · Cmul ·N · p log2(p) · n log2(n).

In Appendix D, we give more details about our polar code construction over
Zp. We also give some experimental results that show polar codes are perfectly
suitable in our case.

3.4 Complexity of Algorithm 2

Theorem 3.9. Let (n,m, q, χs, χe) be LWE parameters, (β0, β1, nen, nfft, nlat,
ncode, Bet, p) be a partial tuple of parameters for Algorithm 2, and let 0 < ν <
1. Choosing the parameters C,N,R, µ according to Theorem 3.8, Algorithm 2
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outputs sτen with probability at least 1− ν in expected time

O

(
Tsamp (m+ nlat, β0, β1, N) +R|Bet | (Tfft (p, ncode) + Ttab (N) + Tdec (N, p, nfft))

)
where

– Tsamp (d, β0, β1, N) is the running time for outputting at least N short vectors
(see Lemma 2.1),

– Tfft(2
u, d) = Cmul · d · u · 2d·u is the cost of performing the FFT over Z/2uZ

on a table of dimension (2u)d (see [Knu97, pp. 306-311]),

– Ttab (N)
4
= 4 · Cadd ·N is the table generation time,

– Tdec (N, p, n) = 3 · Cmul · N · p log2(p) · n log2(n) is the cost of decoding N
word in a polar code of length n over Zp,

– Cadd and Cmul are respectively the cost of an addition and a multiplication
(with wordsize of 4 bytes, Cadd = 5 · 32 and Cmul = 322).

3.5 Optimal Betting Strategy

The optimal betting strategy is in our case straightforward to derive since here
betting is just used to decrease the cost Nen of enumerating all likely sen in Znen

q .

For x ∈ Znen
q , let p(x)

4
= Pr[sen = x] and denote accordingly the probability

of a subset E of Znen
q : p(E)

4
=
∑

x∈E p(x). Let us assume that we strive for a

probability of say 1
2 of finding the right sen with this approach. The number

R of times we have to check whether for the Ien we have chosen sen is in Bet
should satisfy

∑R
i=1(1−π)i−1π = 1

2 where π = p(Bet). Since
∑R
i=1(1−π)i−1π =

π 1−(1−π)R

π = 1− (1− π)R, we deduce that we should have (1− π)R = 1
2 , that is

R = − ln 2
ln(1−π) ≈

ln 2
π , when we assume that π is small. The complexity of finding

sen with probability 1
2 for the betting strategy is therefore R|Bet | ≈ ln 2|Bet |

p(Bet) .

The ensemble Bet which minimizes this complexity is therefore necessarily the set
(or a subset of it) of all x of maximal probability. In the case of the distributions
χs of s we have examined, this was always given by the single all-zero vector:
Betoptim = {0}.

4 Application

In this section we give estimates for the impact of our algorithm on the cost of
solving lattice parameters from the literature. In particular, we consider NIST
PQC Round 3 candidate Saber [DKR+20] and NIST PQC to-be-standardised
candidate Kyber [SAB+20].

The cost given in Theorem 3.9 is the sum of two costs: lattice reduction
and the search for sen . The optimal cost is obtained by balancing the two
summands. For the first summand, various cost models are available which we
describe below.
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Table 2. The log2 complexity of original Matzov

Scheme C0 CC CN

Kyber 512 114.8 138.5 133.7
Kyber 768 173.1 195.7 190.4
Kyber 1024 240.7 261.4 255.4
LightSaber 113.1 137.1 132.3
Saber 178.3 201.1 195.1
FireSaber 242.8 263.6 257.7

Table 3. The log2 complexity of our method

without using the Prange bet

Scheme C0 CC CN

Kyber 512 114.0 137.8 133.0
Kyber 768 170.2 192.5 187.2
Kyber 1024 235.7 256.2 250.5
LightSaber 112.3 136.8 131.5
Saber 177.0 199.7 194.9
FireSaber 239.4 259.9 254.4

using the Prange bet

Scheme C0 CC CN

Kyber 512 113.9 137.5 132.6
Kyber 768 169.8 191.9 186.7
Kyber 1024 235.5 255.5 249.5
LightSaber 112.2 136.7 131.8
Saber 176.9 199.0 193.8
FireSaber 239.0 259.3 253.9

Table 4. Parameters

C0:

Scheme Attack m β0 β1 nen nfft ncode p

Kyber 512 113.9 501 390 390 5 14 42 64
Kyber 768 169.8 665 581 581 11 19 76 128
Kyber 1024 235.5 844 806 806 12 22 106 512
LightSaber 112.2 535 384 384 4 12 34 128
Saber 176.9 731 605 605 9 23 58 64
FireSaber 239 898 818 818 11 33 101 64

CC:

Scheme Attack m β0 β1 nen nfft ncode p

Kyber 512 137.5 491 379 383 10 14 45 128
Kyber 768 191.9 658 573 567 13 19 83 256
Kyber 1024 255.5 839 799 781 13 31 124 128
LightSaber 136.7 527 376 381 8 12 39 256
Saber 199 726 599 591 11 22 67 128
FireSaber 259.3 894 813 794 13 24 109 512

CN:

Scheme Attack m β0 β1 nen nfft ncode p

Kyber 512 132.6 493 381 385 11 9 43 1024
Kyber 768 186.7 660 575 568 12 15 89 1024
Kyber 1024 249.5 841 801 783 14 19 126 2048
LightSaber 131.8 530 378 382 8 9 35 1024
Saber 193.8 728 601 594 12 16 62 512
FireSaber 253.9 896 816 798 10 36 102 64
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CC Cost estimates in a classical circuit model [AGPS20, SAB+20, MAT22] for
Algorithm 1 using [BDGL16] as the sieving oracle. We derive these estimates
by implementing the cost estimates from [MAT22], those tagged “asymp-
totic” cf. [MAB+22]. This is the most detailed cost estimate available in the
literature. However, we caution that these estimates, too, ignore the cost
of memory access and thus may significantly underestimate the true cost.
That is RAM access is not “free”, cf. [MAB+22]. This cost model is called
“list decoding-classical” in [AGPS20].

CN Cost estimates in a query model for Algorithm 1 using [BDGL16] as the
sieving oracle. We include this cost model for completeness. This cost model
is called “list decoding-naive classical” in [AGPS20].

C0 Cost estimates in the “Core-SVP” cost model [ADPS16] for Algorithm 1
using [BDGL16] as the sieving oracle. This model assumes a single SVP call
suffices to reduce a lattice. It furthermore assumes that all lower-order terms
in the exponent are zero.

We give the source code for and results of the comparison in Appendix E.
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SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-
ficient public key encryption based on ideal lattices. In Mitsuru Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635. Springer,
Heidelberg, December 2009.

STA09. Eren Sasoglu, Emre Telatar, and Erdal Arikan. Polarization for arbitrary
discrete memoryless channels. pages 144 – 148, 11 2009.

ZF96. Ram Zamir and Meir Feder. On lattice quantization noise. IEEE Trans.
Inform. Theory, 42(4):1152–1159, 1996.

29

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s
https://doi.org/10.5281/zenodo.6412487
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


Appendices



A Proof of Lemma 3.1 and Lemma 3.2

Lemma 3.1. Let (Xj)j∈J1,NK be N i.i.d random variables drawn according to a

modular Gaussian over Zq of mean 0 and variance σ2. Then <
(∑N

j=1 e
2iπXj
q

)
is approximately normally distributed with

E

<
 N∑
j=1

e
2iπXj
q

 ≥ Ne−2(πσq )
2

and if σ ≥
√

q log(2)
8π2 , then we have

V

<
 N∑
j=1

e
2iπXj
q

 ≤ N

2

(
1 + 2e−8(πσq )

2)

Proof. We denote ρ the distribution function of the Xj ’s. Then we have

E
(
<
(∑N

j=1 e
2iπXj
q

))
= N · <

(∑
j∈Zq

(
e

2iπj
q ρ(j)

))
= N · < (ρ̂(1))

≥ Ne−2(πσq )
2

The last inequality holds using [MAT22, Lemma 2.5].

On the other hand, using the same trick as in the proof of Lemma 3.2, we
have

V

<
 N∑
j=1

e
2iπXj
q

 =
N

2
·
(

1 + E
(
<
(
e

4iπXj
q

)))
and so, we end the proof using again [MAT22, Lemma 2.5].

Lemma 3.2. Let (Xj)j∈J1,NK be N i.i.d random variables drawn according to a

uniform distribution over Zq. Then <
(∑N

j=1 e
2iπXj
q

)
is approximately normally

distributed with

E

<
 N∑
j=1

e
2iπXj
q

 = 0

and

V

<
 N∑
j=1

e
2iπXj
q

 =
N

2
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Proof. First of all, we have

E
(
<
(
e

2iπXj
q

))
= <

(
E
(
e

2iπXj
q

))
= <

 dq/2e−1∑
j=−bq/2c

1

q
e

2iπj
q


= <

e−2iπbq/2c
q

q
·
q−1∑
j=0

e
2iπj
q


= <

e−2iπbq/2c
q

q
·

 1−
(
e
2iπ
q

)q
1−e

2iπ
q


= 0

and with the same arguments:

E
(
<
(
e

4iπXj
q

))
= 0

So, on the one hand

E

<
 N∑
j=1

e
2iπXj
q

 =

N∑
j=1

E
(
<
(
e

2iπXj
q

))
= 0

and on the other hand

V

<
 N∑
j=1

e
2iπXj
q

 =

N∑
j=1

V
(
<
(
e

2iπXj
q

))

= N · E

(
<
(
e

2iπXj
q

)2
)

=
N

4
· E

((
e

2iπXj
q

)2

+ 2

∣∣∣∣e 2iπXj
q

∣∣∣∣2 +

(
e

2iπXj
q

)2
)

=
N

2
·
(

1 + E
(
<
(
e

4iπXj
q

)))
=
N

2

B Proof of Lemma 3.5

Lemma 3.5. E[εj,code] > e
−2
(
πτcode
p

)2
4
=D

− 1
2

code and E
[
ε2
j,code

]
6 2e

−8
(
πτcode
p

)2

where τcode = ‖scode‖ p
1−

nfft

ncode√
2πe

.
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Proof (Proof of Lemma 3.5). By Assumption 3.3, the decoding distance d is
given by the equation Volncode

(Bd) = pncode−nfft , where Bd is the volume of a

ball of radius d in Rncode . Since Voln(Bd) = πn/2dn

Γ(n2 +1)
we obtain

d =
p

1− nfft
ncode

(
Γ
(
ncode

2 + 1
)) 1

ncode

√
π

∼ p1− nfft
ncode

√
ncode

2πe
.

