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Abstract

The demand in computing power has never stopped growing over the
years. Today, the performance of the most powerful systems exceeds the
exascale and the number of petascale systems continues to grow. Unfor-
tunately, this growth also goes hand in hand with ever-increasing energy
costs, which in turn means a significant carbon footprint. In view of the
environmental crisis, this paper intents to look at the often hidden issue
of energy consumption of HPC systems. As it is not easy to access the
data of the constructors, we then consider the Top500 as the tip of the
iceberg to identify the trends of the whole domain.

The objective of this work is to analyze Top500 and Green500 data
from several perspectives in order to identify the dynamic of the domain
regarding its environmental impact. The contributions are to take stock
of the empirical laws governing the evolution of HPC computing sys-
tems both from the performance and energy perspectives, to analyze the
most relevant data for developing the performance and energy efficiency
of large-scale computing systems, to put these analyses into perspective
with effects and impacts (lifespan of the HPC systems) and finally to de-
rive a predictive model for the weight of HPC sector within the horizon
2030.

keywords: High Performance Computing, Energy efficiency , Top500,
Green500

1 Introduction

With the climate crisis and the global warming, humanity faces an unprece-
dented challenge [12]. It is also well-established that the ICT sector (Infor-
mation and Communication Technologies) plays a significant role in this crisis
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through the huge energy consumption of computing, storage and interconnec-
tion devices. A recent survey of studies dealing with methodologies and tools
for estimating the carbon footprint of the domain [9] gives a value between 2.1
et 3.9% of the global GHG emissions. In this wide variety of electronic and
computing systems, data centers account for around one percent of the world’s
electricity consumption [18]. In France, the domain is estimated to reach 10%
by 2030 [3].

It is very difficult to have a precise view of the whole HPC domain. Many
researchers in the field and political leaders believe that HPC will provide solu-
tions to the warming/environmental crisis. Large-scale climate simulations are
the only way to understand global dynamics and gain a clearer view of further
decisions. Optimizing components in the fields of transportation, intelligent
buildings, energy or health requires considerable computing power [13]. On an-
other hand, HPC is also part of the problem as it belongs to the digital world.
In this paper, we develop an analysis that should contribute to understand the
carbon footprint of the HPC domain. Our main objective is to identify and
clarify the impacts of HPC from the perspective of energy consumption. The
main contributions are the following:

• analyze the empirical laws governing the evolution of HPC computing
systems both from the performance and energy perspectives,

• analyze the most relevant data to study the performance and energy effi-
ciency of large-scale computing systems,

• put these analyses into perspective with effects and impacts (lifespan of
HPC systems),

• derive an estimation of GHG emissions for the HPC domain within the
horizon 2030.

2 Background

Top500 was introduced in 1993 to rank the most powerful systems in the world
using a common set of applications and criteria. It highlights the evolution and
trends in HPC over the years. Including varying parameters on the architecture,
the location and the capacity of systems, it has evolved to include the power
consumption and the architecture’s heterogeneity. It has rapidly gained in pop-
ularity and is now considered as a major source of information on the domain.
Thoroughly studied over the years, many studies have observed the continuous
evolution of computing capacity and energy efficiency on these systems. It was
at the beginning fairly exhaustive but in the past 10 years has become less so
because many powerful systems are not included, for example most hyperscalers
ones. Nevertheless, the large duration and stability of the systems ranked in
the Top500 makes it the most comprehensive and reliable source to study the
evolution of high end powerful computers in the past 30 years. Over the years,
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new ranking lists have been released based on other benchmarks. Top500 in-
troduced in 2017 a HPCG ranking based on a High Performance Conjugate
Gradient benchmark, to bring more diversity to its evaluation. At the same
epoch, Graph500 was released with more data-intensive benchmarks. We focus
in this study on Top500 data and we draft a comparison of evolution trajectory
with Graph500.

