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GENERALIZED LANGEVIN AND NOSÉ-HOOVER PROCESSES ABSORBED AT
THE BOUNDARY OF A METASTABLE DOMAIN

ARNAUD GUILLIN†, DI LU†, BORIS NECTOUX†, AND LIMING WU†

Abstract. In this paper, we prove in a very weak regularity setting existence and uniqueness of quasi-
stationary distributions as well as exponential convergence towards the quasi-stationary distribution
for the generalized Langevin and the Nosé-Hoover processes, two processes which are widely used in
molecular dynamics. The case of singular potentials is considered. With the techniques used in this
work, we are also able to greatly improve existing results on quasi-stationary distributions for the
kinetic Langevin process to a weak regularity setting.
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1. Setting and main results

1.1. Purpose of this work.

1.1.1. Introduction. The basic ingredient in molecular dynamics is a potential energy function V :
(Rd)N → [1,+∞] which associates to a set of position coordinates of N Rd-valued particles the
energy of the system. With this function V , several continuous state space models exist. When
the system is thermostated, the time evolution of the position-velocity pair (xt = (x1

t , . . . , x
N
t ), vt =

(v1
t , . . . , v

N
t )) ∈ (Rd)N×(Rd)N of the particles is commonly described by the so-called kinetic Langevin

process, which is the solution in (Rd)N × (Rd)N to the equation

dxt = vtdt, dvt = −∇V (xt)dt− γvtdt+
√

2γ dWt, (1.1)

where (Wt, t ≥ 0) is a standard (Rd)N -Brownian motion and −∇V is the force field. Due to energetic
barriers, the position process (xt, t ≥ 0) remains trapped for very long times in a basin of attraction
BV (x∗) of some local minimum x∗ of V for the dynamics ẋ = −∇V (x) in (Rd)N . The process (1.1)
is therefore said to be metastable and such subdomains of (Rd)N , which typically describe the macro-
scopic states of the system, are the metastable regions. The move from one metastable region to
another is typically related to a macroscopic transition. The metastable phenomenon prevents to
have access to the macroscopic transitions by simulating directly the trajectories of the process (1.1)
since such transitions occur over very long periods of time. In simulation in molecular dynamics, many
algorithms have been designed to have access to macroscopic transitions such as e.g. the powerful and
widely used accelerated dynamics algorithms introduced by A.F. Voter & al. [71, 75, 3, 63]. Recently,
it has been shown [39, 62, 19, 20, 45, 66] that the notion of quasi-stationary distribution (see Defi-
nition 1.1) is the cornerstone to analyse the mathematical foundations of these accelerated dynamics
algorithms. For that reason, the study of quasi-stationary distributions for metastable continuous
state space model has recently attracted a lot of attention, especially for the hypoelliptic and non
reversible process (1.1), see indeed [28, 29, 47, 48, 4, 46].

In this work, we will address the question of existence, uniqueness, and exponential convergence
to the quasi-stationary distribution for two other widely used, for example in molecular dynamics,
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metastable continuous state space models which are structurally more complicated than (1.1): the
Mori-Zwanzig Markovian approximation of the generalized Langevin process (see (1.4) below) and the
Nosé-Hoover process (see (1.5) below), which we introduce now.

The generalized Langevin process, namely the solution (xt = (x1
t , . . . , x

N
t ), vt = (v1

t , . . . , v
N
t ), t ≥

0) ∈ (Rd)N × (Rd)N to the integro-differential equation

dxt = vtdt, dvt = −∇V (xt)dt− γvtdt+

∫ t

0

K(t− s)vsds dt+ Ftdt+
√

2γ dWt, (1.2)

has been derived to describe the evolution in time of a system of N Rd-valued particles interacting with
a heat bath (see [79, 80, 60, 55, 56]). Here γ ≥ 0 is the friction paramater. The diagonal square bloc
matrix Kt = diag(K1

t I(Rd)N , . . . ,K
N
t I(Rd)N ) is the memory kernel, where Kit ∈ R+, is a characteristic of

the bath, which encodes the long memory property of the generalized Langevin process. The process
(Ft = (F 1

t , . . . , F
N
t ) ∈ (Rd)N , t ≥ 0) is a stationary zero mean Gaussian stochastic forcing and the

fluctuation-dissipation principle writes E[F i
s · F i

u] = Ki(|s − u|). The generalized Langevin process,
which is non Markovian, is one of the standard models in nonequilibrium statistical mechanics [72, 50,
57] and is widely used in many areas of science such as surface scattering [1, 23], polymer dynamics [70],
sampling in molecular dynamics [9, 10], and global optimization using simulated annealing [26, 11].

When Kit =
∑ki

l=1 λ
2
i,le
−αi,lt (where αi, λi,l > 0 for all i ∈ {1, . . . , N} and all l ∈ {1, . . . , ki}, ki ≥ 1),

the process (1.2) is quasi-Markovian, i.e. it can be written as a Markovian process by adding a finite
number of additional variables [60] (see also [58, Section 1.2], [27], and references therein). More
precisely, for such Ki’s, (1.2) is equivalent to a Markovian system of stochastic differential equations:

dxit = vitdt

dvit = −∇xiV (xt)dt− γvitdt+
∑ki

l=1 λi,lz
i,l
t dt+

√
2γ dW i

t

dzi,lt = −αi,lzi,lt dt− λi,lvitdt+
√

2αi,l dB
i,l
t ,

(1.3)

where for i ∈ {1, . . . , N} and l ∈ {1, . . . , ki}, (xit, v
i
t, z

i,l
t ) ∈ Rd×Rd×Rd, and where the (W i

t , t ≥ 0)’s

and the (Bi,l
t , t ≥ 0)’s are mutually independent Rd-Brownian motions. We also mention that for

certain kinds of memory kernels K, (1.2) can be conveniently approximated by the finite dimensional
systems (1.3), see e.g. [60, 38, 59, 57]. For ease of expository and since all our proofs extend trivially
to the case when ki > 1, we have decided in this work to only consider the case when ki = 1 for all
i ∈ {1, . . . , N}. In this case, (1.3) writes:

dxt = vtdt
dvt = −∇V (xt)dt− γvtdt+ λztdt+

√
2γ dWt

dzt = −αztdt− λvtdt+
√

2α dBt,
(1.4)

where (xt, vt, zt) ∈ (Rd)N × (Rd)N × (Rd)N , α, λ > 0, γ ≥ 0, and where (Wt, t ≥ 0) and (Bt, t ≥ 0)
are independent (Rd)N -Brownian motions. Note that when γ = 0, which is the case often used in
practice, the process (1.4) is more degenerated than (1.1) in the sense that the noise does not act on
the positions and on the velocities but on an auxiliary variable. With a slight abuse of language, (1.4)
will be referred in this work as the generalized Langevin process.

The second process we will consider is the Nosé-Hoover process which is another extension of the
kinetic Langevin process (1.1). The Nosé-Hoover process is the solution on (Rd)N × (Rd)N × R to
the following stochastic differential equation:

dxt = vtdt

dvt = −∇V (xt)dt− γvtdt− vtytdt+
√

2γ dBt

dyt = |vt|2dt− dNdt,
(1.5)

where γ > 0. The process (1.5) is also sometimes referred as the adaptive Langevin process. It
has been introduced in the context of sampling in molecular dynamics [37, 41, 36, 44], where yt acts
as a thermostat. See also [22, 69] for applications in Bayesian sampling. The friction parameter in
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the kinetic Langevin process (1.1) is considered in (1.5) as a dynamical variable. This stochastic
correction, which is renewed according to a negative feedback loop control law (as in the Nosé-Hoover
thermostat) models random perturbations of unknown magnitude which can occur on the potential
gradient, and serves as variable which restores the canonical distribution associated with the prescribed
inverse temperature, see indeed [43].

Studying these two metastable processes, via their quasi-stationary distribution, is thus of para-
mount importance for practical applications, e.g. in molecular dynamics.

Since V might have singularities, we consider a connected component OV of the set {x ∈ (Rd)N , V (x) <
+∞}. Then, if collisions between particles do not occur, which will be the case in this work, the two
processes (1.4) and (1.5) evolve on the state space

E = OV ×Rm,

where m = Nd+Nd for the generalized Langevin process (1.4) and m = Nd+ 1 for the Nosé-Hoover
process (1.5).

In this work, we prove, for the two processes (1.4) and (1.5), existence and uniqueness in some
weighted spaces of the quasi-stationary distribution on metastable domains D , which are regions of
the forms D = O ×Rm, where O is a subdomain (i.e. a nonempty, connected, and open subset) of
OV , bounded or not, as well as the exponential convergence towards the quasi-stationary distribution.
Our main results are Theorem 1.4 (and its extension to non gradient force fields, Theorem 1.5), and
Theorems 1.7, and 1.11. We also mention Theorem 5.1 for a significant extension of existing results
on the quasi-stationary distribution for the kinetic Langevin process (1.1).

The first main contribution of this work is the very weak regularity setting we consider on both
the domain D and the force field (see items a and b just below). One of the main novelty of this
setting, compared to previous works on quasi-stationary distributions for hypoelliptic degenerate
processes [28, 29, 47, 48, 65, 46] on such domains D , is that we have managed to get rid of any
regularity assumption on the boundary of O. This is a paramount improvement in order to treat
the cases which are considered in practice where O is defined as a basin of attraction BV (x∗) (see
e.g. [64, 62, 19, 66]), or as (the interior of the closure of the) union of neighboring basins of attraction.
In this case, the properties of ∂O are very arduous to infer, and even worse, it is known that in this
case ∂O is far from being regular1, even for smooth potentials V .
More precisely, in the weak regularity setting where:

a. O is any subdomain of OV (note that there is thus no assumption on the regularity of ∂O,
and that ∂O can also intersect the set ∂OV where the potential V is infinite, due to collisions
between particles),

b. the force field −∇V is only locally Lipschitz over OV and infinite on ∂OV ,

we will in particular prove that:

1. The nonkilled semigroup, defined in (1.6), and the killed semigroups, defined in (1.7), are
respectively strong Feller and weak Feller (actually it will be shown that the latter is also
strong Feller), see respectively the conditions (C1) and (C4) in Section 1.1.3.

2. The killed semigroup is topologically irreducible (see the condition (C5) in Section 1.1.3).

In the weak regularity setting a and b, the tools used to prove Item 1 in [28, 29] for the kinetic
process (1.1) are not adapted anymore. We will rather rely on a different approach to prove Item 1.
This approach, which is explained in details in Section 2.1.1, is fundamentally based on the energy
splitting Equation (2.1) together with the analysis of the behavior of the process at low and at high
energy H (where H denotes the Hamiltonian of the processes).

On the other hand, to ensure existence of quasi-stationary distributions and exponential convergence
to it, we also have to prove

1E.g. ∂O may have corners and/or may contain points at which it does not satisfy the exterior sphere condition.
Worst geometric situations can also occur for the boundary of such domains.
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3. Enhanced exponential integrability of hitting times of larger and larget sets (see the condition
(C3) below).

The second main contribution of this work is that we consider singular potentials V for both processes
and ensure that Item 3 still holds. To this end, we have in particular to construct Lyapunov functions
satisfying a strong return from ∞ (see (C3)). The Lyapunov functions we construct are bounded
from above by C exp(cHδ), for δ ∈ (0, 1], where we recall that H denotes the Hamiltonian of the
processes. It will turn out that for singular potentials V and for the generalized Langevin process,
a right choice of Lyapunov function is eF

δ
, where F is the modified Hamiltonian introduced in [24]

(see Section 3). However, for the Nosé-Hoover process (1.5), the Lyapunov function introduced in [32]
does not satisfy (C3), and for that reason we modify it to obtain the asymptotic return from ∞ in
the position variable x and also to obtain smaller Lyapunov functions.

The starting point of our analysis is [28, Theorem 2.2] when we will consider the generalized
Langevin process, whereas, for the Nosé-Hoover process, we will rely on a more general result, namely
Theorem 4.6 (stated and proved in Section 4.3). This extension is required since the Nosé-Hoover
process does not satisfy the condition (C5) (defined at the end of Section 1.1.3).

The approach used in this work (see Section 2.1.1) is particularly well-suited to checking the regu-
larity conditions (C1), (C2), and (C4) on actually any kind of subdomains D ⊂ Rl for solutions to
SDEs in Rl with non smooth drifts (see also Remark 2.1). In particular, we can improve, using this
approach and the tools used in this work, the existing results on the kinetic Langevin process [29, The-
orems 2.4 and 3.2] with singular potentials, as well as those obtained [48]: they are valid without any
regularity assumption on the boundary of the subdomain D (see respectively Theorems 5.1 and 5.2
below) and when the drift is only locally Lipschitz. As explained, such extensions are of real interest
to match with the non smooth domains, namely the basins of attraction BV (x∗) of ẋ = −∇V (x),
on which is considered the quasi-stationary distribution in practice. We also refer to Theorems 5.3
and 5.4 when elliptic processes are considered.

We finally mention that the tools used in this work will be also employed in a future work to study
the existence and uniqueness of (quasi- or not) stationary distributions for SDEs with different kinds
of noises.

1.1.2. Related results. The ergodic properties of the nonkilled semigroup of the generalized Langevin
process is now well-known, see for instance [59, 58, 61, 42, 27, 24] and references therein (see also [6, 54,
34]). On the other hand, the long time behavior of nonkilled semigroup of the Nosé-Hoover process
has been studied in [32], where we also mention that the case of Lennard-Jones type potentials is
also considered there (see also [43] for a similar study for the adaptive Langevin process, through a
hypocoercivity analysis). We also refer to [5] (resp. [17]) where the metastable behavior of the process
(1.4) (resp. (1.5)) has been studied through the derivation of sharp asymptotic equivalents in the
small temperature regime of the smallest eigenvalues of its generator (see also [31]).

Several general criteria have been introduced in the mathematical literature to ensure existence and
uniqueness of quasi-stationary distributions, see [53, 13] and references therein (see also the recent
works [2, 74, 68]). When dealing with biological systems, we refer e.g. to [7, 21, 8, 14, 35, 12]. As
already mentioned, quasi-stationary distributions for the kinetic Langevin process (1.1) have been
studied recently in [28, 29, 48, 4] (see also [73]).

1.1.3. Notation. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space (where the filtration satisfies the
usual condition). Consider (Xt, t ≥ 0) a time homogeneous continuous strong Markov process valued
in E , where E is a nonempty open subset of Rk, k ≥ 1. Let B(E ) be the Borel σ-algebra of E , bB(E )
the space of all bounded and Borel measurable (real-valued) functions f on E , Cb(E ) the space of all
bounded and continuous (real-valued) functions on E , and P(E ) as the set of probability measures

on E . We will denote by L1,loc
Lip (E ) the set of functions V : E → R such that over E , V is differentiable
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and ∇V is locally Lipschitz. The transition probability semigroup is denoted by (Pt, t ≥ 0), i.e.

Ptf(x) = Ex[f(Xt)], f ∈ bB(E ), x ∈ E . (1.6)

(Pt, t ≥ 0) will be referred as the nonkilled semigroup. The space C([0, T ],E ) of E -valued continuous
functions defined on [0, T ] is endowed with the sup-norm over [0, T ]. When D is a nonempty open
subset of E , we denote by (PD

t , t ≥ 0) the semigroup of the killed process (Xt, t ≥ 0):

PD
t f(x) = Ex[f(Xt)1t<σD

], f ∈ bB(D), x ∈ D , (1.7)

where σD = inf{t ≥ 0, Xt /∈ D} is the first exit time of the process (Xt, t ≥ 0) from D ((PD
t , t ≥ 0)

will be referred as the killed semigroup). For W : E → [1,+∞) and when D is open subset of E , we
define the set PW(D) as the set of probability measures ν over D such that ν(W) < +∞. We also
define bWB(D) the Banach space of measurable functions f : D → Rd such that f/W is bounded
over D (its norm is denoted by ‖f‖W = supE |f/W|). We finally denote by (L,De(L)) the extended
generator of (Xt, t ≥ 0) (for a definition, see [28, 29] and references therein).

As already mentioned, to prove existence and uniqueness of quasi-stationary distributions for the
generalized Langevin process, we will use [28, Theorem 2.2] (for the Nosé-Hoover process, we will
use an extension of [28, Theorem 2.2], see Theorem 4.6 below). To this end, we recall the conditions
introduced in [28] which ensure existence and uniqueness of the quasi-stationary distribution as well
as the exponential convergence in PW1/p(D) towards this quasi-stationary distribution:

(C1) There exists t0 > 0 such that for each t ≥ t0, Pt is strong Feller.
(C2) For every T > 0, x ∈ E 7→ Px(X[0,T ] ∈ ·) (the law of X[0,T ] := (Xt)t∈[0,T ]) is continuous from

E to the space P(C([0, T ],E )) of probability measures on C([0, T ],E ), equipped with the weak
convergence topology.

(C3) There exist a continuous function W : E → [1,+∞), with W ∈ De(L), two sequences of positive
constants (rn) and (bn) where rn → +∞, and an increasing sequence of compact subsets (Kn)
of E , such that

−LW(x) ≥ rnW(x)− bn1Kn(x), quasi-everywhere.

(C4) For all t ≥ 0 and all f ∈ C∞c (D), PD
t f ∈ Cb(D).

(C5) There exists t1 > 0, for all t ≥ t1, x ∈ D and nonempty open subset O of D , PD
t (x,O) > 0. In

addition, there exists x0 ∈ D such that Px0(σD < +∞) > 0.

We recall also the definition of a quasi-stationary distribution (see for instance the classical text-
book [16]).

Definition 1.1. A quasi-stationary distribution of the Markov process (Xt, t ≥ 0) in the domain D
is a probability measure on D such that µD(A) = PµD

(Xt ∈ A|t < σD),∀t > 0, ∀A ∈ B(D), where
B(D) :=

{
A ∩D ,A ∈ B(E )

}
.

We end this section by recalling a powerful general convergence result which will be used many
times in this work.

Proposition 1.2. ([76, Lemma 3.2]) Assume that a sequence of random variables (Yn)n≥0 defined
on a probability space (Ω,F ,P) with values in a Polish space S converges in P-probability to Y .
Assume also that there exists a fixed probability measure µ s.t. for all n ≥ 0, the law of Yn writes
Px[Yn ∈ dx] = pn(x)µ(dx). If (pn)n is uniformly integrable w.r.t. µ, then as n→ +∞, f(Yn)→ f(Y )
in P-probability for all measurable function f : S → R.

1.2. Quasi-stationary distributions for the generalized Langevin process. In this section,
we study existence and uniqueness of the quasi-stationary distribution for the generalized Langevin
equation (1.4). We first consider in Section 1.2.1, the case when N = 1 and ∇V is locally Lipschitz on
Rd (see Theorem 1.4). In Section 1.2.2, we then consider the case of N ≥ 2 particles evolving according
to the generalized Langevin equation and interacting through singular potentials (see Theorem 1.7).
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The proof of Theorem 1.4 when N = 1 and when ∇V is locally Lipschitz over Rd is very instructive,
which explains our choice to split this section.

1.2.1. Generalized Langevin process with locally Lipschitz drifts. In this section, N = 1 and V :
Rd → [1,+∞) (thus OV = Rd), and we consider the process (Xt = (xt, vt, zt), t ≥ 0) solution in
E = Rd × Rd × Rd to the generalized Langevin equation (1.4) when N = 1 (see Proposition 1.3).
Recall that λ, α > 0, γ ≥ 0. The basic assumption of this section is the following.