We apply this to the vector zj
4
=
[
p
qyj,code

]
. By Assumption 3.3, the distribution

of yj,code is approximately uniform modulo q so zj is approximately uniform
modulo p. By Assumption 3.3, the distribution of tj,code = zj −Gucode is ap-
proximately uniform in an (integer) ball of radius d as defined above. By As-
sumption 3.3, the components of zj are therefore approximately independent and
identically distributed according to a modular Gaussian of standard deviation

σcode
4
=

d
√
ncode

=
p

1− nfft

ncode

√
2πe

.

Now the exponent of εj,code is a weighted sum of approximately independent
modular Gaussian, hence by Assumption 3.3, it is also approximately distributed
according to a modular Gaussian of standard deviation τcode. Furthermore, we
have that

τ2
code = Var

(
ncode∑
i=1

(tj,code)i(scode)i

)

=

ncode∑
i=1

(scode)2
i Var ((tj,code)i)

=

ncode∑
i=1

(scode)2
iσ

2
code

= ‖scode‖2 σ2
code.

It follows by [MAT22, Theorem 2.4 and Lemma 2.5] that

E[εj,code] > e−2(πτcodep )
2

, E
[
ε2
j,code

]
6 2e−8(πτcodep )

2

.

ut

C Proof of the success probability of Algorithm 2

Theorem 3.8. Let (n,m, q, χs, χe) be LWE parameters, (β0, β1, nen, nfft, nlat,
ncode, Bet, p, C, N , R, µ) be a partial tuple of parameters and 0 < ν < 1 be the
desired failure probability. Then Algorithm 2 with parameters

N > Ñeq · Ñround · Ñcode · Ñarg · Ñfpfn,
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C = φ̃fp

√
D · Ñarg,

R >
ln(ν2 )

ln(1− p̃τ ) + ln(1− µ)
,

µ 6
νp̃τ

νp̃τ + 2− ν

returns sen with probability at least 1−ν
4 . Above, we have

Ñround
4
=
∏
s̄6=0

 sin
(
πs̄
p

)
πs̄
p

−2nfftχs(s̄)

, Ñeq
4
= e4(πσs`q )

2

, Ñarg ≈
1

2
,

Ñcode
4
= exp

(
2
πσ2

s

e
ncode · p

− nfft

ncode

)
,

Ñfpfn =
(
φ̃fp + φ̃fn

)2

, φ̃fn = Φ−1
(
1− µ

2

)
, φ̃fp = Φ−1

(
1− µ

2·|Bet |·pnfft

)
,

p̃τ such that Pr
s

[pτ (s) > p̃τ ] > 3/4, pτ (s) =
|T (s)|

(nen + ncode)!

T (s) = { permutation τ of J1, nen + ncodeK : sτen ∈ Bet }

Ωs is the universe of χs and ` is the average length of the vectors given by the
short vectors sampling algorithm.

Proof. By Lemma 3.7, if |T (s)| > 0 the algorithm succeeds with probability at
least 1− ν when

N > Neq · < (ψ(scode))
−2
Nround ·Ncode ·Narg ·Nfpfn

C = φfp

√
N ·Narg

R >
ln(ν2 )

ln(1− pτ ) + ln(1− µ)

4
=Rmax(pτ ),

µ 6
νpτ

νpτ + 2− ν
4
=µmax(pτ ),

pτ =
|T (s)|

(nen + ncode)!

and the other parameters are specified in Theorem 3.4.
We assume that log(Neq ·< (ψ(scode))

−2
Nround ·Ncode ·Narg ·Nfpfn) is approxi-

mately normally distributed (over the randomness of s and e) and so it is greater
than its expectation with probability ≈ 1

2 . It therefore remains to compute each
term of this expectation.

Observe that Ñround, Ñarg and Ñeq are defined exactly as D̃round, D̃arg and

D̃eq in [MAT22, Theorem 5.9] so we do not reproduce the proof.
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Recall that N
− 1

2
code = e

−2
(
πτcode
p

)2

where τcode = ‖scode‖ p
1−

nfft

ncode√
2πe

. Since each

coordinate of scode is independently distributed, log(Ncode) is approximately
normal with expectation

E[logNcode] =
4π2

p2
E
[
‖scode‖2

]p2−2
nfft

ncode

2πe

=
2π

e
σ2
sncode · p

− nfft

ncode

= log Ñcode.

Recall that ψ(scode) = e
2iπc

q′
p

∑ncode
j=1 (scode)j where cq′ = 0 if q′ is odd and cq′ =

1
2q′ if q′ is even, where q′

4
= q

gcd(p,q) . Assuming that χs is a centered distribution,

we have

E

ncode∑
j=1

(scode)j

 = 0.

Furthermore, since the coordinates of scode are independent,

Var

ncode∑
j=1

(scode)j

 =

ncode∑
j=1

Var ((scode)j) = ncodeσ
2
s .

For ncode not too small,
∑ncode

j=1 (scode)j is a sum of independent variables so is
approximately normal with mean and deviation computed above. As a result,
for any threshold a,

Pr

∣∣∣∣∣∣
ncode∑
j=1

(scode)j

∣∣∣∣∣∣ > a

 = Pr
[
|N (0, ncodeσ

2
s)| > a

]
6 1− Φ

(
a

ncodeσ2
s

)

Pick a = q/100: for all reasonable choices of distributions and ncode, we will have
that q

100ncodeσ2
s

is big enough to make the above probability lower than, say, 1%.

When this is the case, we have that

<(ψ(scode)) > cos(2π
qcq′

100p
) = cos(2π

q gcd(p, q)

200pq
) > cos(

2π

200
) > 0.999.

As a result, for at least 99% of the secret, we have that <(ψ(scode))−2 6 ψ̃ ≈
1.001. In other words, we have that

E
[
log
(
< (ψ(scode))

−2
)]
≈ 0.

For Ñfpfn, we do repeat the analysis of [MAT22, Theorem 5.9] where we
replace Nen(sen) by |Bet |. We conclude in the same way as [MAT22].
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We now focus on the value of R and ν. By our assumption, for a fraction 3/4
of the secret, we have that

pτ (s) > p̃τ .

Now observe that the map µmax is increasing, therefore if pτ > p̃τ then µmax(pτ ) >
µmax(p̃τ ). As a result, the inequality µ 6 µmax(pτ ) is satisfied for all those
instances as soon as µmax(p̃τ ). Similarly, the map Rmax is decreasing so if
R > Rmax(p̃τ ) then R > Rmax(pτ ) as well.

In conclusion, overall, the algorithm succeeds when the inequality on N ,
R and µ are satisfied. The inequality on N is satisfied for a fraction 1/2 of the
secrets. The inequalities on R and µ are satisfied for a fraction 3/4 of the secrets.
Hence, the fraction of secret for which all inequalities hold is at least 1/4. This
means the success probability overall is at least 1−ν

4 . ut

D Distortion properties of polar codes

In this appendix we give more details about the construction of polar codes
over Zq that is mentioned in Subsection 3.3. We then verify that, when decoding
random words, it is possible, to achieve a typical decoding distance which is very
close to the lattice analogue of the Gilbert-Varshamov distance that we recall to
be

ω ≈
√

n

2πe
q1− kn . (58)

where n and k are respectively the length and the dimension of the polar code.

Construction of polar codes over Zq. Let assume a codeword in Znq
of which each symbol is transmitted through a Gaussian channel of standard

deviation σ
4
= ω√

n
. The polar code construction basically consists of transforming

those n Gaussian channels into n virtual channels that are, for most of them,
either of maximal or minimal entropy. The idea then is to fix (or in other words
freeze) the information that will transit via the bad channels and involve the
good channels for the k symbols of useful information.

Our construction essentially follows the papers [STA09, Chi14, Sav21]. We
refer to those articles for more details about polar codes. It is a recursive con-
struction which can be described as follows.

Definition D.1 ((U+V, αU)-construction). Let U and V be two linear codes
of the same length n over Zq and let α ∈ Z∗q be an invertible scalar. The (U +
V, αV ) is a Zq-linear code of length 2n defined by

(U + V, αU)
4
={(u + v, αu) : u ∈ U and v ∈ V } (59)

A polar code of length n
4
= 2m and dimension k is then defined by
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Definition D.2 (polar code). Let F be a subset of {0, 1}m of size 2m−k and
let α be a function mapping the binary words of length < m to Z∗q . The polar
code of length 2m associated to F and α is defined recursively by (we denote by
ε the empty binary word)

C
4
=Uε

where the Ux are codes of length 1 for all x ∈ {0, 1}m and are given by

Ux =

{
{0} if x ∈ F
Zq otherwise

(60)

and the other Ux’s where x is a binary word of length < m are defined recursively
by

Ux
4
=
(
U0||x + U1||x, α(x)U0||x

)
.

Thus, a polar code is fully defined by the set F of frozen positions and the α(x)’s.
In [Chi14], it is admitted that choosing the α(x)’s uniformly at random in Z∗q is
good enough. However, in [Sav21], it is shown that those coefficients can be op-
timized. Thereafter, we do not use the optimization technique from [Sav21] but
simply try several polar codes then choose the best of them. On another hand,
we classically determine the optimal frozen positions F using Monte-Carlo sim-
ulation: we run many times a genie-aided decoder for estimating the probability
distribution of each virtual channel then selecting the worst of them; that are
the 2m − k virtual channels for which the error probabilities are the highest.

Decoding polar codes over Zq. The Successive Cancelation (SC) decoding
algorithm (see [STA09, Chi14, Sav21]) can be described as a recursive decoding

algorithm. For each code Ux ⊆ Z2m−t

q such that x ∈ {0, 1}t and t ∈ J0,m− 1K,
we decode a noisy codeword in this code by using recursively the decoders of
U0||x and U1||x.