2.1 Top500

Top500 is a project [2] whose objective is to publish twice a year a ranking of the
500 most powerful HPC systems. Throughout this time, it published more than
fifty lists, in which we count over 10,000 supercomputers from more than 2,800
institutions around the world. To rank supercomputers, the Top500 project uses
the well-known High-Performance Linpack [6] benchmark. A program supplied
by Top500 has to be run on the HPC system. It solves a dense system of
linear equations and provides the number of floating point operations per second
(FLOPS) during its execution.

Top500 provides attributes about the identification and location of each sys-
tem, its architecture and its performance. An HPC system is identified by
its name, first and previous ranking, release year, and site. Two attributes
characterize each supercomputer’s performance: Rmax, the maximal Linpack
performance achieved and Rpeak, the theoretical peak performance calculated
using the advertised clock rate of the CPU. Concerning the architecture, it in-
cludes the number of cores, memory capacities, CPU/GPU types, constructors,
etc. Table 1 shows an example of Top500 main attributes for a recent HPC
system.

2.2 Green500

In 2008 energy efficiency became a concern in HPC. The monetary cost of run-
ning HPC systems exceeded the cost of purchasing and maintaining them [4].
This highlighted the importance of improving the energy efficiency of the up-
coming supercomputers.

To raise awareness on that matter, the Green500 was brought to light in
2009 [21]. This project started with three exploratory lists (Little Green500,
HPCC Green500, and Open Green500), then became what we officially know
as Green500. The official ranking published in the Top500 website starts from
2013 and is updated at the same pace as Top500. It uses the same Linpack
benchmark as the Top500 project, but gives more attention to the energy ef-
ficiency metric to compare the different supercomputers displayed in the list.
Other than the energy efficiency and the ”green” ranking, Green500 contains
the same attributes as Top500.
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Attribute Name Values
Name Frontier
Country United States
Rank 1 (year 2023)
Installation site DOE/SC/Oak Ridge National Laboratory
Total cores 8699904
Accelerator cores 8138240
Processor AMD Optimized 3rd Generation EPYC 64C 2GHz
Rpeak 1679818.75 [TF lops]
Rmax 1194000 [TF lops]
Power 22703 [kW ]

Table 1: Example of Top500 (and Green500) main attributes.

2.3 Graph500

Graph500 [1] is another ranking list of HPC systems based on more irregu-
lar computations related to graphs. It appeared in 2010 on BFS benchmark
(for Breadth-First Search) including a GreenGraph500 variant. An extension
list, namely SSSP (Single-Source Shortest Paths), was released in 2017. These
benchmarks are data-intensive and not well suited for GPU execution. They are
thus a counterpoint to the Linpack benchmark. The objective was to focus on
real life applications with large-scale data-set from domains as cyber-security,
medical data-base or symbolic network problems [20]. The metric of Graph500
is the Traversed Edges Per Second (TEPS). Graph500 is however not as popular
as Top500, and counts 231 systems in November 2023. The focus of this paper is
limited to the Top500. Graph500 will be only used for comparing the respective
growth rates on different performance metrics.

2.4 Restrictions

The main advantage of the Top500 is that it provides a stable view of the same
features collected over many years and is so a valuable source to measure the
evolution of HPC architectures. Beside the fact that it only concerns a rather
small part of the whole computing systems, it has two drawbacks:

its declarative character the Top500 systems included in the list are sub-
mitted on a voluntary (not contractual) basis. The performances are
self-valuated and self-reported with almost no independent checks. Many
HPC systems are not included mainly for geopolitical or economical rea-
sons. Top500 does not contain all the most powerful systems, in particular,
some large companies do not have interest and thus, do not publish in the
list.

its orientation towards large scale HPC systems this is especially true
for the green counterpart of Top500 where highly innovative but small
scale systems have no chance to appear.
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2.5 Evolution laws

What we refer to as a ’law’ in this section is a trend observation done over
many years that became widely adopted. Such laws are used as a primary tool
to provide a rough prediction about the evolution of a certain metric. The most
popular ones are:

Moore’s law states that the number of transistors in an integrated circuit
doubles about every two years. It is also often extended to track the evolution
of the performance of whole HPC systems [14, 22, 23].