Assumption [Vloc]. N = 1 and V : Rd → [1,+∞) belongs to L1,loc
Lip (Rd). In addition V is coercive

(i.e. V (x)→ +∞ as |x| → +∞).

In the following, we simply denote Rd ×Rd ×Rd by R3d. We denote the Hamiltonian function of
the process (1.4) by

HGL : (x, v, z) ∈ R3d 7→ V (x) +
1

2
|v|2 +

1

2
|z|2, (1.8)

and its infinitesimal generator

LGL = v · ∇x + (−γv −∇xV + λz) · ∇v + γ∆v − (αz + λv) · ∇z + α∆z. (1.9)

Proposition 1.3. Assume [Vloc]. For all x0 ∈ R3d, there exists a unique strong solution (Xt =
(xt, vt, zt), t ≥ 0) to (1.4) such that X0 = x0 (this process is denoted by (Xt(x0), t ≥ 0)). In addition,
(Xt(x0), t ≥ 0) is a strong Markov process.

Proof. Note that the coefficients in (1.4) are locally Lipschitz. The proof of the non explosion is very
standard, but we write it since Equation (1.10) will play a key role in this work. Let c > 0 such
that LGLHGL ≤ cHGL over R3d. Set for R ≥ 0, σHR

:= inf{t ≥ 0, Xt /∈ HR}, where HR := {x ∈
R3d,HGL(x) < R} is open and bounded (since V is coercive). Since HGL(XσHR

) = R, it holds by the
Itô formula, for all x ∈HR, R > 0:

Px[σHR
≤ t] ≤ ect

R
HGL(x), ∀t ≥ 0. (1.10)

The proof is complete. �

In addition to [Vloc], we will assume the following growth condition on V , which basically implies
that V (x) behaves like |x|k as |x| → +∞, for some k > 1.

Assumption [Vpoly-xk]. In addition to [Vloc], there exist k > 1 and MV , rV , cV > 0 such that for all
x ∈ Rd with |x| ≥ rV :

cV |x|k ≤ V (x) ≤MV |x|k and cV |x|k ≤ x · ∇V (x).

When γ = 0, we assume moreover that |∇V (x)| ≤MV |x|k−1 if |x| ≥ rV .

The first main result of this work is the following (see also its note just below).

Theorem 1.4. Assume [Vloc] and [Vpoly-xk]. Let D = O × Rd × Rd where O is a subdomain of
Rd (not necessarily smooth neither bounded) such that Rd \ O is nonempty. Assume moreover that
k ∈ (1, 2] when γ = 0. For δ ∈ ((1− β)/k, 1] fixed, let Wδ : R3d → [1,+∞) be the Lyapunov function
defined in (2.22) where the parameter β > 0 satisfies (2.26) if γ > 0, and (2.28) when γ = 0. Then,
Px(σD < +∞) = 1 for all x ∈ D , and for all p ∈ (1,+∞),

i) There exists a unique quasi-stationary distribution µ
(p)
D for the process (1.4) on D in the space

P
W

1/p
δ

(D).

ii) There exists λ
(p)
D > 0 such that for all t ≥ 0, the spectral radius of PD

t equals

rsp(P
D
t |b

W
1/p
δ

B(D)) = e−λ
(p)
D t.
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In addition, for all t ≥ 0, µ
(p)
D PD

t = e−λ
(p)
D tµ

(p)
D and µ

(p)
D (O) > 0 for all nonempty open subsets

O of D . Furthermore, there is a unique continuous function ϕ(p) in b
W

1/p
δ
B(D) such that

ϕ(p) > 0 on D , µ(p)
D (ϕ(p)) = 1, and PD

t ϕ
(p) = e−λ

(p)
D tϕ(p) on D , ∀t ≥ 0.

iii) There exist M > 0 and C ≥ 1 such that:

sup
A∈B(D)

∣∣Pν [Xt ∈ A|t < σD ]− µ(p)
D (A)

∣∣ ≤ Ce−Mtν(W
1/p
δ )

ν(ϕ(p))
,∀t > 0, ∀ν ∈ P

W
1/p
δ

(D).

Comments on Theorem 1.4. Let us recall (see [28]) that µ
(p)
D is independent of p, i.e. µ

(p)
D = µ

(q)
D

and λ
(p)
D = λ

(q)
D for any p, q > 1. We now discuss how to choose δ > 0 depending on the values of the

growth parameter k > 1 of V in [Vpoly-xk], and how Wδ behaves at high energy.

- When γ > 0 (resp. γ = 0) and (2.26) holds (resp. (2.28) holds), there exists c > 0 such that
Wδ ≤ exp[cδEδ], where E(x, v, z) = 1 + |x|k + |v|2 + |z|2. Hence, the smaller δ ∈ ((1−β)/k, 1] is
(see (2.22)), the smaller Wδ is. Moreover, for any probability measure µ(dx) = g(x)dx s.t. for

some κ, r,K,R > 0, g ≤ K exp[−κEr] on {x ∈ R3d,E(x) > R}, it holds:
∫
R3d W

1/p
δ (x)µ(dx) <

+∞ for any r > δ and p > 1.
- Let us first consider the case when γ > 0. In view of (2.26), when k ≥ 2, one can choose any
δ ∈ (0, 1) in the definition of Wδ in (2.22). Indeed, in this case min(1, k/2, k − 1) = 1 and
therefore β > 0 can be chosen as closed as desired (from below) to 1. Let us now consider the
case when γ = 0 (recall in this case that k ∈ (1, 2]). When k = 2, β = 1 and therefore one can
choose any δ ∈ (0, 1) in the definition of Wδ in (2.22).

The proof of Theorem 1.4 is given in Section 2.

Extension to non gradient force fields. In several cases in molecular dynamics the force field−∇V
is subject to nonequilibrium perturbations (the dynamics is then said to be out of equilibrium [67, 49,
40]), and this the setting we would like to treat here. To this end we consider the following assumption
on the force field.

Assumption [bnon-gradient]. The vector field b : Rd → Rd decomposes over Rd as b = −∇V + `,
where: V satisfies [Vpoly-xk] and ` : Rd → Rd is a locally Lipschitz vector field such that for all
x ∈ Rd, |`(x)| ≤ C(|x|(k−1)/2 + 1) for some C > 0.

Theorem 1.5. When [bnon-gradient] is satisfied, Theorem 1.4 is still valid verbatim for the process
(Xt = (xt, vt, zt), t ≥ 0) solution to the generalized Langevin equation

dxt = vtdt
dvt = b(xt)dt− γvtdt+ λztdt+

√
2γ dWt

dzt = −αztdt− λvtdt+
√

2α dBt.

Theorem 1.5 is proved in Section 2.4.

1.2.2. Generalized Langevin process: extension of the results to singular interaction potentials. In this
section, we extend the results of the previous section to a system of N ≥ 2 particles Xt = (xt, vt, zt) ∈
RdN ×RdN ×RdN whose positions xt = (x1

t , . . . , x
N
t ) ∈ RdN , velocities vt = (v1

t , . . . , v
N
t ) ∈ RdN , and

noises zt = (z1
t , . . . , z

N
t ) ∈ RdN evolve in time t ≥ 0 through the generalized Langevin equation (1.4)

and which interact through singular potentials (note that we simply write RdN for (Rd)N). Let us
more precisely introduce the assumptions on the potential function V : RdN → R.

Assumption [Vcoercive]. The set OV = {x ∈ RdN , V (x) < +∞} is a subdomain of RdN and

V : OV → [1,+∞) belongs to L1,loc
Lip (OV ). In addition, for all R > 0, VR := {y ∈ RdN , V (y) < R} has

compact closure in OV . Finally, |∇V (x)| → +∞ when V (x)→ +∞.
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Recall that the state space is E = OV × RdN × RdN . Note that under [Vcoercive], V is coercive:
if OV is unbounded (resp. bounded), V → +∞ if and only if x → {∞} ∪ ∂OV (resp. x → ∂OV ).
Without loss of generality, we can thus assume that V ≥ 1 over OV and consequently HGL ≥ 1 over
E . Assumption [Vcoercive] is more general than [Vloc] since it allows to consider singular potentials.

To prove existence and uniqueness of quasi-stationary distributions in weighted spaces (see The-
orem 1.7 below), the starting point is [28, Theorem 2.2]. The strategy will thus consists in proving
(C1)→(C5) for the process (1.4). Assumptions (C1), (C2), (C4), and (C5) will be proved for the
process (1.4) when [Vcoercive] holds. However, to construct a Lyapunov function satisfying (C3), we
will impose more explicit assumptions on V than [Vcoercive] (see [Vsing1] below), that we introduce
now.

For ease of notation we simply denote by {xi 6= xj} the set {x = (x1, . . . , xN) ∈ RdN , xi 6= xj if i 6=
j}. Since what matters in this section is to treat the interaction potential part of the potential V
of the system, we will assume that the confining potential is the simple quadratic function (see also
Remark 1.8 below for extensions).

Assumption [V-2]. The confining potential Vc is the quadratic function on Rd, i.e. Vc(y) =
a0|y|2/2, y ∈ Rd, a0 > 0.

Assumption [V-int]. The interaction potential VI : Rd → R satisfies VI(0) = +∞. In addition,

there exist B, β > 0 and a symmetric function Φ ∈ L1,loc
Lip (Rd \ {0}) s.t.

VI(y) =
B

|y|β
+ Φ(y), for all y ∈ Rd \ {0}.

Furthermore, there exist rΦ, CΦ, cΦ > 0, and 0 ≤ qΦ < β + 1, such that Φ and ∇Φ are bounded on
{y ∈ Rd, |y| > rΦ}, and |∇Φ(y)| ≤ CΦ

|y|qΦ + cΦ and lim|y|→0 |y|β|Φ(y)| = 0.

Note that VI is a symmetric function. Assumption [V-int] covers the cases of singular potentials used
in molecular dynamics, namely: the Lennard-Jones potentials VI(y) = c1/|y|12 − c2/|y|6 as well as
Coulomb potentials VI(y) = c3/|x|d−2 when d ≥ 3 (c1, c2, c3 > 0). Note that in many applications in
molecular dynamics, d = 3.

Assumption [Vsing1]. d ≥ 2 and the potential function V : RdN → R writes

V (x) =
N∑
i=1

Vc(x
i) +

N∑
i,j=1;i<j

VI(x
i − xj) + Vp(x), (1.11)

where Vp ∈ L1,loc
Lip (RdN), supp(Vp) ⊂ {xi 6= xj}, VI satisfies [V-int], and Vc satisfies [V-2].

When [Vsing1] is satisfied, it holds:

(1) {V < +∞} = {xi 6= xj} which is open and connected (since d ≥ 2). Hence

OV = {xi 6= xj}.

(2) V ∈ L1,loc
Lip (OV ).

(3) V is coercive on OV , i.e. V (x)→ +∞ if and only if |x| → +∞ or for some i 6= j, |xi−xj| → 0,
that we write x→ {∞} ∪ ∂OV . Therefore, in this case:

HGL(x)→ +∞ if and only if x→ {∞} or x→ ∂OV .

(4) |∇V | is coercive on OV (by [33, Lemma A.1]).

Note that [Vcoercive] holds when [Vsing1] is satisfied. We have assumed that d ≥ 2 in [Vsing1] for
convenience: all the results stated under the Assumption [Vsing1] extend trivially to the case when
d = 1 provided to choose in this case OV as a connected component of {V < +∞}.
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Proposition 1.6. Assume that V satisfies [Vcoercive]. Then, for all x0 ∈ E , there exists a unique
strong solution (Xt = (xt, vt, zt), t ≥ 0) to (1.4) such that X0 = x0 and such that a.s. Xt ∈ E =
OV ×RdN ×RdN for all t ≥ 0. In addition, (Xt(x0), t ≥ 0) is a strong Markov process.

Proof. Proposition 1.6 follows from the fact that LGLHGL ≤ cHGL over E for some c > 0. We also
mention that this inequality implies the key inequality Px[σHR

≤ t] ≤ ect

R
HGL(x) valid for all x ∈HR

and t ≥ 0 (σHR
= inf{t ≥ 0, Xt /∈ HR} is the first exit time from the open and bounded set

HR := {x ∈ R3dN ,HGL(x) < R} ⊂ E ). �

The main result of this section is the extension of Theorem 1.4 to the case of singular potentials V :

Theorem 1.7. Assume [Vsing1]. Let O be a subdomain of OV such that OV \ O is nonempty, and
set D = O ×Rd ×Rd. Let also δ ∈ (0, 1]. Then, for all p ∈ (1,+∞), Items i)→iii) in Theorem 1.4
are valid verbatim for the killed semigroup (PD

t , t ≥ 0) of the process (Xt, t ≥ 0) solution to (1.4)
over E = OV × RdN × RdN (see Proposition 1.6) with the Lyapunov function Wδ : E → [1,+∞)
defined in (3.3) (and which satisfies the upper bound (3.4)).

The proof of Theorem 1.7 is made in Section 3.

Remark 1.8. Let us mention that when γ > 0 (resp. γ = 0), with minor changes in the proof of (C3)
in Section 3, one deduces that Theorem 1.7 is still valid when Vc satisfies [Vpoly-xk] (resp. when Vc
satisfies [Vpoly-xk] with k ∈ (1, 2]), and for δ ∈ ((1− β)/k, 1], see (2.26) and (2.28) for the definition
of β.

1.3. Quasi-stationary distribution for the Nosé-Hoover process.

1.3.1. Main result. In this section, we consider a system of N ≥ 2 particles with positions xt =
(x1

t , . . . , x
N
t ) ∈ RdN and velocities vt = (v1

t , . . . , v
N
t ) ∈ RdN evolving according to the Nosé-Hoover

process (1.5) where V satisfies [Vcoercive]. Recall that the state space is

E = OV ×RdN ×R, (1.12)

The Hamiltonian function of the process (1.5) is denoted by

HNH : (x, v, y) ∈ E 7→ V (x) +
1

2
|v|2 +

1

2
|y|2, (1.13)

and its infinitesimal generator by

LNH = v · ∇x − (y + γ)v · ∇v −∇V · ∇v + γ∆v + (|v|2 − dN)∂y. (1.14)

Proposition 1.9. Assume that V satisfies [Vcoercive]. For all x0 ∈ E , there exists a unique strong
solution (Xt = (xt, vt, yt), t ≥ 0) to (1.5) such that X0 = x0. In addition, a.s. Xt(x0) ∈ E for all t ≥ 0,
and (Xt(x0), t ≥ 0) is a strong Markov process.

Proof. Since for some c > 0, LNHHNH ≤ cHNH over E , the proof is the same as Proposition 1.3,
and thus omitted. Again, one has Px[σHR

≤ t] ≤ ect

R
HNH(x) for all x ∈ HR and t ≥ 0, where

σHR
= inf{t ≥ 0, Xt /∈ HR} is the first exit time from the open and bounded subset HR := {x ∈

R2dN+1,HNH(x) < R} ⊂ E . �

As already explained in the introduction, to prove existence and uniqueness of quasi-stationary
distributions in weighted spaces (see Theorem 1.11 below), the starting point is Theorem 4.6 below.
Assumptions (C1), (C2), (C4), and (C5’) (defined at the beginning of Section 4.3) will be proved
when [Vcoercive] holds. To prove (C3), we will rely on the work [32]. For that reason, we impose
similar extra assumptions on the potential V :

Assumption [Vsing2]. The condition [Vcoercive] holds with in addition: V ∈ C2(OV ), and for some
ζ ∈ (1, 2) and δ ∈ (1/2, 1]:

|HessV (x)|
|∇V (x)|ζ

→ 0 and
|∇V (x)|2−ζ

V (x)1−δ → +∞ when V (x)→ +∞. (1.15)



10 A. GUILLIN, D. LU, B. NECTOUX, AND L. WU

Note that if there exists such a ζ ∈ (1, 2), then δ = 1 always satisfies the second condition in (1.15).
As it will be clear, the better δ’s are those closed to 1/2, since much smaller Lyapunov functions can
be constructed in this case.

Assumption [Vcoercive] differs from Assumption normal in [32] since: (i) V is much less regular
(ii) we have an extra condition in (1.15) (namely the one involving δ > 0), and (iii) because we do
not assume that

∫
E
e−HNH(x)dx < +∞ (since this will be automatically satisfied, see Remark 1.10).

The last (extra) condition involving δ > 0 in (1.15) will be needed in order to build smaller Lyapunov
function than in [32]. Indeed, with such a δ > 0, we will build Lyapunov function W such that

W ≤ ec
δHδNH on E for some c > 0 independent of δ > 0.

Remark 1.10. It will be shown in this work that the nonkilled process (Pt, t ≥ 0) is strong Feller
and satisfies the topological transitivity [77, Eq. (2.2)]. In addition, under [Vcoercive], there exists a
Lyapunov function W over E such that LNHW ≤ −c + b1K (see [32]). Therefore, since the measure
µGibbs(dx) = e−HNH(x)dx is invariant,

∫
E
e−HNH(x)dx is finite.

The main result of this section is the following and provides existence, uniqueness of the quasi-
stationary distribution of the Nosé-Hoover process (1.5) in a domain D = O ×RdN ×R (as well as
the exponential convergence towards this quasi-stationary distribution).

Theorem 1.11. Assume that V satisfies [Vsing2]. Let δ ∈ (1/2, 1] be as in the last condition in (1.15).
Let D = O ×RdN ×R where O is a subdomain of OV such that OV \ O is nonempty. Then, for all
p ∈ (1,+∞), Items i)→iii) in Theorem 1.4 are valid verbatim for the killed semigroup (PD

t , t ≥ 0)
of the process (Xt, t ≥ 0) solution to (1.5) over E = OV ×RdN ×R (see Proposition 1.9), with the
Lyapunov function Wδ : E → [1,+∞) defined in (4.17) (and which satisfies the upper bound (4.18)).

Theorem 1.11 is proved in Section 4.

1.3.2. On Assumption [Vsing2]. In this section, we provide some examples of singular potential func-
tions used in molecular dynamics which satisfy [Vsing2]. To this end, let us consider a potential V of
the form (1.11) where:

- The perturbation potential Vp ∈ C2
c (OV ).

- The confining potential Vc is C2 over Rd and behaves at infinity as |x|k with k > 1.
- Either VI ≡ 0 over RdN (in this case, OV = RdN) or VI satisfies [Vint] with Φ ∈ C2(Rd \ {0})

(in this case, OV is given by {xi 6= xj}).
As already seen, Assumption [Vcoercive] is satisfied. Since in addition (k − 2)/(k − 1) < 1 and
1 < (β+2)/(β+1) < 2, the first condition in (1.15) is also always satisfied for any ζ ∈ (1+ 1

β+1
, 2) (use

also [33, Lemma A.1]). The last condition in (1.15) writes δ > max[1/2, 1− k−1
k

(2−ζ), 1− β+1
β

(2−ζ)].

Note that 2 − ζ ∈ (0, β
β+1

). The best choice of ζ is to take it small enough such that 2 − ζ is closed

(from below) to β
β+1

. In conclusion, [Vsing2] holds in this case if

max
[
1/2, 1− k − 1

k

β

β + 1

]
< δ ≤ 1.

If β ≥ 1, by choosing the external potential Vc such that k � 1, this previous condition simply
becomes empty, i.e. one can choose any δ ∈ (1/2, 1].

2. Generalized Langevin process: proof of Theorem 1.4

This section is dedicated to the proof of Theorem 1.4 (see also Subsection 2.4 for the proof of
Theorem 1.5). We recall that we will rely on [28, Theorem 2.2] and, the strategy thus consists to show
that (C1)→(C5) hold.

