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ABSTRACT 

 
We use two different purely empirical approaches to estimate the non-linear transfer function between 
a reference rock and a sedimentary site from recordings of weak ground motions and site-condition 
proxies (SCPs). The modulus of the linear transfer function is first computed from weak motions and 
then modulated with a correction to consider non-linear soil behavior. Afterwards, a minimum-phase 
assumption is used to derive a complex transfer function, which then allows to recover the prediction 
of  acceleration time series a(t) at the sedimentary site.  

The first approach uses the non-linear to linear site response ratio RSRNL-L proposed in Derras et al. 
(2020). This ratio considers both the amplitude changes and the frequency shift between non-linear 
(strong motion) and linear soil (weak motion) behavior. The data-driven model to predict RSRNL-L is 
based on various SCPs and ground Motion Intensity Measures (GMIMs). Five SCPs were considered:  
Vs30 (time-averaged shear-wave velocity in the top 30 m), B30 (vertical velocity gradient in the top 
30 m), Vsmin (the minimum shear wave velocity), f0 (the fundamental resonance frequency, picked on 
H/V ratio) and A0HV (the corresponding peak amplitude), while only one GMIM loading parameter 
was considered (estimated PGA at KUMA site). In the second approach (Castro-Cruz et al. 2020), the 
non-linear transfer function is obtained from the linear transfer function (using weak motions recorded 
at both sites) applying a loading-dependent frequency shift (fsp). The fsp is predicted also using all 
weaker motion recordings available and the value of the predicted PGA at the sedimentary site. 

We apply these two approaches to the material provided for step 3 of the blind prediction exercise 
organized by the ESG6 Conference. We find that the discrepancy between the two methods was mainly 
concentrated on the 0.8 to 2 Hz bandwidth for energy content criteria, which is around the linear 
predominant frequency of the transfer function. 
 
Keywords: empirical prediction, non-linear soil behavior,  

 
 

INTRODUCTION 
 
The prediction of surface strong ground motions involves many complexities beginning with the seismic 
source and ending with the propagation of the seismic waves through the very last subsurface soil layers. 
Close to the surface the seismic waves can be trapped in soft soil layers and the seismic motion at the 
surface can be amplified compared to rock outcrop sites. These effects called “site effects” differ from  
site-to-site and  event-to-event. In a specific site, the complex site geometry associated with the 
variability of the incidence of the seismic wavefield can create variability in the site response even for 
motions having similar amplitudes. Besides, it has been shown that the non-linear soil behavior can 
significantly modify the site response depending on the incident motion intensity (Pender, 1992; 
Beresnev & Wen, 1996; Elgamal et al., 2001).  
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Since then, it has been shown that the non-linear soil behavior will have a different signature in 
earthquake data depending on type of non-linearity involved. For instance, Bonilla et al., (2005) 
following the works of Archuleta et al., (2000); Iai et al., (1995); Yu et al., (1993); Zeghal & Elgamal, 
(1994) showed that saturated dilatant soil can generate spikes in the recorded acceleration due to cyclic 
mobility and pore water pressure increase during the earthquake. Others showed more classical effects 
of non-linear behavior that is the decrease of the high- frequency amplitude and the shift of the resonance 
frequencies to low-frequency bandwidth due to the degradation of the shear modulus and the increase 
of the damping with shear strain (beginning with Tokimatsu & Midorikawa in 1981). Some researchers 
also emphasize an increase of amplification at low frequency (Pavlenko & Irikura, 2006; Luis Fabian 
Bonilla et al., 2011; Kawase, 2006; Régnier et al., 2013, 2016). From previous studies, the non-linear 
soil behavior may have significant effects on site response and therefore on the acceleration time 
histories at the surface.  
Several approaches can be used to predict the strong ground motion at the surface. Numerical 
simulations of wave propagation require the definition and calibration of a soil model including a 
constitutive soil model, which can be challenging to define. When earthquake recordings at the 
prediction site are available, the use of empirical approaches based on such recordings may be 
considered, such as for instance the empirical Green's function technique, provided some constraints on 
source location and mechanism (e.g. Irikura, 1986). For now however, the non-linear soil behavior is 
not considered acounted for in classical EGF approach. When recordings of previous earthquakes are 
simultaneously availbale at the prediction site and at near-by reference site, pure empirical approaches 
can be used that do consider the non-linear soil behavior (Castro-Cruz et al., 2020; Derras et al., 2020). 
The purpose of this paper is to test and compare these last empirical approaches on the ESG6 blind 
prediction data. 
 