Let c
4
= (c1, · · · , c2m−t)

4
=(u + v, α(x)u) be a codeword in Ux; i.e.

u
4
= (u1, · · · , u2m−t−1) and v

4
= (v1, · · · , v2m−t−1) are respectively in U0||x and

U1||x. Let assume that c is transmitted through a channel W (x); let

y
4
= (y1, · · · , y2m−t)

4
=(y`,yr) ∈ Z2m−t−1

q × Z2m−t−1

q

be the received word. We assume that for each position i ∈ J1, 2m−tK and symbol
s ∈ Zq, we know the probability that the transmitted symbol is s knowing that
the received one is yi:

Π
(x)
i (s)

4
= Pr[ci = s|yi ] (61)

Instead of decoding directly y, we decode first y` − α(x)−1yr expecting to
find v ∈ U1||x. The virtual channel through which v has transited is then the

serialization of two W (x) channels that we denote by W (1||x). Thus for each
coordinate i ∈

q
1, 2m−t−1

y
and symbol s ∈ Zq, we have the probability

Π
(1||x)
i (s)

4
= Pr[vi = s|yi, yi+2m−t−1 ] (62)
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=
∑
s′∈Zq

Π
(x)
i (s+ s′) ·Π(x)

i+2m−t−1(α(x) · s′) (63)

=
∑
s′∈Zq

Π
(x)
i (s− s′) ·Π(x)

i+2m−t−1(−α(x) · s′) (64)

=
(
Π

(x)
i ∗Π(x)

i+2m−t−1

)
(s) (65)

where Π
(x)

i (s)
4
=Π

(x)
i (−α(x) · s).

On another hand, let us assume that the decoding of y` − α(x)−1yr has led
us to the vector ṽ that we expect to be v (for the genie-aided decoder used for
the construction of the code, we actually take ṽ = v, regardless of the result of
the decoding of y` − α(x)−1yr). We now have two independent noisy versions
of the same vector u that are α(x)−1yr and y` − ṽ. In other words, supposing
ṽ = v, the vector u has been sent twice through the channel W (x); we denote
by W (0||x) the resulting channel and for each coordinate i ∈

q
1, 2m−t−1

y
and

symbol s ∈ Zq, we have the probability

Π
(0||x)
i (s)

4
= Pr[ui = s|yi, yi+2m−t−1 ] (66)

=
1

η
·Π(x)

i (s+ ṽi) ·Π(x)
i+2m−t−1(α(x) · s) (67)

where η
4
=
∑
s′∈Zq Π

(x)
i (s′ + ṽi) ·Π(x)

i+2m−t−1(α(x) · s′) is a normalization factor.

Finally, for decoding a received word y ∈ Z2m

q in the code Uε that has been
sent through a Gaussian channel of standard deviation σ, one essentially has to

compute recursively the vector probabilities Π
(x)
i for all t ∈ J1,mK, x ∈ {0, 1}t

and i ∈ J1, 2m−tK using the Equations (65) and (67). Note that the initial channel
W (ε) is the original Gaussian channel; so for all i ∈ J1, 2mK and s ∈ Zq, we have

Π
(ε)
i (s) = DZq,σ(yi − s) (68)

where DZq,σ is given in Subsection 2.4.
When arriving to the codes on the leaves – that are the codes Ux such that

x ∈ {0, 1}m – then we can exhaustively decode Ux:

1. if x ∈ F (meaning the corresponding symbol is frozen) then the only possible
codeword in Ux is the symbol 0,

2. if x 6∈ F , then we choose the maximum likelihood codeword in Ux that is

the symbol s for which Π
(x)
1 (s) is the greatest.

The running time of Successive Cancelation decoding presented above is given
by the following lemma:

Lemma D.3 (Complexity of the SC decoder). Assuming q is a power
of 2. The running time for decoding a word in a polar code of length 2m and
dimension k over Zq is:

Tpolar ≤ 3 · Cmul · q · log2(q) ·m · 2m (69)

where Cmul is the cost of one multiplication.

38



Proof. For all t ∈ J1,mK, x ∈ {0, 1}t and i ∈ J1, 2m−tK – i.e. for m · 2m triplets

(t,x, i) – we can compute the vector of probabilitiesΠ
(x)
i with at most 3·q·log2(q)

multiplications. Indeed, we either have to compute Equation (65) or Equation
(67). In the first case, it is a convolution; this can be done with the help of three
fast Fourier transforms, each costing q · log2(q) multiplications (see [Knu97, pp.
306-311]). In the second case, we only have to do 2.q multiplications and q
additions, which is less than the cost of a convolution.

Remark D.4. We could reduce the cost of the SC decoder by considering the
vectors of LLR (Log Likelihood Ratio) instead of the vectors of probabilities.
This trick allows to transform multiplications into additions.

Punctured polar code. The polar codes construction above is about codes
of length that are a power of 2. In our case, we may require codes of other length.
A simple way for reducing the length of a code without changing its dimension is
to puncture it. Let n, k be two positive integers. We build a linear code of length
n and dimension k by puncturing a polar code of length 2m and dimension k

where m
4
=dlog2(n)e. Let denote by `

4
= 2m−n the number of symbol to puncture.

The puncturing operation essentially consists of ignoring the ` first symbols of
the codeword; that is equivalent to suppose that the ` first physical channels
through which transit the codewords are of maximal entropy:

Π
(ε)
i (s)

4
=

1

q
∀i ∈ J1, `K (70)

Note that we made this assumption both for the decoder and also for the genie-
aided decoder used to determine the frozen positions.

List decoding using probabilistic SC decoder. We can modify the above
SC decoder to obtain a probabilistic decoder. To this end, when decoding non-
frozen symbols in the codes on the leaves Ux where x ∈ {0, 1}m \F , then output

the symbol s according to the distribution Π
(x)
1 instead of returning the one

with the best probability.
To turn this probabilistic SC decoder into a list decoder, one only has to

running it L times then choosing the codeword that minimizes the decoding dis-
tance. The complexity of a such algorithm is essentially L times the complexity
of the SC decoder given by Lemma D.3. Note that, contrary to some more clas-
sical list decoders of polar codes, the L decoding procedures of our algorithm
can be trivially parallelized.

The distortion properties of our polar code decoders. The distortion
of a code is the typical distance that it is possible to achieve when decoding
random words. We verified in experiments that the distortion of the polar codes
over Zq, equipped with our list decoder, is close enough to the ideal distortion;
namely the Gilbert-Varshamov analogue distance recalled by Equation (58).

To this end, we provide a C implementation of our polar codes and probabilis-
tic SC decoder that can be found in this repository. We run some experiments
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for some codes that are those we need in our dual attacks (see Table 4). The ob-
tained results, summarized in Table D, are really satisfying given the relatively
small parameters we had to consider. To fill Table D, let us recall that:

– we designed our polar codes over Zq by choosing some coefficients α(x)’s
that are invertible in Zq;

– we run our experiments on several polar codes (changing each time the
α(x)’s) and then we choose the code that provides the best distortion;

– we punctured the polar codes for achieving lengths that are not powers of
two;

– we measured the distortion on average on 100 decodings;
– we run both unique deterministic SC decoder (L = 1) and list decoder using

probabilistic SC decoder (with list size L = 8 and 16).

Table 5. Distortion of the polar codes involved in our dual lattice attacks

C0:

Scheme q n k dGV distortion
with L = 1 with L = 8 with L = 16

Kyber 512 64 42 14 25.1 27.2 26.8 26.7
Kyber 768 128 76 19 80.3 86.6 85.2 84.2
Kyber 1024 512 106 22 349.4 367.9 366.4 364.4
LightSaber 128 34 12 32.6 36.7 35.4 34.9
Saber 64 58 23 22.7 24.6 24.3 24.1
FireSaber 64 101 33 40.0 42.5 42.4 42.1

CC:

Scheme q n k dGV distortion
with L = 1 with L = 8 with L = 16

Kyber 512 128 45 14 45.9 49.6 48.8 48.7
Kyber 768 256 83 19 158.6 168.5 167.6 167.2
Kyber 1024 128 124 31 102.5 107.7 107.3 106.8
LightSaber 256 39 12 70.2 77.1 75.9 75.8
Saber 128 67 22 51.5 54.8 54.3 54.1
FireSaber 512 109 24 327.5 343.1 341.4 341.3

CN:

Scheme q n k dGV distortion
with L = 1 with L = 8 with L = 16

Kyber 512 1024 43 9 380.8 406.7 404.5 405.5
Kyber 768 1024 89 15 726.8 772.1 767.9 761.9
Kyber 1024 2048 126 19 1761.8 1840.9 1828.4 1830.1
LightSaber 1024 35 9 246.6 273.1 272.5 271.0
Saber 512 62 16 195.0 206.0 205.9 205.4
FireSaber 64 102 36 36.0 38.2 38.0 37.9
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E Source code

Our code relies on the modified LWE Estimator from [APS15] available at
https://github.com/malb/lattice-estimator/. We also as
an attachment to this PDF. Not all PDF viewers support this feature. If the
reader’s PDF reader does not then e.g. pdfdetach can be used to extract the
source code without having to copy and paste it by hand. To run our code,
run git clone https://github.com/malb/lattice-estimator/ in the directory where estimates.py

is located.

# -*- coding: utf -8 -*-
"""
Run like this::

sage: attach (" estimates_code.py")
sage: %time results = runall () # our nest attack
sage: %time results = runall(attack =" matzov ") # use original Matzov with modulo switching
sage: %time results = runall(attack =" matzov", use_optimizer=True) # code with custom optimizer
sage: %time results = runall(attack =" matzov_code_prange", bet=" senum_all_zero ") # our new attack
sage: print(results_table(results )) # for raw table
sage: print(results_table(results , "latex ")) # for latex code
sage: print(parameter_tables(results )) # for raw table
sage: for (nn,tbl) in parameter_tables(results , "latex "). items (): print ("{}:\n{}". format(nn,tbl)) # for latex code

"""
from sage.all import sqrt , log , exp , e, pi , RR, ZZ

from estimator.estimator.cost import Cost
from estimator.estimator.lwe_parameters import LWEParameters
from estimator.estimator.lwe import Estimate
from estimator.estimator.reduction import delta as deltaf
from estimator.estimator.reduction import RC, ReductionCost
from estimator.estimator.conf import red_cost_model as red_cost_model_default
from estimator.estimator.util import local_minimum , early_abort_range
from estimator.estimator.io import Logging
from estimator.estimator.schemes import (

Kyber512 ,
Kyber768 ,
Kyber1024 ,
LightSaber ,
Saber ,
FireSaber ,

)
from estimator.estimator.schemes import TFHE630 , TFHE1024
from estimator.estimator.nd import NoiseDistribution
from estimator.estimator.lwe_primal import primal_bdd

def minimizer_convex(f, bounds , x0=None , verbose=False , names=None):
"""
This function tries to minimize f over the integers , restricted to a box.
More precisely , it tries to find a local minimum of the function.
It can optinally take a starting point as a hint , which can useful to avoid getting
stuck in bad local minimima , or to speed up the search.