In all this section, we assume that [Vloc] holds.
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2.1. On the conditions (C1), (C2), and (C4). Assumption (C2) is proved in Section 2.1.2, and
(C1) and (C4) are proved in Section 2.1.3 (see Proposition 2.3, Theorem 2.6, and Proposition 2.7).
We first provide in Section 2.1.1 explanations of the method we use in this work to check the regularity
conditions (C1), (C2), and (C4) for the process (1.4) as well as for the process (1.5).

2.1.1. The energy splitting approach to prove the regularity conditions. In this section, we explain the
strategy developed in this work to prove (C1), (C2), and (C4) in a weak regularity setting.

On condition (C1). We first observe that if V ∈ C∞(R), using the Hörmander’s theory, it is
straightforward to deduce (C1). When ∇V is only locally Lipschitz, one must argue differently.
When γ > 0, thanks to the global Girsanov formula (2.5), we can make the non smooth term ∇V
appear only in the so-called Doléans-Dade exponential. With this formula, the proof of (C1) relies
on tools from the theory of SDEs. When γ = 0, we cannot argue as previously. This is because there
is no Brownian motion anymore in the velocity variable vt in (1.4). As explained in the introduction
above, we will thus adopt a different approach to prove (C1) (and also (C4)).

This approach is based on a rather natural strategy which can be summarized as the study of the
behavior of the process at low and at high energy HGL w.r.t. initial conditions in the compact sets.
To explain this approach, the starting point consists in splitting the measure Px[Xt ∈ ·] as follows:

Px[Xt ∈ ·] = Px[Xt ∈ ·, σHR
≤ t] + Px[Xt ∈ ·, t < σHR

] =: ρRx (·) + θRx (·). (2.1)

The asymptotic behavior of the function R 7→ ρRx (·) as R→ +∞ uniformly w.r.t the initial conditions
in the compact sets provides the behavior of the process w.r.t high energies HGL, while the continuity
property of x 7→ θRx (·) at fixed R > 0 describes the behavior of the process at low energy w.r.t the
initial conditions. The approach then relies on the observation that (C1) holds if

lim
R→+∞

ρRx (·)→ 0 uniformly w.r.t. x in the compact sets (2.2)

and if for all R > 0,

x 7→ θRx (·) is continuous for the τ -topology over HR, (2.3)

i.e. for the topology corresponding to convergence against test functions f ∈ bB(HR). Equation (2.2)
is in our setting a consequence of (1.10) which we recall, follows from the fact that LGLHGL ≤ cHGL.
The behavior of the process at low energy (namely (2.3)) is trickier to deduce. It will be obtained
combining mainly two general ingredients: the powerful convergence result Proposition 1.2 which,
we recall, requires in particular uniform integrability of the transition probabilities, and the uniform
continuity of the distribution functions near 0+ of exit times from R3d-balls uniformly w.r.t the initial
conditions (see Lemma 2.5). The Markov property of the process (1.4) will be also fully exploited.

On condition (C4). The proof of the continuity of the mapping x 7→ Px[Xt ∈ ·, t < σD ] (i.e. the
proof of (C4)), where D = O ×Rm, requires extra analysis since it involves to study the continuity
property of x 7→ σD(x). The techniques developed for the kinetic Langevin process (1.1) in [28, 29]
(see also [47, 48]) to prove (C4) require ∂O ∩OV to be C2. These techniques cannot longer be used
without regularity assumption on ∂O. To prove (C4), we will use the energy splitting approach
(so-called because based on the energy splitting Equation (2.1)) described previously. However, we
mention that to check (C4), we have to study the distribution functions near 0+ of exit times from
Rd-balls uniformly w.r.t the initial conditions, which is the purpose of Lemma 2.4.

We mention that the energy splitting approach is also used at many other places in this work, and
in particular it is the starting point for the proofs of:

- Lemma 2.4 as well as in the proof of (C2) (see the proof of Proposition 2.2).
- Conditions (C1), (C2), and (C4) for both the generalized Langevin process (1.4) and the

Nosé-Hoover process (1.5) when V is a singular potential (see the proofs of Proposition 3.1,
Theorem 4.1, and Proposition 4.2).
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Remark 2.1. Finally, we mention that the energy splitting approach can be also applied to solutions
of other SDEs as soon as there is a Lyapunov function V such that LV ≤ cV (c > 0, and L being the
extended generator of the process). What replaces H in this case is the energy V.

2.1.2. On Assumption (C2). In this section, we check Assumption (C2).

Proposition 2.2. Assume [Vloc]. Let t ≥ 0 and (xn)n in R3d such that xn → x ∈ R3d as n → +∞.
Then, for all ε > 0, P[sups∈[0,t] |Xs(xn) − Xs(x)| ≥ ε] → 0 as n → +∞. In particular, Assumption
(C2) is satisfied.

Proof. We denote by a the drift of the equation (1.4), namely for x = (x, v, z) ∈ R3d,

a(x) =

 v
−∇V (x)− γv + λz

−αz − λv

 .

Note that a is a locally Lipschitz vector field over R3d. Let R0 > 0 such that xn, x ∈HR = {x,HGL(x) <
R} for all R ≥ R0 and n ≥ 0. In the following we assume that R ≥ R0. By Gronwall’s inequality, we
have for all R ≥ R0, when t < σHR

(x) ∧ σHR
(xn),

sup
s∈[0,t]

|Xs(x)−Xs(xn)| ≤ |x− xn|eaRt,

for some aR > 0. Thus, one has for all ε > 0 and R ≥ R0, as n→∞,

pn(R) := P
[

sup
s∈[0,t]

|Xs(x)−Xs(xn)| ≥ ε, t < σHR
(x) ∧ σHR

(xn)
]
→ 0.

Consequently, it holds:

P
[

sup
s∈[0,t]

|Xs(x)−Xs(xn)| ≥ ε
]

= pn(R) + P
[

sup
s∈[0,t]

|Xs(x)−Xs(xn)| ≥ ε, t ≥ σHR
(x) ∧ σHR

(xn)
]

≤ pn(R) + P
[
t ≥ σHR

(x) ∧ σHR
(xn)]

≤ pn(R) + P
[
t ≥ σHR

(x)] + P
[
t ≥ σHR

(xn)]

≤ pn(R) + 2R0
ect

R
,

where we have used (1.10) to get the last inequality together with the fact that HGL(xn) < R0 and

HGL(x) < R0. Let us now consider δ > 0 and ε > 0. Pick Rδ > 0 such that 2R0
ect

Rδ
≤ δ/2. For this fixed

Rδ, pn(Rδ) → 0 as n → +∞, and thus, there exists Nδ ≥ 1 such that for all n ≥ Nδ, pn(Rδ) ≤ δ/2.
The proof of the proposition is complete. �

2.1.3. On Assumptions (C1) and (C4). In this section, we prove that (C1) and (C4) are satisfied
for the process (1.4) when [Vloc] holds.

On Assumption (C1). In this section, we prove (C1).

Assumption (C1) when γ > 0.

Proposition 2.3. Assume [Vloc] and γ > 0. Then, the nonkilled semigroup Pt of the solution to the
generalized Langevin equation (1.4) is strong Feller for every t > 0.

The proof of Proposition 2.3 we give below actually only requires that V is coercive and is differ-
entiable, and that ∇V is just continuous (and in this case, one rather considers the weak solution to
(1.4)).



KILLED GENERALIZED LANGEVIN AND NOSÉ-HOOVER PROCESSES 13

Proof. Let (X0
t = (x0

t , v
0
t , z

0
t ), t ≥ 0) in R3d be the strong solution to the stochastic differential equation

dx0
t = v0

t dt, dv
0
t =

√
2γ dWt, dz

0
t =
√

2α dBt. (2.4)

We denote by F the following vector field over R3d and by Σ the following square constant matrix of
size 2d:

F(x) =

(
−∇V (x)− γv + λz

−αz − λv

)
and Σ =

(√
2γ IRd 0

0
√

2α IRd

)
.

Arguing as in [77, Lemma 1.1], the following Girsanov’s formula holds for all T > 0,

dPx

dP0
x

∣∣∣
FT

= MT (x), (2.5)

where Px (resp. P0
x) is the law of (Xt(x), t ≥ 0) (resp. of (X0

t (x), t ≥ 0)), and for t ≥ 0,

Mt(x) = exp
[ ∫ t

0

Σ−1F(X0
s (x)) · dws −

1

2

∫ t

0

|Σ−1F(X0
s (x))|2ds

]
,

is the Doléans-Dade exponential (true) martingale, and ws = (Bs,Ws)
T .

Fix t > 0. By (2.5), Pt is strong Feller if z ∈ R3d 7→ Ez[f(X0
t )Mt] is continuous, which we shall

prove now. Note that a.s. sups∈[0,t] |X0
s (z) −X0

s (x)| → 0 as z → x ∈ R3d. Note also that (X0
t , t ≥ 0)

has a smooth density w.r.t. the Lebesgue measure. Then, using Proposition 1.2, we deduce that for
any f ∈ bB(R3d), z ∈ R3d 7→ f(X0

t (z)) is continuous in P-probability.
On the other hand, z ∈ R3d 7→ Mt(z) is continuous in P-probability. Since F is unbounded and

not globally Lipschitz, we provide the proof of this claim. Set for R ≥ 1,

σ0
B(0,R)(z) := inf{s ≥ 0, X0

s (z) /∈ B(0, R)},

where B(0, R) := {y ∈ R3d, |y| < R}. If |z| ≤
√
R, Pz[σ

0
B(0,R) ≤ t] ≤ h(R) := P[sups∈[0,t] |Σws| ≥

R −
√
R] + P[

√
2γ
∫ t

0
|Ws|ds ≥ R − t

√
R −

√
R] → 0 as R → +∞. Let zn → z ∈ R3d, and Rz ≥ 1

such that |zn| + |z| ≤
√
Rz, ∀n ≥ 0. Pick c > 0. Let ε > 0 and Rε > Rz such that h(Rε) ≤ ε/4.

Consider also a continuous bounded vector field FRε : R3d → R2d such that FRε = F on B(0, Rε + 1).

Set δn(F) := |
∫ t

0
Σ−1[F(q0

s(zn)) − F(q0
s(z))] · dws|. Then, for all n ≥ 0, the quantity P[δn(F) > c] is

bounded by

P[σ0
B(0,Rε)(zn) ∧ σ0

B(0,Rε)(z) ≤ t] + P[δn(F) > c, t < σ0
B(0,Rε)(z) ∧ σ

0
B(0,Rε)(zn)]

≤ P[σ0
B(0,Rε)(zn) ≤ t] + P[σB(0,Rε)(z) ≤ t] + P[δn(FRε) > c, t < σ0

B(0,Rε)(z) ∧ σ
0
B(0,Rε)(zn)]

≤ ε

2
+ P[δn(FRε) > c].

Since P[δn(FRε) > c]→ 0 as n→ +∞ by well-known convergence properties of stochastic integrals,
we finally get that there exists Nε ≥ 0, for all n ≥ Nε, P[δn(F) > c] ≤ ε. With similar arguments, we

also prove that the mapping x ∈ R3d 7→
∫ t

0
|F (q0

s(x)))|2ds is continuous in P-probability. The claim
then follows applying the continuous mapping theorem.

Since in addition, E[Mt(x)] = 1 for all x, using the Vitali convergence theorem, z ∈ R3d 7→
Ez[f(X0

t )Mt] is continuous. The proof of (C1) is complete when γ > 0. �

Assumption (C1) when γ = 0.

For x = (x, v, z) ∈ R3d, we denote by

σB(x,δ)(x) = inf{t ≥ 0, xt(x) /∈ B(x, δ)}, (2.6)

the first exit time for the process (xt(x), t ≥ 0) from the open ball B(x, δ) in Rd centered at x ∈ Rd

and of radius δ > 0. When there is no confusion, we simply write it σB(x,δ).
We start with two crucial lemmata which hold for any γ ≥ 0 and which will be fundamental to

prove (C1) when γ = 0 and (C4) when γ ≥ 0 .
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Lemma 2.4. Assume [Vloc] and γ ≥ 0. It holds for all compact subset K of R3d and δ > 0,

lim
s→0+

sup
x=(x,v,z)∈K

Px[σB(x,δ) ≤ s] = 0.

We will perform the proof when γ = 0 but, it is straightforward to adapt the proof to the case
γ > 0.

Proof. Assume γ = 0. Fix δ > 0 and let RK > 0 such that K ⊂ HRK . Let x = (x, v, z) ∈ K and
R ≥ RK . We have using (1.10), for all s ∈ [0, 1],

Px

[
σB(x,δ) ≤ s

]
≤ Px

[
σB(x,δ) ≤ s, s < σHR

]
+
ec

R
sup
y∈K

HGL(y).

In addition, it holds

Px[σB(x,δ) ≤ s, s < σHR
] ≤ Px

[
σB(x,δ) ≤ s, |xs − x| < δ/2, s < σHR

]
+ Px

[
|xs − x| ≥ δ/2, s < σHR

]
.

Note that when X0 = x, σB(x,δ) ≤ s, and |xs − x| < δ/2, it holds |xs − xσB(x,δ)
| ≥ δ/2. Then, by the

strong Markov property:

Px

[
σB(x,δ) ≤ s, |xs − x| < δ/2, s < σHR

]
≤ Px

[
σB(x,δ) ≤ s, |xs − xσB(x,δ)

| ≥ δ/2, s < σHR

]
= Px

[
{σB(x,δ) ≤ s} ∩ {|xs − xσB(x,δ)

| ≥ δ/2} ∩ {s < σHR
} ∩ {Xu ∈HR,∀u ∈ [0, σB(x,δ)]}

]
= Ex

[
1σB(x,δ)(x)≤s1Xu∈HR,∀u∈[0,σB(x,δ)]

×PXσB(x,δ)(x)(x)

[
|xs−σB(x,δ)(x) − x0| ≥ δ/2, s− σB(x,δ)(x) < σHR

]]
:= p(x, s, R).

Let us now consider ε > 0. We choose Rε,K = 3ec supy∈K HGL(y)/ε + RK . Then, using (1.10), one
has for all x ∈ K and s ∈ [0, 1],

Px

[
σB(x,δ) ≤ s

]
≤ p(x, s, Rε,K) + Px

[
|xs − x| ≥ δ/2, s < σHRε,K

]
+
ε

3
. (2.7)

Let us now study the term p(x, s, Rε,K). To this end, let s ∈ [0, 1] and let us consider an initial
condition z = (xz, vz, zz) such that xz ∈ ∂B(x, δ), z ∈ HRε,K , and u ∈ [0, s]. We now study the term
Pz[|xs−u − xz| ≥ δ/2, s− u < σHRε,K

].

Note that xs−u = xz +
∫ s−u

0
vt dt, and thus,

xs−u − xz =

∫ s−u

0

[
vz −

∫ t

0

∇V (xa)da
]
dt

+

∫ s−u

0

[ ∫ t

0

λ
(
zz +

∫ a

0

[−αzh − λvh]dh+
√

2αBa

)
da
]
dt.

Assume now that s− u < σHRε,K
(z), i.e.

Xh(z) ∈HRε,K for all h ∈ [0, s− u]. (2.8)

Let cε,K > 0 be such that for all x = (x, v, z) ∈ HRε,K , |∇V (x)| + |x| ≤ cε,K . We then have |z| ≤ cε,K
and, from (2.8), |∇V (xh)|+ |Xh(z)| ≤ cε,K for all h ∈ [0, s− u]. In what follows cε,K > 0 is a constant
which only depends on ε > 0 and K, which can change from occurence to another. Hence, when
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X0 = z, |xs−u − xz| ≥ δ
2
, and s− u < σHRε,K

(z), it holds since 0 ≤ s− u ≤ s ≤ 1:

δ

2
≤ |xs−u − xz| ≤

∫ s−u

0

[
|vz|+

∫ t

0

|∇V (xa)|da
]
dt

+

∫ s−u

0

[ ∫ t

0

λ
(
|zz|+

∫ a

0

[α|zh|+ λ|vh|]dh+
√

2α|Ba|
)
da
]
dt

≤ cε,Ks+
√

2α

∫ s

0

∫ t

0

|Ba|da dt,

and consequently
√

2α
∫ s

0

∫ t
0
|Ba|da dt ≥ δ

2
− cε,Ks. Set sε,K,δ = δ/(4cε,K). For s ∈ [0, sε,K,δ], one has

by Markov’s inequality,

Pz

[
|xs−u − xz| ≥ δ/2, s− u < σHRε,K

]
≤ P

[√
2α

∫ s

0

∫ t

0

|Bu|du dt ≥
δ

4

]
≤ms,

where ms = 2s2
√

2α /δ. Hence, we deduce that for any s ∈ [0, sε,K,δ],

p(x, s, Rε,K) ≤ms.

With the same arguments, up to choosing sε,K,δ > 0 smaller, for every s ∈ [0, sε,K,δ], it holds
supx∈K Px[|xs − x| ≥ δ/2, s < σHRε,K

] ≤ ms. Coming back to (2.7), we have thus proved that

for all compact set K ⊂ R3d, δ > 0, ε > 0, there exists sε,K,δ > 0, for all s ∈ [0, sε,K,δ], and all x ∈ K,
Px

[
σB(x,δ) ≤ s

]
≤ ε. The proof of Lemma 2.4 is complete. �

Let b : Rd → Rd be a globally Lipschitz vector field. Introduce the unique strong solution (X̄t =
(x̄t, v̄t, z̄t), t ≥ 0) to (1.4) when ∇V replaced by b, i.e. the solution to:

dx̄t = v̄tdt
dv̄t = b(x̄t)dt− γv̄tdt+ λz̄tdt+

√
2γ dWt

dz̄t = −αz̄tdt− λv̄tdt+
√

2α dBt.
(2.9)

For x ∈ R3d, we now denote by

σ̄B(x,δ)(x) = inf{t ≥ 0, X̄t(x) /∈ B(x, δ)},

the first exit time for the process (X̄t(x), t ≥ 0) from the ball B(x, δ) = {y ∈ R3d, |y − x| < δ}. We
have the following result which will be used in the proof (C1).

Lemma 2.5. Assume [Vloc] and γ ≥ 0. Then, it holds for all compact subset K of R3d and δ > 0,

lim
s→0+

sup
x0∈K

Px0 [σ̄B(x0,δ) ≤ s] = 0.

Proof. Let r > 0 be such that the δ-neighborhood Kδ of K is included in B(0, r). Since the drift
in (2.9) is globally Lipschitz, there exists c > 0, for all s ∈ [0, 1] and x ∈ B(0, r), |X̄s(x)| ≤ r + c(1 +∫ s

0
|X̄u(x)|du) + cY , where Y := supu∈[0,1](|Bu| + |Wu|). Hence, by Grönwall’s inequality, |X̄s(x)| ≤

C(1 + Y ). We have Px0 [σ̄B(x0,δ) ≤ s] ≤ Px0

[
σ̄B(x0,δ) ≤ s, |X̄s − X̄0| < δ/2

]
+ Pz

[
|X̄s − X̄0| ≥ δ/2

]
, and

Px0

[
σ̄B(x0,δ) ≤ s, |X̄s − X̄0| < δ/2

]
≤ Ex0

[
1σ̄B(x0,δ)

(x0)≤sPX̄σ̄B(x0,δ)
(x0)(x0)

[
|X̄s−σ̄B(x0,δ)

(x0) − X̄0| ≥ δ/2]
]
.

