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Abstract

The Jones-Wilkins-Lee (JWL) model is a widely used Equation Of State
(EOS) in the literature to model high explosive products. It is based on ex-
ponentially decaying isentropes in the pressure-volume diagram, completed
by an additional term meant to recover an ideal-gas behavior for large expan-
sions where exponential terms are negligible. A step-by-step analysis of the
EOS is proposed. Starting from the main isentrope, the constant Grüneisen,
and constant isochoric heat capacity, the JWL expressions of pressure, tem-
perature, sound speed, specific internal energy, specific entropy and specific
enthalpy are derived. For a specific set of JWL parameters meant to model
HMX products, various thermodynamic fields are investigated in pressure–
volume and temperature–volume planes. The positivity of pressure and tem-
perature, the convexity, the thermodynamic stability, and the monotonicity
along an Hugoniot are investigated in order to characterize the JWL domain
of validity. For each of these constraints, different regions of validity are
found. Besides presenting a study of the JWL model and its limits, this
work also provides a standalone presentation and derivation containing the
necessary materials for the understanding and for the use of the JWL EOS
in reactive hydrodynamic simulations of condensed phase explosives.
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Nomenclature

𝑝 Pressure Pa

𝑣 Specific volume m3 · kg−1

𝑠 Entropy J · kg−1 · K−1

𝑒 Internal energy J · kg−1

ℎ Enthalpy J · kg−1

𝑇 Temperature K

𝑐 Sound speed m · s−1

𝛤 Grüneisen coefficient

𝐶𝑣 Specific heat capacity at constant volume J · kg−1 · K−1

𝑠ref Entropy of the reference isentrope J · kg−1 · K−1

𝑝ref Pressure of the reference isentrope Pa

𝑒ref Internal energy of the reference isentrope J · kg−1

𝑣0 Specific volume of unreacted explosive m3 · kg−1

𝑝CJ Chapman-Jouguet pressure Pa

𝑣CJ Chapman-Jouguet specific volume m3 · kg−1

𝑒CJ Chapman-Jouguet internal energy J · kg−1

𝐷CJ Chapman-Jouguet velocity m · s−1

𝑇CJ Chapman-Jouguet temperature K

𝑞 Chapman-Jouguet heat release J · kg−1
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1. Introduction

During any event of transition to detonation of a condensed phase explo-
sive, the leading shock wave increases the pressure and the temperature, and
therefore triggers the chemical reactions in the explosive. Heat exchanges
can occur between the unreacted material and the products in the reaction
zone. The modeling of the products is therefore important, as it governs the
partition between the kinetic and internal energies. Moreover, the expansion
of the products can be used to propel surrounding materials [1–4].

When a thorough understanding of a physical phenomenon is not read-
ily available, it is often difficult to derive a complete and meaningful model
taking into account all relevant physical processes. A simplified model with
calibrated parameters can be used to reproduce certain physical phenomena
for engineering applications. As for the modeling of condensed phase detona-
tion products, the Jones-Wilkins-Lee (JWL) equation of state (EOS) belongs
to the latter category. Its first published mention can be traced back to the
contributions of [5] and [6], which have been notably inspired by the works
of [7] and [8].

More refined EOS can also be found in the condensed phase explosive lit-
erature including e.g., the H9 ([9]) and the well known Becker-Kistiakowsky-
Wilson ([10, 11]) models. Nonetheless, due to its simplicity, the JWL model
is among the most widely used EOS for the high explosive products mod-
eling, see e.g., Refs.[2, 12–15]. It requires a careful calibration of various
adjustable parameters in order to fit experimental or theoretical results see
e.g., [16–20]. Being widely used in the literature it is surprising to mention
that very few sources actually address the derivation and study of the JWL
model itself from a thermodynamic standpoint, possibly due to its composite
and empirical origin. Some important milestones of the JWL analysis can
be found in [21], [22], [23], and [20]. Nonetheless a step-by-step derivation
and dedicated investigation of JWL thermodynamics and domain of validity
is still lacking.

Therefore the purpose of the present work is twofold. First, a thermody-
namically consistent derivation of various forms of the JWL EOS from the
isentropes is provided. More specifically, the expressions of the pressure, spe-
cific internal energy, sound speed, temperature, specific enthalpy, and specific
entropy are derived, allowing the use of the JWL model in reactive hydrody-
namic problems. Second, the model calibrated to HMX products is discussed
and its domain of validity with regard to various thermodynamic constraints
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is investigated and discussed.
With a view to simplification, the presentation is organized as follows.

Section 2 presents the JWL isentropes along with pressure–volume–entropy
and internal energy–volume–entropy forms. In Sect. 3, by using the as-
sumption of a constant Grüneisen, the sound speed and pressure–internal
energy–volume forms are derived, and the JWL model is expressed in a Mie-
Grüneisen form. In Sect. 4, thermal and caloric expressions of temperature,
specific enthalpy, and specific entropy are derived. Then, Sect. 5 is devoted to
the qualitative analysis of the model for some HMX parameters. In Sect. 6,
the domain of validity of positive temperature, positive pressure, convex-
ity, thermodynamic stability and monotonicity along the Hugoniot curve are
investigated. Finally, conclusions are drawn in Sect. 7.

2. The Jones-Wilkins-Lee isentropes

The pedestrian derivation leading to a JWL model, which is to be imple-
mented into a hydrodynamic code, starts by the early stages of the demon-
stration proposed by [23]. The 𝑝 (𝑣, 𝑠) isentropes selected in the JWL model
read as,

𝑝 (𝑣, 𝑠) = 𝐴 exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵 exp

(
−𝑅2

𝑣

𝑣0

)
+𝐶 (𝑠)

(
𝑣

𝑣0

)−(𝛤 + 1)
, (1)

where 𝑣 and 𝑣0 denote the current and initial specific volume of the material, 𝑝
is the thermodynamic pressure, 𝑠 the entropy, and 𝛤 the Grüneisen coefficient
that is assumed constant in the classical JWL model. When the JWL EOS
is used for detonation products, 𝐴, 𝐵, 𝑅1, and 𝑅2 are the remaining positive
parameters, which need to be fitted to reference sets of data.

This particular form of isentropes has been selected from empirical com-
parisons decades ago. It was also recently revisited in the work of [21] by
using the universal curve of [24] (𝑝/𝑝CJ as a function of 𝑢/𝑢CJ along the isen-
trope issued from the CJ state) and the tangency of Crussard and isentrope
curves in the vicinity of CJ point in the 𝑝–𝑣 diagram. [20] showed how to
derive the different parameters from only the detonation velocity and the
initial density, from the compilation of empirical data and correlations. The
JWL various terms can therefore be interpreted as follows.
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• The first term proportional to 𝐴 is meant to model high pressure ex-
pansions close to CJ state.

• The second term proportional to 𝐵 is meant to model intermediate
pressure expansions.

• The third term scaling proportional to 𝐶 is meant to model an ideal-gas
behavior appearing at low pressures and large expansions.

According to [8], the function 𝐶 (𝑠) only depends on entropy, which is yet
to be specified but should not be a constant function to avoid Eq. (1) to
degenerate into a barotropic EOS.