:param f: the function to minimize
:param bounds: an array of tuples (min ,max) for the parameters , see blow for details
:param x0: optional starting point of the search (tuple or array of value)
:param verbose: set to True for debug output
:param names: pretty print name in debug output , should be an array of string , one per dimension

The min/max bounds can either be integers , or any callable objects. When it is a callable ,
it will be called with the values of the dimension that appear *before* in the list.

Example:
f=lambda x,y: -x*exp(-x)-2*y*exp(-y)
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# -*- coding: utf-8 -*-
"""
Run like this::

    sage: attach("estimates_code.py")
    sage: %time results = runall() # our nest attack
    sage: %time results = runall(attack="matzov") # use original Matzov with modulo switching
    sage: %time results = runall(attack="matzov", use_optimizer=True) # code with custom optimizer
    sage: %time results = runall(attack="matzov_code_prange", bet="senum_all_zero") # our new attack
    sage: print(results_table(results)) # for raw table
    sage: print(results_table(results, "latex")) # for latex code
    sage: print(parameter_tables(results)) # for raw table
    sage: for (nn,tbl) in parameter_tables(results, "latex").items(): print("{}:\n{}".format(nn,tbl)) # for latex code

"""
from sage.all import sqrt, log, exp, e, pi, RR, ZZ

from estimator.estimator.cost import Cost
from estimator.estimator.lwe_parameters import LWEParameters
from estimator.estimator.lwe import Estimate
from estimator.estimator.reduction import delta as deltaf
from estimator.estimator.reduction import RC, ReductionCost
from estimator.estimator.conf import red_cost_model as red_cost_model_default
from estimator.estimator.util import local_minimum, early_abort_range
from estimator.estimator.io import Logging
from estimator.estimator.schemes import (
    Kyber512,
    Kyber768,
    Kyber1024,
    LightSaber,
    Saber,
    FireSaber,
)
from estimator.estimator.schemes import TFHE630, TFHE1024
from estimator.estimator.nd import NoiseDistribution
from estimator.estimator.lwe_primal import primal_bdd

def minimizer_convex(f, bounds, x0=None, verbose=False, names=None):
    """
    This function tries to minimize f over the integers, restricted to a box.
    More precisely, it tries to find a local minimum of the function.
    It can optinally take a starting point as a hint, which can useful to avoid getting
    stuck in bad local minimima, or to speed up the search.
    
    :param f: the function to minimize
    :param bounds: an array of tuples (min,max) for the parameters, see blow for details
    :param x0: optional starting point of the search (tuple or array of value)
    :param verbose: set to True for debug output
    :param names: pretty print name in debug output, should be an array of string, one per dimension

    The min/max bounds can either be integers, or any callable objects. When it is a callable,
    it will be called with the values of the dimension that appear *before* in the list.
    
    Example:
    f=lambda x,y: -x*exp(-x)-2*y*exp(-y)
    # or
    f=lambda x,y: -x*(10-x)*y*(20-y)
    (x_min, y_min), f_min = minimizer_convex(f, [(0, 10), (0, 10)])
    # or
    (x_min, y_min), f_min = minimizer_convex(f, [(0, 10), (0, 10)], x0=(5, 5))
    """
    
    if verbose and names is None:
        names = ["x[{}]".format(i) for i in range(len(bounds))]
    
    # we use a recursive algorithm
    # :param x: current best coordinate
    # :param i: coordinate to optimize
    n = len(bounds)
    def opt(x, i):
        # if verbose: print("{}opt x={}".format(" "*i, x))
        # base case: we have reached the last coordinate
        if i == n:
            return tuple(x), f(*x)
        # compute lower/upper bounds
        lb = bounds[i][0]
        if callable(lb):
            lb = lb(*x[0:i])
        ub = bounds[i][1]
        if callable(ub):
            ub = ub(*x[0:i])
        # make sure x[i] is within bounds (could be outside if the ub/lb changes with x)
        xx = list(x)
        xx[i] = max(lb, min(ub, xx[i]))
        x = xx
        # optimize recursively
        # if verbose: print("{}{}={} [{},{}]".format(" "*i, names[i], x[i], lb, ub))
        orig_x, best = opt(x, i+1)
        # if verbose: print("{}got x={}, f={}".format(" "*i, orig_x, best))
        # see if we can do better by changing x[i]
        best_x = orig_x
        # try to go up
        x_copy = list(orig_x)
        while x_copy[i] < ub:
            x_copy[i] += 1
            # if verbose: print("{}{}={}".format(" "*i, names[i], x_copy[i]))
            new_x, newf = opt(x_copy, i+1)
            x_copy = list(new_x)
            # if verbose: print("{}got x={}, f={}".format(" "*i, new_x, newf))
            if newf > best:
                if verbose: print("{}which is worse, stop going up".format(" "*i))
                break
            best_x = tuple(new_x)
            best = newf
        # try to go down (note that we restart from original position to avoid duplicating computations)
        # if we made progress in the loop, assume that we can't make progress by going
        # in the other direction
        if best_x[i] == orig_x[i]:
            x_copy = list(best_x)
            while x_copy[i] > lb:
                x_copy[i] -= 1
                # if verbose: print("{}{}={}".format(" "*i, names[i], x_copy[i]))
                new_x, newf = opt(x_copy, i+1)
                x_copy = list(new_x)
                # if verbose: print("{}got x={}, f={}".format(" "*i, new_x, newf))
                if newf > best:
                    # if verbose: print("{}which is worse, stop going down".format(" "*i))
                    break
                best_x = tuple(new_x)
                best = newf
        else:
            # if verbose: print("{}skip going down".format(" "*i))
            pass
        return best_x, best

    for x in bounds:
        assert type(x) is tuple, "bounds must contains tuples"
        assert len(x) == 2, "bounds must contains tuples of size 2"
    if x0 is None:
        # use lower bound as starting point
        x0 = [x[0] for x in bounds]
        if verbose:
            print(f"no starting point specified, starting at {x0}")
    else:
        # check consistenct
        assert len(bounds) == len(x0), "x0 must have the same dimension as bounds"
    return opt(tuple(x0), 0)

def example1(verbose=False):
    # minimize over [0,10]x[0,20]
    f=lambda x,y: numerical_approx(-x*exp(-x/10)-2*y*exp(-y/10))
    (x, y), fmin = minimizer_convex(f, [(0, 10), (0, 20)], verbose=verbose)
    print("best: f({},{})={}".format(x, y, fmin))
    g=lambda p: f(p[0], p[1])
    (x, y) = minimize_constrained(g, [(0, 10), (0, 20)], [1, 1])
    print("best over reals: f({},{})={}".format(x, y, f(x, y)))

def example2(verbose=False):
    # minimize over {(x,y):x in [0,10], y in [0,10-x]}
    f=lambda x,y: -x*(10-x)*y*(20-y)
    (x, y), fmin = minimizer_convex(f, [(0, 10), (0, lambda x: 10-x)], x0=(5, 5), verbose=verbose)
    print("best: f({},{})={}".format(x, y, fmin))
    g=lambda p: f(p[0], p[1])
    (x, y) = minimize_constrained(g, [lambda p:p[0], lambda p: 10-p[0], lambda p: p[1], lambda p:10-p[0]-p[1]], [1, 1])
    print("best over reals: f({},{})={}".format(x, y, f(x, y)))

class MATZOV_Orig:
    """ """

    C_prog = 1.0 / (1 - 2.0 ** (-0.292))  # p.37
    C_mul = 32**2  # p.37
    C_add = 5 * 32  # guessing based on C_mul

    @classmethod
    def T_fftf(cls, k, p):
        """
        The time complexity of the FFT in dimension `k` with modulus `p`.

        :param k: Dimension
        :param p: Modulus ≥ 2

        """
        return cls.C_mul * k * p ** (k + 1)  # Theorem 7.6, p.38

    @classmethod
    def T_tablef(cls, D):
        """
        Time complexity of updating the table in each iteration.

        :param D: Number of nonzero entries

        """
        return 4 * cls.C_add * D  # Theorem 7.6, p.39

    @classmethod
    def Nf(cls, params, m, beta_bkz, beta_sieve, k_enum, k_fft, p):
        """
        Required number of samples to distinguish with advantage.

        :param params: LWE parameters
        :param m:
        :param beta_bkz: Block size used for BKZ reduction
        :param beta_sieve: Block size used for sampling
        :param k_enum: Guessing dimension
        :param k_fft: FFT dimension
        :param p: FFT modulus

        """
        mu = 0.5
        k_lat = params.n - k_fft - k_enum  # p.15

        # p.39
        lsigma_s = (
            params.Xe.stddev ** (m / (m + k_lat))
            * (params.Xs.stddev * params.q) ** (k_lat / (m + k_lat))
            * sqrt(4 / 3.0)
            * sqrt(beta_sieve / 2 / pi / e)
            * deltaf(beta_bkz) ** (m + k_lat - beta_sieve)
        )

        # p.29, we're ignoring O()
        N = (
            exp(4 * (lsigma_s * pi / params.q) ** 2)
            * exp(k_fft / 3.0 * (params.Xs.stddev * pi / p) ** 2)
            * (k_enum * cls.Hf(params.Xs) + k_fft * log(p) + log(1 / mu))
        )

        return RR(N)

    @staticmethod
    def Hf(Xs):
        return RR((1 / 2 + log(sqrt(2 * pi) * Xs.stddev)) / log(2.0)) # old bad formula

    @classmethod
    def cost(
        cls,
        beta,
        params,
        m=None,
        p=2,
        k_enum=0,
        k_fft=0,
        beta_sieve=None,
        red_cost_model=red_cost_model_default
    ):
        """
        Theorem 7.6

        """

        if m is None:
            m = params.n

        k_lat = params.n - k_fft - k_enum  # p.15

        # We assume here that β_sieve ≈ β
        N = cls.Nf(
            params,
            m,
            beta,
            beta_sieve if beta_sieve else beta,
            k_enum,
            k_fft,
            p,
        )
        rho, T_sample, _, beta_sieve = red_cost_model.short_vectors(
            beta, N=N, d=k_lat + m, sieve_dim=beta_sieve
        )

        H = cls.Hf(params.Xs)
        T_guess = RR(
            (2 ** (k_enum * H)) # old bad formula
            * (cls.T_fftf(k_fft, p) + cls.T_tablef(N))
        )
        
        cost = Cost(rop=T_sample + T_guess, problem=params)
        cost["red"] = T_sample
        cost["guess"] = T_guess
        cost["beta"] = beta
        cost["p"] = p
        cost["k_enum"] = k_enum
        cost["k_fft"] = k_fft
        cost["beta_"] = beta_sieve
        cost["N"] = N
        cost["m"] = m

        return cost

    def __call__(
        self,
        params: LWEParameters,
        red_cost_model=red_cost_model_default,
        log_level=1,
        use_optimizer=True,
        **kwargs
    ):
        """
        Optimizes cost of dual attack as presented in [Matzov22]_.

