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Abstract. Mixed precision algorithms aim at taking advantage of the
performance of low precisions while maintaining the accuracy of high
precision. In particular adaptive precision algorithms dynamically adapt
at runtime the precisions used for different variables or operations. For
example Graillat et al (2023) have proposed an adaptive precision sparse
matrix–vector product (SpMV) which stores the matrix elements in a
precision inversely proportional to their magnitude. In theory, this algo-
rithm can therefore make use of a large number of different precisions,
but the practical results previously obtained only achieved high per-
formance using natively supported double and single precisions. In this
work we combine this algorithm with an efficient memory accessor for
custom reduced precision formats (Mukunoki et al. 2016). This allows
us to experiment with a large set of different precision formats with fine
variations of the number of bits dedicated to the significand. Moreover
we also explore the possibility to reduce the number of bits dedicated
to the exponent using the fact that the elements that share the same
precision format are of similar magnitude. We experimentally evaluate
the performance of using four or seven different custom formats using
reduced precision and possibly reduced exponent, and demonstrate their
effectiveness compared with the existing version only using double and
single precisions.

Keywords: sparse matrix–vector product (SpMV), mixed precision, adaptive
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1 Introduction

The use of low precision floating-point formats in scientific computations is
becoming more and more common due to the storage and performance gains
that they offer. To maintain a rigorous control over the accuracy of the re-
sult, mixed precision algorithms combine various precision formats to find the
desired tradeoff between performance and accuracy [1]. Adaptive precision al-
gorithms [1, sect. 14], a subclass of mixed precision algorithms, have recently
attracted interest due to their ability to dynamically detect at runtime opportu-
nities for reducing the precision based on the data at hand. Adaptive precision
algorithms have for example been developed for low-rank approximations [2],
block Jacobi preconditioners [3, 4], block/tile low-rank factorizations [2, 5], and
sparse matrix-vector product (SpMV) [6,7].

In this work, we are particularly interested in the adaptive precision SpMV
proposed by Graillat et al. [6]. SpMV is a key computational kernel in many
applications, such as the solution of sparse linear systems with Krylov methods.
Accelerating the SpMV while preserving control over its accuracy is therefore an
important goal with a wide range of potential applications.

The approach of Graillat et al. [6] proposes to accelerate SpMV by stor-
ing some of the nonzero elements of the matrix in reduced precision. Indeed, a
theoretical error analysis demonstrates that the accuracy can be rigorously con-
trolled by switching the elements to a precision with a unit roundoff inversely
proportional to their magnitude: that is, smaller elements can be stored in lower
precisions. This leads to storage reduction which can translate to a corresponding
time reduction because SpMV is a memory-bound operation.

In addition to their error analysis, Graillat et al. [6] present a practical im-
plementation of their algorithm. Their implementation achieves significant per-
formance gains compared with SpMV in uniform precision, at a comparable
accuracy. However, their performance results are only satisfactory when using
precisions with native hardware support, that is, in their case, the standard
IEEE FP64 (double) and FP32 (single) precisions.

In this article, we are motivated by the fact that the adaptive precision SpMV
can in principle make use of any number of precision levels and, in fact, achieves
larger storage reductions when more precisions are available, since this allows
for a fine tuning of the precision of each element. We are interested in the po-
tential of emerging technologies for reduced-precision memory accessors [8–10],
which allow for efficiently accessing data stored in reduced precision formats.
We focus in particular on the work of Mukunoki and Imamura [8], who propose
a custom reduced precision accessor, thus allowing for many different precision
formats. We develop an adaptive precision SpMV algorithm that relies on this
memory accessor, and that can use up to seven different precision formats with
fine variations of the number of bits dedicated to the significand. Moreover we
also explore the possibility to reduce the number of bits dedicated to the expo-
nent using the fact that the elements that share the same precision format are
of similar magnitude. We provide numerical experiments on a multicore CPU
architecture and with a range of real-life matrices. We evaluate the performance
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of adaptive precision SpMV with varying numbers of precision formats, using
reduced precision and possibly reduced exponent, and demonstrate the effec-
tiveness of the custom memory accessor compared with the existing version that
only uses natively supported double and single precisions.

2 Methods

2.1 Adaptive precision SpMV

The adaptive precision SpMV proposed by Graillat et al. [6] decomposes the
input matrix A into several matrices Ak:

A =

q∑
k=1

Ak,

where each Ak is stored in a different precision format with unit roundoff uk, and
the sparsity patterns of the Ak are all mutually disjoint (that is, each nonzero
element of A is assigned to exactly one matrix Ak). The q precision levels satisfy
u1 < u2 < · · · < uq.