Koomey’s law is similar to Moore’s law, but it targets the energy efficiency
trend. It observes that the number of computations per joule of dissipated
energy roughly doubles every 18 months. [16]

3 Related works

Some papers analyzed the performance of supercomputers based on Top500
and Green500. Many keynote talks also referred to the performance evolution
of HPC systems. However, none of them provide hints about the impact in term
of carbon intensity, estimations and lifespan.

3.1 Trends / Performance analysis

Each Top500 list is released every year in May during ISC High Performance
conference and in November at SuperComputing. It is the occasion to ob-
serve the evolution of trends in HPC. Regarding the technology, the authors of
Top500 published a study in 2015 [22] using the evolution of Rmax over time
to evaluate the increase of processors capacity compared to Moore’s law. It
describes key break points in the evolution which highlight a slowdown starting
from 2008 (which is linked to growth rate of the number of components). This
study is restricted to homogeneous systems and it was published before the era
of GPUs. Milojicic et al. [19] studied the evolution trend of HPC from the ar-
chitectural point of view. They showed that the HPC domain evolved to more
customisation. It also highlights the performance slowdown mentioned in [22]
but attributes it to the end of Dennard scaling. Dennard scaling envisions a
physical limit of power per die area that restrains the performance gain due
to increasing density of transistors. None of the above works really tackle the
energy efficiency and its impact of the overall evolution of the HPC systems.
Khan et al. [14] conducted an analysis that takes into account the architectural
trends of the Top500. It focuses on the comparison between homogeneous and
heterogeneous systems in term of performance and power consumption. It was
mostly focused on the period 2009-2019, that includes the diffusion of GPU in
HPC. In [15], the authors made in 2011 performance and energy consumption
projections up to 2024, claiming that only heterogeneous machines will be able
to reach exascale but with an energy consumption up to 100 MW. It seems
that Exascale was obtained with ”only” 20 MW, but indeed with heterogeneous
architectures.
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3.2 Energy efficiency

Green500 was introduced to study the evolution of energetic efficiency of HPC
systems, that is the ratio of Rmax over the total power consumption. In Novem-
ber 2023, the head of this list is Henri system, with more than 65 GFLOPS/watt.
In 2011, Scogland et al. [21] described the evolution of the Green500 metric
over the three first years to identify the design aspects that contribute to more
power consumption in the objective of exascale. This study was extended in
2013 in [23]. It introduces a new (holistic) metric to give a unified information
about the energy efficiency/performance of Green500 called the EXASCALAR.
This question of correlation between performance and energy efficiency of sys-
tems is crucial for various studies. Khan et al. [14] evaluated the evolution of
the Pearson’s correlation coefficient of the two lists over the period 2009-2019.

Mair et al. [17] analysed the energy efficiency of heterogeneous and homoge-
neous systems based on Green500, and proposed a new energy efficiency metric
to avoid the bias induced by system sizes. Hsu et al. mentioned the same met-
ric in [11]. They provide a 10 years retrospective on the evolution of energy
efficiency metrics and their exploitation to evaluate HPC systems (mainly the
Power Usage Efficiency and Performance-Power Ratio). It also highlights the
main issues that need to be addressed in term of evaluation metrics and mea-
surements. Fraternali et al. [8] took a closer look at the impact of heterogeneity
on performance and energy consumption variability by conducting directly their
experiments on one of the top system in Green500. Although their study does
not address trend analysis, they were able to propose some guidelines (hardware-
wise) to build sustainable supercomputers. Gao et al. [10] relayed on Top500
and Green500 to study the influence of design and architectural parameters on
the Linpack scores in term of performance and energy efficiency. Then, they
identified some development trends in supercomputer design.

4 Methodology

We present in this section the experimental protocol we followed for the results
presented in this paper.

Dataset description We collected data from three main existing lists
(Top500, Green500 and Graph500). Then, they were filtered by removing
any incomplete items or outliers (non-GPUs heterogeneous systems for in-
stance). We also changed some of the resulting data to unify measurement
units. Finally, the data were gathered into a single table to conduct the
experiments where some new metrics were added (such as GFLOPS/watt,
Rmax/Rpeak, etc.).