Among this family of isentropes, an arbitrary reference entropy 𝑠ref is
selected corresponding to the isentrope curve 𝑝ref(𝑣) = 𝑝 (𝑣, 𝑠ref). It can be
expressed by,

𝑝ref(𝑣) = 𝐴 exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵 exp

(
−𝑅2

𝑣

𝑣0

)
+𝐶∗

(
𝑣

𝑣0

)−(𝛤 + 1)
, (2)

where 𝐶∗ = 𝐶 (𝑠ref) is a constant. In this article, 𝑝ref(𝑣) will be referred to as
the main isentrope. Then, using Eqs. (1,2), the 𝑝 (𝑣, 𝑠), EOS could be recast
in a more compact equation in term of the reference isentrope curve 𝑝ref(𝑣),

𝑝 (𝑣, 𝑠) = 𝑝ref(𝑣) + (𝐶 (𝑠) −𝐶∗)
(
𝑣

𝑣0

)−(𝛤 + 1)
. (3)

Now, from thermodynamic relations [25], the pressure can be related to the
specific internal energy, entropy, and volume by

𝑝 = −
(
𝜕𝑒

𝜕𝑣

)
𝑠

. (4)

Equation (1) can be used to pursue integration of Eq. (3), with respect to 𝑣
in order to deduce the internal energy 𝑒 as a function of 𝑣 and 𝑠,

𝑒 (𝑣, 𝑠) = 𝐴𝑣0
𝑅1

exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵 𝑣0

𝑅2
exp

(
−𝑅2

𝑣

𝑣0

)
+ 𝑣0𝐶 (𝑠)

𝛤

(
𝑣

𝑣0

)−𝛤
+ 𝐸 (𝑠). (5)
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The unknown integration function 𝐸 (𝑠) only depends on entropy and will be
determined in the following. Similarly to Eq. (2), a reference energy curve
𝑒ref(𝑣) = 𝑒 (𝑣, 𝑠ref) can be selected and written as,

𝑒ref(𝑣) = 𝐴
𝑣0

𝑅1
exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵 𝑣0

𝑅2
exp

(
−𝑅2

𝑣

𝑣0

)
+ 𝑣0𝐶

∗

𝛤

(
𝑣

𝑣0

)−𝛤
+ 𝐸∗ , (6)

where 𝐸∗ = 𝐸 (𝑠ref) is a constant. Then Eqs. (5,6) are combined into a more
convenient and compact form,

𝑒 (𝑣, 𝑠) = 𝑒ref(𝑣) +
𝑣0 (𝐶 (𝑠) −𝐶∗)

𝛤

(
𝑣

𝑣0

)−𝛤
+ 𝐸 (𝑠) − 𝐸∗ . (7)

At this point, it should be mentioned that in order to use this EOS, the func-
tions 𝐶 (𝑠) and 𝐸 (𝑠) are yet to be determined. However, the EOS dependence
with respect to entropy is not the preferred form of the JWL EOS. In typical
numerical computations, the pressure needs to be computed at the end of
a timestep from the specific volume and internal energy. Therefore, 𝑝 (𝑣, 𝑒)
form seems a more natural choice of EOS.

Additionally, the temperature 𝑇 is a commonly used variable necessary
for detailed chemistry models. Thus, the 𝑝 (𝑣,𝑇 ) form is also important.
Therefore the following sections are devoted to the derivation of the vari-
ous forms of the JWL model as a function of 𝑝, 𝑣 , 𝑒, 𝑇 , and other useful
thermodynamic variables.

3. Mie-Grüneisen form

Mie-Grüneisen EOS is a family of widely used EOS (see e.g., Ref.[26]),
which exhibits a 𝑝 ∝ 𝑒 relation ensuring a simple numerical evaluation of the
pressure during a numerical simulation. One of the advantageous features of
the JWL model is that it can be recast in a Mie-Grüneisen form.

While a non-constant Grüneisen JWL model was proposed by [21], the
constant Grüneisen assumption is the most commonly used in the literature.
This work is restricted to the latter case. The Grüneisen function describes
how temperature𝑇 responds to specific volume 𝑣 changes [27] on an isentrope.
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The Grüneisen coefficient 𝛤 is defined by,

𝛤 = −
(
𝜕 log𝑇

𝜕 log 𝑣

)
𝑠

. (8)

It can also be expressed by several thermodynamically equivalent forms in-
cluding,

𝛤 =
𝑣

𝑇

(
𝜕𝑝

𝜕𝑠

)
𝑣

= 𝑣

(
𝜕𝑝

𝜕𝑒

)
𝑣

= 𝑣

(
𝜕𝑝

𝜕𝑠

)
𝑣

(
𝜕𝑠

𝜕𝑒

)
𝑣

. (9)

A first important step towards the Mie-Grüneisen form of the JWL model
is to notice that a constant 𝛤 assumption actually places restrictions on the
function 𝐸 (𝑠). Indeed by injecting Eqs. (1,5) inside the last form of Eq. (9)
leads to,

𝛤 =

𝛤
𝑑𝐶

𝑑𝑠

𝑑𝐶

𝑑𝑠
+ 𝑑𝐸
𝑑𝑠

𝛤

𝑣0

(
𝑣

𝑣0

)𝛤 . (10)

It is easily verified that this expression is only valid for a constant 𝐸 (𝑠)
function. This is a consequence of the constant Grüneisen assumption. Eval-
uation of this function on the reference isentrope characterized by 𝑠ref yields,

𝐸 (𝑠) = 𝐸∗ . (11)

Then thanks to the constant Grüneisen assumption, the second form of
Eq. (9) can be integrated from the reference isentrope characterized by 𝑠ref
up to an arbitrary point, which state is defined by 𝑝, 𝑒, and 𝑣 . Integration
functions are therefore evaluated on the reference isentrope 𝑝ref and 𝑒ref given
by Eqs. (2,6). This leads to the widely used Mie-Grüneisen form of the JWL
EOS,

𝑝 (𝑣, 𝑒) = 𝑝ref(𝑣) +
𝛤

𝑣
(𝑒 − 𝑒ref(𝑣)) . (12)

Injection of the reference isentrope Eqs. (2,6) into Eq. (12) leads to an equiv-
alent, less compact yet also interesting form,

𝑝 (𝑣, 𝑒) = 𝛤

𝑣
[𝑒 − 𝐸∗] (13)

+𝐴
(
1 − 𝑣0

𝑣

𝛤

𝑅1

)
exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵

(
1 − 𝑣0

𝑣

𝛤

𝑅2

)
exp

(
−𝑅2

𝑣

𝑣0

)
.
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From this last expression, it is seen that 𝐶∗ does not appear in the 𝑝 (𝑣, 𝑒)
form. It can also be seen that 𝐸∗ effectively acts as the reference energy,
which is used to introduce the heat of reaction in the products EOS.