        :param params: LWE parameters
        :param red_cost_model: How to cost lattice reduction

        The returned cost dictionary has the following entries:

        - ``rop``: Total number of word operations (≈ CPU cycles).
        - ``red``: Number of word operations in lattice reduction and
                   short vector sampling.
        - ``guess``: Number of word operations in guessing and FFT.
        - ``β``: BKZ block size.
        - ``ζ``: Number of guessed coordinates.
        - ``t``: Number of coordinates in FFT part mod `p`.
        - ``d``: Lattice dimension.

        """
        params = params.normalize()

        if use_optimizer:
            # note: parameter ordre is important!
            # we put beta last because the range is large so it's better to change it last to
            # quickly converge to a solution, same fo k_fft
            # those go after p because a change in p will reset all the values after
            # k_enum is small so it's better to put it first, for the smallest number of iterations
            def eval_params(k_enum, p, k_fft, beta):
                cost = self.cost(beta, params, k_enum=k_enum, p=p, k_fft=k_fft,
                                 red_cost_model=red_cost_model)
                return log(cost["rop"], 2)
            # a good hint can speed up the search massively
            hint = [10, 4, params.n//10, params.n - 200]
            opt, _ = minimizer_convex(eval_params,
                                    [(0, 50),(2, params.q),(1, params.n//5),(40,params.n)],
                                    x0=hint,
                                    verbose=False,
                                    names=["k_enum", "p", "k_fft", "beta"])
            (k_enum, p, k_fft, beta) = opt
            best_cost = self.cost(beta, params, k_enum=k_enum, p=p, k_fft=k_fft,
                                    red_cost_model=red_cost_model)
            return best_cost
        else:
            for p in early_abort_range(2, params.q):
                for k_enum in early_abort_range(0, params.n, 5):
                    for k_fft in early_abort_range(0, params.n - k_enum[0], 5):
                        with local_minimum(
                            40, params.n, log_level=log_level + 4
                        ) as it:
                            for beta in it:
                                cost = self.cost(
                                    beta,
                                    params,
                                    p=p[0],
                                    k_enum=k_enum[0],
                                    k_fft=k_fft[0],
                                    red_cost_model=red_cost_model,
                                )
                                it.update(cost)
                            Logging.log(
                                "dual",
                                log_level + 3,
                                f"t: {k_fft[0]}, {repr(it.y)}",
                            )
                            k_fft[1].update(it.y)
                    Logging.log(
                        "dual", log_level + 2, f"ζ: {k_enum[0]}, {repr(k_fft[1].y)}"
                    )
                    k_enum[1].update(k_fft[1].y)
                Logging.log("dual", log_level + 1, f"p:{p[0]}, {repr(k_enum[1].y)}")
                p[1].update(k_enum[1].y)
            Logging.log("dual", log_level, f"{repr(p[1].y)}")
            return p[1].y

class Bet_Base:
    def set_params(self, params, p, k_enum, k_code):
        self.p_tau_tilde = 0 # compute this
        self.bet_set_size = 1 # compute that
        self.is_valid = False # set to False if the parameters don't allow for bets
        raise Exception("you must implement this function")

    @classmethod
    def min_k_code(cls, params, k_enum):
        return 0 # minimum valid value of k_code given k_enum

    @classmethod
    def max_k_code(cls, params, k_enum):
        return params.n - k_enum - 1 # maximum valid value of k_code given k_enum

    def log_to_cost(self, cost):
        # use this function add debugging stuff to cost if you want
        pass

class Bet_senum_all_zero(Bet_Base):
    def set_lwe_params(self, lwe_params):
        assert lwe_params.Xs.tag == "CenteredBinomial", "this code only works with CenteredBinomial"
        self.lwe_params = lwe_params
        self.k = self.lwe_params.Xs.bounds[1] # ugly hack to get parameter
        self.p0 = binomial(2 * self.k, self.k) / 2**(2*self.k)
        # for each length n (which will be k_enum+k_code), we precompute the threshold
        # v0(n) such that
        # Pr[|s|_0 >= v0(n)] >= 3/4
        self.v0_tbl = {}
        for n in range(1, 300):
            # start with v0=0, then Pr[]=1
            # and increase v0, decreasing Pr[] by Pr[|s|_0=v0]=binomial(n,v0)*2^(-2n)
            prob = RR(1)
            v0 = 0
            while prob >= 3/4:
                prob -= binomial(n, v0) * self.p0**v0 * (1-self.p0)**(n-v0)
                v0 += 1
            # go back to previous value
            v0 -= 1
            self.v0_tbl[n] = v0
        #print("k={} -> v0_tbl={}".format(self.k, self.v0_tbl))
        
        # precompute minimum value of k_code (stupid brute force)
        self.min_k_code_tbl = {}
        for k_enum in range(0, 50):
            k_code = k_enum
            self.is_valid = False
            while not self.is_valid:
                k_code += 1
                self.set_params(None, k_enum, k_code)
            self.min_k_code_tbl[k_enum] = k_code
        #print("k={} -> min_k_code_tbl={}".format(self.k, self.min_k_code_tbl))
    
    def set_params(self, p, k_enum, k_code):
        self.v0 = self.v0_tbl[k_enum + k_code]
        self.p_tau_tilde = RR(binomial(self.v0, k_enum) / binomial(k_enum + k_code, k_enum))
        self.bet_set_size = 1
        self.is_valid = (self.v0 >= k_enum)
    
    def log_to_cost(self, cost):
        cost["Xs_p0"] = self.p0
        cost["Xs_k"] = self.k
        cost["bet_v0"] = self.v0

    def min_k_code(self, k_enum):
        return self.min_k_code_tbl[k_enum]

class MATZOV_Mod_Code_Prange:
    """ """

    C_prog = 1.0 / (1 - 2.0 ** (-0.292))  # p.37
    C_mul = 32**2  # p.37
    C_add = 5 * 32  # guessing based on C_mul

    @classmethod
    def T_fftf(cls, k, p):
        """
        The time complexity of the FFT in dimension k with modulus p.
        """
        if (p & (p-1)) == 0: # power of two
            return cls.C_mul * k * p ** (k)
        else:
            return cls.C_mul * k * p ** (k + 1)

    @classmethod
    def T_tablef(cls, D):
        """
        Time complexity of updating the table in each iteration.
        """
        return 4 * cls.C_add * D

    @classmethod
    def T_decode(cls, N, p, k_fft):
        """
        Time complexity of decoding a polar code
        """
        return 2 * N * p * log(p, 2) * k_fft * log(k_fft, 2)

    @classmethod
    def Nf(cls, params, m, beta_bkz, beta_sieve, k_enum, k_fft, k_code, p, mu, bet_set_size):
        k_lat = params.n - k_code - k_enum  # p.15

        lsigma_s = (
            params.Xe.stddev ** (m / (m + k_lat))
            * (params.Xs.stddev * params.q) ** (k_lat / (m + k_lat))
            * sqrt(4 / 3.0)
            * sqrt(beta_sieve / 2 / pi / e)
            * deltaf(beta_bkz) ** (m + k_lat - beta_sieve)
        )

        N = RR(
            exp(4 * (lsigma_s * pi / params.q) ** 2)
            * exp(k_code / 3.0 * (params.Xs.stddev * pi / p) ** 2)
            * exp(2*pi/e * params.Xs.stddev**2 * p**(-2*k_fft/k_code) * k_code)
            * (log(bet_set_size) + k_fft * log(p) + log(1 / mu))
        )

        return N

    @staticmethod
    def Hf(Xs):
        return RR((1 / 2 + log(sqrt(2 * pi) * Xs.stddev) + log(coth(pi**2 * Xs.stddev**2))) / log(2.0))

    @classmethod
    def cost(
        cls,
        beta,
        params,
        m=None,
        p=2,
        k_enum=0,
        k_fft=0,
        k_code=0,
        Bet=None, # if Bet is none, use guessing complexity
        beta_sieve=None,
        red_cost_model=red_cost_model_default,
        nu=0.5 # success proba
    ):
        """
        Theorem 7.6

        """
        assert 2 <= p and p <= params.q, "make sure that 2 <= p <= q"
        assert k_fft is not None, "you need to provide k_fft"
        assert k_enum is not None, "you need to provide k_fft"
        assert k_fft <= k_code, "k_fft needs to be smaller than k_code"
        assert k_code + k_enum < params.n, "k_code + k_enum needs to be < n"

        k_lat = params.n - k_code - k_enum

        # this is the optimal dimension of the dual lattice to find short short vectors
        # note that our lattice has dimension m+k_lat so we need to subtract k_lat
        # also be careful that these is a scaling factor alpha that changes the determinant
        # and hence the formule for the optimal m
        alpha = params.Xe.stddev / params.Xs.stddev
        m = int(ceil(sqrt(k_lat * log(params.q/alpha) / log(deltaf(beta))))) - k_lat

        if Bet is None:
            # guessing complexity
            mu = nu
            H = cls.Hf(params.Xs)
            T_enum = RR(2 ** (k_enum * H))
            Nenum = T_enum
        else:
            # compute \tilde{p}_tau
            p_tau_tilde = RR(Bet.p_tau_tilde)
            # compute max mu
            mu = RR(nu * p_tau_tilde / (nu * p_tau_tilde + 2 - nu))
            # compute min R
            R = RR(log(nu/2) / (log(1-p_tau_tilde) + log(1-mu)))
            T_enum = R * Bet.bet_set_size
            Nenum = Bet.bet_set_size