Experimental setup All the experiments were produced using a jupyter note-
book1 with a Python3.8 kernel and take around 30 seconds to reproduce.

1https://jupyter.org/
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Reproductibility The code used to produce the different figures, along with
all the steps to replicate these experiments is available on Github2.

5 Experiments

The following section reports the multiple experiments performed on the pre-
viously mentioned dataset to investigate the performance and energy efficiency
trends of large-scale computing systems.

5.1 Lifespan of systems in the Top500

We are interested here in the overall lifespan of HPC systems in Top500. We did
an assessment of how long a system stays in Top500 after its first appearance by
counting the number of apparitions of each system multiplied by 6, that corre-
sponds to the interval between two successive publications of the list. Figure 1
– in which the x-axis represents the apparition date in Top500, and the y-axis
represents the proportion of systems that stayed at (or more than) that time in
Top500 – summarizes the observed lifespan of these systems in Top500.

Figure 1: lifespan of HPC systems in the Top500 (in years) from 1993.
The red horizontal line means that 80% of the systems stay less than
2 years.

Only a selected few of the highest supercomputers on the list can appear in
it for up to 8 years while 80% of them do not exceed an appearance time of 2
years, which gives us an average of 1.4 years. Although these results validate the
rapid evolution of large-scale HPC systems, they do not reflect the real lifespan
since we lose track of most of the systems after they leave the Top500. However,
it provides an insight about the duration, which is an important metric to assess
their ecological impact. Complete life cycle analyses show that the usage cost
of an HPC system represents only a part of the total impacts [5].

2https://github.com/aBenhari/Green500-analysis.git
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Certain organizations choose to disclose information regarding their Super-
computer’s architecture and usage. For instance, the cluster CURIE displays
its configuration with every upgrades or changes over time3. While the exact
lifespan of most HPC supercomputers remains uncertain, it typically spans be-
tween 5 to 7 years [5]. Thus, once they no longer figure in the list, these sytems
are either upgraded to meet evolving computational demands (as is the case for
CURIE ), decommissioned and disassembled, or repurposed for other uses.

5.2 Performance efficiency

In this experiment, our aim was to observe closely the performance evolution
of the Top500 systems. We focused on the Rmax and Rpeak metrics for all the
HPC systems on one hand, and the first system from each list on the other
hand. Figure 2 shows the evolution of both metrics in GFLOPS (y-axis) over
time (x-axis).

Figure 2: The evolution of the Top 1 [Purple lines] supercomputer’s
performance metrics (Rmax, Rpeak) compared to the average evolu-
tion of all the Top500 supercomputer [Green lines] by date, based on
Top500 along with Moore’s law projection.

From this figure, a steady performance climb can be noticed through the
years for the listed supercomputers, especially for those at the top. The Rmax

and Rpeak have been increasing strongly since the beginning of the Top500 rank-
ing. However, this exponential increase started slowing down since the second
semester of 2013 where there is a clear breaking point.We compared this growth
to Moore’s law projections. This comparison showed that overall, the perfor-
mance evolution surpasses Moore’s law with an average doubling time of 1.87
years for the Rmax value instead of 2 years. However, this performance doubling
is getting very close to Moore’s projection after the previously mentioned break
point.

Another aspect we intended to highlight is the performance efficiency of the
supercomputers listed in the Top500. For that, we calculated the ratio between

3https://www-hpc.cea.fr/fr/Joliot-Curie.html
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Figure 3: The performance ratio average between the Linpack Rmax

and the theoretical Rpeak over time for the first Top500 system.

the maximum performance reached using the Linpack benchmark (Rmax) and
the maximum theoretical performance (Rpeak). The results are plotted in Fig-
ure 3 to display the performance percentage (y-axis) evolution over time (x-axis).
This graph shows a clear performance decrease in terms of percentage between
the first Top500 supercomputer and the latter ones. Other than energy or bud-
get limitations, this decrease in growth and performance efficiency is correlated
to the rise of architectural complexity of high performance computing systems
that evolved significantly over the years in response to emerging applications
requirements and technological improvements.