Often used in high energy and high velocity problems the JWL square
sound speed 𝑐2 also needs to be computed along with the 𝑝 (𝑣, 𝑒) EOS. It is
expressed as a function of 𝑝, 𝑒, and 𝑣 by,

𝑐2 = 𝑣2
(
𝜕𝑝

𝜕𝑒

)
𝑣

(
𝑝 +

(
𝜕𝑒

𝜕𝑣

)
𝑝

)
. (14)

These necessary partial derivatives are obtained from Eq. (13) and lead to,(
𝜕𝑝

𝜕𝑒

)
𝑣

=
𝛤

𝑣
, (15)(

𝜕𝑝

𝜕𝑣

)
𝑒

= −𝑝
𝑣

+𝐴
(
𝛤 + 1

𝑣
− 𝑅1

𝑣0

)
exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵

(
𝛤 + 1

𝑣
− 𝑅2

𝑣0

)
exp

(
−𝑅2

𝑣

𝑣0

)
, (16)(

𝜕𝑒

𝜕𝑣

)
𝑝

= −
(
𝜕𝑒

𝜕𝑝

)
𝑣

(
𝜕𝑝

𝜕𝑣

)
𝑒

, (17)

that can be injected inside Eq. (14). This yields the JWL sound speed
expression as a function of 𝑝 and 𝑣 ,

𝑐2(𝑝, 𝑣) = (𝛤 + 1) 𝑝𝑣 (18)

− 𝐴𝑣

(
𝛤 + 1 − 𝑅1𝑣

𝑣0

)
exp

(
−𝑅1

𝑣

𝑣0

)
− 𝐵𝑣

(
𝛤 + 1 − 𝑅2𝑣

𝑣0

)
exp

(
−𝑅2

𝑣

𝑣0

)
.

Elimination of the pressure also leads to the sound speed as a function of 𝑒
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and 𝑣 ,

𝑐2(𝑣, 𝑒) = 𝛤 (𝛤 + 1) (𝑒 − 𝐸∗) (19)

+ 𝐴

(
𝑣2𝑅1

𝑣0
− 𝛤 (𝛤 + 1) 𝑣0

𝑅1

)
exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵

(
𝑣2𝑅2

𝑣0
− 𝛤 (𝛤 + 1) 𝑣0

𝑅2

)
exp

(
−𝑅2

𝑣

𝑣0

)
.

With the 𝑝 (𝑣, 𝑒) and sound speed 𝑐2(𝑣, 𝑒) forms in hand, the JWL model can
be used in a numerical code involving variables 𝑝, 𝑒, and 𝑣 . The evaluation
of the decomposition of the condensed explosive into gaseous products may
request the determination of the temperature or the entropy, depending on
the particular model [28]. Thus the thermal and caloric forms of the EOS
are needed.

4. Thermal and Caloric forms

The previous section showed how the constant Grüneisen assumption al-
lows to derive the useful 𝑝 (𝑣, 𝑒) EOS from the 𝑝 (𝑣, 𝑠) form. This section is
dedicated to demonstrate that the assumption of a constant isochoric heat
capacity defined by

𝐶𝑣 =

(
𝜕𝑒

𝜕𝑇

)
𝑣

, (20)

is sufficient to derive other forms of the JWL EOS as a function of enthalpy,
entropy, and temperature.

The entropy total derivative with temperature 𝑇 and specific volume 𝑣 as
independent variables is written as,

𝑑𝑠 =

(
𝜕𝑠

𝜕𝑣

)
𝑇

𝑑𝑣 +
(
𝜕𝑠

𝜕𝑇

)
𝑣

𝑑𝑇 . (21)

Then, standard thermodynamic definitions [25] can be used to express the
following identities, (

𝜕𝑠

𝜕𝑣

)
𝑇

=
𝛤𝐶𝑣

𝑣
, (22)(

𝜕𝑠

𝜕𝑇

)
𝑣

=
𝐶𝑣

𝑇
. (23)

10



Using constant-𝛤 and constant-𝐶𝑣 assumptions, Eqs. (22,23) are integrated
and lead to,

𝑠 = 𝛤𝐶𝑣 ln (𝑣) + 𝑓1 (𝑇 ) , (24)
𝑠 = 𝐶𝑣 ln (𝑇 ) + 𝑓2 (𝑣) , (25)

where 𝑓1(𝑇 ) and 𝑓2(𝑣) are functions of temperature and specific volume, re-
spectively. Identification between those expressions and subtraction of the
reference value 𝑠ref lead to the 𝑠 (𝑣,𝑇 ) EOS,

𝑠 − 𝑠ref
𝐶𝑣

= ln

(
𝑇𝑣𝛤[
𝑇𝑣𝛤

]
ref

)
, (26)

where
[
𝑇𝑣𝛤

]
ref is a constant evaluated on the reference state characterized

by 𝑠 = 𝑠ref. This form shows that 𝛤 is directly related to isentropes in the
𝑇–𝑣 plane (see also Eq. (8)) and that 𝑇𝑣𝛤 is constant along JWL isentropes.
The Eq. (26) also leads to the 𝑇 (𝑣, 𝑠) EOS,

𝑇 = 𝑣−𝛤
[
𝑇𝑣𝛤

]
ref exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
. (27)

Another total derivative, which is directly related to the 𝑝 (𝑣, 𝑠) form
Eq. (1) is introduced,

𝑑𝑝 =

(
𝜕𝑝

𝜕𝑣

)
𝑠

𝑑𝑣 +
(
𝜕𝑝

𝜕𝑠

)
𝑣

𝑑𝑠 . (28)

Standard thermodynamic definitions [25] can be used to express its partial
derivatives as, (

𝜕𝑝

𝜕𝑣

)
𝑠

= −𝑐
2

𝑣2
, (29)(

𝜕𝑝

𝜕𝑠

)
𝑣

=
𝛤𝑇

𝑣
. (30)

The Schwartz differentiability condition ensuring that 𝑝 is a state function
can be written as,

−
(
𝜕

𝜕𝑠

(
𝑐2

𝑣2

))
𝑣

=

(
𝜕

𝜕𝑣

(
𝛤𝑇

𝑣

))
𝑠

, (31)

11



which leads when combined with Eq. (27) to a first order differential equation,(
𝜕

𝜕𝑠

(
𝑐2

))
𝑣

= 𝛤 (𝛤 + 1)
[
𝑇𝑣𝛤

]
ref exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
𝑣−𝛤 . (32)

Then, Eq. (32) can be integrated between the reference state 𝑠ref and an
arbitrary value 𝑠,

𝑐2(𝑣, 𝑠) = 𝑐2ref(𝑣) (33)

+ 𝛤 (𝛤 + 1)𝐶𝑣
[
𝑇𝑣𝛤

]
ref

(
exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
− 1

)
𝑣−𝛤 ,

where 𝑐2ref(𝑣) = 𝑐
2(𝑣, 𝑠ref) is the reference sound speed. This reference quantity

is directly related to the reference isentrope by,

𝑐2ref(𝑣) = −𝑣2𝑑𝑝ref

𝑑𝑣
= 𝑣2

𝑑2𝑒ref

𝑑𝑣2
. (34)