The SpMV y = Ax is then computed as the sum of the partial SpMVs:

y = Ax =

q∑
k=1

Akx.

The accuracy of the computed vector ŷ can be controlled by suitably building the
decomposition. Specifically, the error analysis carried out in [6] proves that, given
a prescribed accuracy ϵ ≥ u1, the computed ŷ satisfies the normwise backward
error bound

ŷ = (A+∆A)x, ∥∆A∥ ≤ cϵ∥A∥,
where c is a modest constant, under the condition that all the nonzero elements
aij of Ak satisfy the criterion

aij ∈ Ak ⇔ |aij | ∈
( ϵ

uk+1
∥A∥, ϵ

uk
∥A∥

]
. (1)

This criterion shows that the precision uk used to store each nonzero element
should be chosen to be inversely proportional to the magnitude of the element.
One special case is when |aij | ≤ ϵ∥A∥: in this case, the element can be dropped,
that is, replaced by zero (this can be interpreted as using a “unit roundoff”
uq = 1, see also [6, Remark 3.2]). Moreover, we mention that [6] also proposes an
alternative criterion which bounds the componentwise backward error, instead
of the normwise one.

The error analysis in [6] also accounts for the possibility of performing the
partial SpMVs Akx in precision uk, but since the SpMV is a memory-bound
operation, this does not bring any significant performance improvement. We
will therefore only use the reduced precision formats for storage, while keeping
the arithmetic operations in double precision (which corresponds to the highest
precision u1).
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2.2 Custom reduced-precision formats

Mukunoki and Imamura [8] have proposed a reduced-precision memory accessor,
called RPFP, that allows for representing custom floating-point numbers with
a reduced significand. This is achieved by truncating the IEEE FP64 (double)
or FP32 (single) formats, as shown in Table 1: the RP56, RP48, and RP40
formats are truncated versions of FP64, whereas the RP24 and RP16 formats are
truncated versions of FP32. Note that RP16 is equivalent to the bfloat16 format,
although in our case we do not have native support for bfloat16 operations on
our target hardware.

Table 1. List of IEEE formats and RPFP’s reduced-precision formats

Format Numbers of bits Unit roundoff
Sign Exponent Significand

FP64 1 11 52+1 2−53 ≈ 1× 10−16

RP56 1 11 44+1 2−45 ≈ 3× 10−14

RP48 1 11 36+1 2−37 ≈ 7× 10−12

RP40 1 11 28+1 2−29 ≈ 2× 10−9

FP32 1 8 23+1 2−24 ≈ 6× 10−8

RP24 1 8 15+1 2−16 ≈ 2× 10−5

RP16 1 8 7+1 2−8 ≈ 4× 10−3

This RPFP accessor is implemented in the C/C++ language and relies in-
ternally on a structure with multiple words composed of one, two, or four bytes:
for example RP40 is represented using a 32-bit integer and an 8-bit one. When
dealing with an array of RPFP numbers, each integer composing the RPFP for-
mat is allocated separately from the other integers (so-called structure-of-arrays
layout). The decoding of an RP40 number to an FP64 one is illustrated in Fig-
ure 1. It is a relatively lightweight operation that consists in copying the 8-bit
and 32-bit integers into 64-bit integers, suitably realigning them with a bit shift,
and combining them with a binary or operation.

The RPFP accessor has been shown to accelerate various types of memory-
bound operations, such as dot products, dense matrix–vector products, and
SpMVs. In particular, the recent work [10] focuses on the SpMV and shows that
the performance is often proportional to the storage and thus to the number of
bits. Naturally, in a uniform precision setting where the same RPFP format is
used for all the elements, the accuracy is also proportional to the number of bits.
In the following, we investigate the use of this kind of accessor in an adaptive
precision setting which preserves a controlled accuracy.