        # We assume here that β_sieve ≈ β
        N = cls.Nf(
            params,
            m,
            beta,
            beta_sieve if beta_sieve else beta,
            k_enum,
            k_fft,
            k_code,
            p,
            mu,
            Nenum
        )
        rho, T_sample, _, beta_sieve = red_cost_model.short_vectors(
            beta, N=N, d=k_lat + m, sieve_dim=beta_sieve
        )
    
        T_guess = RR(
            T_enum * (cls.T_fftf(k_fft, p) + cls.T_tablef(N) + cls.T_decode(N, p, k_fft))
        )

        rop = T_sample + T_guess
        
        cost = Cost(rop=T_sample + T_guess, problem=params)
        cost["red"] = T_sample
        cost["guess"] = T_guess
        cost["beta"] = beta
        cost["p"] = p
        cost["k_enum"] = k_enum
        cost["k_fft"] = k_fft
        cost["k_code"] = k_code
        cost["beta_"] = beta_sieve
        cost["N"] = N
        cost["m"] = m
        cost["mu"] = mu
        if Bet is not None:
            cost["p_tau_tilde"] = p_tau_tilde
            cost["bet_set_size"] = Bet.bet_set_size
            cost["R"] = R
            Bet.log_to_cost(cost)

        return cost

    def __call__(
        self,
        params: LWEParameters,
        red_cost_model=red_cost_model_default,
        log_level=1,
        use_optimizer=True,
        use_2p2 = True, # p is a power of two
        Bet = None,
    ):
        """
        Optimizes cost of dual attack
        """
        params = params.normalize()
        assert use_optimizer, "old optimizer is not supported"

        if Bet is not None:
            Bet.set_lwe_params(params)

        # note: parameter ordre is important!
        # we put beta last because the range is large so it's better to change it last to
        # quickly converge to a solution, same for k_fft
        # those go after p because a change in p will reset all the values after
        # k_enum is small so it's better to put it first, for the smallest number of iterations
        def eval_params_(k_enum, p, k_code, k_fft, beta):
            if use_2p2:
                p = 2**p
            if Bet is not None:
                Bet.set_params(p, k_enum, k_code)
                # if p_tau_tilde is zero, bad value, return infinity
                if not Bet.is_valid:
                    return oo
            cost = self.cost(beta, params, k_enum=k_enum, p=p, k_fft=k_fft, k_code=k_code,
                                red_cost_model=red_cost_model, Bet=Bet)
            return cost
        def eval_params(k_enum, p, k_code, k_fft, beta):
            cost = eval_params_(k_enum, p, k_code, k_fft, beta)
            return log(cost["rop"], 2)
        # a good hint can speed up the search massively
        hint = [10, 3 if use_2p2 else 256, params.n//10, params.n//20, params.n - 200]
        if Bet is None:
            min_k_code_fn = lambda k_enum,p: 1
        else:
            min_k_code_fn = lambda k_enum,p: Bet.min_k_code(k_enum)
        opt, v = minimizer_convex(eval_params,
                                [(1, 50), # k_enum
                                (2, int(floor(math.log2(params.q))) if use_2p2 else params.q), # p
                                (min_k_code_fn, params.n//2), # k_code
                                (1, lambda k_enum,p,k_code:k_code), # k_fft
                                (40,params.n-10)], # beta
                                x0=hint,
                                verbose=False,
                                names=["k_enum", "p", "k_code", "k_fft", "beta"])
        return eval_params_(*opt)

def get_reduction_cost_model(nn):
    matzov_nns={
        "CN": "list_decoding-naive_classical",
        "CC": "list_decoding-classical",
    }
    if nn in matzov_nns:
        return RC.MATZOV.__class__(nn=matzov_nns[nn])
    elif nn == "C0":
        return RC.ADPS16
    else:
        raise Error("unknown cost model '{}'".format(nn))

def runall(
    schemes=(
        Kyber512,
        Kyber768,
        Kyber1024,
        LightSaber,
        Saber,
        FireSaber,
        # TFHE630,
        # TFHE1024,
    ),
    nns=(
        "CC",
        "CN",
        "C0"
    ),
    attack = "matzov_code_prange",
    use_optimizer = True,
    bet = "senum_all_zero",
):
    results = {}

    obj = None
    Bet = None
    if attack == "matzov":
        obj = MATZOV_Orig()
    elif attack == "matzov_code":
        obj = MATZOV_Code()
    elif attack == "matzov_code_prange":
        obj = MATZOV_Mod_Code_Prange()
        if bet == "senum_all_zero":
            Bet = Bet_senum_all_zero()
        elif bet == "guess_senum":
            Bet = None
        else:
            raise RuntimeError("unknown bet '{}'".format(bet))    
    else:
        raise RuntimeError("unknown attack '{}'".format(attack))

    try:
        for scheme in schemes:
            results[scheme] = {}
            print(f"{repr(scheme)}")
            for nn in nns:
                red_mod = get_reduction_cost_model(nn)
                cost = obj(scheme, red_cost_model=red_mod, use_optimizer=use_optimizer, Bet=Bet)
                results[scheme][nn] = cost
                print(f" nn: {nn},  cost: {repr(cost)}")
    except KeyboardInterrupt:
        print("computation interrupted, partial results will be returned")
        pass
    except Exception as e:
        import traceback
        traceback.print_exception(e)
        pass

    return results

def results_table(results, fmt=None):
    import tabulate

    rows = []

    def pp(cost):
        return round(log(cost["rop"], 2), 1)

    # collect models
    nns = set()
    for costs in results.values():
        nns |= set(costs.keys())
    nns = list(sorted(nns))

    for scheme, costs in results.items():
        row = [ scheme.tag ] + [pp(costs[nn]) if nn in costs else "n/a" for nn in nns]
        rows.append(row)
    if fmt is None:
        return rows
    else:
        import tabulate
        return tabulate.tabulate(
            rows,
            headers=["Scheme"] + nns,
            tablefmt="latex_booktabs",
            floatfmt=".1f",
        )

def parameter_tables(results, fmt=None):
    # our new code uses variable "k_code", but the old Matzov code uses "p", this code supports both
    opt_vars = []
    # look at the first entry
    first_code = next(iter(next(iter(results.values())).values()))
    for x in ["k_code", "p"]:
        if getattr(first_code, x, None) is not None:
            opt_vars.append(x)

    # collect models
    nns = set()
    for costs in results.values():
        nns |= set(costs.keys())
    nns = list(sorted(nns))

    def pp(cost):
        return round(log(cost["rop"], 2), 1)
    res = {}
    for nn in nns:
        rows = []
        for scheme, costs in results.items():
            if nn in costs:
                c = costs[nn]
                row = [
                    scheme.tag,
                    pp(c),
                    c["m"],
                    c["beta"],
                    c["beta_"],
                    c["k_enum"],
                    c["k_fft"],
                ]
                for x in opt_vars:
                    row.append(c[x])
                rows.append(row)
        if fmt is None:
            res[nn] = rows
        else:
            import tabulate
            res[nn] = tabulate.tabulate(
                rows,
                headers=[
                    "Scheme",
                    "Attack",
                    "m",
                    "beta_1",
                    "beta_2",
                    "k_enum",
                    "k_fft",
                ] + opt_vars,
                tablefmt="latex_booktabs",
                # floatfmt=".1f",
            )
    return res
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# or
f=lambda x,y: -x*(10-x)*y*(20-y)
(x_min , y_min), f_min = minimizer_convex(f, [(0, 10), (0, 10)])
# or
(x_min , y_min), f_min = minimizer_convex(f, [(0, 10), (0, 10)], x0=(5, 5))
"""

if verbose and names is None:
names = ["x[{}]".format(i) for i in range(len(bounds ))]

# we use a recursive algorithm
# :param x: current best coordinate
# :param i: coordinate to optimize
n = len(bounds)
def opt(x, i):

# if verbose: print ("{} opt x={}". format (" "*i, x))
# base case: we have reached the last coordinate
if i == n:

return tuple(x), f(*x)
# compute lower/upper bounds
lb = bounds[i][0]
if callable(lb):

lb = lb(*x[0:i])
ub = bounds[i][1]
if callable(ub):

ub = ub(*x[0:i])
# make sure x[i] is within bounds (could be outside if the ub/lb changes with x)
xx = list(x)
xx[i] = max(lb, min(ub, xx[i]))
x = xx
# optimize recursively
# if verbose: print ("{}{}={} [{} ,{}]". format (" "*i, names[i], x[i], lb, ub))
orig_x , best = opt(x, i+1)
# if verbose: print ("{} got x={}, f={}". format (" "*i, orig_x , best))
# see if we can do better by changing x[i]
best_x = orig_x
# try to go up
x_copy = list(orig_x)
while x_copy[i] < ub:

x_copy[i] += 1
# if verbose: print ("{}{}={}". format (" "*i, names[i], x_copy[i]))
new_x , newf = opt(x_copy , i+1)
x_copy = list(new_x)
# if verbose: print ("{} got x={}, f={}". format (" "*i, new_x , newf))
if newf > best:

if verbose: print("{}which is worse , stop going up".format(" "*i))
break

best_x = tuple(new_x)
best = newf

# try to go down (note that we restart from original position to avoid duplicating computations)
# if we made progress in the loop , assume that we can’t make progress by going
# in the other direction
if best_x[i] == orig_x[i]:

x_copy = list(best_x)
while x_copy[i] > lb:

x_copy[i] -= 1
# if verbose: print ("{}{}={}". format (" "*i, names[i], x_copy[i]))
new_x , newf = opt(x_copy , i+1)
x_copy = list(new_x)
# if verbose: print ("{} got x={}, f={}". format (" "*i, new_x , newf))
if newf > best:

# if verbose: print ("{} which is worse , stop going down". format (" "*i))
break

best_x = tuple(new_x)
best = newf

else:
# if verbose: print ("{} skip going down". format (" "*i))
pass
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return best_x , best

for x in bounds:
assert type(x) is tuple , "bounds must contains tuples"
assert len(x) == 2, "bounds must contains tuples of size 2"

if x0 is None:
# use lower bound as starting point
x0 = [x[0] for x in bounds]
if verbose:

print(f"no starting point specified , starting at {x0}")
else:

# check consistenct
assert len(bounds) == len(x0), "x0 must have the same dimension as bounds"

return opt(tuple(x0), 0)

def example1(verbose=False):
# minimize over [0,10]x[0,20]
f=lambda x,y: numerical_approx(-x*exp(-x/10) -2*y*exp(-y/10))
(x, y), fmin = minimizer_convex(f, [(0, 10), (0, 20)], verbose=verbose)
print("best: f({} ,{})={}".format(x, y, fmin))
g=lambda p: f(p[0], p[1])
(x, y) = minimize_constrained(g, [(0, 10), (0, 20)], [1, 1])
print("best over reals: f({} ,{})={}".format(x, y, f(x, y)))

def example2(verbose=False):
# minimize over {(x,y):x in [0,10], y in [0,10-x]}
f=lambda x,y: -x*(10-x)*y*(20-y)
(x, y), fmin = minimizer_convex(f, [(0, 10), (0, lambda x: 10-x)], x0=(5, 5), verbose=verbose)
print("best: f({} ,{})={}".format(x, y, fmin))
g=lambda p: f(p[0], p[1])
(x, y) = minimize_constrained(g, [lambda p:p[0], lambda p: 10-p[0], lambda p: p[1], lambda p:10-p[0]-p[1]], [1, 1])
print("best over reals: f({} ,{})={}".format(x, y, f(x, y)))

class MATZOV_Orig:
""" """

C_prog = 1.0 / (1 - 2.0 ** ( -0.292)) # p.37
C_mul = 32**2 # p.37
C_add = 5 * 32 # guessing based on C_mul

@classmethod
def T_fftf(cls , k, p):

"""
The time complexity of the FFT in dimension ‘k‘ with modulus ‘p‘.

:param k: Dimension
:param p: Modulus ≥ 2

"""
return cls.C_mul * k * p ** (k + 1) # Theorem 7.6, p.38

@classmethod
def T_tablef(cls , D):

"""
Time complexity of updating the table in each iteration.

:param D: Number of nonzero entries

"""
return 4 * cls.C_add * D # Theorem 7.6, p.39

@classmethod
def Nf(cls , params , m, beta_bkz , beta_sieve , k_enum , k_fft , p):

"""
Required number of samples to distinguish with advantage.

:param params: LWE parameters
:param m:
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:param beta_bkz: Block size used for BKZ reduction
:param beta_sieve: Block size used for sampling
:param k_enum: Guessing dimension
:param k_fft: FFT dimension
:param p: FFT modulus

"""
mu = 0.5
k_lat = params.n - k_fft - k_enum # p.15

# p.39
lsigma_s = (

params.Xe.stddev ** (m / (m + k_lat))
* (params.Xs.stddev * params.q) ** (k_lat / (m + k_lat))
* sqrt(4 / 3.0)
* sqrt(beta_sieve / 2 / pi / e)
* deltaf(beta_bkz) ** (m + k_lat - beta_sieve)

)

# p.29, we’re ignoring O()
N = (

exp(4 * (lsigma_s * pi / params.q) ** 2)
* exp(k_fft / 3.0 * (params.Xs.stddev * pi / p) ** 2)
* (k_enum * cls.Hf(params.Xs) + k_fft * log(p) + log(1 / mu))

)

return RR(N)

@staticmethod
def Hf(Xs):

return RR((1 / 2 + log(sqrt(2 * pi) * Xs.stddev )) / log (2.0)) # old bad formula

@classmethod
def cost(

cls ,
beta ,
params ,
m=None ,
p=2,
k_enum=0,
k_fft=0,
beta_sieve=None ,
red_cost_model=red_cost_model_default

):
"""
Theorem 7.6

"""

if m is None:
m = params.n

k_lat = params.n - k_fft - k_enum # p.15

# We assume here that β_sieve ≈ β
N = cls.Nf(

params ,
m,
beta ,
beta_sieve if beta_sieve else beta ,
k_enum ,
k_fft ,
p,

)
rho , T_sample , _, beta_sieve = red_cost_model.short_vectors(

beta , N=N, d=k_lat + m, sieve_dim=beta_sieve
)
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H = cls.Hf(params.Xs)
T_guess = RR(

(2 ** (k_enum * H)) # old bad formula
* (cls.T_fftf(k_fft , p) + cls.T_tablef(N))

)

cost = Cost(rop=T_sample + T_guess , problem=params)
cost["red"] = T_sample
cost["guess"] = T_guess
cost["beta"] = beta
cost["p"] = p
cost["k_enum"] = k_enum
cost["k_fft"] = k_fft
cost["beta_"] = beta_sieve
cost["N"] = N
cost["m"] = m

return cost

def __call__(
self ,
params: LWEParameters ,
red_cost_model=red_cost_model_default ,
log_level=1,
use_optimizer=True ,
** kwargs

):
"""
Optimizes cost of dual attack as presented in [Matzov22]_.

:param params: LWE parameters
:param red_cost_model: How to cost lattice reduction

The returned cost dictionary has the following entries:

- ‘‘rop ‘‘: Total number of word operations (≈ CPU cycles ).
- ‘‘red ‘‘: Number of word operations in lattice reduction and

short vector sampling.
- ‘‘guess ‘‘: Number of word operations in guessing and FFT.
- ‘‘β‘‘: BKZ block size.
- ‘‘ζ ‘‘: Number of guessed coordinates.
- ‘‘t‘‘: Number of coordinates in FFT part mod ‘p‘.
- ‘‘d‘‘: Lattice dimension.

"""
params = params.normalize ()

if use_optimizer:
# note: parameter ordre is important!
# we put beta last because the range is large so it’s better to change it last to
# quickly converge to a solution , same fo k_fft
# those go after p because a change in p will reset all the values after
# k_enum is small so it’s better to put it first , for the smallest number of iterations
def eval_params(k_enum , p, k_fft , beta):

cost = self.cost(beta , params , k_enum=k_enum , p=p, k_fft=k_fft ,
red_cost_model=red_cost_model)

return log(cost["rop"], 2)
# a good hint can speed up the search massively
hint = [10, 4, params.n//10, params.n - 200]
opt , _ = minimizer_convex(eval_params ,

[(0, 50),(2, params.q),(1, params.n//5),(40, params.n)],
x0=hint ,
verbose=False ,
names=["k_enum", "p", "k_fft", "beta"])

(k_enum , p, k_fft , beta) = opt
best_cost = self.cost(beta , params , k_enum=k_enum , p=p, k_fft=k_fft ,

red_cost_model=red_cost_model)
return best_cost
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else:
for p in early_abort_range (2, params.q):

for k_enum in early_abort_range (0, params.n, 5):
for k_fft in early_abort_range (0, params.n - k_enum [0], 5):

with local_minimum(
40, params.n, log_level=log_level + 4

) as it:
for beta in it:

cost = self.cost(
beta ,
params ,
p=p[0],
k_enum=k_enum [0],
k_fft=k_fft[0],
red_cost_model=red_cost_model ,

)
it.update(cost)

Logging.log(
"dual",
log_level + 3,
f"t: {k_fft [0]}, {repr(it.y)}",

)
k_fft [1]. update(it.y)

Logging.log(
"dual", log_level + 2, f"ζ: {k_enum [0]}, {repr(k_fft [1].y)}"

)
k_enum [1]. update(k_fft [1].y)

Logging.log("dual", log_level + 1, f"p:{p[0]}, {repr(k_enum [1].y)}")
p[1]. update(k_enum [1].y)

Logging.log("dual", log_level , f"{repr(p[1].y)}")
return p[1].y

class Bet_Base:
def set_params(self , params , p, k_enum , k_code ):

self.p_tau_tilde = 0 # compute this
self.bet_set_size = 1 # compute that
self.is_valid = False # set to False if the parameters don’t allow for bets
raise Exception("you must implement this function")

@classmethod
def min_k_code(cls , params , k_enum ):

return 0 # minimum valid value of k_code given k_enum

@classmethod
def max_k_code(cls , params , k_enum ):

return params.n - k_enum - 1 # maximum valid value of k_code given k_enum

def log_to_cost(self , cost):
# use this function add debugging stuff to cost if you want
pass

class Bet_senum_all_zero(Bet_Base ):
def set_lwe_params(self , lwe_params ):

assert lwe_params.Xs.tag == "CenteredBinomial", "this code only works with CenteredBinomial"
self.lwe_params = lwe_params
self.k = self.lwe_params.Xs.bounds [1] # ugly hack to get parameter
self.p0 = binomial (2 * self.k, self.k) / 2**(2* self.k)
# for each length n (which will be k_enum+k_code), we precompute the threshold
# v0(n) such that
# Pr[|s|_0 >= v0(n)] >= 3/4
self.v0_tbl = {}
for n in range(1, 300):

# start with v0=0, then Pr[]=1
# and increase v0, decreasing Pr[] by Pr[|s|_0=v0]= binomial(n,v0)*2ˆ( -2n)
prob = RR(1)
v0 = 0
while prob >= 3/4:

prob -= binomial(n, v0) * self.p0**v0 * (1-self.p0)**(n-v0)
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v0 += 1
# go back to previous value
v0 -= 1
self.v0_tbl[n] = v0

#print("k={} -> v0_tbl ={}". format(self.k, self.v0_tbl ))

# precompute minimum value of k_code (stupid brute force)
self.min_k_code_tbl = {}
for k_enum in range(0, 50):

k_code = k_enum
self.is_valid = False
while not self.is_valid:

k_code += 1
self.set_params(None , k_enum , k_code)

self.min_k_code_tbl[k_enum] = k_code
#print("k={} -> min_k_code_tbl ={}". format(self.k, self.min_k_code_tbl ))

def set_params(self , p, k_enum , k_code ):
self.v0 = self.v0_tbl[k_enum + k_code]
self.p_tau_tilde = RR(binomial(self.v0, k_enum) / binomial(k_enum + k_code , k_enum ))
self.bet_set_size = 1
self.is_valid = (self.v0 >= k_enum)

def log_to_cost(self , cost):
cost["Xs_p0"] = self.p0
cost["Xs_k"] = self.k
cost["bet_v0"] = self.v0

def min_k_code(self , k_enum ):
return self.min_k_code_tbl[k_enum]

class MATZOV_Mod_Code_Prange:
""" """