Equations (29,30) can be integrated with the help of Eqs. (27,33,34) and yield
a system of two forms for 𝑝 (𝑣, 𝑠) that should simultaneously be satisfied,

𝑝 (𝑣, 𝑠) = 𝑝ref(𝑣) + 𝑓3(𝑠) (35)

+ 𝛤𝐶𝑣
[
𝑇𝑣𝛤

]
ref

(
exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
− 1

)
𝑣−(𝛤 + 1) ,

𝑝 (𝑣, 𝑠) = 𝛤𝐶𝑣
[
𝑇𝑣𝛤

]
ref exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
𝑣−(𝛤 + 1) + 𝑓4(𝑣) . (36)

The functions 𝑓3(𝑠) and 𝑓4(𝑣) are evaluated by identifying the Eqs. (35) and
(36) to each other and recalling that 𝑝 (𝑣, 𝑠ref) = 𝑝ref(𝑣). This finally yields
the closed 𝑝 (𝑣, 𝑠) form,

𝑝 (𝑣, 𝑠) = 𝑝ref(𝑣) (37)

+
𝛤𝐶𝑣

[
𝑇𝑣𝛤

]
ref

𝑣𝛤 + 1
0

(
exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
− 1

) (
𝑣

𝑣0

)−(𝛤 + 1)
.

By using the reference JWL isentrope Eq. (2), one can also rewrite the 𝑝 (𝑣, 𝑠)
form as,

𝑝 (𝑣, 𝑠) = 𝐴 exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵 exp

(
−𝑅2

𝑣

𝑣0

)
+𝐶∗

(
𝑣

𝑣0

)−(𝛤 + 1)

+
𝛤𝐶𝑣

[
𝑇𝑣𝛤

]
ref

𝑣𝛤 + 1
0

(
exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
− 1

) (
𝑣

𝑣0

)−(𝛤 + 1)
. (38)
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This allows to finally identify the unknown function 𝐶 (𝑠) from Eq. (1) as,

𝐶 (𝑠) =
𝛤𝐶𝑣

[
𝑇𝑣𝛤

]
ref

𝑣𝛤 + 1
0

(
exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
− 1

)
+𝐶∗ . (39)

The Eq. (7) can be used to express the 𝑒 (𝑣, 𝑠) EOS as,

𝑒 (𝑣, 𝑠) = 𝑒ref(𝑣) +
𝐶𝑣

[
𝑇𝑣𝛤

]
ref

𝑣𝛤0

(
exp

(
𝑠 − 𝑠ref
𝐶𝑣

)
− 1

) (
𝑣

𝑣0

)−𝛤
. (40)

Thanks to the 𝑇 (𝑣, 𝑠) form, Eq. (27) 𝐶 (𝑠) can also be expressed as a function
of temperature and specific volume,

𝐶 (𝑣,𝑇 ) = 𝛤𝐶𝑣𝑇𝑣
𝛤

𝑣𝛤 + 1
0

+ 𝐾 . (41)

The new constant 𝐾 , which practical influence will be highlighted later, is
defined as,

𝐾 = 𝐶∗ −
𝛤𝐶𝑣

[
𝑇𝑣𝛤

]
ref

𝑣𝛤 + 1
0

. (42)

The thermal 𝑝 (𝑣,𝑇 ) form can be deduced from Eqs. (1,41) and reads as,

𝑝 (𝑣,𝑇 ) = 𝛤𝐶𝑣𝑇

𝑣
+ 𝐾

(
𝑣

𝑣0

)−(𝛤 + 1)
(43)

+𝐴 exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵 exp

(
−𝑅2

𝑣

𝑣0

)
.

The last three terms are found similar to the main isentrope 𝑝ref(𝑣) except
for constant 𝐶∗ being replaced by 𝐾 , this important detail being discussed in
Appendix. The caloric 𝑒 (𝑣,𝑇 ) form is similarly deduced from Eqs. (5,11,41),

𝑒 (𝑣,𝑇 ) = 𝐶𝑣𝑇 + 𝑣0𝐾
𝛤

(
𝑣

𝑣0

)−𝛤
+ 𝐸∗ (44)

+𝐴𝑣0
𝑅1

exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵 𝑣0

𝑅2
exp

(
−𝑅2

𝑣

𝑣0

)
.
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Defining the specific enthalpy as ℎ = 𝑒 + 𝑝𝑣 , one is led to the ℎ(𝑣,𝑇 ) relation,

ℎ(𝑣,𝑇 ) = (𝛤 + 1)𝐶𝑣𝑇 + 𝐾𝑣0
(
1

𝛤
+ 1

) (
𝑣

𝑣0

)−𝛤
+ 𝐸∗ (45)

+𝐴
(
𝑣0

𝑅1
+ 𝑣

)
exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵

(
𝑣0

𝑅2
+ 𝑣

)
exp

(
−𝑅2

𝑣

𝑣0

)
.

Additionally, the 𝑐2(𝑣,𝑇 ) form can also be obtained by elimination of pressure
from Eqs. (18,43),

𝑐2(𝑣,𝑇 ) = 𝛤 (𝛤 + 1)𝐶𝑣𝑇 + (𝛤 + 1) 𝐾𝑣0
(
𝑣

𝑣0

)−𝛤
(46)

+ 𝐴
𝑅1𝑣

2

𝑣0
exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵𝑅2𝑣

2

𝑣0
exp

(
−𝑅2

𝑣

𝑣0

)
.

A last variable that is interesting to compute is 𝑍 the compressibility factor
[29]. It scales with ∝ 𝑝𝑣/𝑇 and its value is 1 in the ideal-gas limit where
𝑣/𝑣0 → ∞ i.e. when 𝑣 is sufficiently large to neglect attraction and repulsion
between molecules. Hence it is expressed for the JWL as,

𝑍 =
𝑝𝑣

𝛤𝐶𝑣𝑇
= 1 + 𝐾𝑣0

𝛤𝐶𝑣𝑇

(
𝑣

𝑣0

)−𝛤
(47)

+ 𝐴𝑣

𝛤𝐶𝑣𝑇
exp

(
−𝑅1

𝑣

𝑣0

)
+ 𝐵𝑣

𝛤𝐶𝑣𝑇
exp

(
−𝑅2

𝑣

𝑣0

)
.

In the ideal-gas limit, 𝑍 = 1 and the specific volume of the gas is 𝑣ig = 𝛤𝐶𝑣𝑇 /𝑝.
In the general case, 𝑣 = 𝑍𝑣ig. When 𝑍 < 1 (resp. 𝑍 > 1), the specific volume
of the gas is smaller (resp. larger) than the corresponding ideal-gas with
identical 𝑝 and 𝑇 indicating that attraction (resp. repulsion) effects between
molecules are dominant. By inspecting the signs of the three terms ∝ 𝐾 , ∝ 𝐴,
and ∝ 𝐵, it is possible to determine whether these terms are participating to
attraction or repulsion effects when compared with the ideal-gas limit of the
EOS.