2.3 Reduced-precision formats for adaptive precision SpMV

The adaptive precision SpMV is particularly amenable to the use of custom pre-
cision formats, for two reasons. First, the reduced precisions are only used as
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1 union union64 {
2 uint64_t i ;
3 double f ;
4 } ;
5 __inline__ double
6 RpArrayToFp ( rp fp64 in40barray sa , s i ze_t i ) {
7 union union64 u64 ;
8 uint64_t i64h , i 6 4 l ;
9 i64h = ( uint64_t ) sa . i 32 [ i ] ;

10 i64h = i64h << 32 ;
11 i 6 4 l = ( uint64_t ) sa . i 8 [ i ] ;
12 i 6 4 l = i 6 4 l << 24 ;
13 u64 . i = i64h | i 6 4 l ;
14 re turn u64 . f ;
15 }

Exp.
11 bits

uint8_t to uint64_t copy

Sign
1 bit

Sig.
28 bits

Exp.
11 bits

Sign
1 bit

Sig.
52 bits

bitshift

uint32_t to uint64_t copy

bitshift

binary or

Accessed as FP64

Stored as RP40

Fig. 1. Conversion from RP40 to FP64

storage formats, and hence do not require native support for arithmetic opera-
tions. Second, because the precisions should be set to be inversely proportional
to the magnitude of the elements, we can in principle exploit a continuous level
of precisions: the finer we can tune the precision level, the higher the storage
reduction.

The implementation presented in [6] achieves significant performance gains,
but unfortunately only when using the natively supported FP64 and FP32 pre-
cisions available in the target architecture. Experiments with custom precision
formats are presented, but these lead to a heavy performance penalty due to an
unoptimized memory accessor implemented in Fortran.

The goal of this work is therefore to implement the adaptive precision SpMV
algorithm from [6] with the much more efficient RPFP accessor from [8], and to
evaluate to what extent custom precision formats can improve the performance.

To do so, we ported the Fortran implementation of adaptive precision SpMV
from [6] to the C language and combined it with the RPFP implementation for
CPUs from [8].

To represent the sparse matrices A and Ak we use the compressed sparse
row (CSR) format with 32-bit row and column indices. For each matrix Ak, this
leads to n + nnzk 32-bit values for the indices, and nnzk RPFP values for the
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nonzero elements, where n is the number of rows of Ak and nnzk its number of
nonzero elements.

The SpMV is parallelized with OpenMP using a static schedule: the rows of
the matrix are distributed among the available threads.

Figure 2 presents an excerpt of the adaptive precision SpMV code with seven
precision levels.

1 void ap_csrmv ( i n t n , rpMultiCSR A, double ∗ x , double ∗ y ) {
2 #pragma omp p a r a l l e l f o r
3 f o r ( i n t i = 0 ; i < n ; i++) {
4 double tmp = 0 . ;
5 f o r ( i n t k = A. ia16 [ i ] ; k < A. ia16 [ i +1] ; k++) { // RP16
6 f l o a t a i j_r = RpArrayToFp(A. a16 , k ) ;
7 tmp += ai j_r ∗ x [A. ja16 [ k ] ] ;
8 }
9 f o r ( i n t k = A. ia24 [ i ] ; k < A. ia24 [ i +1] ; k++) { // RP24

10 f l o a t a i j_r = RpArrayToFp(A. a24 , k ) ;
11 tmp += ( double ) ( a i j_r ∗ x [A. ja24 [ k ] ] ) ;
12 }
13 . . .
14 f o r ( i n t k = A. ia56 [ i ] ; k < A. ia56 [ i +1] ; k++) { // RP56
15 double a i j = RpArrayToFp(A. a56 , k ) ;
16 tmp += a i j ∗ x [A. ja56 [ k ] ] ;
17 }
18 f o r ( i n t k = A. ia64 [ i ] ; k < A. ia64 [ i +1] ; k++) { // FP64
19 double a i j = A. a64 [ k ] ;
20 tmp += a i j ∗ x [A. ja64 [ k ] ] ;
21 }
22 y [ i ] = tmp ;
23 }
24 }

Fig. 2. Adaptive precision SpMV with seven precision levels (excerpt). RpArrayToFp
converts a reduced-precision format to the IEEE FP64 format.

2.4 Reduced-exponent formats for adaptive precision SpMV

While the RPFP accessor proposed in [8] only reduces the significand, it may
also be beneficial to reduce the number of bits allocated to the exponent field in
order to further reduce the storage.

This idea is particularly promising for the adaptive precision SpMV because
the matrix elements stored in the same format are by design of similar magnitude.
As shown in (1), all elements of Ak stored in a precision with unit roundoff uk

are in the interval (ϵ∥A∥/uk+1, ϵ∥A∥/uk]. Therefore, the dynamic range of the
elements of Ak is uk+1/uk, which means that ⌈log2(uk+1/uk)⌉ exponent values
are sufficient to represent elements, and so⌈

log2

⌈
log2

uk+1

uk

⌉⌉
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bits are sufficient for the exponent field. In particular, if we use all seven precision
formats in Table 1, we have uk+1/uk ≤ 28 and so we can reduce the number of
bits dedicated to the exponent to log2 log2 2

8 = 3 bits. This represents a large
storage reduction compared with the 11 or 8 bits used by the formats in Table 1.