5.3 Energy efficiency

Our purpose in this section is to highlight the progress made in terms of energy
efficiency and to compare it with the performance. We focused on Koomey’s [16]
law as a projection reference.

Figure 4: Maximum Efficiency of the Green500 supercomputers by
list date along with Koomey’s law projection starting at two different
periods [2014 and 2019].

Figure4 illustrates a first experiment where we compare the energy efficiency
evolution of HPC supercomputers in GFLOPS/Watt (y-axis) to Koomey’s law
projections from two starting points (2014 and 2019) over time (x-axis).
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We observe an increase in the energy efficiency, but at a lower rate than the
performance. A huge progress have been made in that matter, with a maximum
value increase from 4.5 GFLOPS/watt in the late 2013 to 65.39 GFLOPS/watt
in 2023. However, this progress fails to follow Koomey’s law with a doubling time
higher than 1.5 years, especially in the beginning of Green500. Fortunately, it
seems to catch up in the last few years due to rising interest for energy efficiency
in the HPC community and the emergence of heterogeneous supercomputers
that appear to be more energy efficient.

Figure 5: Maximum Energy efficiency growth Green500 systems by
date distinguished by architecture type (homogeneous vs heteroge-
neous)

To take a closer look on the impact of heterogeneity on the energy efficiency
of Green500, we propose a second experiment where we compare the heteroge-
neous and homogeneous systems in that same list. Our results are displayed in
Figure 5 where the y-axis represents the energy efficiency and the x-axis rep-
resents time. This figure definitely shows that homogeneous systems are less
efficient than heterogeneous ones by an order of magnitude and that the gap
between the two categories is increasing. A lot of architectural work has been
done to develop energy efficient chips for vector computations. It confirms that
using dedicated architectures for certain operations, typically vectorial ones, is
a good way to increase efficiency. This is also a trend in lower end systems
like smartphones with SoCs including components for data analysis and ten-
soral computations capabilities. Nonetheless heterogeneous systems are harder
to program efficiently than homogeneous ones. Exploiting them to their full
potential thus requires significant human expertise that all sites can not afford.
We think that this explains the recent decrease of efficiency on average in the
Top500 while the top system remains at a very high level as shown in Figure 3.

5.4 Does Top500 really represent real life?

The evolution of Rmax performance on Top500 is mostly driven by technology
improvements, as highlighted in previous figures. One can expect the same
evolution on other benchmarks, including less regular ones. Table 2 presents
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the improvement ratio over 12 years for various benchmarks. We consider the
ranking lists corresponding to the two benchmarks of Top500: Linpack (Rmax)
and HPCG, and two benchmarks of Graph500: BFS and SSSP. For each list, we
indicate the increase ratio over 3 periods of 4 years (11/2010-11/2014, 11/2014-
11/2018 and 11/2018-11/2022) for the best system of the corresponding list (top
1), for the 5, 15 first systems. As HPCG list and SSSP list appeared in 2017,
they are only evaluated over the second period. The list is extended to the 500
systems for only Top500 as Graph500 does not list 500 systems. BFS increase
ratio is not given for the first period, as it only contained 10 systems in 2010,
and the increase ratio was over 3,000 over the period for the first systems.

2010-2014 2014-2018 2018-2022

Top500

Rmax (FLOPS)

top 1 13.20 4.24 7.68
top 5 11.19 4.72 5.26
top 15 8.50 4.53 4.75
top 500 7.07 4.58 3.44

HPCG (FLOPS)

top 1 - - 5.47
top 5 - - 6.11
top 15 - - 5.03
top 500 - - 4.99

Graph500

top 1 - 1.32 3.29
BFS (TEPS) top 5 - 1.50 1.79

top 15 - 1.57 1.76
top 1 - - 11.81

SSSP (TEPS) top 5 - - 54.18
top 15 - - 186.98

Table 2: Ratio of increase over 4 years periods per list between 2010
and 2022 in Top500 and Graph500.