C_prog = 1.0 / (1 - 2.0 ** ( -0.292)) # p.37
C_mul = 32**2 # p.37
C_add = 5 * 32 # guessing based on C_mul

@classmethod
def T_fftf(cls , k, p):

"""
The time complexity of the FFT in dimension k with modulus p.
"""
if (p & (p-1)) == 0: # power of two

return cls.C_mul * k * p ** (k)
else:

return cls.C_mul * k * p ** (k + 1)

@classmethod
def T_tablef(cls , D):

"""
Time complexity of updating the table in each iteration.
"""
return 4 * cls.C_add * D

@classmethod
def T_decode(cls , N, p, k_fft):

"""
Time complexity of decoding a polar code
"""
return 2 * N * p * log(p, 2) * k_fft * log(k_fft , 2)

@classmethod
def Nf(cls , params , m, beta_bkz , beta_sieve , k_enum , k_fft , k_code , p, mu, bet_set_size ):

k_lat = params.n - k_code - k_enum # p.15

lsigma_s = (
params.Xe.stddev ** (m / (m + k_lat))
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* (params.Xs.stddev * params.q) ** (k_lat / (m + k_lat))
* sqrt(4 / 3.0)
* sqrt(beta_sieve / 2 / pi / e)
* deltaf(beta_bkz) ** (m + k_lat - beta_sieve)

)

N = RR(
exp(4 * (lsigma_s * pi / params.q) ** 2)
* exp(k_code / 3.0 * (params.Xs.stddev * pi / p) ** 2)
* exp(2*pi/e * params.Xs.stddev **2 * p**(-2* k_fft/k_code) * k_code)
* (log(bet_set_size) + k_fft * log(p) + log(1 / mu))

)

return N

@staticmethod
def Hf(Xs):

return RR((1 / 2 + log(sqrt(2 * pi) * Xs.stddev) + log(coth(pi**2 * Xs.stddev **2))) / log (2.0))

@classmethod
def cost(

cls ,
beta ,
params ,
m=None ,
p=2,
k_enum=0,
k_fft=0,
k_code=0,
Bet=None , # if Bet is none , use guessing complexity
beta_sieve=None ,
red_cost_model=red_cost_model_default ,
nu=0.5 # success proba

):
"""
Theorem 7.6

"""
assert 2 <= p and p <= params.q, "make sure that 2 <= p <= q"
assert k_fft is not None , "you need to provide k_fft"
assert k_enum is not None , "you need to provide k_fft"
assert k_fft <= k_code , "k_fft needs to be smaller than k_code"
assert k_code + k_enum < params.n, "k_code + k_enum needs to be < n"

k_lat = params.n - k_code - k_enum

# this is the optimal dimension of the dual lattice to find short short vectors
# note that our lattice has dimension m+k_lat so we need to subtract k_lat
# also be careful that these is a scaling factor alpha that changes the determinant
# and hence the formule for the optimal m
alpha = params.Xe.stddev / params.Xs.stddev
m = int(ceil(sqrt(k_lat * log(params.q/alpha) / log(deltaf(beta ))))) - k_lat

if Bet is None:
# guessing complexity
mu = nu
H = cls.Hf(params.Xs)
T_enum = RR(2 ** (k_enum * H))
Nenum = T_enum

else:
# compute \tilde{p}_tau
p_tau_tilde = RR(Bet.p_tau_tilde)
# compute max mu
mu = RR(nu * p_tau_tilde / (nu * p_tau_tilde + 2 - nu))
# compute min R
R = RR(log(nu/2) / (log(1- p_tau_tilde) + log(1-mu)))
T_enum = R * Bet.bet_set_size
Nenum = Bet.bet_set_size

48



# We assume here that β_sieve ≈ β
N = cls.Nf(

params ,
m,
beta ,
beta_sieve if beta_sieve else beta ,
k_enum ,
k_fft ,
k_code ,
p,
mu,
Nenum

)
rho , T_sample , _, beta_sieve = red_cost_model.short_vectors(

beta , N=N, d=k_lat + m, sieve_dim=beta_sieve
)

T_guess = RR(
T_enum * (cls.T_fftf(k_fft , p) + cls.T_tablef(N) + cls.T_decode(N, p, k_fft))

)

rop = T_sample + T_guess

cost = Cost(rop=T_sample + T_guess , problem=params)
cost["red"] = T_sample
cost["guess"] = T_guess
cost["beta"] = beta
cost["p"] = p
cost["k_enum"] = k_enum
cost["k_fft"] = k_fft
cost["k_code"] = k_code
cost["beta_"] = beta_sieve
cost["N"] = N
cost["m"] = m
cost["mu"] = mu
if Bet is not None:

cost["p_tau_tilde"] = p_tau_tilde
cost["bet_set_size"] = Bet.bet_set_size
cost["R"] = R
Bet.log_to_cost(cost)

return cost

def __call__(
self ,
params: LWEParameters ,
red_cost_model=red_cost_model_default ,
log_level=1,
use_optimizer=True ,
use_2p2 = True , # p is a power of two
Bet = None ,

):
"""
Optimizes cost of dual attack
"""
params = params.normalize ()
assert use_optimizer , "old optimizer is not supported"

if Bet is not None:
Bet.set_lwe_params(params)

# note: parameter ordre is important!
# we put beta last because the range is large so it’s better to change it last to
# quickly converge to a solution , same for k_fft
# those go after p because a change in p will reset all the values after
# k_enum is small so it’s better to put it first , for the smallest number of iterations
def eval_params_(k_enum , p, k_code , k_fft , beta):
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if use_2p2:
p = 2**p

if Bet is not None:
Bet.set_params(p, k_enum , k_code)
# if p_tau_tilde is zero , bad value , return infinity
if not Bet.is_valid:

return oo
cost = self.cost(beta , params , k_enum=k_enum , p=p, k_fft=k_fft , k_code=k_code ,

red_cost_model=red_cost_model , Bet=Bet)
return cost

def eval_params(k_enum , p, k_code , k_fft , beta):
cost = eval_params_(k_enum , p, k_code , k_fft , beta)
return log(cost["rop"], 2)

# a good hint can speed up the search massively
hint = [10, 3 if use_2p2 else 256, params.n//10, params.n//20, params.n - 200]
if Bet is None:

min_k_code_fn = lambda k_enum ,p: 1
else:

min_k_code_fn = lambda k_enum ,p: Bet.min_k_code(k_enum)
opt , v = minimizer_convex(eval_params ,

[(1, 50), # k_enum
(2, int(floor(math.log2(params.q))) if use_2p2 else params.q), # p
(min_k_code_fn , params.n//2), # k_code
(1, lambda k_enum ,p,k_code:k_code), # k_fft
(40, params.n-10)], # beta
x0=hint ,
verbose=False ,
names=["k_enum", "p", "k_code", "k_fft", "beta"])

return eval_params_ (*opt)

def get_reduction_cost_model(nn):
matzov_nns ={

"CN": "list_decoding -naive_classical",
"CC": "list_decoding -classical",

}
if nn in matzov_nns:

return RC.MATZOV.__class__(nn=matzov_nns[nn])
elif nn == "C0":

return RC.ADPS16
else:

raise Error("unknown cost model ’{}’".format(nn))

def runall(
schemes =(

Kyber512 ,
Kyber768 ,
Kyber1024 ,
LightSaber ,
Saber ,
FireSaber ,
# TFHE630 ,
# TFHE1024 ,

),
nns=(

"CC",
"CN",
"C0"

),
attack = "matzov_code_prange",
use_optimizer = True ,
bet = "senum_all_zero",

):
results = {}

obj = None
Bet = None
if attack == "matzov":

obj = MATZOV_Orig ()
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elif attack == "matzov_code":
obj = MATZOV_Code ()

elif attack == "matzov_code_prange":
obj = MATZOV_Mod_Code_Prange ()
if bet == "senum_all_zero":

Bet = Bet_senum_all_zero ()
elif bet == "guess_senum":

Bet = None
else:

raise RuntimeError("unknown bet ’{}’".format(bet))
else:

raise RuntimeError("unknown attack ’{}’".format(attack ))

try:
for scheme in schemes:

results[scheme] = {}
print(f"{repr(scheme )}")
for nn in nns:

red_mod = get_reduction_cost_model(nn)
cost = obj(scheme , red_cost_model=red_mod , use_optimizer=use_optimizer , Bet=Bet)
results[scheme ][nn] = cost
print(f" nn: {nn}, cost: {repr(cost)}")

except KeyboardInterrupt:
print("computation interrupted , partial results will be returned")
pass

except Exception as e:
import traceback
traceback.print_exception(e)
pass

return results

def results_table(results , fmt=None):
import tabulate

rows = []

def pp(cost):
return round(log(cost["rop"], 2), 1)

# collect models
nns = set()
for costs in results.values ():

nns |= set(costs.keys ())
nns = list(sorted(nns))

for scheme , costs in results.items ():
row = [ scheme.tag ] + [pp(costs[nn]) if nn in costs else "n/a" for nn in nns]
rows.append(row)

if fmt is None:
return rows

else:
import tabulate
return tabulate.tabulate(

rows ,
headers =["Scheme"] + nns ,
tablefmt="latex_booktabs",
floatfmt=".1f",

)

def parameter_tables(results , fmt=None):
# our new code uses variable "k_code", but the old Matzov code uses "p", this code supports both
opt_vars = []
# look at the first entry
first_code = next(iter(next(iter(results.values ())). values ()))
for x in ["k_code", "p"]:

if getattr(first_code , x, None) is not None:
opt_vars.append(x)
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# collect models
nns = set()
for costs in results.values ():

nns |= set(costs.keys ())
nns = list(sorted(nns))

def pp(cost):
return round(log(cost["rop"], 2), 1)

res = {}
for nn in nns:

rows = []
for scheme , costs in results.items ():

if nn in costs:
c = costs[nn]
row = [

scheme.tag ,
pp(c),
c["m"],
c["beta"],
c["beta_"],
c["k_enum"],
c["k_fft"],

]
for x in opt_vars:

row.append(c[x])
rows.append(row)

if fmt is None:
res[nn] = rows

else:
import tabulate
res[nn] = tabulate.tabulate(

rows ,
headers =[

"Scheme",
"Attack",
"m",
"beta_1",
"beta_2",
"k_enum",
"k_fft",

] + opt_vars ,
tablefmt="latex_booktabs",
# floatfmt =".1f",

)
return res
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