Concretely, we represent the elements aij of Ak as

aij =
ϵ∥A∥
uk+1

· αij

where αij ∈ [1, 28) is represented with reduced precision and reduced exponent
(RPRE). Note that we must change the interval in (1) to be closed on the left
and open on the right, in order to exclude the right endpoint αij = 28 which
would require four bits. This leads us to define the RPRE formats listed in
Table 2. The RPRE32, RPRE40, and RPRE48 formats have respectively the
same unit roundoff as RP40, RP48, RP56 but three bits of exponent instead of
eleven. The RPRE24, RPRE16, and RPRE8 formats are similar to the FP32,
RP24 and RP16 formats, with only three bits of exponent instead of eight and
slightly different unit roundoffs.

Table 2. List of RPRE formats used for each interval of values.

Interval Format Numbers of bits Unit roundoff
(ϵ′ = ϵ∥A∥) Sign Exponent Significand

[ϵ′245, ∥A∥] FP64 1 11 52+1 2−53 ≈ 1× 10−16

[ϵ′237, ϵ′245) RPRE48 1 3 44+1 2−45 ≈ 3× 10−14

[ϵ′229, ϵ′237) RPRE40 1 3 36+1 2−37 ≈ 7× 10−12

[ϵ′221, ϵ′229) RPRE32 1 3 28+1 2−29 ≈ 2× 10−9

[ϵ′213, ϵ′221) RPRE24 1 3 20+1 2−21 ≈ 5× 10−7

[ϵ′25, ϵ′213) RPRE16 1 3 12+1 2−13 ≈ 1× 10−4

[ϵ′, ϵ′25) RPRE8 1 3 4+1 2−5 ≈ 3× 10−2

[0, ϵ′) dropping 0 0 0 20 = 1

In the same spirit, we can further reduce the storage by splitting the elements
of each Ak into A+

k and A−
k according to their sign. This allows us to drop the

sign bit in the floating-point representation, which can instead be used for the
significand. This leads to unsigned RPRE formats (RPREU), listed in Table 3,
which can be applied to a slightly better interval of values (with a smaller unit
roundoff). For example, RPREU8 can be applied to values up to ϵ′26, instead
of ϵ′25 for RPRE8. The tradeoff is that we double the number of matrices Ak,
which doubles the number of row index arrays of size n (the total size of the
column index arrays remains equal to nnz the number of nonzero elements of
A). Therefore the RPREU formats can be beneficial only when the matrix is not
too sparse (sufficiently large nnz/n ratio).

In practice, the decoding of RPRE and RPREU formats is a little heavier
than that of RP formats. To decode an RPRE number, as shown in Figure 3, we
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Table 3. List of RPREU formats used for each interval of values.

Interval Format Numbers of bits Unit roundoff
(ϵ′ = ϵ∥A∥) Sign Exponent Significand

[ϵ′246, ∥A∥] FP64 1 11 52+1 2−53 ≈ 1× 10−16

[ϵ′238, ϵ′246) RPREU48 0 3 45+1 2−46 ≈ 1× 10−14

[ϵ′230, ϵ′238) RPREU40 0 3 37+1 2−38 ≈ 4× 10−12

[ϵ′222, ϵ′230) RPREU32 0 3 29+1 2−30 ≈ 9× 10−10

[ϵ′214, ϵ′222) RPREU24 0 3 21+1 2−22 ≈ 2× 10−7

[ϵ′26, ϵ′214) RPREU16 0 3 13+1 2−14 ≈ 6× 10−5

[ϵ′, ϵ′26) RPREU8 0 3 5+1 2−6 ≈ 2× 10−2

[0, ϵ′) dropping 0 0 0 20 = 1

need to separate the bit of sign from the exponent, which requires extra binary
and and or operations. We also need to reset the exponent to its actual value
but this operation can be realised only once per bucket. Decoding an RPREU
number does not require the sign bit separation as there is none.