Let x0 ∈ K, x = (x, v, z) ∈ ∂B(x0, δ) (⇒ x ∈ Kδ), and u ∈ [0, s]. It holds Px

[
|X̄s−u − x| ≥ δ/2] ≤

Px

[
|x̄s−u − x| ≥ δ/2] + Px

[
|v̄s−u − v| ≥ δ/2] + Px

[
|z̄s−u − z| ≥ δ/2]. Moreover, there exists C > 0,

Px

[
|z̄s−u − z| ≥ δ/2] ≤ ds := P

[√
2α supt∈[0,s] |Bt|+ Cs(Y + 1) ≥ δ/2]→ 0 when s→ 0+. The other

terms are treated similarly to deduce the expected result. �

We are now ready to prove the following result.
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Theorem 2.6. Assume [Vloc]. Let γ = 0. Then, for every t > 0, the nonkilled semigroup Pt of the
generalized Langevin process (1.4) is strong Feller over R3d.

Proof. Let f ∈ bB(R3d) and t > 0 be fixed. We want to prove that z 7→ Ez[f(Xt)] is continuous over
R3d.

We write for x ∈ R3d and R > 0 (see (2.1)):

Ex[f(Xt)] = Ex[f(Xt)1t<σHR
] + Ex[f(Xt)1t≥σHR

].

Since the open set VR = {y ∈ Rd, V (y) < R} is relatively compact and ∇V is locally Lipschitz, we
can consider2 a globally Lipschitz vector field bR : Rd → Rd such that bR = −∇V in a neighborhood
of V R. Let us then introduce the unique strong solution (X̄R

t = (x̄Rt , v̄
R
t , z̄

R
t ), t ≥ 0) to (2.9) when

b replaced by bR and γ = 0. Note that (x, v, z) ∈ HR ⇒ x ∈ VR. Therefore, the processes
(Xt, t ≥ 0) and (X̄R

t , t ≥ 0) coincides in law up to their first exit time from HR, and thus, denoting
by σ̄HR

:= inf{t ≥ 0, X̄R
t /∈HR}, we deduce that:

Ex[f(Xt)] = Ex[f(X̄R
t )1t<σ̄HR

] + Ex[f(Xt)1t≥σHR
]. (2.10)

Let us now assume that xn → x ∈ R3d. Let R0 > 0 such that xn, x ∈HR0 .
Let us now prove (2.3), i.e. that for all R > 0, as n→ +∞,

Exn [f(X̄R
t )1t<σ̄HR

]→ Ex[f(X̄R
t )1t<σ̄HR

]. (2.11)

To prove (2.11), we first prove that the nonkilled semigroup of (X̄R
t , t ≥ 0) is strong Feller, i.e. that

for all R > 0 , z ∈ R3d 7→ Ez[f(X̄R
t )] is continuous. (2.12)

Note that since bR is globally Lipschitz, it holds as n→ +∞:

sup
s∈[0,t]

|X̄R
s (xn)→ X̄R

s (x)| → 0 in P-probability. (2.13)

Using again that bR is globally Lipschitz over Rd, we can use [18, Theorem 1.1] to deduce that for all
z ∈ R3d, X̄R

t (z) admits a density p̄Rt (z, y) (w.r.t. the Lebesgue measure dy over R3d) which moreover
satisfies the following Gaussian upper bound:

p̄Rt (z, y) ≤ CR
t exp(−cRt |θRt (z)− y|2), (2.14)

for some CR
t , c

R
t > 0 independent of z, y ∈ R3d, and where (θRt (z) = (xt(z),v

R
t (z), zRt (z)), t ≥ 0) is the

solution for t ≥ 0 of the deterministic equation:

ẋRt = vRt , v̇
R
t = bR(xRt ) + λzRt , ż

R
t = −αzRt − λvRt ,

with initial condition θR0 (z) = z.
On the other hand, since (xn)n is bounded and z 7→ θRt (z) is continuous (because bR is globally

Lipschitz), it follows that there exists K > 0 such that for all n, |θRt (xn)| ≤ K. Thus

p̄Rt (xn, y) ≤ Cε
t exp(cεtK

2) exp(2cεtK|y|) exp(−cεt|y|2). (2.15)

Let µ(dy) = κ exp(−|y|)dy (where κ−1 =
∫

exp(−|y|)dy), and set q̄Rt (z, y) = κ−1 exp(|y|)p̄Rt (z, y). It
then follows from (2.15) that as r → +∞,

sup
n

∫
|y|≥r

q̄Rt (xn, y)µ(dy)→ 0.

Consequently, for any f ∈ bB(R3d), by Proposition 1.2, as n → +∞, f(X̄R
t (xn)) → f(X̄R

t (x)) in
probability, and then, because f is bounded, this convergence also holds in any rth mean (r ≥ 1).
This proves (2.12).

2See e.g. [52].
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We are now in position to prove Equation (2.11). The proof is inspired from the one of [15,
Theorem 2.2]. Let R > 0, K be a compact subset of HR, t > 0, and δ := dist(K, ∂HR) > 0. Let also
0 ≤ s ≤ t, z ∈HR, and f ∈ bB(HR). Then, by the Markov property, it holds

Ez[f(X̄R
t )1t<σ̄HR

] = Ez[1s<σ̄HR
ψs(X̄

R
s )],

where ψs(z) = Ez[1t−s<σ̄HR
f(X̄R

t−s)]. Therefore:

sup
z∈K
|Ez[f(X̄R

t )1t<σ̄HR
]− Ez[ψs(X̄

R
t )]| ≤ ‖f‖∞ sup

z∈K
Pz[σ̄HR

≤ s] ≤ ‖f‖∞ sup
z∈K

Pz[σ̄
R
B(z,δ) ≤ s].

which tends to 0 as s→ 0+, thanks to Lemma 2.5, where

σ̄RB(z,δ)(x) = inf{t ≥ 0, X̄R
t (x) /∈ B(x, δ)}.

Hence, using (2.12), one deduces that z ∈HR 7→ Ez[f(X̄R
t )1t<σ̄HR

] is continuous.

We now conclude the proof of Theorem 2.6. Consider ε > 0. Thanks to (1.10) and because HGL is
locally bounded, there exists Rε ≥ R0 such that

|Ex[f(Xt)1t≥σHRε
]|+ sup

n≥0
|Exn [f(Xt)1t≥σHRε

]| ≤ ε/2. (2.16)

Using (2.11), there exists Nε ∈ N such that for all n ≥ Nε,∣∣Exn [f(X̄Rε
t )1t<σ̄HRε

]− Ex[f(X̄Rε
t )1t<σ̄HRε

]
∣∣ ≤ ε/2.

Using (2.10) and (2.16), for all n ≥ Nε, |Exn [f(Xt)] − Ex[f(Xt)]| ≤ ε. This concludes the proof of
Theorem 2.6. �

On Assumption (C4). Let us consider a subdomain D of R3d of the form

D = O ×Rd ×Rd,

where O is a subdomain of Rd. Thanks to Lemma 2.4, we can check (C4).

Proposition 2.7. Assume [Vloc]. Then, for all t > 0 and γ ≥ 0, PD
t is strong Feller. In particular

(C4) holds.

Proof. Pick a compact subset K of O and t > 0. Set δ := dist(K, ∂D) > 0 (where ∂D = ∂O ×Rd ×
Rd). One has for 0 ≤ s ≤ t, x ∈ D , and f ∈ bB(D), PD

t f(x) = Ex[1s<σD
gs(Xs)], where gs(z) =

Ez[1t−s<σD
f(Xt−s)]]. By (C1), Psgs is continuous over R3d. In addition, it holds: supx∈K |PD

t f(x)−
Psgs(x)| ≤ ‖f‖∞ supx∈K Px[σD ≤ s] ≤ ‖f‖∞ supx∈K Px[σB(x,δ) ≤ s]→ 0 as s→ 0+, thanks to Lemma
2.4. Thus PD

t f is continuous. �

2.2. On Assumption (C5). In this section, we check (C5). To do so, the well-known starting point
is the knowledge of the support of the law of the trajectories of the Brownian motion. To check (C5),
we thus construct suitable control curves. The details of the proof of (C5) will be given since ∇V is
only locally Lipschitz. In all this section, D = O ×Rd ×Rd and O is a subdomain of Rd such that
Rd \ O is nonempty.

2.2.1. The case when γ = 0. To prove Assumption (C5), we will construct, for any T > 0 and any
two points x0, xT ∈ D , a so-called control curve l ∈ [0, T ]→ O joining x0 to xT (this will be done using
local polynomial interpolations). Note here that we need to impose that the range of the control curve
γ lies in O to ensure the condition that t < σD(x0) when X[0,T ](x0) is sufficiently close to γ on [0, T ]
(for the supremum norm over [0, T ]).

We start with the following lemma.
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Lemma 2.8. Let us consider t∗ > 0, x0 = (x0, y0, z0) ∈ R3d and x1 = (x1, v1, z1) ∈ R3d. Then, there

exists a smooth curve ` : [0, t∗]→ Rd such that `(0) = x0, ˙̀(0) = v0, ῭(0) = z0, `(t∗) = x1, ˙̀(t∗) = v1,
῭(t∗) = z1, and

sup
s∈[0,t∗]

|`(s)− x0| ≤ C|x0 − x1|+ C(|v0|+ |v1|)t∗ + C(|z0|+ |z1|)t2∗,

where C > 0 is a universal constant.

In the following, we say that such a curve γ joins x0 to xT .

Proof. Choose `(s) =
∑5

k=0 cks
k where c0 = x0, c1 = v1, c2 = z0/2, c3 = −10x0/t

3
∗ − 6v0/t

2
∗ −

3z0/(2t∗) + 10x1/t
3
∗ − 4v1/t

2
∗ + z1/(2t∗), c4 = 15x0/t

4
∗ + 8v0/t

3
∗ + 3z0/(2t

2
∗)− 15x1/t

4
∗ + 7v1/t

3
∗ − z1/t

2
∗,

c5 = −6x0/t
5
∗ − 3v0/t

4
∗ − z0/(2t

3
∗) + 6x1/t

5
∗ − 3v1/t

4
∗ + z1/(2t

3
∗). �

Lemma 2.9. Let us consider T > 0, x0 = (x0, y0, z0) ∈ D , and xT = (xT , vT , zT ) ∈ D . Then, there

exists a C2 and piecewise C3 curve l : [0, T ]→ Rd, such that l(0) = x0, l̇(0) = v0, l̈(0) = z0, l(T ) = xT ,

l̇(T ) = vT , l̈(T ) = zT , and

Ran(l) ⊂ O.

Proof. The set O is path-connected since it is connected and open in Rd. Let Ψ : [0, T ] → O be
an injective curve such that Ψ(0) = x0 and Ψ(T ) = xT . Let δ > 0 be such that the closure of the
δ-neighborhood Uδ of Ran(Ψ) is included in O.

Let ε > 0. Take a subdivision of Ran(Ψ) containing Nε+1 ∈ N∗ points {x0, x
ε
1, . . . , x

ε
Nε−1, xT} with

|xεj − xεj+1| ≤ ε, j ∈ {0, . . . , Nε − 1} (with xε0 := x0 and xεNε := xT ).

Note that Nε → +∞ as ε → 0+. Set now tε∗ = T/Nε. Pick two unimportant points v, z ∈ Rd. By
Lemma 2.8, we can consider Nε curves `ε0 : [0, tε∗] → Rd joining x0 to xε1 = (xε1, v, z), `ε1 : [0, tε∗] → Rd

joining xε1 to xε2 = (xε2, v, z), . . . , `εNε−1 : [0, tε∗] → Rd joining xεNε−1 = (xεNε−1, v, z) to xT . The curve lε

is then defined on [0, T ] by:

for all t ∈ [0, T ], lε(t) = `εj(t− jtε∗) if jtε∗ ≤ t < (j + 1)tε∗, j ∈ {0, . . . , Nε − 1},

and lε(T ) = xT . Note that by Lemma 2.8, if ε is small enough (say ε < ε0), for all j ∈ {0, . . . , Nε− 1},
Ran(`εj) ⊂ Uδ, so that Ran(lε) ⊂ O. The proof of the lemma is complete choosing any lε, with

0 < ε < ε0. �

We are now ready to prove that Assumption (C5) is satisfied when γ = 0.

Proposition 2.10. Assume γ = 0 and [Vloc]. Then, for any T > 0, x0 = (x0, v0, z0) ∈ D and any
nonempty open subset O of D , it holds:

Px0 [XT ∈ O, T < σD ] > 0. (2.17)

Moreover, (C5) holds.

Proof. Pick xT ∈ O. Using Lemma 2.9, one can consider a C2 and piecewise C3 curve l : [0, T ] → O
such that l(0) = x0, l̇(0) = v0, l̈(0) = λz0−∇V (x0), l(T ) = xT , l̇(T ) = vT , l̈(T ) = λzT −∇V (xT ). Let
us then define the function h : [0, T ]→ Rd by

h(t) =
1

λ
√

2α

d

dt
[̈l +∇V (l)](t), t ∈ [0, T ].

Note that h ∈ L∞([0, T ],Rd) since t 7→ [̈l +∇V (l)](t) belongs to the Sobolev space W1,∞([0, T ],Rd).
Recall that the support (for the supremum norm over [0, T ]) of the law of the trajectory of the standard
Brownian motion on [0, T ] is the closure of the set

L2
0([0, T ],Rd) =

{
u : [0, T ]→ Rd,

∫ T

0

u2(s)ds < +∞ and u(0) = 0
}
. (2.18)
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Therefore, for all η > 0, P[Aη] > 0, where Aη := {supt∈[0,T ] |Bt −
∫ t

0
h(s)ds| < η}. Let us consider an

open bounded neighborhood Vl of Ran(l) in Rd such that V l ⊂ O (note that in particular x0, xT ∈ Vl).
For all ε > 0 small enough (say ε ∈ (0, εl), εl > 0), the following two conditions are satisfied:

a. For any c : [0, T ]→ Rd such that sups∈[0,T ] |c(s)− l(s)| ≤ ε, Ran(c) ⊂ Vl.
b. For any x ∈ R3d such that x ∈ B(xT , ε), x ∈ O.

Denote by Dl = Vl ×Rd ×Rd ⊂ D . Let us consider a globally Lipschitz vector field bl : Rd → Rd

such that bl = −∇V in a neighborhood of V l. Recall (X̄ l
t = (x̄lt, v̄

l
t, z̄

l
t), t ≥ 0) is the solution to (2.9)

when b = bl. Note that Px0 [XT ∈ O, T < σD ] ≥ Px0 [XT ∈ O, T < σDl
] = Px0 [X l

T ∈ O, T < σ̄Dl
]

(where σ̄Dl
is the first exit time of the process X̄ l from Dl). To prove (2.17), it is therefore enough to

show that Px0 [X l
T ∈ O, T < σ̄Dl

] > 0, which is the purpose of what follows.
Let (X̄◦t = (x◦t , v

◦
t , z
◦
t ) ∈ R3d, t ≥ 0) be the solution to

dx◦t = v◦t dt, dv
◦
t = bl(x

◦
t )dt+ λz◦t dt, dz

◦
t =
√

2α dBt. (2.19)

Define ft(x) = −αz◦t (x) − λv◦t (x), t ≥ 0. Recall that since bl is globally Lipschitz (see the beginning
of the proof of Lemma 2.5), for all x ∈ R3d and T > 0, there exists C > 0, sups∈[0,T ] |X̄◦s | ≤ C(1 +YT )

where YT := sups∈[0,T ] |Bs|. Hence, for ε > 0 small enough, E[eε|ft(x)|
2
] ≤ CE[eCεY

2
T ] < +∞. Therefore,

one can use [25, Theorem 3.1 in Section 7] and [25, Theorem 1.1 in Section 7], to deduce that the law
of (X̄ l

t, t ∈ [0, T ]) is equivalent to the law of (X̄◦t , t ∈ [0, T ]). Let us thus prove that Px0 [X̄◦T ∈ O, T <
σ̄◦Dl

] > 0 (where σ̄◦Dl
:= inf{t ≥ 0, X̄◦t /∈ Dl}).

Set n(t) = (l(t), l̇(t), λ−1(̈l(t) +∇V (l(t)))), for t ∈ [0, T ]. Note that for t ∈ [0, T ], h(t) = 1
λ
√

2α
d
dt

[̈l−
bl(l)](t). Then, using that bl is globally Lipschitz and that n(0) = x0, it is straightforward to get that
sups∈[0,T ] |X̄◦s − n(t)| ≤ CTη on Aη. Choose η > 0 such that Cη < εl. By Item a above, T < σ̄◦Dl

. In

addition, since n(T ) = xT , by Item b above, X̄◦T ∈ O. Therefore, Px0 [X̄◦T ∈ O, T < σ̄◦Dl
] > 0. This

ends the proof of (2.17).
Since Rd \O 6= ∅, we also prove with similar arguments that for all z ∈ D , Pz[σD < +∞] > 0. This

ends the proof of Proposition 2.10. �

2.2.2. The case when γ > 0. In this section we prove the following result.

Proposition 2.11. Assume γ > 0 and [Vloc]. Then, (C5) holds.

Proof. In view of (2.5), it is enough to prove (C5) for the process (X0
t , t ≥ 0) defined in (2.4). Let

T > 0, x0 = (x0, v0, z0) ∈ D , O be a nonempty open subset of D , and xT = (xT , vT , zT ) ∈ O. Let
also e : [0, T ] → Rd be C1 and piecewise C2 such that e(0) = x0, ė(0) = v0, e(T ) = xT , ė(T ) = vT ,
and Ran(e) ⊂ O. Let u : [0, T ] → Rd be a smooth curve with u(0) = z0 and u(T ) = zT . Define
m(t) = (e(t), ė(t), u(t)) (note that m(0) = x0 and m(T ) = xT ). For any η > 0, the event Aη :=

{supt∈[0,T ] |
√

2γWt−
∫ t

0
ë| < η}∩{supt∈[0,T ] |

√
2αBt−

∫ t
0
u̇| < η} has positive probability (see (2.18)). A

straightforward computation shows that when X0
0 = x0, Aε/CT ⊂ {sups∈[0,T ] |X0

s −m(s)| < ε} for some

CT > 0. Hence, Px0 [sups∈[0,T ] |X0
s −m(s)| < ε] > 0. This concludes the proof of Proposition 2.11. �

2.3. On Assumption (C3). In this section, we construct two Lyapunov functions Wδ : R3d →
[1,+∞) satisfying Assumption (C3), where δ > 0 is a parameter to be chosen later.