PRESENTATION OF THE PURE EMPIRICAL METHODS 
 
Methodology to obtain a non-linear prediction from linear site response:  
 
We are using two purely empirical approaches to predict the surface acceleration time histories and the 
associated Fourier spectrum for both the foreshock and the mainshock of the Kumamoto 2016 
earthquake. Both methods use statistically defined correction factors that are applied to the site-specific 
linear transfer function to account for the non-linear soil behavior.  
 
1. The linear transfer function (TFllin) can be obtained from weak ground motions recordings or 

numerical simulations, it can be borehole or outcrop transfer function. In this paper, we use the weak 
motions recorded at the reference rock site SEVO and at the target sedimentary site KUMA. 
 

2. The non-linear transfer function (TFNL) is corrected for the non-linear soil behavior as follows: 
 

a. The first method (Method 1) defines a function so-called RSRNL-L that is to be multiplied 
by the TFlin to define the modulus of the non-linear transfer function (TFNL) between SEVO 
and KUMA according to eq 1 

𝑇𝐹!"(𝑓) = 𝑇𝐹#$%(𝑓). 𝑅𝑆𝑅!"&"(𝑓)     (eq. 1) 
b. The econd method (Method 2), defines a parameter so-called fsp (frequency shift 

parameter). This, shift the linear transfer function according to the equation 2. 
𝑇𝐹!"(𝑓) = 𝑇𝐹#$%*𝑓/,𝑓𝑠𝑝/      (eq. 2) 

3. Then a minimum phase assumption allows to associate a realistic phase to the modulus of the non-
linear transfer function TFNL, and obtain a complex transfer function  

4. This complex transfer function is then applied to the Fourier transform of the acceleration time 
histories recorded at SEVO (derived from the velocity recordings), and an inverse Fourier transform 
provides the predicted acceleration time histories at KUMA  

 
 



The 6th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion  
August 2021 

Details on the correction factors 
 
First method: Correction for soil non-linear behavior using RSRNL-L :  
The approach is based on the work of Derras et al. (2020), which predicts a linear to non-linear correction 
curve, called RSRNL-L, to correct both the amplitude changes and the frequency shift associated to the 
non-linear soil behavior, with respect to the modulus of the linear transfer function derived from weak 
motion recordings at both KUMA and SEVO.  
This correction function is estimated on the basis of a statistical analysis of a selection of KiK-net 
recordings, which were used to train an artificial neural network (ANN) in order to predict the 
frequency-dependent correction function RSRNL-L as a function of one ground motion intensity measure 
(GMIM), site-condition proxies (SCPs). The ANN approach was inspired by investigations into the 
human brain structure, which consists of interconnected neurons. An ANN is made up of input, hidden 
and output layers, and the connections between neurons of two consecutive layers are characterized by 
linear combinations of inputs: the corresponding synaptic weights (W) and biases (b) are the learnable 
parameters of a ANN.  The W values characterize the influence of input (GMIM, SCPs) on the output 
(RSRNL-L). The Quasi-Newton Back Propagation technique also called “BFGS” (Robitaille et al.,1996) 
has been used in this work for the training phase. To avoid the overfitting, the regularization method 
presented in (Derras et al., 2012) is used in this study. More details upon the structure and the design of 
ANN can be found in Derras et al. (2020).   
The performances of the ANN results are measured by the standard deviation of residuals between 
observations and model predictions, compared to the standard deviation of the original advanced data 
set through the variance reduction coefficient Rc (Derras et al., 2017) as defined in eq. 3 
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eq. 3 
Where RSRNL-L,obs represents the "observed" RSRNL-L as derived in the step 3 advanced data set. RSRNL-

L,pred is the neural prediction of the RSRNL-L. This function is predicted either in the normalized frequency 
domain with a frequency parameter called fNL defined in (Régnier et al., 2016) for the sensitivity study, 
or in the absolute frequency domain for the final model). M is the size of the data set. 

The final neural models thus consist of a series of three layers. The first represents N inputs, (one GMIM 
and {N-1} SCPs). Here, N=6 (5 SCPs and 1 GMIM, PGA). The second, hidden layer has the same 
number N of neurons. The last layer represents the values of RSRNL-L for 49 absolute frequency bins. 
The selected architecture is therefore of the N-N-97 or N-N-49 type. 

The model chosen in this article to predict RSRNL-L is based on site parameters Vs30 (mean shear Vs over 
the first 30 m), B30 (gradient of the velocity profile over the first 30 m), VSmin (the minimum shear wave 
velocity), f0 (the fundamental resonance frequency, picked on H/V ratio), and A0HV (the corresponding 
peak amplitude), and on a loading parameter characterizing the intensity of ground shaking at KUMA 
(GMIM) site, here PGA. Whereas in Derras et al., 2020, we have used two SCPs (Vs30 and f0HV) and 
PGV/Vs30 to represent the GMIM (03 neurons at the hidden layer). 