1 __inline__ double
2 RPREArrayToFp ( rpre40barray sa , s i ze_t i ) {
3 union union64 u64 ;
4 uint64_t i64h , i64m , i 6 4 l ;
5 i64h = ( uint64_t ) ( ( sa . i 8 [ i ] & 0x80 ) | 0x40 ) ;
6 i64h = i64h << 56 ;
7 i64m = ( uint64_t ) ( sa . i 8 [ i ] & 0x7F) ;
8 i64m = i64m << (32+16) ;
9 i 6 4 l = ( uint64_t ) sa . i 32 [ i ] ;

10 i 6 4 l = i 6 4 l << 16 ;
11 u64 . i = i64h | i64m | i 6 4 l ;
12 re turn u64 . f ;
13 }

Exp.
3 bits

sign copy and extra 
exponent bit introduction

Sign
1 bit

Sig.
36 bits

Exp.
11 bits

Sign
1 bit

Sig.
52 bits

bitshift

exponent and higher
significand bits copy

bitshift

binary or

Accessed as FP64

Stored as RPRE40

lower significand 
bits copy

bitshift

Fig. 3. Conversion from RPRE40 to FP64
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Table 4. Test matrices (Sorted by nnz).

# Matrix n nnz

0 vas_stokes_4M 4,382,246 131,577,616
1 Cube_Coup_dt0 2,164,760 127,206,144
2 Flan_1565 1,564,794 117,406,044
3 Long_Coup_dt6 1,470,152 87,088,992
4 bone010 986,703 71,666,325
5 vas_stokes_2M 2,146,677 65,129,037
6 Hook_1498 1,498,023 60,917,445
7 RM07R 381,689 37,464,962

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

 0  1  2  3  4  5  6  7
Matrix

FP64
AP2, p=53
AP4, p=53
AP7, p=53

AP7RE, p=53
AP7REU, p=53

RP56
AP2, p=45
AP4, p=45
AP7, p=45

AP7RE, p=45

AP7REU, p=45
RP48

AP2, p=37
AP4, p=37
AP7, p=37

AP7RE, p=37
AP7REU, p=37

RP40
AP2, p=29
AP4, p=29
AP7, p=29

AP7RE, p=29
AP7REU, p=29

FP32
AP2, p=24
AP4, p=24
AP7, p=24

AP7RE, p=24
AP7REU, p=24

RP24
AP2, p=16
AP4, p=16

AP7, p=16
AP7RE, p=16

AP7REU, p=16
RP16

AP2, p=8
AP4, p=8
AP7, p=8

AP7RE, p=8
AP7REU, p=8

Fig. 4. Normwise backward error computed from the FP128 uniform precision SpMV

3 Evaluation

We perform the performance evaluation of our methods on one node of the Jean
Zay supercomputer, equipped with two Intel Cascade Lake 6248 processors with
20 cores running at 2.5 GHz each, for a total of 40 cores. The experimental code
was compiled using GCC 8.5.0 with -O3 -march=native -fopenmp -lgomp (1
thread/core). It was executed with numactl –interleave=all.

We collected eight matrices from the SuiteSparse Matrix Collection [11],
listed in Table 4 (each matrix has size of n × n with nnz nonzero elements).
The matrices are ordered by nnz in descending order. We do not exploit the
potential symmetry of the matrices: symmetric matrices are expanded to un-
symmetric ones before the execution. The vector x is set to e = [1, . . . , 1]T .
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7
Matrix

(a) Storage

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7
Matrix

(b) Time

FP64
AP2, p=53
AP4, p=53
AP7, p=53

RP56
AP2, p=45
AP4, p=45
AP7, p=45

RP48
AP2, p=37
AP4, p=37
AP7, p=37

RP40
AP2, p=29
AP4, p=29
AP7, p=29

FP32
AP2, p=24
AP4, p=24
AP7, p=24

RP24
AP2, p=16
AP4, p=16
AP7, p=16

RP16
AP2, p=8
AP4, p=8
AP7, p=8

Fig. 5. Storage and time gains achieved by adaptive precision variants over uniform
precision ones (normalized by the FP64 cost)

We have chosen to store the input and output vectors x and y in FP64
for all our experiments. We observed that this does not negatively affect the
performance compared with storing them in FP32 and can even improve it in
some cases due to the appearance of denormalized numbers. To further minimize
the risk of incurring underflow, overflow, and subnormality, we also scale the
matrix by its norm so that all elements are bounded by 1.

For each result, we report the shortest execution time out of 15 executions
(the SpMV is executed five times in a single program, and the program is exe-
cuted three times.).