Assume [Vpoly-xk]. We define the vector field L as follows. Let χ : Rd → [0, 1] be a smooth function
such that χ(x) = 0 if |x| ≤ 1 and χ(x) = 1 if |x| ≥ 2. We define J(x) = x |x|β−1χ(x), β ∈ [0, 1].
Note that J is C1 and the first derivatives of J are bounded over Rd (because β ≤ 1), say by CJ :=
supRd |Jac(J)|2 > 0 (where |M|2 := sup{|My|, |y| = 1}, M ∈Md(R)). One then sets:

L = κJ, κ :=
λ

2CJ
,
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so that (and this will be used in the case γ = 0 below),

CL := sup
Rd

|Jac(L)|2 ≤ λ/2. (2.20)

For all (x, v, z) ∈ R3d, b ≥ 0, and h, a > 0, we define (see (1.8)), F0(x, v, z) = hHGL(x, v, z) + aL(x) ·
v + bv · z. The parameter β > 0 will be chosen such that

inf
R3d

F0 ∈ R. (2.21)

We then set FGL = F0 − infR3d F0 + 1 and

Wδ = exp
[
FδGL

]
, where

1− β
k

< δ ≤ 1. (2.22)

In the following, for ease of notation we simply write F for FGL. Since F1−δ ≥ 1, a straightforward
computation implies that over R3d,

LGLWδ

Wδ

≤ δ

F1−δ

[
LGLF + δγ|∇vF|2 + δα|∇zF|2

]
, (2.23)

where LGLF = v · ∇xF + (−γv −∇xV + λz) · ∇vF + γ∆vF − (αz + λv) · ∇zF + α∆zF. We also have
∇xF(x, v, z) = h∇xV + a Jac(L)(x) v, ∇vF(x, v, z) = hv + aL(x) + bz, and ∇zF(x, v, z) = hz + bv.
Consequently, one has for all (x, v, z) ∈ R3d:

LGLF(x, v, z) = −λb|v|2 − γh|v|2 + av · Jac(L)(x)v − γaL(x) · v − a∇V (x) · L(x)

− αh|z|2 + λb|z|2 + λaz · L(x)− γbv · z − b∇V (x) · z − αbz · v
+ hd(γ + α) (2.24)

and

(δγ|∇vF|2 + δα|∇zF|2)(x, v, z) = δγ|hv + aL(x) + bz|2 + δα|hz + bv|2. (2.25)

2.3.1. The case when γ > 0. In this section, γ > 0,

b = 0, k > 1, 0 < β < min(1, k/2, k − 1). (2.26)

Let us now check (2.21). Let p0, q0 > 1 such that 1/p0 + 1/q0 = 1. Then, using [Vpoly-xk], for all
(x, v, z) ∈ R3d, one has if |x| ≥ rV :

F0(x, v, z) ≥ cV h|x|k +
h

2
|v|2 +

h

2
|z|2 − aκ

p0

|x|βp0 − aκ

q0

|v|q0 .

Pick ε > 0 small enough such that p0 = k/β − ε > 1 and q0 = (k − εβ)/(k − εβ − β) < 2 (which is
possible since the latter quantity converges to k/(k−β) < 2 as ε→ 0+, by (2.26)). Note that βp0 < k.
Thus, for any h, a > 0, there exist C, c > 0, for all (x, v, z) ∈ R3d,

F0(x, v, z) ≥ c(|x|k + |v|2 + |z|2)− C.
Thus (2.21) holds. Note also that for any h, a > 0, there exist c′ > 0, for all (x, v, z) ∈ R3d,

F0(x, v, z) ≤ c′(|x|k + |v|2 + |z|2 + 1). (2.27)

Proposition 2.12. Assume γ > 0, [Vpoly-xk], k > 1, and (2.26). Then, for any h, a > 0 small enough
(these conditions are made explicit in the proof), (C3) is satisfied with the function Wδ defined in
(2.22).

Proof. Recall that b = 0. Let (x, v, z) ∈ R3d with |x| ≥ max(2, rV ). Using [Vpoly-xk], (2.24) and
(2.25), one gets:

(LGLF + δγ|∇vF|2 + δα|∇zF|2)(x, v, z)

≤ −γh|v|2 + aCL|v|2 + γaκ|x|β|v| − aκcV |x|k−1+β

+ 2δγh2|v|2 + 2δγa2|L(x)|2 + λaκ|x|β|z| − αh|z|2 + δαh2|z|2 + dh(α + γ).
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Choose h > 0 small enough such that −γh+2δγh2 < 0 and −αh+δαh2 < 0. Then, choose a > 0 small
enough such that CLa−γh+2δγh2 < 0. Fix now such h, a > 0. Recall that |x|β|y| ≤ 1

p0
|x|βp0 + 1

q0
|y|q0 =

o(|x|k + |y|2) as |x| + |y| → +∞. In addition |L(x)|2 = κ2|x|2β and 2β < k − 1 + β since β < k − 1
(see (2.26)). This implies that there exist C, c > 0 such that

(LGLF + δγ|∇vF|2 + δα|∇zF|2)(x, v, z) ≤ −c(|v|2 + |z|2 + |x|k−1+β) + C.

Using in addition (2.23), (2.27), and (2.26), we deduce that LGLWδ/Wδ → −∞ as |x|+|v|+|z| → +∞.
This concludes the proof of the proposition. �

2.3.2. The case when γ = 0. In this section γ = 0,

b = a > 0, k ∈ (1, 2], and β = k − 1. (2.28)

Let us check (2.21). Let p1 = k/(k − 1) > 1 and q1 = p1/(p1 − 1) = k ≤ 2. Using [Vpoly-xk], we have
for all (x, v, z) ∈ Rd, if |x| ≥ rV ,

F0(x, v, z) ≥ cV h|x|k +
h− a

2
|v|2 +

h− a

2
|z|2 − aκ

p1

|x|k − aκ

k
|v|k.

Then, for h > 0, choose a > 0 small enough such that

aκ

p1

< cV h and
aκ

k
+

a

2
<

h

2
. (2.29)

Then (2.21) holds. Note also that when (2.28) is satisfied, F0(x, v, z) ≤ c′(|x|k + |v|2 + |z|2) + C ′.

Proposition 2.13. Assume γ = 0, [Vpoly-xk], k ∈ (1, 2], and (2.28). Then, for any h, a > 0 small
enough (these conditions are made explicit in the proof), (C3) is satisfied with the function Wδ defined
in (2.22).

Proof. Recall b = a. In the following, (x, v, z) ∈ R3d, |x| ≥ max(2, rV ), and η =
√
a. Using [Vpoly-xk],

(2.24), and (2.25), one has:

(LGLF + δγ|∇vF|2 + δα|∇zF|2)(x, v, z)

≤ αhd− λa|v|2 + av · Jac(L)(x)v − a∇V (x) · L(x)− αh|z|2

+ λa|z|2 + λa|z||L(x)|+ a|∇V (x)||z|+ αa|z||v|+ δα|hz + av|2

≤ αhd− λa|v|2 + aCL|v|2 − aκcV |x|2(k−1) − αh|z|2

+ λa|z|2 + λκa|z||x|k−1 + aMV |x|k−1|z|+ αa|z||v|+ δα|hz + av|2

≤ αhd− λa|v|2 + aCL|v|2 − aκcV |x|2(k−1) − αh|z|2 + λa|z|2 + λaκ|z|2/2η + λaηκ|x|2(k−1)/2

+ aMV η|x|2(k−1)/2 + aMV |z|2/2η + αa|z|2/2η + αaη|v|2/2 + 2δαh2|z|2 + 2δαa2|v|2

≤ αhd+ |v|2
[
− λa + aCL + 2δαa2 + αa3/2/2

]
+ |x|2(k−1)

[
− κcV a + λκa3/2/2 +MV a

3/2/2
]

+ |z|2
[
− αh + 2δαh2 + λκ

√
a/2 +MV

√
a/2 + α

√
a/2 + λa

]
.

Let h > 0 such that −αh + 2δαh2 < 0. Using also (2.20), it holds −λa + aCL ≤ −λa/2. We then
choose a > 0 such that (2.29) holds, −λa/2+2δαa2 +αa3/2/2 < 0, −κcV a+λκa3/2/2+MV a

3/2/2 < 0,
and −αh + 2δαh2 + λκ

2

√
a + MV

2

√
a + α

2

√
a + λa < 0. With the same arguments as those used at the

end of the proof of Proposition 2.12 and since δ > (2 − k)/k, we obtain that LGLWδ/Wδ → −∞ as
|x|+ |v|+ |z| → +∞. This concludes the proof of the proposition. �
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2.4. Proof of Theorem 1.5. To prove Theorem 1.5, one first proves (C3). This is done with a
slight adaptation of the computations made in Section 2.3 and it indeed turns out that the Lyapunov
functions Wδ constructed in Section 2.3 (when ` = 0, see more precisely (2.22)) still satisfy (C3) with
the generator L = LGL + ` · ∇v when ` satisfies [bnon-gradient]. Once (C3) is proved, one shows the
conditions (C2), (C1), (C4), (C5) (in this order) with the same arguments as those used in Section 2
(which rely on the approach introduced in Section 2.1.1) considering the coercive function W1 as an
energy of the system instead of the Hamiltonian HGL (see Remark 2.1). The proof of Theorem 1.5 is
then a consequence of [28, Theorem 2.2].

3. Generalized Langevin process with singular potentials: proof of Theorem 1.7

In this section, we prove Theorem 1.7. Anew, we will use [28, Theorem 2.2], and the strategy
thus consists to show that (C1)→(C5) are satisfied for the process (1.4) on the state space E =
OV ×RdN ×RdN given by Proposition 1.6.

3.1. On Assumptions (C1), (C2), (C4), and (C5) for the generalized Langevin process
with singular potentials.

Proposition 3.1. Assume that V satisfies [Vcoercive]. Then, the nonkilled semigroup of the process
(1.4) (see Proposition 1.6) satisfies (C1) and (C2). Let D = O×RdN×RdN where O is a subdomain
of OV such that OV \ O is nonempty. Then, the killed process (1.4) satisfies (C4) and (C5).

Before turning to the proof of Proposition 3.1, we briefly explain why, in the case γ > 0, we have
not been able to adapt the arguments used in the proof of Proposition 2.3 to prove (C1) in the
singular potential setting of Proposition 3.1. First notice that the global Girsanov formula (2.5) can
be extended to the case when V is singular by adding the condition (on its r.h.s.) that t < σ0

OV
, where

σ0
OV

= inf{t ≥ 0, x0
t /∈ OV } (see (2.4)). Recall that ∇V is very large near ∂OV and the problem is

that, roughly speaking, there is no reason for the probability of the event {“the process (2.4) visits
the region ∂OV ”} to be small. We will rather use once again the energy splitting approach introduced
in Section 2.1.1 as a starting point.

Proof. We will only focus on the proof of (C1). The conditions (C2), (C4), and (C5) are checked
with the same tools as those used in the previous section when V satisfies [Vpoly-xk]. To prove (C1)
for any γ ≥ 0, the starting point is (2.1). Equation (2.2) is then a consequence of the inequality
Pz[σHR

≤ t] ≤ ect HGL(z)/R derived in the proof of Proposition 1.6. When γ = 0, (2.3) is proved with
the same arguments as those used in the proof of Theorem 2.6. To this end, we recall that one begins
by introducing for R > 0 the process (X̄R

t , t ≥ 0) solution of (2.9) over R3dN with b = bR and γ = 0,
where bR : RdN → RdN is a globally Lipschitz vector field such that bR = −∇V in a neighborhood
of {x ∈ RdN , V (x) < R}.

When γ > 0, (2.3) can also be proved with the same arguments as those used in the proof Theo-
rem 2.6 extending the Gaussian upper bound [18, Theorem 1.1] to the process (X̄R

t , t ≥ 0) solution
of (2.9) over R3dN with b = bR and γ > 0. One way to avoid such a technical extension is to actually
use the arguments which will be used to prove Theorem 4.1 below for the Nosé-Hoover process and
which do not rely on a Gaussian upper bound. In this case, the starting point is to introduce for
R > 0 the process (X̂R

t = (x̂Rt , v̂
R
t , ẑ

R
t ), t ≥ 0) solution over R3dN to

dx̂Rt = v̂Rt dt, dq̂
R
t = FR(X̂R

t )dt+ Σ dwt.

where q̂Rt = (v̂Rt , ẑ
R
t )T ∈ RdN×RdN and where FR : R3dN → R2dN is a bounded and globally Lipschitz

vector field such that FR = F in a neighborhood of HR. �

3.2. On Assumption (C3) for the generalized Langevin process with singular potentials.
In all this section, we assume that [Vsing1] holds. We will also assume without loss of generality
that Vp ≡ 0 (see (1.11)), up to restricting the following computations to x = (x, v, z) ∈ E with
x ∈ OV ∩ supp(Vp)c.
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3.2.1. Preliminary computations. We start by constructing two Lyapunov functions Wδ : E → [1,+∞)
satisfying Assumption (C3), where 0 < δ ≤ 1. Recall that HGL(x, v, z) = V (x) + 1

2
|v|2 + 1

2
|z|2, for

x = (x, v, z) ∈ E (see (1.8)). Let c ≥ 0, and h ≥ 0, b ≥ 0, R > 0. Consider the function constructed
in [24]:

F0(x, v, z) = hHGL(x, v, z) + bRx · v + cR2v · z − bJR(x, v, z)v · G(x), (3.1)

where JR : E → R∗+ is a sufficiently smooth function which depends on R (so that LGLF below
is well defined) which will be specified later (depending on the case γ > 0 or γ = 0), and where
G : OV → RdN was introduced in [51] and is defined by:

G(x) = (G1(x), . . . ,GN(x))T , with Gi(x) =
N∑

j=1,j 6=i

xi − xj

|xi − xj|
, i ∈ {1, . . . , N}.

The parameters will be chosen in particular such that

inf
E

F0 ∈ R. (3.2)

We then set FGL = F0 − infE F0 + 1 and we define over E :

Wδ = exp
[
FδGL

]
, where 0 < δ ≤ 1. (3.3)

For any fixed R > 0, the function JR will satisfy J2
R ≤ CHGL over E , for some C > 0. Consequently,

for any fixed parameters h, b,R > 0, there exists c > 0, F0 ≤ cHGL over E , which implies that for all
δ ∈ (0, 1] (recall that HGL ≥ 1),

Wδ ≤ ec
δHδGL on E . (3.4)

Anew, in the following, and for ease of notation, we simply write F for FGL.
Recall that LGLF = v · ∇xF + (−γv −∇xV + λz) · ∇vF + γ∆vF− (αz + λv) · ∇zF + α∆zF and also

that over E , one has:
LGLWδ

Wδ

≤ δ

F1−δ

[
LGLF + δγ|∇vF|2 + δα|∇zF|2

]
. (3.5)

On the other hand it holds on E :
∂xiF = h∂xiV + bRvi − b JR ∂xi(v · G)− b v · G ∂xiJR,
∂viF = hvi + bRxi + cR2zi − bJRG

i − b(v · G)∂viJR,
∆vF = hNd− 2b∇vJR · G− b(v · G)∆vJR,
∂ziF = hzi + cR2vi − b(v · G)∂ziJR,
∆zF = hNd− b(v · G)∆zJR,

where

∂xi(v · G) =
N∑

j=1;j 6=i

[ vi − vj
|xi − xj|

− (vi − vj) · (xi − xj)
|xi − xj|3

(xi − xj)
]
.

Thus, one has for all (x, v, z) ∈ E :

LGLF = hNd(γ + α) + (−αh + cR2λ)|z|2 + (−γh− λcR2 + bR)|v|2 − bR∇xV · x
− γbRx · v − γcR2v · z − αcR2v · z + λbRx · z − cR2 z · ∇xV

− b(v · G) v · ∇xJR + αb(v · G)z · ∇zJR + λb(v · G)v · ∇zJR

− 2γbG · ∇vJR − λb(v · G) z · ∇vJR + γb(v · G) v · ∇vJR + b(v · G)∇xV · ∇vJR

− γb(v · G)∆vJR − αb(v · G)∆zJR

+ γb(v · G)JR + b∇xV · G JR − λbz · G JR − bJRv · ∇x(v · G). (3.6)
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We conclude this section with some estimates which be used later. First notice that for all ε > 0,
there exist CI, cI > 0, for all y ∈ Rd \ {0},

− cI +
B

1 + ε
|y|−β ≤ VI(y) ≤ CI + (1 + ε)B|y|−β, (3.7)

so that V (x) ≥ a0|x|2/2+ B
2

∑N
i,j=1;i<j |xi−xj|−β−C for x ∈ OV . We also recall that from [51, Section

4] (see the computation of p ·∇qΨ there), v ·∇x(v ·G) ≥ 0 over E . Therefore, since b ≥ 0 and JR ≥ 0,
the last term in (3.6) is nonpositive, i.e.

− bJRv · ∇x(v · G) ≤ 0 over E . (3.8)

3.2.2. The case when γ > 0. In this section, γ > 0,

h > max(b, b/a0), c = 0, R = 1, and JR ≡ 1. (3.9)

We mention that extra conditions will be assumed on h, b > 0 in the proof of Proposition 3.2. From
(3.1), it holds in particular F0 = hHGL +bRx · v−bv ·G. Let us first check (3.2). Using (3.7), it holds
over E ,

F0 ≥
a0h− b

2
|x|2 +

Bh

2

N∑
i,j=1;i<j

1

|xi − xj|β
+

h− b

2
|v|2 − b(N − 1)

N∑
i=1

|vi|+ h

2
|z|2 − C.

Therefore, in view (3.9), the condition (3.2) is satisfied when [Vsing1] holds.

Proposition 3.2. Assume γ > 0, [Vsing1], and (3.9). Then, under additional conditions on the
parameters h, b > 0 (these conditions are made explicit in the proof below), Assumption (C3) is
satisfied with the function Wδ defined in (3.3) and which satisfies the upper bound (3.4).

Proof. Assume γ > 0. The goal is to show that one can find parameters such that LGLWδ/Wδ → −∞
as the energy HGL(x) → +∞. We start by providing an upper bound on LGLF (see (3.5)), adapting
essentially the same computations as in [24, Lemma 3.5] (see also [51]). By (3.6), (3.8), and (3.9), one
has for all x = (x, v, z) ∈ E ,

LGLF ≤ hNd(γ + α)− αh|z|2 − |v|2(γh− b)− b∇xV · x
− γbx · v + λbx · z + γb(v · G) + b∇xV · G− λbz · G.

Because C∞G := supE |G| < +∞, we deduce that

LGLF ≤ hNd(γ + α)− αh|z|2 − |v|2(γh− b)− b∇xV · (x− G)

− γbx · v + λbx · z + γbC∞G |v|+ C∞G λb|z|.

Let us now deal with the term b∇xV · (x − G). Recall that since VI(x) = VI(−x) (see also (1.11))

V (x) =
∑N

i=1 Vc(x
i) + 1

2

∑N
i,j=1;i 6=j VI(x

i−xj). Using also that for any symmetric vector field v : Rd →
Rd,

∑N
i,j=1;i 6=j v(x

i − xj) · xi = 1
2

∑N
i,j=1;i 6=j v(x

i − xj) · (xi − xj), we deduce that for all x ∈ OV :

∇xV · (x− G(x)) =
N∑
i=1

[
a0x

i +
1

2

N∑
j=1;j 6=i

∇VI(xi − xj)
]
·
[
xi −

N∑
j=1;j 6=i

xi − xj

|xi − xj|

]

= a0|x|2 −
a0

2

N∑
i,j=1;i 6=j

|xi − xj|+ 1

4

N∑
i,j=1;i 6=j

∇VI(xi − xj) · (xi − xj)

+
1

2

N∑
i=1

[ N∑
j=1;j 6=i

(−∇VI)(xi − xj)
]
·
[ N∑
k=1;k 6=i

xi − xk

|xi − xk|

]
. (3.10)
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Denote by II(x) the last term in the previous equality. Note that |∇VI(y) · y| ≤ CI/|y|β + cI (for some
CI, cI > 0). On the other hand, with the same computations as those made to prove [51, Lemma 4.2],
for any q > 1,

N∑
i=1

[ N∑
j=1;j 6=i

xi − xj

|xi − xj|q
]
·
[ N∑
k=1;k 6=i

xi − xk

|xi − xk|

]
≥ Kq−1(x) :=

N∑
i,j=1:i 6=j

1

|xi − xj|q−1
.

Therefore II(x) ≥ Bβ
2
Kβ+1(x)− c(KqΦ(x) + 1) (for some c > 0). We set

q∗ = β + 1, c∗ =
Bβ

2
.