5. Calibration to the Chapman-Jouguet state

Sets of reference data of a given explosive composition are used to cali-
brate the JWL coefficients (𝐴, 𝐵, 𝐶∗, 𝑅1, 𝑅2, 𝛤 , and 𝑣0) of the main isentrope
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Eq. (2), which is therefore completely characterized, see e.g., Refs.[17, 30].
Alternatively, [20] proposed a methodology based on universal scalings for
known explosive compositions to calibrate a JWL EOS by only using the ini-
tial explosive density 1/𝑣0 and the CJ detonation velocity 𝐷CJ as inputs. In
the present study, it was chosen to follow a simple calibration guideline, based
on the CJ state, see [18, 19]. This process is briefly summarized hereafter for
completeness.

The reference isentrope 𝑝ref (𝑣) is chosen as the CJ isentrope, 𝑝CJ =

𝑝ref (𝑣CJ). For an unreacted energetic material initially at standard con-
ditions 𝑝0 = 101325 Pa and 𝑇0 = 298.15 K, the jump conditions across a CJ
detonation characterized by 𝑣CJ, 𝑝CJ ≫ 𝑝0, 𝑒CJ ≫ 𝑒0, and 𝐷CJ lead to,

𝑝CJ =
𝐷2

CJ

𝑣20

(𝑣0 − 𝑣CJ) , (48)

𝑒CJ =
𝑝CJ

2
(𝑣0 − 𝑣CJ) , (49)

Additionally, the tangency of the isentrope with the Rayleigh line at the CJ
point yields,

𝑑𝑝ref

𝑑𝑣
(𝑣 = 𝑣CJ) = −

𝐷2
CJ

𝑣20

. (50)

It is worth mentioning that the thermodynamic identity 𝛾 = −𝑣 (𝜕𝑝/𝜕𝑣)𝑠 /𝑝
combined with Eq. (50) leads to,

𝛾CJ =
𝐷2

CJ
𝑣0𝑝CJ

− 1 , (51)

where 𝛾CJ is the adiabatic exponent at the CJ state. The Eqs. (48-50) are a
set of three constraints that need to be met at the CJ point by the JWL EOS.
Following [22], 𝐸∗ is related to the heat of detonation 𝑞 > 0 by 𝐸∗ ≈ −𝑞. Using
this result along with Eqs. (2,6,48-50) evaluated for 𝑣 = 𝑣CJ allows to express
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a set of three relations between the CJ state and the JWL parameters,

𝑝CJ = 𝐴 exp

(
−𝑅1

𝑣CJ

𝑣0

)
+ 𝐵 exp

(
−𝑅2

𝑣CJ

𝑣0

)
+𝐶∗

(
𝑣CJ

𝑣0

)−(𝛤 + 1)
, (52)

𝑣0𝑝
2
CJ

2𝐷2
CJ

=
𝐴

𝑅1
exp

(
−𝑅1

𝑣CJ

𝑣0

)
+ 𝐵

𝑅2
exp

(
−𝑅2

𝑣CJ

𝑣0

)
+ 𝐶

∗

𝛤

(
𝑣CJ

𝑣0

)−𝛤
− 𝑞

𝑣0
, (53)

𝐷2
CJ
𝑣0

= 𝐴𝑅1 exp

(
−𝑅1

𝑣CJ

𝑣0

)
+ 𝐵𝑅2 exp

(
−𝑅2

𝑣CJ

𝑣0

)
+𝐶∗(𝛤 + 1)

(
𝑣CJ

𝑣0

)−(𝛤 + 2)
.

(54)

This means that having calibrated 3 parameters among 𝐴, 𝐵, 𝐶∗, 𝑅1, 𝑅2, and
𝛤 , the other ones are automatically deduced from Eqs. (52-54) by specifying
the unreacted specific volume 𝑣0 and its CJ state characterized by 𝑝CJ, 𝐷CJ,
and 𝑞. Following [18, 19], the parameters 𝐴, 𝐵, and 𝐶∗ can be expressed from
𝑅1, 𝑅2, 𝛤 and the CJ state,

𝐴 = exp

(
𝑅1
𝑣CJ

𝑣0

)
𝑅1

𝑅1 − 𝑅2
× (55)

𝑝CJ

(
1 + 𝛤 −

𝑅22𝑣
2
CJ

𝛤𝑣20

)
−

(
𝑣0𝑝

2
CJ

2𝐷2
CJ

+ 𝑞

𝑣0

) (
1 + 𝛤 − 𝑅2𝑣CJ

𝑣0

)
𝑅2 −

𝐷2
CJ𝑣CJ

𝑣20

(
1 − 𝑅2𝑣CJ

𝛤𝑣0

)
1 + 𝛤 − (𝑅1 + 𝑅2)

𝑣CJ

𝑣0
+
𝑅1𝑅2𝑣

2
CJ

𝛤𝑣20

,

𝐵 = exp

(
𝑅2
𝑣CJ

𝑣0

)
𝑅2

𝑅2 − 𝑅1
× (56)

𝑝CJ

(
1 + 𝛤 −

𝑅21𝑣
2
CJ

𝛤𝑣20

)
−

(
𝑣0𝑝

2
CJ

2𝐷2
CJ

+ 𝑞

𝑣0

) (
1 + 𝛤 − 𝑅1𝑣CJ

𝑣0

)
𝑅1 −

𝐷2
CJ𝑣CJ

𝑣20

(
1 − 𝑅1𝑣CJ

𝛤𝑣0

)
1 + 𝛤 − (𝑅1 + 𝑅2)

𝑣CJ

𝑣0
+
𝑅1𝑅2𝑣

2
CJ

𝛤𝑣20

,

𝐶∗ =

−𝑝CJ (𝑅1 + 𝑅2) +
(
𝑣0𝑝

2
CJ

2𝐷2
CJ

+ 𝑞

𝑣0

)
𝑅1𝑅2 +

𝐷2
CJ
𝑣0

1 + 𝛤 − (𝑅1 + 𝑅2)
𝑣CJ

𝑣0
+
𝑅1𝑅2𝑣

2
CJ

𝛤𝑣20

(
𝑣CJ

𝑣0

) (𝛤 + 2)
. (57)
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1/𝑣0 𝑝CJ 𝐷CJ 𝑞 𝐴 𝐵 𝐶∗ 𝑅1 𝑅2 𝛤 𝐶𝑣 𝑇CJ
(kg/m3) (109Pa) (m · s−1) (106J · kg−1) (109Pa) (109Pa) (109Pa) (J · kg−1 · K−1) (K)

1891 42.0 9110 5.552 773.98 11.18 0.6126 4.2 1.0 0.30 2800 3777

Table 1: Example of JWL parameters for HMX. 𝑣0, 𝑝CJ, 𝐷CJ, 𝑞 (corresponding to 𝐸0𝑣0 in
[17]), 𝑅1, 𝑅2, and 𝛤 are taken from [17]. 𝐴, 𝐵, and 𝐶 are calculated from Eqs. (55-57). The
remaining parameters 𝐶𝑣 and 𝑇CJ are estimated from the thermochemical code SIAME
[31, 32].