To evaluate the potential offered by the introduction of RPFP formats in the
adaptive precision SpMV, we compare the following configurations:

– FPxx: Uniform precision SpMV with FPxx (xx=32 or 64).
– RPxx: Uniform precision SpMV with RPxx (xx=16, 24, 40, 48, or 56).
– AP2: Adaptive precision SpMV with two precision levels: the natively sup-

ported IEEE FP64 and FP32, as well as dropping.
– AP4: Adaptive precision SpMV with four precision levels: FP64, RP48,

FP32, and RP16, as well as dropping.
– AP7: Adaptive precision SpMV with all seven precision levels: FP64, RP56,

RP48, RP40, FP32, RP24, and RP16, as well as dropping.

In addition, to evaluate the potential offered by the reduced-exponent for-
mats, we also compare the above variants with the following configurations.

– AP7RE: Adaptive precision SpMV with seven precision levels: FP64, RPRE48,
RPRE40, RPRE32, FP32, RPRE16, and RPRE8, as well as dropping.

– AP7REU: Adaptive precision SpMV with seven precision levels: FP64,
RPREU48, RPREU40, RPREU32, FP32, RPREU16, and RPREU8, as well
as dropping.
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Moreover, we test the adaptive precision variants with various accuracy tar-
gets ϵ = 2−p, and compare them with the uniform precision variant of corre-
sponding accuracy (for example, for p = 29 we compare with the RP40 variant).

We begin by checking the correctness of our code. Figure 4 presents the
backward errors achieved by each configuration. The figure confirms that all
adaptive precision variants achieve the prescribed accuracy of order ϵ.

3.1 Performance of adaptive precision SpMV with RPFP

Figure 5 presents the storage and time costs of each variant, normalized by the
FP64 cost. The time cost closely follows the storage cost as expected. The first
observation is that the adaptive precision variants are usually faster than the
uniform precision variant at comparable accuracy, with very large speedups in
some cases (up to 96%) that are explained by huge storage reductions (up to
99%) thanks to the use of dropping. The AP2 variant, which only uses natively
supported precisions, performs well but we can see that the AP4 and AP7 vari-
ants can in many cases further improve the performance by exploiting custom
precision formats. For example, the maximum storage gain of AP4 over AP2 is
24% and the maximum speedup is 21%. As for the difference between AP4 and
AP7, it is less significant, and AP4 can be more efficient in some cases because of
the increased weight of the indices storage. Still, using seven rather than just four
precisions can bring an improvement up to 11% in the storage and a maximum
speedup of 9%.

3.2 Performance of adaptive precision SpMV with RPRE and
RPREU

In order to provide performance evaluations of the RPRE and RPREU variants,
we have chosen not to use the RPRE24 format but to use FP32 instead, which
we have observed to be more efficient since the latter is a natively supported
format. We have also experimented using both FP32 and RPRE24 and obtained
similar, although slightly less efficient results than when only using FP32 (which
can be explained by the short length of the intervals associated with these two
formats).

Figure 6 compares the storage and time costs of the AP7RE and AP7REU
variants with those of the previously analyzed AP7 and uniform precision vari-
ants. The figure shows that the use of reduced-exponent formats can improve
the performance in some cases and on the contrary degrade it in other cases.
Nevertheless, these variants can achieve up to 16% storage reduction and a max-
imum speedup of 13%. The heavier decoding of these reduced-exponent formats
presumably explains why their use does not always improve the performance.

Finally, we plot in Figure 7 the distribution of the precision formats used for
each nonzero element of the matrix. The figure illustrates that having a greater
number of reduced-precision formats (AP7 instead of AP4 or AP2) allows for a
finer tuning of the precisions assigned to each element. Moreover, the figure also
shows that using reduced-exponent formats (AP7RE or AP7REU) allows for
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Fig. 6. Storage and time gains achieved by AP7RE and AP7REU variants over the
uniform precision and AP7 ones (normalized by the FP64 cost)

reusing the exponent (and possibly sign) bits for the significand, which increases
the proportion of elements stored in reduced precisions.

4 Conclusion

We have demonstrated the potential of using custom floating-point formats
for accelerating the adaptive precision sparse matrix–vector product algorithm
of [6]. We have shown that using up to seven different reduced-precision for-
mats from [8] can lead to speedups of up to 96%. Moreover, we have developed
new reduced-exponent formats that can improve performance even more with
further speedups of up to 13%. Since the adaptive precision algorithm allows
for rigorously controlling the loss of accuracy, all these performance gains are
achieved at an accuracy comparable with that of obtained with uniform precision
algorithms.

A promising perspective for further improvements is to use different sparse
matrix formats with a reduced relative weight of the indices, which would sig-
nificantly increase the potential of adaptive precision. This is in particular the
case of diagonal or block sparse formats.
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