Therefore, using all the previous estimates and the inequality κb|a · b| ≤ b3/2a2 + κ2b1/2b2/4, we have
for all x = (x, v, z) ∈ E :

LGLF(x) ≤ C − (a0b− 2b3/2)|x|2 − bc∗Kq∗(x)− (αh− λ2b1/2/4)|z|2

− |v|2(γh− b− γ2b1/2/4) + L(x),

where L ∈ C0(E ) and L(x) = o(|x|2 + Kq∗(x)) when x→ {∞} or x→ ∂OV , i.e. when HGL(x)→ +∞.
In addition, over E ,

δγ|∇vF|2 + δα|∇zF|2 ≤ 3δγh2|v|2 + 3δγb2|x|2 + δαh2|z|2 + C.

This implies that LGLF(x) + δγ|∇vF|2 + δα|∇zF|2 ≤ C− (a0b− 2b3/2− 3δγb2)|x|2−bc∗Kq∗(x)− (αh−
δαh2 − λ2b1/2/4)|z|2 − |v|2(γh− b− 3δγh2 − γ2b1/2/4) + L(x). Choose h > 0 small enough such that
γh−3δγh2 > 0 and αh− δαh2 > 0. Then, in addition to h > max(b, b/a0), choose b > 0 small enough
such that a0b − 2b3/2 − 3δγb2 > 0, αh − δαh2 − λ2b1/2/4 > 0, and γh − b − 3δγh2 − γ2b1/2/4 > 0.
Then, LGLF(x) + δγ|∇vF|2 + δα|∇zF|2 ≤ C − c|x|2 − bc∗Kq∗(x) + L(x) over E .

On the other hand, F ≤ C(|x|2 + Kβ(x) + 1) over E . Since 0 ≤ 1− δ < 1, by (3.5), we deduce that
LGLWδ/Wδ → −∞ as x→ {∞} or x→ ∂OV . This concludes the proof of the proposition. �

3.2.3. The case when γ = 0. In this section, γ = 0,

R > 0, c = b, J2
R(x) = R6|z|2 + |v|2 + 2V (x) + R2, for x = (x, v, z) ∈ E . (3.11)

The function JR above was introduced in [24] when γ = 0 to cancel the effect caused by the term
|z|/|x|β+1 which comes from the term z · ∇VI in the computations of LGL(v · z), see at the end of the
second line of (3.6) (recall that this term does not exist when γ > 0 because we chose c = 0 in this
case).

We start by checking (3.2). Using that
√
a+ b ≤

√
a+
√
b (a, b ≥ 0), one has:

F0 ≥
[
h− bC∞G√

2

]
V (x)− bR

2
|x|2 +

[h
2
− bR

2
− bR2

2
− bC∞G

2
(R3 +

√
2 + 2)

]
|v|2

− bRC∞G |v|+
[h
2
− bR2

2
− bR3C∞G

2

]
|z|2.

We have
[
h− bC∞G√

2

]
V (x)− bR

2
|x|2 = a0

2

[
h− bC∞G√

2

]
|x|2− bR

2
|x|2 +

[
h− bC∞G√

2

]∑N
i,j=1;i<j VI(x

i− xj). Then,

(3.2) holds if h, b,R > 0 satisfy:
a0

2

[
h− bC∞G√

2

]
− bR

2
> 0, (3.12)

and
h

2
− bR2

2
− bR3C∞G

2
> 0,

h

2
− bR

2
− bR2

2
− bC∞G

2
(R3 +

√
2 + 2) > 0. (3.13)

Proposition 3.3. Assume γ = 0 and [Vsing1]. Then, for some appropriately chosen h, b,R > 0
(these conditions are made explicit in the proof), (C3) is satisfied with the function Wδ defined in
(3.3).
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Proof. We start by providing an upper bound on the term LGLF in (3.5), for which we need to track
the involved constants to get explicit conditions on the parameters h, b,R > 0 (the computations are
at some places similar to those made in the proof of [24, Lemma 3.6]). The following identities will
be needed:

∇xJR =
∇xV

JR
, ∇vJR =

v

JR
,∇zJR =

R6 z

JR
, and ∆zJR =

R6dN

JR
− R12|z|2

J3
R

.

By (3.6) and (3.8), when γ = 0 and c = b, we have for all x = (x, v, z) ∈ E ,

LGLF ≤ hNdα + (−αh + bR2λ)|z|2 + (−λbR2 + bR)|v|2 − bR∇xV · x
− αbR2v · z + λbRx · z −R2bz · ∇xV

− b(v · G) v · ∇xJR + αb(v · G)z · ∇zJR + λb(v · G)v · ∇zJR

− λb(v · G) z · ∇vJR + b(v · G)∇xV · ∇vJR − αb(v · G)∆zJR

+ b∇xV · G JR − λbz · G JR. (3.14)

We now provide upper bounds on the terms appearing in (3.14) over E as follows:

• Following the computations in (3.10), we have

−bR∇xV · x = −a0bR|x|2 −
bR

4

N∑
i,j=1;i 6=j

∇VI(xi − xj) · (xi − xj)

≤ −a0bR|x|2 + L(x)

and ∇xV ·G JR ≤ −
[
c∗Kq∗(x)−L(x)

]
JR, where L ∈ C0(OV ) and L(x) = o(|x|2 +Kq∗(x)) when

x→ {∞} ∪ ∂OV . In particular, it holds over E :

c∗Kq∗(x)− L(x) ≥ c∗

2
Kq∗(x)− C.

In addition, since JR ≥ Rf(z) (where f(z) =
√
R4|z|2 + 1), one deduces that:

b∇xV · G JR ≤ −
c∗bR

2
Kq∗(x)f(z) + CbRf(z).

Roughly speaking, the term b∇xV ·G JR can absorb the bad one −R2bz ·∇xV when x→ ∂OV .
Note that there exists C > 0 such that |∇VI(y)| ≤ A/|y|q∗+C over Rd\{0} (A = Bβ+1). Then,
one has |R2bz ·∇xV | ≤ R2ba0|z||x|+AR2b|z|Kq∗(x)+CR2b|z| ≤ R2ba0|z||x|+Abf(z)Kq∗(x)+
CR2b|z|, so that the function b∇xV · G JR −R2bz · ∇xV is bounded from above over E by

−b
[c∗R

2
− A

]
Kq∗(x)f(z) + CbRf(z) + R2a0

b1/2

2
|z|2 + R2a0

b3/2

2
|x|2.

Note also that f(z) = o(|x|2 +Kq∗(x)) when x→ {∞} or x→ ∂OV (i.e. when HGL(x)→ +∞).
• For any ε0, ε1 > 0 to be chosen later,

αbR2|v · z|+ λbR |x · z| ≤ αbR2
[ |v|2

2ε0
+
ε0
2
|z|2
]

+ λbR
[ |x|2

2ε1
+
ε1
2
|z|2
]
.

• Using that G is bounded, we have:

|(v · G) v · ∇xJR| ≤ C∞G
|v|2(a0|x|+ C)√
|v|2 + 2V (x) + R2

+ C∞G
C|v|2Kβ+1(x)√
|v|2 + 2V (x) + R2

,

where we recall that over OV , V (x) ≥ a0|x|2/2 + BKβ(x)/2− C. Hence,

|(v · G) v · ∇xJR| = o(|x|2 + Kq∗(x)) as HGL(x)→ +∞.
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With similar arguments, one also has:

|(v · G)z · ∇zJR|+ |(v · G)v · ∇zJR|+ |(v · G)z · ∇vJR|+ |(v · G)∇xV · ∇vJR|
+ |b(v · G)∆zJR| = o(|x|2 + Kq∗(x)) as HGL(x)→ +∞.

• Using that JR ≤ R3|z| + |v| +
√

2
√
V (x) + R and V (x) ≤ a0|x|2/2 + Sint(x) + C over OV

(where Sint = 2Kβ), one has:

λb
∣∣∣z · G

C∞G
JR

∣∣∣ ≤ λbR3|z|2 + λb|z||v|+ λb
√

2 |z|
√
V (x) + λbR|z|

≤ |z|2
[
λbR3 +

λb
√
a0

2ε2
+
λb

2ε3
+ λ

b√
2

]
+ λb(R + C

√
2)|z|

+
λbε2
√
a0

2
|x|2 +

λbε3
2
|v|2 +

λb√
2
Sint(x).

Note that |Sint(x)| = o(|x|2 + Kq∗(x)) when HGL(x)→ +∞.

Finally, setting M∞ := supx=(x,v,z)∈E |v||z|/J2
R(x) < +∞, one has for all x = (x, v, z) ∈ E :

δα|∇zF|2 ≤ 3h2δα|z|2 + 3b2R4δα|v|2 + 3b2|C∞G |2M∞ δαR12|v||z|
≤ 3δα

(
h2 + R12b2|C∞G |2M∞/2

)
|z|2 + 3δαb2

(
R4 + R12|C∞G |2M∞/2

)
|v|2.

We now gather all the previous upper bounds, to get over E ,

LGLF + δα|∇zF|2 ≤ cz|z|2 + cv|v|2 + cx|x|2 − b
[c∗R

2
− A

]
Kq∗(x)f(z) + o(|x|2 + Kq∗(x)),

where

• cz = −αh + 3δαh2 + bR2λ+ αbR2 ε0
2

+ λbR ε1
2

+ λbR3C∞G + bC∞G
λ
√
a0

2ε2
+ bC∞G

λ
2ε3

+ R2a0
b1/2

2
+

3δαb2R12|C∞G |2M∞/2 + λC∞G
b√
2
,

• cv = −bR(λR− 1) + bR2 α
2ε0

+ bC∞G
λε3
2

+ 3δαb2
(
R4 + |C∞G |2R12M∞/2

)
,

• cx = −a0bR + bC∞G
λε2
√
a0

2
+ bR λ

2ε1
+ R2a0

b3/2

2
.

Let ε0 = b−1/2, ε1 = b−1/2, ε2 = b1/2, and ε3 = b1/2. Pick and fix h > 0 small enough such that
−αh + 3δαh2 < 0 and R > 0 large enough such that c∗R

2
− A > 0 and λR − 1 > 0. Then, one has

when b→ 0+, cz = −αh + 3δαh2 + o(1), cv = −b[R(λR− 1) + o(1)], and cx = −a0b[R + o(1)]. One
chooses b > 0 small enough such that cx, cv, cz < 0 and (3.12)-(3.13) hold. This leads to the existence
of c1, c2 > 0 such that over E :

LGLF + δα|∇zF|2 ≤ −c1|x|2 − c2Kq∗(x)f(z) + o(|x|2 + Kq∗(x)), (3.15)

as |x| → +∞ or x → ∂OV , or equivalently when HGL(x) → +∞. With the same arguments as those
used to conclude the proof of Proposition 3.2, we deduce that LGLWδ/Wδ → −∞ as |x|2 + Kq∗(x)→
+∞. This ends the proof of the proposition. �

4. The Nosé-Hoover process: proof of Theorem 1.11

In this section, we prove Theorem 1.11. We recall that, when V satisfies [Vcoercive], the Nosé-Hoover
process process (1.5) evolves on E = OV ×RdN ×R (see (1.12) and Proposition 1.9). As it will be
seen below, (C5) is not satisfied for this process. To this end, to prove Theorem 1.11, we will use an
extension (Theorem 4.6 below) of [28, Theorem 2.2], and we will thus prove that this process satisfies
(C1), (C2), (C3), (C4), and a new assumption, namely (C5’), which is defined at the beginning of
Section 4.3 below.



28 A. GUILLIN, D. LU, B. NECTOUX, AND L. WU

4.1. On Assumptions (C1), (C2), (C4), and (C5’) for the process (1.5). In this section,
V satisfies [Vcoercive] and we consider the solution (Xt = (xt, vt, yt), t ≥ 0) solution to (1.5), see
Proposition 1.9.

The approach we will use to prove (C1) and (C4) is the energy splitting approach introduced in
Section 2.1.1 (see (2.1)). The uniform integrability of the transition probabilities was obtained in
Theorem 2.6 with a Gaussian upper bound. However, Gaussian upper bound does not hold anymore
for the Nosé-Hoover process. Hence, the proof of (2.3) relies on different arguments than those used
in Theorem 2.6.

Theorem 4.1. Assume that V satisfies [Vcoercive]. Then, the nonkilled semigroup (Pt, t ≥ 0) of the
process (1.5) satisfies (C1).

Proof. We want to prove that, for f ∈ bB(E ) and t > 0, the following function

z ∈ E 7→ Ez

[
f(Xt)] is continuous. (4.1)

Pick R > 0. We will start by proving (2.3), which is the purpose of Step 2 below. Then we will prove
(4.1) in Step 3. Before doing that, we need a local Girsanov formula (4.3), which is the aim of Step
1.

Step 1. In this step we derive (4.3) below. We recall that (see also (1.13)),

HR = {x ∈ R3d,HNH(x) < R},
is an open bounded domain of E . Set Σ =

√
2γ. Recall also that σHR

is the first exit time for the
process (Xt, t ≥ 0) from HR and a.s. σ = limR→+∞ σHR

= supR>0 σHR
= +∞. For z = (xz, vz, yz) ∈

E , set also
f(z) = −∇V (xz)− γvz − vzyz ∈ RdN .

Let us consider a globally Lipschitz and bounded RdN -valued vector field fR over RdN × RdN × R
such that fR = f in a neighborhood of HR in E . Let also χR : RdN → R be a globally Lipschitz

C∞ function such that χR(v) = |v|2 if |v|2/2 ≤ R + 1. Denote by (X̂R
t , t ≥ 0) the strong solution3 on

RdN ×RdN ×R of:

dx̂Rt = v̂Rt dt, dv̂
R
t = fR(X̂R

t )dt+ Σ dBt, dŷ
R
t = χR(v̂Rt )dt− dNdt. (4.2)

Let σ̂HR
= inf{t ≥ 0, X̂R

t 6∈HR}. When z ∈HR and 0 ≤ t < σ̂HR
, it holds χR(v̂Rt (z)) = |v̂Rt (z)|2 and

fR(X̂R
t (z)) = f(X̂R

t (z)). Therefore, one has for all g ∈ bB(HR), t > 0, and z = (xz, vz, yz) ∈HR,

Ez

[
g(Xt)1t<σHR

]
= Ez

[
g(X̂R

t (z))1t<σ̂HR

]
,

since the laws of the two processes coincide up to their first exit time from HR. Let us now consider
the process (X̃R

t = (x̃Rt , ṽ
R
t , ỹ

R
t ), t ≥ 0) solution on RdN ×RdN ×R to:

dx̃Rt = ṽRt dt, dṽ
R
t = Σ dBt, dỹ

R
t = χR(ṽRt )dt− dNdt.

Set σ̃HR
:= inf{t ≥ 0, X̃R

t 6∈ HR}. Since fR is bounded, sups∈[0,t] Ez[e
|fR(X̃R

s )|2 ] < +∞ for all t > 0.
Hence, using [25, Theorem 3.1 in Section 7] and [25, Theorem 1.1 in Section 7], one has for all
g ∈ bB(HR), t > 0, and z = (xz, vz, yz) ∈HR,

Ez

[
g(X̂R

t )1t<σ̂HR

]
= Ez

[
g(X̃R

t ) 1t<σ̃HR
M̃t(fR)

]
,

where M̃t(fR) is the exponential (true) martingale defined by M̃t(fR) = exp L̃t(fR) and

L̃t(fR) =

∫ t

0

Σ−1f ?R(XR
s )dBs −

1

2

∫ t

0

|Σ−1f ?R(XR
s )|2ds.

Introduce finally the process (X0
t = (x0

t , v
0
t , y

0
t ), t ≥ 0) solution on RdN ×RdN ×R to:

dx0
t = v0

t dt, dv
0
t = Σ dBt, dy

0
t = |v0

t |2dt− dNdt.
3Existence and uniqueness are ensured by the fact that the coefficients are globally Lipschitz.
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Anew, because the laws of (X̃R
t , t ≥ 0) and (X0

t , t ≥ 0) coincide up to their first exit time from HR,
one finaly gets that for any z ∈HR:

Ez

[
g(Xt)1t<σHR

]
= Ez

[
g(X0

t ) 1t<σ0
HR

M0
t (fR)

]
, (4.3)

where M0
t (fR) = expL0

t (fR), L0
t (fR) =

∫ t
0

Σ−1fR(X0
s )dBs− 1

2

∫ t
0
|Σ−1fR(X0

s )|2ds, and σ0
HR

:= inf{t ≥
0, X0

t 6∈HR}.
Step 2. In this step we show that for all R > 0, t > 0, and all f ∈ bB(HR), the function

z ∈HR 7→ Ez

[
f(Xt)1t<σHR

]
is continuous.

In view of (4.3), let us show that

z ∈HR 7→ Ez

[
f(X0

t ) 1t<σ0
HR

M0
t (fR)

]
is continuous. (4.4)

We first claim that

i. For t > 0 and xn → x, sups∈[0,t] |X0
s (xn)−X0

s (x)| → 0 a.s. as n→ +∞.

ii. For all ψ ∈ bB(RdN ×RdN ×R) and t > 0, the following function

z ∈ RdN ×RdN ×R 7→ ℘t(ψ)(z) = Ez

[
eL

0
t (fR)ψ(X0

t )
]

is continuous.

iii. For all δ > 0 and all compact subset K of RdN ×RdN ×R,

lim
s→0+

sup
z∈K

Pz[σ
0
B(z,δ) ≤ s] = 0,

where B(z, δ) is the open ball of RdN ×RdN ×R centered at z of radius δ, and σ0
B(z,δ) is the

first exit time from B(z, δ) for the process (X0
t , t ≥ 0).

The proof of Item i is straightforward. Let us now prove Item ii. Let zn → z ∈ RdN × RdN × R.
By Hörmander’s theory, for all t > 0, X0

t admits a smooth density w.r.t. the Lebesgue measure over
RdN × RdN × R. Using also Item i and Proposition 1.2, we deduce that ψ(X0

t (zn)) → ψ(X0
t (z))

in P-probability. In addition, using Item i and the regularity of fR, L0
t (fR)(zn) → L0

t (fR)(z) in

P-probability. By the continuous mapping theorem, eL
0
t (fR)(zn) → eL

0
t (fR)(z) in P-probability. Since

Ezn [eL
0
t (fR)] = Ez[e

L0
t (fR)] = 1, one deduces using the Vitali convergence theorem, that

Ezn [eL
0
t (fR)]→ Ez[e

L0
t (fR)] in L1.

This ends the proof of Item ii. Let us now prove Item iii. Fix δ > 0 and a compact subset K of
RdN × RdN × R. With the same arguments as those used at the beginning of the proof of Lemma
2.4, we have

Pz[σ
0
B(z,δ) ≤ s] ≤ Pz

[
σ0
B(z,δ) ≤ s, |X0

s −X0
0 | < δ/2

]
+ Pz

[
|X0

s −X0
0 | ≥ δ/2

]
and by the strong Markov property,

Pz

[
σ0
B(z,δ) ≤ s, |X0

s −X0
0 | < δ/2

]
≤ p(s, z) := Ez

[
1σ0

B(z,δ)
(z)≤sPX0

σ0
B(z,δ)

(z)
(z)

[
|X0

s−σ0
B(z,δ)

(z) −X
0
0 | ≥ δ/2]

]
.