A large difference can be observed between the different benchmarks. On
the period 2018-2022, the increase ratio for vary between 1.76 for the top 15
of BFS benchmark and 186.98 for the top 15 of SSSP benchmark. It could
be explained by the novelty of SSSP in 2018 and a wrong parametrization in
the first years. However, BFS and Rmax also behave differently. Top 1 Rmax

performance increased around 7.5 times during the same period, while BFS
increased around 3.3 times only. BFS benchmark is more data-intensive than
Linpack. The slowdown of this list compared to Rmax could be the result of
this point. On the contrary, for each list and period, we observe quite similar
ratio for top 1, top 5, and top 15. If the best performance globally grows faster
than the mean performance as observed in Figure 2 it is not the case for period
2014-2018 and for HPCG. Finally, a slowdown was observed after 2014. This
focus on period 2014-2022 shows an acceleration on top systems after 2018. The
comparison with Figure 4 highlights the impact of accelerators arrival in HPC.
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6 Projection model

6.1 Footprint efficiency

The carbon footprint of HPC electricity consumption was the main objective
behind Green500 release. It is however mostly studied for energy efficiency. We
consider in this section the carbon footprint corresponding to Green500 power
values. We compute the footprint of an HPC system by multiplying its power
consumption by the electricity footprint of its country at the corresponding
year4.

Figure 6: Electric consumption & carbon footprint for the top 5, 25,
50 in Top500 over time.

Figure 6 shows the evolution of mean electricity consumption of the first
Top500 systems since 2014 and the corresponding mean footprint. It highlights
the big difference of the top 5 systems and the following ones. The consumption
was almost constant before 2018 and was multiplied by 2 until 2022. The
increase is restrained for the footprint due to a reduction of electricity footprint
in many countries at the same period. Both curves are very close except for the
very recent period due to the energy mix.

Figure 7 shows the evolution of carbon efficiency in Top500, that is the
number of FLOP per kg of CO2. We observe a regular increase of the mean
efficiency since 2014 with doubling period of 2.83 years on average. The first
Top500 systems are close to the mean while the efficiency of the Green500
increases faster.

6.2 Scenarios

Based on the previous analysis, we provide an estimation of the electricity con-
sumption of the domain in order to compare with the roadmap for decarboniza-
tion. Various scenarios exist, for instance those provided by IPCC[12]. The
objective of the European Union Green Deal [7] is to reduce the GHG emissions

4https://ourworldindata.org/grapher/carbon-intensity-electricity
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Figure 7: Evolution of the maximum performance in GFLOP per
kgCO2 for the top 1 & 5 systems in the Top500 [Left] and Green500
[right].

by 55% by 2030. We target the 2030 horizon since it is unreasonable to look any
further. By extrapolating from the carbon efficiency data displayed in Fig. 7,
we estimate the increase of the number of GFLOP per kgCO2 to reach 1.64∗109
in 2030 compared to 3.05 ∗ 108 in 2022, representing an increase of 537% be-
tween 2022 and 2030 with a slope of 11.87% per issue date, which corresponds
to 24.99% per year of the value recorded in 2022. Of course, this is a rough
estimate, but our results have shown great stability of this improvement over a
long period of time. The gap between this increase and the expected reduction
is huge.

7 Conclusion

In this paper, we have studied the evolution of the HPC domain through data
from the Top500 and its variants which we consider to be representative of the
field. In-depth analysis of both performance and energy efficiency has enabled
us to better understand the evolution and highlights several important results:
(i) the lifespan of HPC systems in Top500 is in average lower than 2 years and
has not evolved in the past decades, (ii) the performance and energy efficiency
increase has diminished between 2014 and 2018, but keep increasing and (iii)
heterogeneous systems are potentially more energy efficient but require more
human expertise to be fully exploited.

In addition, we have proposed a prospective study up to the 2030. Consump-
tion of HPC systems is set to continue rising, as it has been doing for a long
time, at a time when GHG emissions need to be drastically reduced and the gap
is huge. However, the calculations carried out on these large-scale systems may
also help us to propose solutions to mitigate the crisis. Nowadays IPCC experts
consider that it is still time to act against climate change. HPC domain needs
to participate to the effort by improving its footprint. We hope this study will
help estimating the necessary efforts to meet IPCC roadmaps.
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