Then, the constant 𝐾 can be expressed from Eq. (42) and the fact that the
reference isentrope passes through the CJ state,

𝐾 = 𝐶∗ −
𝛤𝐶𝑣𝑇CJ𝑣

𝛤
CJ

𝑣𝛤 + 1
0

. (58)

The Eqs. (55-58) show that the constants 𝐴, 𝐵, and 𝐶∗ are uniquely defined
by the CJ state, 𝛤 , 𝑅1, and 𝑅2. The literature is abundant for the latter
parameters, see e.g. [17, 20]. However, the constant 𝐾 needs an additional
estimate for 𝐶𝑣𝑇CJ, which is more difficult to find. Reasonable estimates are
provided by the thermochemical code SIAME [31, 32]. Table 1 summarizes
a set of calibrated parameters for HMX that will be used hereafter to study
the validity domain of the JWL model.

The calibrated main isentrope 𝑝ref(𝑣) is illustrated in Fig. 1 along with
the relative proportion of the three terms proportional to 𝐴, 𝐵, and 𝐶∗,
respectively. Three regions can be distinguished.

• Close to the CJ state, the first exponential term ∝ 𝐴 represents more
than 80% of the main isentrope. This highlights the importance of the
exponential term in the modeling of the CJ state.

• For a pressure of the order of 0.1% of 𝑝CJ (this threshold value is
42MPa for HMX) and below, the exponential terms are completely
negligible and the main isentrope is of the ideal-gas form 𝑝ref(𝑣) ∝
𝑣−(𝛤+1).

• Between those two regions, the second exponential term ∝ 𝐵 exhibits a
local maximum of more than 80% allowing a smooth transition between
the first exponential term and the ideal-gas term of the main isentrope.
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Figure 1: Main isentrope 𝑝ref (𝑣) JWL for HMX. The relative proportion of each terms is
measured in % on the right axis.

Other isentropes in the 𝑝–𝑣 plane are shown in Fig. 2. The observed
region without isentropes for small 𝑣 corresponds to a negative temperature
𝑇 < 0 region in which the entropy 𝑠 does not admits any real solution. It
can be seen that isentropes are extremely close to each other near the CJ
state but tend to drift apart during an expansion process. This means that
when modeling detonation products undergoing a subsequent expansion to
atmospheric pressure, an initial few percent departure from the CJ state
could eventually lead to a much larger departure after expansion. This effect
is easily noticeable for isentropes going through a state with both 𝑝 < 𝑝CJ
and 𝑣 < 𝑣CJ. One can also notice that isentropes are actually straight lines
(in the logarithmic scale) in a large portion of the domain corresponding to
regions where the exponential terms are negligible and where the isentropes
essentially behave as ideal-gas ones, 𝑝 ∝ 𝑣−(𝛤+1).

The adiabatic exponent characterizing 𝑝–𝑣 isentropes is expressed by,

𝛾 = − 𝑣
𝑝

(
𝜕𝑝

𝜕𝑣

)
𝑠

= −
(
𝜕 log 𝑝

𝜕 log 𝑣

)
𝑠

=
𝑐2

𝑝𝑣
. (59)

Its evolution along the CJ isentrope can also be found in Figure 3 and shows
that 𝛾(𝑣CJ)≈ 2.74 while expanded gases reach a plateau 𝛾 = 𝛤 + 1 = 1.3
for roughly 𝑣 > 10 𝑣CJ. The curve also exhibits a double maxima, which is
classical of JWL EOS [6]. For isentropic compressions from the CJ state, the
adiabatic exponent rapidly drops below 1.
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Figure 2: JWL isentropes for HMX in the 𝑝–𝑣 plane.

Figure 3: Adiabatic exponent 𝛾 along the CJ isentrope versus the ratio of specific volume.

19



6. Domain of validity in p–v and T–v planes

In order for the JWL model to remain physically consistent, a set of
constraints should be verified at least in a bounded domain, deemed as the
domain of validity in which the EOS can be safely used in hydrocodes.

A common constraint is the positivity of the square sound speed 𝑐2 ≥ 0
that allows the model to remain hyperbolic, but other conditions related to
the thermodynamic stability and to the Riemann problem can also be found
in the literature [33–36]. The following constraints are expected to hold in
the domain of validity of the EOS.

• 1) The resulting Euler system governing a JWL material is hyperbolic
as long as these conditions hold true,

𝑐2 ≥ 0 ,

(
𝜕2𝑝

𝜕𝑣2

)
𝑠

≥ 0 . (60)

The square of the sound speed is positive and the isentropes are convex
in the 𝑝–𝑣 plane. The latter condition can also be related to the posi-
tivity of the fundamental derivative [34]. It should be mentioned that
the loss of convexity is often related to the non-analytic behavior of an
EOS due to phase transitions and does not necessarily correspond to
an unphysical behavior. For the remainder of the article, the Eqs. (60)
will be referred to as the convexity criteria.

• 2) Owing to physical or numerical noise, a system is always subject to
perturbations. Assuming that it is in thermodynamic equilibrium, this
system exhibits a maximum entropy and must remain stable in face
of perturbations leading to a decrease of entropy. The stability of the
thermodynamic equilibrium requires the internal energy to be convex,
as respect to the specific volume 𝑣 and the entropy 𝑠. These conditions
translate to the following inequalities Eq. (61),

𝛾 =
𝑐2

𝑝𝑣
≥ 0 , 𝑔 =

𝑝𝑣

𝐶𝑣𝑇
≥ 0 , 𝛾𝑔 ≥ 𝛤 2 , (61)

where 𝛾 is the classical adiabatic exponent, which acts as a dimen-
sionless sound speed and 𝑔 is a reciprocal dimensionless heat capacity
scaling directly with the compressibility factor [37].
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• 3) An initial value problem, which initial condition is made of two do-
mains with constant fields separated by a discontinuity is known as the
Riemann problem. The Riemann problem can be considered as the
hallmark of shock physics. Detonation products modeled by a JWL
material are likely to be subjected to reflected secondary shocks for
which the Riemann problem is expected to produce physically con-
sistent waves, e.g. compression across shocks and expansion across
rarefaction waves. This is ensured if 𝑣−1, 𝑒, 𝑢 (material velocity), and
𝑝 are monotonically increasing along the Hugoniot curve in the di-
rection of increasing shock strength. According to [34] this translates
into the weak (Eq. (62a)), medium (Eq. (62b)) and strong conditions
(Eq. (62c)),

(𝑎) 2𝛾 ≥ 𝛤 , (𝑏) 𝑝𝑣

2𝑒
+ 𝛾 ≥ 𝛤 , (𝑐) 𝑝𝑣

𝑒
≥ 𝛤 . (62)

When
(
𝜕2𝑝/𝜕𝑣2

)
𝑠
≥ 0, both weak and medium conditions can be derived

from the strong condition. The simultaneous validity of the convexity
criteria Eqs. (60) and the weak condition is referred to as Bethe-Weyl
theorem.

Based on the HMX calibration parameters from Table 1, it is possible
to study the domain of validity in which constraints the Eqs. (60-62) are
valid. Although other explosive compositions have different sets of parame-
ters, the present discussion is merely designed to highlight qualitative trends
of the JWL model that have also been observed when calibrated with other
explosives, e.g. PBX9501 [15] or TNT [14].