Let us deal with p(s, z). For any z ∈ K, x = (x, v, z) ∈ ∂B(z, δ), and u ∈ [0, s], Px

[
|X0

s−u−x| ≥ δ/2] ≤
Px

[
|x0
s−u − x| ≥ δ/2] + Px

[
|v0
s−u − v| ≥ δ/2] + Px

[
|y0
s−u − y| ≥ δ/2]. Note that |x| ≤ cδ,K := δ/2 + rK ,

where rK > 0 is such that K ⊂ B(0, rK). First, it holds Px

[
|v0
s−u−v| ≥ δ/2] ≤ as := P[supt∈[0,s] |Bt| ≥

δ/(2Σ)]. On the other hand, Px

[
|x0
s−u − x| ≥ δ/2] ≤ bs := P

[
scδ,K +

∫ s
0

Σ|Bt|dt ≥ δ/2]. Finally,

Px

[
|y0
s−u − y| ≥ δ/2] ≤ Px

[ ∫ s
0
|vt|2dt + sdN ≥ δ/2] ≤ cs := P

[
2Σ2

∫ s
0
|Bt|2dt + 2sc2

δ,K + sdN ≥ δ/2].
Thus, one has as s→ 0+:

sup
z∈K

p(s, z) ≤ as + bs + cs → 0.

Similarly, we have supz∈K Pz

[
|X0

s −X0
0 | ≥ δ/2

]
→ 0 as s→ 0+. This concludes the proof of Item iii.
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We will use the fact that Item iii implies that for all compact subset K of HR:

lim
s→0+

sup
z∈K

Pz[σ
0
HR
≤ s] = 0. (4.5)

We are now in position to prove (4.4). We have by the Markov property, for 0 ≤ s ≤ t and z ∈HR:

Ez

[
f(X0

t ) 1t<σ0
HR

M0
t (fR)

]
= Ez

[
1s<σ0

HR
M0

s(fR) EX0
s

[
f(X0

t−s) 1t−s<σ0
HR

M0
t−s(fR)

]]
. (4.6)

Define ψs by ψs(z) = Ez

[
f(X0

t−s) 1t−s<σ0
HR

M0
t−s(fR)

]
for z ∈ HR (we extend ψs by 0 outside HR).

The function ψs is measurable and bounded (by ‖f‖∞ × Ez

[
M0

t−s(fR)
]

= ‖f‖∞). By Item ii,

z 7→ ℘s(ψs)(z) = Ez

[
M0

s(fR)ψs(X
0
s )
]

is continuous. In addition, from (4.6) and Doob’s martingale
inequality, one has for z ∈HR and 0 ≤ s ≤ t:∣∣Ez

[
f(X0

t ) 1t<σ0
HR

M0
t (fR)

]
− ℘s(ψs)(z)

∣∣ = |Ez

[
1s>σ0

HR
M0

s(fR)ψs(X
0
s )
]
|

≤ ‖ψs‖∞
√

Ez

[
sup
s∈[0,t]

|M0
s(fR)|2

]√
Pz

[
σ0

HR
≤ s
]

≤ ‖ψs‖∞
√

4Ez

[
|M0

t (fR)|2
]
Pz

[
σ0

HR
≤ s
]
. (4.7)

We claim that supz Ez

[
|M0

t (fR)|2
]
< +∞. Let us prove this claim. We have

Ez

[
|M0

t (fR)|2
]

= Ez

[
exp(2L0

t (fR))
]

= Ez

[
exp(L0

t (2fR)) exp
(∫ t

0

|Σ−1fR(XR
s )|2ds

)]
≤ exp(Σ−2t‖fR‖2

∞)× Ez

[
exp(L0

t (2fR))
]

= exp(Σ−1t‖fR‖∞),

where we have used that Ez[exp(L0
t (2fR))] = 1 (apply for instance [25, Theorem 1.1 in Section 7]).

This proves that Ez

[
|M0

t (fR)|2
]
< +∞. Combining (4.7) and (4.5), we deduce that the continuous

function z 7→ ℘s(ψs)(z) converges uniformly as s→ 0+ to the function z 7→ Ez

[
f(X0

t ) 1t<σ0
HR

M0
t (fR)

]
=

Ez

[
f(Xt)1t<σHR

]
uniformly on the compact subsets K of HR. This ends the proof of (4.4).

Note that we actually proved that for any nonempty bounded open subset H of E ,

z ∈H 7→ Ez

[
f(Xt)1t<σH

]
is continuous. (4.8)

Step 3. Let us end the proof of (C1), i.e. let us prove (4.1). Fix t > 0 and a compact subset K of
E . Let RK > 0 be such that K ⊂HRK (thus K ⊂HR for all R ≥ RK). We have for all R ≥ RK and
z ∈ K:

|Ez

[
f(Xt)]− Ez

[
f(Xt)1t<σHR

]
| ≤ ‖f‖∞ sup

z∈K
Pz[σHR

≤ t]→ 0 as R→ +∞,

since Pz[σHR
≤ t] ≤ ect

R
HNH(z). Therefore, the continuous function z 7→ Ez

[
f(Xt)1t<σHR

]
converges

uniformly over K to z 7→ Ez

[
f(Xt)] as R→ +∞. This concludes the proof of Equation (4.1). �

Proposition 4.2. Assume that V satisfies [Vcoercive]. Then, the nonkilled semigroup (Pt, t ≥ 0) of
the solution of (1.5) over E = OV ×RdN ×R satisfies (C2). Let D = O ×RdN ×R where O is a
subdomain of OV . Then, the killed semigroup (PD

t , t ≥ 0) of the process (1.5) on D satisfies (C4).
If OV \ O is nonempty, (PD

t , t ≥ 0) satisfies (C5’) (see Section 4.3).

Proof. Assumption (C2) is proved with the same arguments as those used to prove Proposition 2.2.
Let us now prove (C4). Let t > 0 and f ∈ bB(D). Consider x ∈ D and r > 0 such that B(x, r) ⊂ D .
Set DR = D ∩HR which is a bounded open subset of E and contains B(x, r) for all R > 0 large
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enough. Since σDR ≤ σD , one has 1t<σD
1t<σDR

= 1t<σDR
. Consequently, one has for all z ∈ B(x, r),

|Ez

[
f(Xt) 1t<σD

]
− Ez

[
f(Xt) 1t<σDR

]
| = |Ez

[
f(Xt) 1t<σD

1t≥σDR

]
|

≤ ‖f‖∞ sup
z∈B(x,r)

Pz[t < σD , t ≥ σDR ]

≤ ‖f‖∞ sup
z∈B(x,r)

Pz[t ≥ σHR
]→ 0

as R → +∞. The proof of (C4) is complete using (4.8). Let us now check (C5’). Fix t > 0 and
x∗ = (x∗, v∗, y∗) ∈ D . With the analysis led in Section 2.2, it is not difficult to see that Ax∗,t := {x =
(x, v, y) ∈ D , y ≥ y∗+ t−1d2

O(x, x∗)− tdN} ⊂ suppPD
t (x∗, dy), where dO(x, x∗) is the geodesic distance

between x and x∗ in O (actually Ax∗,t = suppPD
t (x∗, dy) thanks to [32, Proposition 2.1 (ii)]). Then,

for any open ball B = B(y, r) ⊂ D , there exists t(x∗,B) such that for all t ≥ t(x∗,B), B(y, r) ⊂ Ax∗,t.
This ends the proof of (C5’). �

4.2. On Assumption (C3) for the process (1.5). In this section, we consider a potential V
satisfying [Vsing2]. Recall that the Hamiltonian of the process (1.5) is given by HNH(x, v, y) = V (x) +
1
2
|v|2 + 1

2
|y|2 ((x, v, y) ∈ E ) and its infinitesimal generator is LNH = v · ∇x− (y+ γ)v · ∇v −∇V · ∇v +

γ∆v + (|v|2 − dN)∂y (see (1.13) and (1.14)). Note that

LNHHNH = −yNd− γ|v|2 + γdN. (4.9)

The purpose of [32] is to show the ergodicity of the (nonkilled) Nosé-Hoover process on E . For that
purpose, and based on an extension of Harris’ ergodic theorem [30], the strategy consists in particular
in constructing a Lyapunov function w such that at high energy HNH and on E :

LNHw/w ≤ −α for some α > 0. (4.10)

As observed there, the natural candidate eHNH does not satisfy such an estimate. In view of (4.9),

though there exists α > 0 such that on the region R0 = {(x, v, y), y ≥ c∗ or |v|2 ≥ y∗
√
|y|2 + 1},

LNHHNH ≤ −α (choosing c∗, y∗ > 0 large enough), one cannot obtain (4.10) in Rc
0. Nevertheless, by

constructing a suitable perturbation Ψ of HNH and by considering the Lyapunov function w = eh∗HNH+Ψ

(h∗ > 0), D.P. Herzog [32] managed to obtain LNHw ≤ −α on the region Rc
0. Nonetheless, in order to

get (C3) (i.e. to have a Lyapunov function W such that LNHW/W → −∞ as HNH → +∞), we have
to introduce another perturbation Φ of HNH, especially to get that LNHW/W→ −∞ as V (x)→ +∞.

Before building Φ, we start by recalling the construction of Ψ in [32]. To this end, introduce the

Dawson’s integral D : R→ R defined by D(z) = e−z
2 ∫ z

0
eu

2
du and set Dm := supD. Let us consider

k∗ > 0 and y∗ > 3γ + 1. Consider the following cutoff functions in C∞(R, [0, 1]):

- f0(z) = 1 if z ≤ −1, f0(z) = 0 if z ≥ 0, f′0 ≤ 0, and |f′0| ≤ 2.
- f1(z) = 1 if z ≤ k∗ and f1(z) = 0 if z ≥ k∗ + 1.
- f2(z) = 1 if |z| ≤ 1 and f2(z) = 0 if |z| ≥ 2.
- f3(z) = 1 if |z| ≥ 2 and f3(z) = 0 if |z| ≤ 1.
- h1(z) = 1 if z ≤ −y∗ − 1, h1(z) = 0 if z ≥ −y∗, and |h′1| ≤ 2.
- h3(z) = 1 if |z| ≤ 3 and h3(z) = 0 if |z| ≥ 4.

Pick now p∗, u∗ > 0, and set for x = (x, v, y) ∈ E , Θ(v, y) = |v|2/(p∗
√
|y|2 + 1) and Υ(x, y) =

|∇V (x)|2/[u∗(|y|2 + 1)],

g1(x) = f1(y) f2(Θ(v, y)) f3(Υ(x, y)) and g2(x) = h1(y) f2(Θ(v, y)) h3(Υ(x, y)).

Define for z ∈ R and x = (x, v, y) ∈ E :

F(z) = − 1

2D2
max

∫ z

0

e−|y|
2

∫ y

0

eu
2

dudy and Ψ0(x) = δ∗f0(y)
|y|2

2
,
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where δ∗ > 0. For k ∈ {1, . . . , N}, we denote by xk = (xk,1, . . . , xk,d) and by vk = (vk,1, . . . , vk,d)
the kth-coordinate in Rd of x = (x1, . . . , xN) ∈ OV and of v = (v1, . . . , vN) ∈ RdN , respectively. For
x = (x, v, y) ∈ E , one sets:

Ψ1(x) = α∗1{|∇V (x)|2≥u∗/2}g1(x)
√
|y|2 + 1

v · ∇V (x)

|∇V (x)|2
where α∗ > 0.

For k ∈ {1, . . . , N} and l ∈ {1, . . . , d}, one defines

Ψk,l
2 (x) = 1{y≤−3γ}g2(x)F

( |y + γ| 12
(2γ)

1
2

(vk,l − ∂xk,lV (x)

|y + γ|
)
)
, and Ψ2(x) =

∑
k,l

Ψk,l
2 (x).

Finally, set Ψ = Ψ0 + Ψ1 + Ψ2. We now briefly recall the result of [32] we will need. Let h∗ > 0 be
such that:

h∗ <
1

8D2
m

. (4.11)

Define on the following function on E : LNH = h∗HNH + Ψ. Then, from [32, item (i) in Theorem 4.1,
Eq. (4.4), and Eq. (4.8)] (see also the last equation in the proof of [32, Lemma 4.2]), for some δ0 > 0
and any δ∗ ∈ (0, δ0), there exists ε0 > 0 such that for all ε∗ ∈ (0, ε0), there exists c0 > 0, for all α∗ > c0

and k∗ > c0, choosing p∗, u∗, y∗ > 0 large enough, it holds over E :

|Ψ| ≤ ε∗HNH and |∇vLNH| ≤ h∗|v|+
g2Nd|y + γ| 12

2Dm(2γ)
1
2

+ (Nd+ 1)ε∗, (4.12)

and (see the equation after [32, Eq. (4.32)])

LNHLNH + γ|∇vLNH|2 ≤ −
γh∗
2

(1− h∗)|v|2 − h∗dN(1− f0)|y| − f0
2
δ∗|y||v|2

−
[
g1
α∗
2

+ g2
dN

8D2
m

− f0(h∗ + δ∗ + ε∗)dN
]
|y|+ c, (4.13)

where c > 0 is independent of x ∈ E , which, in the following, can change from one occurence to
another.

Let us now construct Φ. Let R1 > 1 such that |∇V (x)| ≥ 1 if V (x) ≥ R1−1. Consider the following
two cutoff functions in C∞(R, [0, 1]):

- h(z) = 1 if z ≥ R1, h(z) = 0 if z ≤ R1 − 1, and |h′| ≤ 2.
- h0(z) = 1 if z ≥ 2 and h0(z) = 0 if z ≤ 1, h′0 ≥ 0, |h′0| ≤ 2.

Let ζ ∈ (1, 2) be as in [Vsing2]. Define for x ∈ E ,

Φ(x) = h(V (x))
v · ∇V (x)

|∇V (x)|ζ
− h0(y)|y|2.

Remark 4.3. The sign of the second term −h0(y)|y|2 in the definition of Φ might look strange.
However we will rather consider instead of Φ, εΦΦ (with εΦ > 0 small enough) as a perturbation of
LNH (see indeed the definition of FNH below). Hence, HNH + Ψ + εΦΦ will stay lower bounded over E
(see the proof of (4.16) below).

Let us now provide some estimates on Φ, ∇vΦ, and LNHΦ which will be used later on.
On the one hand, since ζ ∈ (1, 2), it holds over E :

|Φ| ≤ h |v||∇V |1−ζ + |y|2 ≤ |v|+ |y|2 ≤ 2HNH and |∇vΦ| = h |∇V |1−ζ ≤ 1. (4.14)

On the other hand, using [Vsing2], there exists M > 0 such that

h(V (x))|Hess V (x)|/|∇V (x)|ζ ≤M.

Set
cV = 3M + 2 sup

{x,V (x)∈[R1−1,R1]}
|∇V |2−ζ .
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Note that because |∇V | ≥ 1 on the support of h◦V and since ζ−1 > 0, we have that 1/|∇V |ζ−1 ≤ 1.
Hence, it holds:

LNHΦ = v ·
[
h′ ◦ V ∇V v · ∇V

|∇V |ζ
+ h ◦ V Hess V v

|∇V |ζ
− ζh ◦ V v · ∇V Hess V ∇V

|∇V |2+ζ

]
− (yv + γv +∇V ) · h ◦ V ∇V (x)

|∇V (x)|ζ
− (|v|2 − dN)(h′0|y|2 + 2h0y)

≤ |v|2
[
|h′ ◦ V ||∇V |2−ζ + h ◦ V |Hess V |

|∇V |ζ
+ 2h ◦ V |Hess V |

|∇V |ζ
]

+ (|y||v|+ γ|v|) h ◦ V
|∇V |ζ−1

− h ◦ V |∇V |2−ζ − h′0|y|2|v|2 − 2h0y|v|2

+ dN(h′0|y|2 + 2h0y)

≤ cV |v|2 − h ◦ V |∇V |2−ζ + (|y||v|+ γ|v|)h ◦ V − 2h0y|v|2 + 2h0dNy + c.

Hence, one has:

LNHΦ ≤ cV |v|2 − 2h0y|v|2 + γ|v| − h ◦ V |∇V |2−ζ + |y||v|h ◦ V + 2dNh0y + c. (4.15)

For all x ∈ E , εΦ > 0, set F0(x, v, y) = LNH + εΦΦ. The parameter εΦ > 0 will be chosen such that

inf
E

F0 ∈ R. (4.16)

Then, we define on E : FNH = F0 − infE F0 + 1 and

Wδ = exp
[
FδNH

]
, where δ ∈ (1/2, 1] is the parameter appearing in [Vsing2]. (4.17)

Before going through the computations of LNHWδ, let us deal with (4.16). We have for all x ∈ E ,
F0(x) ≥ (h∗− ε∗)HNH(x)− εΦ|v| − εΦ|y|2 which is lower bounded if εΦ ∈ (0, (h∗− ε∗)/2). From now on
εΦ ∈ (0, (h∗ − ε∗)/2). Note that there exists c > 0 such that for all δ ∈ (1/2, 1]:

Wδ ≤ ec
δHδNH on E . (4.18)

Proposition 4.4. Assume that V satisfies [Vsing2]. Then, there are parameters such that (C3) is
satisfied with the Lyapunov function Wδ defined in (4.17).

Proof. We now simply write L, H, and F for LNH, HNH, and FNH respectively. From the first inequalities
in (4.12) and (4.14),

|F| ≤ (h∗ + ε0 + 2εΦ)H + | inf
E

F0|+ 1 ≤ cH, (4.19)

for some c > 0. We will reduce ε∗, α∗, δ∗, εΦ > 0 and finally increase p∗ > 0 such that the Lyapunov
function Wδ defined in (4.17) satisfies (C3) on E . We have over E :

LNHWδ

Wδ

≤ δ

F1−δ

[
LNHF + γ|∇vF|2

]
, (4.20)

Using (4.12) and (4.14), it holds for some K > 0:

2γεΦ|∇vL||∇vΦ| ≤ εΦK(|v|+ g2|y + γ|
1
2 + 1).



34 A. GUILLIN, D. LU, B. NECTOUX, AND L. WU

Using in addition (4.13), (4.14), and (4.15), one has over E :

LNHF + γ|∇vF|2 = LNH(L + εΦΦ) + γ|∇vL + εΦ∇vΦ|2

≤ LNHL + γ|∇vL|2 + εΦLNHΦ + γε2Φ|∇vΦ|2 + 2γεΦ|∇vL||∇vΦ|

≤ −γh∗
2

(1− h∗)|v|2 − h∗dN(1− f0)|y| − f0
2
δ∗|y||v|2

−
[
g1
α∗
2

+ g2
dN

8D2
m

− f0(h∗ + δ∗ + ε∗)dN
]
|y|+ εΦcV |v|2

− 2εΦh0y|v|2 + εΦ(γ + K)|v| − εΦh ◦ V |∇V |2−ζ

+ εΦ|y|(|v|2 + 1) + 2εΦdNh0 y + εΦKg2|y + γ|
1
2 + c.

Choose α∗ > dN/(4D2
m) so that min(α∗/2, dN/(8D

2
m)) = dN/(8D2

m). Note that εΦ(γ + K)|v| ≤
εΦ|v|2 + c. Therefore, using also that εΦ|y||v|2 ≤ εΦ1y/∈[−1,2]|y||v|2 + 2εΦ|v|2, it holds

LNHF + γ|∇vF|2 ≤ −
γh∗
2

(1− h∗)|v|2 + cV εΦ|v|2 + 3εΦ|v|2

− δ∗
2
f0 |y||v|2 + εΦ1y/∈[−1,2]|y||v|2 − 2εΦh0y|v|2

− h∗dN(1− f0) |y| − dN

8D2
m

(g1 + g2)|y|+ (h∗ + δ∗ + ε∗)dN f0 |y|

+ εΦ|y|+ 2εΦdNh0 y − εΦh ◦ V |∇V |2−ζ + εΦKg2|y + γ|
1
2 + c.

Note that 1 − f0 ≥ 1[1,+∞), f0 ≥ 1(−∞,−1], f0 ≤ 1R− , and h0 ≥ 1[2,+∞). Choose εΦ > 0 small enough

such that m := γh∗
2

(1− h∗)− εΦ(cV + 3) > 0. Then, one has for all x = (x, v, y) ∈ E :

LNHF(x) + γ|∇vF|2(x) ≤ B(x) := −m|v|2 + N(x)− εΦh ◦ V |∇V |2−ζ + c, (4.21)

where

N(x) = −δ∗
2

1y≤−1 |y||v|2 + εΦ1y/∈[−1,2]|y||v|2 − 2εΦ1y≥2y|v|2

− h∗dN1y≥1|y| −
dN

8D2
m

(g1 + g2)|y|+ (h∗ + δ∗ + ε∗)dN1y≤0|y|

+ εΦ1y≤0|y|+ εΦ1y≥0|y|+ 2εΦdN1y≥0y + εΦK1y≤0|y|.

We now study the function N over E . There are two cases:

A. The case when y ≥ 0. In this case, one has

N(x) ≤ εΦ1y≥2|y||v|2 − 2εΦ1y≥2y|v|2 − h∗dN1y≥1|y|+ εΦ(2dN + 1)1y≥0|y|.

Reduce εΦ > 0 such that b := h∗dN − εΦ(2dN + 1) > 0. Then, in this case, one has:
N(x) ≤ −εΦ1y≥2|y||v|2 − b1y≥0|y|+ c.

B. The case when y ≤ 0. Then,

N(x) ≤ −δ∗
2

1y≤−1 |y||v|2 + εΦ1y≤−1|y||v|2 −
dN

8D2
m

(g1 + g2)|y|

+ (h∗ + δ∗ + ε∗)dN1y≤−1|y|+ εΦ(1 + K)1y≤0|y|. (4.22)

We then distinguish between two subcases:
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- The case when |v|2/(p∗
√
|y|2 + 1) ≤ 1. In this case one has (g1 + g2) ≥ 1y≤−y∗−1. Then,

it holds:

N(x) ≤ −δ∗
2

1y≤−1 |y||v|2 + εΦ1y≤−1|y||v|2

−
[ dN

8D2
m

− (h∗ + δ∗ + ε∗)dN − εΦ(1 + K)
]
1y≤−y∗−1|y|+ c.

In view of (4.11), we can reduce δ∗ > 0 and then ε∗ > 0 such that dN
8D2

m
−(h∗+δ∗+ε∗)dN > 0.

Then, anew, reduce εΦ > 0 such that εΦ < δ∗/4 and such that

n :=
dN

8D2
m

− (h∗ + δ∗ + ε∗)dN − εΦ(1 + K) > 0.

Hence, in this case, it holds: N(x) ≤ − δ∗
4
1y≤−1 |y||v|2 − n1y≤0|y|+ c.

- The case when |v|2/(p∗
√
|y|2 + 1) ≥ 1. In this case |v|2 ≥ p∗ and thus, using (4.22), it

holds (since εΦ < δ∗/4):

N(x) ≤ −δ∗p∗
4

1y≤−1 |y|+
[
(h∗ + δ∗ + ε∗)dN + εΦ(1 + K)

]
1y≤−1|y|+ c.

Choose p∗ > 0 larger such that δ∗p∗
4

> dN
8D2

m
. In this case, δ∗p∗

4
> (h∗ + δ∗ + ε∗)dN . Then,

choose εΦ > 0 smaller such that

j :=
δ∗p∗

4
− (h∗ + δ∗ + ε∗)dN − εΦ(1 + K) > 0.

Consequently, in this case, it holds: N(x) ≤ −j1y≤0 |y|+ c.

Recall δ ∈ (1/2, 1]. Gathering the estimates obtained in Items A and B above, and using (4.21), (4.19),
and (4.20), we deduce that LNHWδ/Wδ → −∞ as H(x) → +∞ (i.e. when V (x) + |v| + |y| → +∞).
This concludes the proof of the proposition. �

4.3. Extension of [28, Theorem 2.2]. In this section, we extend [28, Theorem 2.2] when (C5) is
replaced by the less stringent following assumption:

(C5’) For all x ∈ D and nonempty open subset O of D , there exists t(x,O) ≥ 0, for all t ≥ t(x,O),
PD
t (x,O) > 0. In addition, there exists x0 ∈ D such that Px0(σD < +∞) > 0.

To this end, we first extend [28, Theorem 4.1] as follows.

Theorem 4.5. Let S be a nonempty open subset of Rd, Q = Q(x, dy) be a positive bounded kernel on
S, and W : S → [1,+∞) a continuous function. Assume that:

(1) There exists N1 ≥ 1 such that Qk is strong Feller for all k ≥ N1, i.e. Qkf ∈ Cb(S) if f ∈ bB(S).
(2) For any x ∈ S and nonempty open subset O of S, there exists q(x,O) ∈ N such that for all

k ≥ q(x,O),
Qk(x,O) > 0.

(3) For some p > 1 and constant C > 0, it holds:

QWp ≤ CWp.

Notice that this implies that Q is well defined and bounded on bWB(S).
(4) Q has a spectral gap in bWB(S),

ress(Q|bWB(S)) < rsp(Q|bWB(S)). (4.23)

Then, all the conclusions of [28, Theorem 4.1] hold true.

Proof. We adopt the same notations as those used to prove [28, Theorem 4.1]. The proof of Theo-
rem 4.5 is the same as the one made to prove [28, Theorem 4.1] except the end of the second step
there. More precisely, we only have to prove that under our new Assumptions (1) and (2), it still
holds:
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(a) µ(O) > 0 for all nonempty open subset O of S,
(b) ϕ(x) > 0 for all x ∈ S,

where we recall that µ (resp. ϕ) is nonzero and nonnegative measure which is a left eigenvector (resp.
a nonzero and nonnegative function which is a right eigenvector) of Qm (where m ∈ N∗ is the integer
chosen at the beginning of the second step of the proof of [28, Theorem 4.1]).

Let us first prove Item (a) above. We have µQm = µ and thus µQmn = µ for all n ∈ N. Let n ∈ N∗

such that n ≥ N1/m + 1, so that, by Assumption (1), Qmn is strong Feller. In addition, since µ is a
nonzero and nonnegative measure over S, its (topological) support is nonempty. Let z belong to the
support of µ. By definition, µ(B(z, δ)) > 0 for all δ > 0 small enough such that B(z, δ) ⊂ S, where
B(z, δ) is the open ball in Rd of radius δ centered at z. Assume also that n ∈ N∗ is large enough such
that mn ≥ q(z, O) (see Assumption (2)).

It holds for any nonempty open subset O of S:

µ(O) =

∫
S
Qmn(x,O)µ(dx) ≥ 0.

Assume that µ(O) = 0. Then, Qmn(·,O) = 0 µ-almost surely. Consequently, there exists zδn ∈ B(z, δ)
such that Qmn(zδn,O) = 0. Note that zδn → z as δ → 0, and since Qmn is strong Feller, it holds
Qmn(z,O) = 0. This leads to a contradiction in view of Assumption (2) and because mn ≥ q(z,O).
The proof of Item (a) above is complete.

Let us now prove Item (b) above. We know that there exists x0 ∈ S such that ϕ(x0) > 0. Thus, by
continuity of ϕ, there exists δ0 > 0 and c0 > 0 such that B(x0, δ0) ⊂ S and ϕ ≥ c0 on B(x0, δ0). Let
x ∈ S. Pick n ∈ N∗ such that mn ≥ q(x,B(x0, δ0)). Since Qmnϕ = ϕ, one has, by Assumption (2),

ϕ(x) =

∫
S
ϕ(y)Qmn(x, dy) ≥ c0Q

mn(x,B(x0, δ0)) > 0.

This concludes the proof of Item (b) above. �

Following exactly the same arguments as in the proof of [28, Theorem 2.2], we deduce the following
extension of [28, Theorem 2.2].

Theorem 4.6. All the conclusions of [28, Theorem 2.2] are still valid when (C5) is replaced by (C5’)
there.

5. Extensions of existing results

In this section, we extend the existing results on the existence and uniqueness of the quasi-stationary
distributions for the kinetic Langevin process as well as for elliptic processes.

5.1. Quasi-stationary distribution for the kinetic Langevin process. Consider the solution
((xt, vt), t ≥ 0) in Rd ×Rd to the kinetic Langevin equation

dxt = vtdt, dvt = b(xt)dt− γvtdt+
√

2 dWt. (5.1)

Introduce the following assumption:

Assumption [Vbounded+lip]. The set O is a bounded subdomain of Rd and b : O → Rd is a Lipschitz
vector field.

In [48], existence and uniqueness of the quasi-stationary distribution of the process (5.1) as well as
the exponential convergence were obtained under assumption [Vbounded+lip] and with the two extra
assumptions that b ∈ C∞(O) and ∂O is C2. With the techniques used in this work, we are able to
extend this result to the very weak regularity setting where only [Vbounded+lip] is assumed. Indeed,
we have the following result.
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Theorem 5.1. Assume [Vbounded+lip] and let D = O × Rd. Assume also that γ ∈ R. Then,
there exists a unique quasi-stationary distribution θD for the process (5.1) on D in the whole space of
probability measures P(D) over D . Furthermore:

(1) There exists κD > 0 s.t. for all t ≥ 0, the spectral radius of PD
t on bB(D) is e−κDt, where

(PD
t , t ≥ 0) is the killed semigroup of the process solution to (5.1) (see (1.7)). In addition,

for all t ≥ 0, θDP
D
t = e−κDtθD and θD(O) > 0 for all nonempty open subsets O of D . There

is also a unique continuous function ψ in bB(D) such that θD(ψ) = 1, ψ > 0 on D , and
PD
t ψ = e−κDtψ on D , ∀t ≥ 0.

(2) There exist L > 0 and c ≥ 1 such that for all ν ∈ P(D),∣∣Pν [Xt ∈ A|t < σD ]− θD(A)
∣∣ ≤ ce−Lt

ν(ψ)
, ∀A ∈ B(D), t > 0.

(3) For some t0 > 0, PD
t : bB(D)→ bB(D) is compact, for all t ≥ t0.

Finally, Px(σD < +∞) = 1 for all x ∈ D .

Proof. We extend b outside O as a globally Lipschitz and bounded Rd-vector field over Rd. Assump-
tion (C2) is a consequence of the fact that for all t ≥ 0, a.s. Xs(xn) → Xs(x) uniformly on [0, t]
when xn → x ∈ R2d. Assumption (C1) is proved using this result, together with the Gaussian upper
bound (5.6) below and Proposition 1.2. On the other hand, since b is globally Lipschitz, using similar
arguments as those used in the proof of Lemma 2.4, one deduces that for all compact subset K of R2d

and δ > 0, it holds:

lim
s→0+

sup
x=(x,v)∈K

Px[σB(x,δ) ≤ s] = 0,

where for x = (x, v) ∈ Rd, σB(x,δ)(x) := inf{s ≥ 0, xs(x) /∈ B(x, δ)} and where we recall that B(x, δ)
is the open ball of Rd of radius δ > 0 centered at x ∈ Rd. Assumption (C4) is thus proved with
the same arguments as those used to prove Proposition 2.7. Assumption (C5) follows from the same
arguments as those used in Section 2.2.

The proof of the results stated up to Item (2) (included) in Theorem 5.1 will then be a consequence
of [28, Theorem 4.1], if we prove that for some t > 0, the essential spectral radius of PD

t on bB(D) is
zero (see indeed the proof of [28, Theorem 2.2] made in [28, Section 5]), i.e.

ress(P
D
t |bB(D)) = 0. (5.2)

Let us recall the definition of the measure of non-w-compactness βw(Q) of a bounded nonnegative
kernel Q = Q(x, dy) on a polish space S introduced in [78]:

βw(Q) := inf
K⊂S

sup
x∈S

Q(x,S \K), (5.3)

where the infimum is on the set of compact subsets K of S . Since for t > 0, PD
t is strongly Feller, it

satisfies the assumption (A1) in [78, Section 3.2]. We can thus use [78, Theorem 3.5] to deduce that
(5.2) is satisfied if for t > 0:

βw(PD
t ) = 0, (5.4)

where (see (5.3))

βw(PD
t ) = inf

K⊂R2d
sup

x=(x,v)∈R2d

PD
t (x,R2d \K) = inf

K⊂R2d
sup

x=(x,v)∈D

PD
t (x,D \K).

Choosing KR = O × {|v| ≤ R}, one has

βw(PD
t ) ≤ inf

R>0
sup

x=(x,v)∈O×Rd

PD
t (x,O × {|v| > R})

≤ inf
R>0

sup
x=(x,v)∈O×Rd

Pt(x,O × {|v| > R}). (5.5)
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Let us now prove (5.4). Let t > 0 be fixed. In what follows ci’s are positive constants which are
independent of x = (x, v), y = (x′, v′) ∈ R2d. By [18, Theorem 1.1], for all x ∈ R2d, Xt(x) admits
a density pt(x, y) (w.r.t. the Lebesgue measure dy over R2d) which satisfies the following Gaussian
upper bound: for all x, y ∈ R3d,

pt(x, y) ≤ c0 exp(−c1|ψt(x)− y|2), (5.6)

where (ψs(x) = (xs(x),vs(x)), s ≥ 0) is the deterministic solution for s ≥ 0 of:

ẋs = vs, v̇s = b(xs)− γvs with ψ0(x) = x.

Assume that γ 6= 0 (the case when γ = 0 is treated similarly). Let us now consider the solution
(Ψs(x) = (Xs(x),V s(x)), s ≥ 0) for s ≥ 0 of the equation

Ẋs = V s, V̇ s = −γV s with Ψ0(x) = x,

i.e V s(x) = ve−γs and Xs(x) = x + vγ−1(1 − e−γs). Since b is bounded, using Grönwall’s inequality,
it holds

sup
s∈[0,t]

|ψs(x)−Ψs(x)| ≤ c2.

This previous bounds leads to, for s ∈ [0, t], |ψs(x)− y|2 ≥ |Ψs(x)− y|2 − 2c2|Ψs(x)− y|. Since O is
bounded, there exists c5 > 0 such that |x− x′| ≤ c5 for all x, x′ ∈ O. Setting c3 := γ−1(1− e−γt) > 0
and c4 := e−γt > 0, it thus holds for all ε > 0 and all x, y ∈ D :

|(at, bt)T (x)− y|2 ≥ |x− x′ + c3v|2 − 2c2|x− x′ + c3v|
+ |v′ − c4v|2 − 2c2|v′ − c4v|,
≥ c2

3|v|2 − 2c3(c2 + c5)|v| − 2c2c5

+ |v′|2 + c2
4|v|2 − 2c4v · v′ − 2c2|v′| − 2c2c4|v|,

≥ c2
3|v|2 − 2c3(c2 + c5)|v| − 2c2c5

+ |v′|2 + c2
4|v|2 − 2c4|v| |v′| − 2c2|v′| − 2c2c4|v|,

≥ c2
3|v|2 − 2c3(c2 + c5)|v| − 2c2c5

+ |v′|2 + c2
4|v|2 − c4ε

−1|v|2 − εc4|v′|2 − 2c2|v′| − 2c2c4|v|
= |v|2(c2

3 + c2
4 − ε−1c4)− 2c3(c2 + c5)|v| − 2c2c4|v|

+ |v′|2(1− εc4)− 2c2|v′| − 2c2c5.

Choose ε ∈ (0, 1/c4) such that c6 = c2
3 + c2

4 − ε−1c4 > 0 (this is indeed possible since c6 → c2
3 > 0

as ε → (1/c4)−). Using the previous computations, we have since O is bounded, for all x = (x, v) ∈
O ×Rd:

Pt(x,O × {|v| ≥ R}) ≤ c7e
−c1c6|v|2+c8|v|

∫
|v′|≥R

e−c1(1−εc4)|v′|2+2c1c2|v′|dv′

≤ c9

∫
|v′|≥R

e−c1(1−εc4)|v′|2+2c1c2|v′|dv′ → 0 as R→ +∞.

By (5.5), this implies that βw(PD
t ) = 0 and then (5.2) holds. The proof of the theorem is complete. �

We end this section by considering the case when the position domain might be unbounded and
the drift is singular: we state without proof the following extension of the main results of [29].

Theorem 5.2. [29, Theorems 2.4 and 3.2] are both still valid without any regularity assumption on
the boundary of the position domain O, where O × Rd is the subdomain where the quasi-stationary
distribution is considered there.
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5.2. Elliptic processes in bounded domains. In this section, we consider the solution (Yt, t ≥ 0)
in Rd to the equation

dYt = b(Yt)dt+
√

2 dWt. (5.7)

When O is an open subset of Rd, we denote by (PO
t , t ≥ 0) the semigroup of the killed process

(Yt, t ≥ 0): PO
t f(y) = Ey[f(Yt)1t<σO

], for f ∈ bB(O), y ∈ O, and where σO = inf{t ≥ 0, Yt /∈ O} is
the first exit time of the process (Yt, t ≥ 0) from O. Using the same tools as those used in this work,
we are able to get the following result which holds without any regularity assumption on ∂O:

Theorem 5.3. Assume [Vbounded+lip]. Then, there exists a unique quasi-stationary distribution νO

for the process (5.7) on O in the whole space of probability measures P(O) over O. Furthermore:

(1) There exists αO > 0 s.t. for all t ≥ 0, the spectral radius of PO
t on bB(O) is e−αOt, where

(PO
t , t ≥ 0) is the killed semigroup of the process solution to (5.1) (see (1.7)). In addition,

for all t ≥ 0, νOP
O
t = e−αOtνO and νO(O) > 0 for all nonempty open subsets O of O. There

is also a unique continuous function φ in bB(O) such that νO(φ) = 1, φ > 0 on O, and
PO
t φ = e−αOtφ on O, ∀t ≥ 0.

(2) There exist m1 > 0 and m2 ≥ 1 such that for all ν ∈ P(O),∣∣Pν [Yt ∈ A|t < σO ]− νO(A)
∣∣ ≤ m2e

−m1t

ν(φ)
, ∀A ∈ B(O), t > 0.

Eventually, Py(σO < +∞) = 1 for all y ∈ O.

Proof. Theorem 5.3 is proved using the same arguments as those used to prove Theorem 5.1 above. �

Theorem 5.3 can be extended to the case where there is a uniformly elliptic and Lipschitz dif-
fusion coefficient in (5.7). Theorem 5.3 was already derived in [13] (see Theorem 1.1 there) with
different techniques. We end this work with the following result about existence and uniqueness of
quasi-stationary distributions for elliptic processes on possible unbounded domains and with singular
potentials.

Theorem 5.4. [29, Proposition 4.2] is still valid without any regularity assumption on the boundary
of the subdomain D on which is considered the quasi-stationary distribution there.
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thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain. The Journal
of chemical physics, 128(24), 2008.

[38] R. Kupferman. Fractional kinetics in Kac–Zwanzig heat bath models. Journal of statistical physics, 114:291–326,
2004.
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[47] T. Lelièvre, M. Ramil, and J. Reygner. A probabilistic study of the kinetic Fokker–Planck equation in cylindrical
domains. Journal of Evolution Equations, 22(2):1–74, 2022.
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