6.1. Pressure and temperature positivity
The positivity of 𝑇 in the 𝑝–𝑣 plane is investigated in Fig. 4. The blank

region corresponds to the negative temperature 𝑇 < 0 portion of the domain
showing that lower specific volumes than approximately 10−3 m3·kg−1 lead
to a negative temperature in the range from the atmospheric pressure to the
CJ pressure. This excludes a large portion of the domain of validity of the
EOS in which the entropy does not admit a real value. This region is due
to the large positive coefficients 𝐴 and 𝐵 in Eq. (43) modeling the repulsive
effects between molecules in a dense gas.

Examination of the main isentrope represented as a dashed line shows that
it closely runs along the boundary of the 𝑇 ≥ 0 region in the vicinity of the CJ
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Figure 4: 𝑇 ≥ 0 domain in the 𝑝–𝑣 plane for HMX. The dashed line corresponds to the
main isentrope and blank regions to 𝑇 < 0.

point. This indicates that non-isentropic transformations or numerical errors
in a detonated CJ state could easily induce a drift of the thermodynamic state
inside the 𝑇 < 0 region.

A similar investigation is carried out in the 𝑇–𝑣 plane in order to high-
light 𝑝 ≥ 0 regions. It should be mentioned that all isentropes are straight
lines (in logarithmic scale) in this plane due to the constant Grüneisen pa-
rameter 𝛤 . Figure 5 shows that a large portion of specific volumes larger
than approximately 10−3 m3·kg−1 and below the main isentrope leads to a
negative pressure. This even excludes some low temperatures encountered
in atmospheric conditions and shows that the JWL EOS is not meant to
model low temperatures. In Eq. (43), this 𝑝 < 0 region is due to the negative
and large coefficient 𝐾 obtained from the calibration summarized in Table 1
and effectively modeling attraction between molecules (see Eq. (47)), which
leads to 𝑍 < 1 for sufficiently low 𝑇 .

6.2. Convexity, positivity of the square sound speed
The map of validity of the convexity criteria (see Eqs. (60)) colored by

the sound speed can be found on Fig. 6 and 7 for the 𝑝–𝑣 and 𝑇–𝑣 planes,
respectively.

In the blank region in Fig. 6, pressure is negligible in front of 𝐴 and 𝐵

such that (𝛤 + 1)/𝑅1 and (𝛤 + 1)/𝑅2 being larger than 𝑣/𝑣0 tend to promote
the appearance of a non-convexity region (see Eq. (17)).
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Figure 5: 𝑝 ≥ 0 domain in the 𝑇–𝑣 plane for HMX. The dashed line corresponds to the
main isentrope and blank regions to 𝑝 < 0.

Figure 6: Convexity domain colored by 𝑐 in the 𝑝–𝑣 plane for HMX. The dashed line
corresponds to the main isentrope and blank regions to the violation of the convexity
criteria, i.e. 𝑐2 < 0 and/or (𝜕2𝑝/𝜕𝑣2)𝑠 < 0.
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Figure 7: Convexity domain colored by 𝑐 in the 𝑇–𝑣 plane for HMX. The dashed line
corresponds to the main isentrope and blank regions to the violation of the convexity
criteria, i.e. 𝑐2 < 0 and/or (𝜕2𝑝/𝜕𝑣2)𝑠 < 0.

The blank region in Fig. 7 is due to the large negative value 𝐾 domi-
nating the exponential terms at low temperatures and sufficiently large spe-
cific volumes. Therefore, it is found that convexity criteria (𝑐2 ≥ 0 and
(𝜕2𝑝/𝜕𝑣2)𝑠 ≥ 0, Eqs. (60)) are less restrictive than the conditions 𝑇 ≥ 0 and
𝑝 ≥ 0 in order to delineate the 𝑝–𝑣 and 𝑇–𝑣 domains of validity.

6.3. Stability of thermodynamic equilibrium with respect to fluctuations
Contrarily to the convexity criteria Eqs. (60), the thermodynamic stabil-

ity conditions Eqs. (61) introduce qualitatively different restrictions in the
validity domain. The thermodynamic stability region in the 𝑝–𝑣 plane col-
ored by 𝑔 = 𝑝𝑣/(𝐶𝑣𝑇 ) can be found on Fig. 8.

It shows two different unstable regions. The first one is equivalent to the
𝑇 < 0 region previously described and is also controlled by the large positive
𝐴 and 𝐵 meant to model short distance repulsion in a dense gas. Indeed,
the compressibility factor 𝑍 (Eq. (47)) is composed of three terms, of which
sign depends on 𝐾 , 𝐴, and 𝐵. 𝐾 < 0 represents attraction, 𝐴 > 0 and 𝐵 > 0
repulsion between molecules. And here the terms proportional to 𝐴 and 𝐵

tend towards 0 faster than the term proportional to 𝐾 when the specific
volume 𝑣 is very high when compared to 𝑣0.
However, a second and qualitatively different blank region is present and
shows that thermodynamic stability is also violated in a low pressure portion
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Figure 8: Domain for the stability of thermodynamic equilibrium in the 𝑝–𝑣 plane for
HMX. The dashed line corresponds to the main isentrope and blank regions either to
thermal or mechanical unstable states, i.e. 𝛾 < 0 and/or 𝑔 < 0 and/or 𝛾𝑔 < 𝛤 2.

mainly below the main isentrope. A comparison with Fig. 2 shows that
expansions following isentropes below the CJ isentrope can easily reach this
region. This is a well known problem of the JWL EOS [22]. Indeed, varying
the 𝐶𝑣𝑇CJ parameter will shift the unstable regions regardless of the value
of the main isentrope, which is independent of 𝐶𝑣𝑇CJ. This highlights the
difficulties of the JWL EOS close to atmospheric conditions.

Assuming that previous conditions (positive 𝑝, 𝑇 and 𝑐2) are verified,
the stable thermodynamic equilibrium conditions Eqs. (61) reduce to 𝐶𝑣 ≥ 0
and 𝑐2/(𝐶𝑣𝑇 ) ≥ 𝛤 2. The former being automatically enforced by the input
parameters, the origin of the qualitatively new blank region can be explained
by studying the value of 𝑐2/(𝐶𝑣𝑇 ) which is always larger than 𝛤 2 except when
the negative term scaling with 𝐾 dominates (see Eq. (46)).

Perhaps the less intuitive result from Fig. 8 is that the expansion isen-
trope from the CJ state reaches the region of unstable thermodynamic equi-
librium long before reaching the atmospheric pressure, at roughly 108Pa for
the present HMX calibration.

The equivalent 𝑇–𝑣 domain of stable thermodynamic equilibrium can be
found on Fig. 9 and only shows slight but sufficient differences with respect
to previous conditions such that the 𝑇–𝑣 isentrope is reaching the unstable
thermodynamic equilibrium region long before reaching atmospheric temper-
atures.
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Figure 9: Domain for the stability of thermodynamic equilibrium in the 𝑇–𝑣 plane for
HMX. The dashed line corresponds to the main isentrope and blank regions either to
thermal or mechanical unstable states, i.e. 𝛾 < 0 and/or 𝑔 < 0 and/or 𝛾𝑔 < 𝛤 2.

6.4. Bethe-Weyl theorem and monotonicity along the Hugoniot curve
In order to ensure existence and uniqueness of the shock solution to the

Riemann problem, the Bethe-Weyl theorem should be verified. It combines
the convexity criterion Eqs. (60) with the weak condition from Eqs. (62).
The domain of validity of this theorem is investigated in Figs. 10 and 11 for
the 𝑝–𝑣 and 𝑇–𝑣 planes, respectively.

It can be seen that this theorem is actually less restrictive than the posi-
tive pressure and temperature conditions.

However the Bethe-Weyl theorem does not ensures the monotonicity of
all thermodynamic fields along the Hugoniot curve [34]. A more stringent
constraint ensuring monotonicity along the Hugoniot is the strong condition
Eqs. (62c). The domain of validity of this constraint is highlighted in the 𝑝–𝑣
and 𝑇–𝑣 planes and colored by 𝑒 in Figs. 12 and 13, respectively.

It is found that this condition excludes larger portions in the 𝑝–𝑣 and 𝑇–𝑣
planes while maintaining the same qualitative behavior than the 𝑝 ≥ 0 and
𝑇 ≥ 0 conditions.

7. Conclusion

A standalone derivation and investigation of the JWL EOS is proposed.
The step-by-step demonstration entirely stems from three necessary assump-
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Figure 10: Bethe-Weyl 𝑝–𝑣 domain colored by 𝛾 for HMX. The dashed line corresponds to
the main isentrope and blank regions to violation of the Bethe-Weyl theorem, i.e. 𝑐2 < 0
and/or (𝜕2𝑝/𝜕𝑣2)𝑠 < 0 and/or 2𝛾 < 𝛤 .

Figure 11: Bethe-Weyl 𝑇–𝑣 domain colored by 𝛾 for HMX. The dashed line corresponds to
the main isentrope and blank regions to violation of the Bethe-Weyl theorem, i.e. 𝑐2 < 0
and/or (𝜕2𝑝/𝜕𝑣2)𝑠 < 0 and/or 2𝛾 < 𝛤 .
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Figure 12: Strong condition in the 𝑝–𝑣 domain colored by 𝑒 for HMX. The dashed line
corresponds to the main isentrope and blank regions to an ill-posed Riemann problem,
i.e. 𝑝𝑣/𝑒 < 𝛤 .

Figure 13: Strong condition in the 𝑇–𝑣 domain colored by 𝑒 for HMX. The dashed line
corresponds to the main isentrope and blank regions to an ill-posed Riemann problem,
i.e. 𝑝𝑣/𝑒 < 𝛤 .
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tions to fully describe the JWL EOS: the main isentrope 𝑝ref(𝑣) is known,
both Grüneisen 𝛤 and isochoric heat capacity 𝐶𝑣 are constant. Alternatively,
the JWL model could be entirely derived from a complete form of the EOS
– usually 𝑒 (𝑣, 𝑠) – see e.g. [34] for more details. The derivation of the other
thermodynamic fields is explained and shows how each variable is modeled
by the JWL EOS.

Then the usual choice of a reference isentrope passing through the CJ
state of detonation products of HMX was selected for calibration. The rela-
tive importance of the various terms along the CJ isentrope is investigated,
showing that exponential terms dominate in a narrow region around the CJ
state and that CJ isentrope reduces to an ideal-gas below a threshold value
of 𝑝 ≈ 42MPa. The various necessary thermodynamic constraints, which are
positivity, convexity, stability and monotonicity along an Hugoniot are inves-
tigated in both the 𝑝–𝑣 and 𝑇–𝑣 planes and allows to identify and understand
the different trends and limitations of the JWL model. Overall the JWL EOS
is found to accurately reproduce CJ state due to its careful calibration.

However, this EOS lacks some flexibility for three cases that could be
encountered in practical applications. First, it was seen that an isentropic
compression from the CJ point lead to a significant reduction of the adiabatic
exponent below 1. Second, the CJ isentrope typically reaches atmospheric
conditions in the region of unstable thermodynamic equilibrium of both 𝑝–𝑣
and 𝑇–𝑣 diagrams. Third, low temperatures close to atmospheric conditions
are usually outside of the domain of validity of the EOS.

These are not necessarily a problem for practical engineering applications
because the EOS is interfaced with other models that could mitigate or delay
the appearance of the mentioned anomalous behaviors due to violation of
constraints Eqs. (60-62). However, one needs to keep in mind that these
constraints exist and could possibly create artifacts and/or misinterpretations
of physical phenomena.

Besides providing a step-by-step derivation of the main thermodynamic
fields and increasing the understanding of the widely used JWL model, the
present study also helps in identifying the properties of thermodynamic states
with large departures from the CJ point that are likely to lie outside of the
validity domain of this EOS.
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Appendix A. Auxiliary functions 𝒑𝑲 (𝒗) and 𝒆𝑲 (𝒗)

A careful examination shows that both 𝑝 (𝑣,𝑇 ) and 𝑒 (𝑣,𝑇 ) forms Eqs. (43,44)
could also be written as,

𝑝 (𝑣,𝑇 ) = 𝑝𝐾 (𝑣) +
𝛤𝐶𝑣𝑇

𝑣
, (A.1)

𝑒 (𝑣,𝑇 ) = 𝑒𝐾 (𝑣) +𝐶𝑣𝑇 , (A.2)

where functions 𝑝𝐾 (𝑣) and 𝑒𝐾 (𝑣) are related to the reference isentrope by,

𝑝𝐾 (𝑣) = 𝑝ref(𝑣) + (𝐾 −𝐶∗)
(
𝑣

𝑣0

)−(𝛤 + 1)
, (A.3)

𝑒𝐾 (𝑣) = 𝑒ref(𝑣) +
𝑣0

𝛤
(𝐾 −𝐶∗)

(
𝑣

𝑣0

)−𝛤
. (A.4)

By noticing that the constant 𝐶∗ vanishes from Eq. (13) it is possible to
artificially rewrite the Mie-Grüneisen form 𝑝 (𝑣, 𝑒) as,

𝑝 (𝑣, 𝑒) = 𝑝𝐾 (𝑣) +
𝛤

𝑣
(𝑒 − 𝑒𝐾 (𝑣)) . (A.5)

This shorthand is often used in the literature such that EOS forms involving
𝑝, 𝑣 , 𝑒, and 𝑇 only use one set of functions 𝑝𝐾 (𝑣) and 𝑒𝐾 (𝑣) rather than
also having to use 𝑝ref(𝑣) and 𝑒ref(𝑣) in the Mie-Grüneisen form. Hence one
should keep in mind that 𝑝𝐾 (𝑣) and 𝑒𝐾 (𝑣) are merely auxiliary functions
meant to simplify the implementation of the JWL model and should not be
misinterpreted as being the reference isentrope curve.
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