Second method : Correction for soil non-linear behavior using fsp  
Castro-Cruz et al. (2020) used a subset of the KiK-net database to define the fsp parameter.  This subset 
is composed of 688 stations. Among them, 650 sites are characterized with Vs and Vp profiles, soil 
description, and information on the stations (location and information of recording devices. For each 
recording, the acceleration time histories are provided, with the event origin time, the epicenter location, 
the depth of the hypocenter, and the magnitude of the event determined by the Japanese Meteorological 



The 6th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion  
August 2021 

Agency (JMA). Recordings were selected according to two criteria: signals from earthquakes with a 
magnitude higher than 3 and with an epicentral distance lower than 500 km. These two criteria lead to 
75 232 pairs of 3-components signals (surface and downhole) from 5535 events with magnitudes 
between 3 and 9, recorded between November 1997 to December 2017. For all of the selected 
seismograms the weak ground motions corresponding to assumed linear behavior are selected based on 
their maximal peak accelerations (PGAdownhole from 10−4 m/s2 to 6. 10−3 m/s2 are considered). The linear 
Borehole Spectral Ratio (BSRlin) is the arithmetic average of all of the weak ground motions BSR. It is 
compared to each BSRNL from all stronger ground motions recorded at the same site, allowing us to 
define a parameter that characterizes the observed frequency shift. The logarithmic frequency shift is 
the gap in logarithmic scale between BSRlin and BSRNL. In linear scale, it is a coefficient that changes 
the frequency scale. The algorithm to find this logarithmic shift minimizes the misfit between BSRlin 
and BSRNL as defined in Equation (2). Note that the misfit is weighted by the logarithmic sampling. 

𝑚𝑖𝑠𝑓𝑖𝑡 =P|𝐵𝑆𝑅#$% S
𝑓̅
𝐿𝑠
V − 𝐵𝑆𝑅!"(𝑓̅

$

)|Δ𝑥 

Δ𝑥 = log() A
𝑓$4(
𝑓$
F	 

𝑓̅ = 0.5(𝑓$4( + 𝑓$) 
eq. 4 

In Eq. 4, Ls is the frequency scaling factor applied to BSRlin. The misfit is defined as a discrete 
approximation of the area between the shifted BSRlin and BSR, considering a logarithmic scale as the 
length of the base (Δx). The computation is done over a frequency window going from 0.3 Hz to 30 Hz. 
 
Finally, we define a frequency shift parameter, so called fsp, as the square of the Ls, which produces the 
minimum value of misfit (fsp=Ls2 when misfit is minimized).  
 
In the equivalent linear approximation (EQL), the nonlinearity of the soil behavior is taken into account 
in an iterative process that adjusts the elastic properties to the level of strain induced in the layer, 
knowing both the modulus reduction and the attenuation curves. In this frame, the shear modulus at a 
linear strain rate (Gmax) can be compared to the shear modulus at larger strain (G), by the ratio between 
both. Using Equation (4) for both modulus, the ratio will be expressed as followed: 

𝐺
𝐺567

= A
𝑓
𝑓#$%

F
2

= 𝑓𝑠𝑝 

eq. 5 
 
Equation (5) shows that the ratio of the shear modulus is proportional to the square root of the ratio 
between the linear resonance frequency flin and the non-linear ones (whatever the order of the harmonic). 
In logarithmic scale, this ratio (f/flin) represents a logarithmic shift it is the definition of the fsp parameter. 
Therefore, in a 1-D monolayer case, the shear modulus reduction is equal to the previously defined fsp. 
 

RESULTS 
 
Definition of the RSRlin 

TFlin is the average of the weak motion ratio between the Fourier spectrum of the velocity recorded at 
KUMA and SEVO. To obtain the horizontal transfer function we used the average between the two 
horizontal components. The vertical transfer function was obtained using the vertical Fourier spectrum 
ratio.  
The accelerometric data were pre-processed following the recommendations of Boore and Bommer 
(2005). From the acceleration time histories at KUMA, we integrated the signal to obtain the velocity 
time histories. Before performing the integration, we apply pre-processing that includes removing the 
mean, the tapering, the addition of zeroes before and after the signal, and a 2-poles butterworth filtering 
between 0.1 and 30 Hz. The Fourier spectra were calculated and smoothed using a Konno-Ohmahi 
smoothing (Konno & Ohmachi, 1998) with a parameter of 40. The average and standard deviation of 
the RSRlin are illustrated in Figure 1. We also calculated the H/V at the surface (red curves) and the 
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numerical transfer function (in blue curve) using the preferred soil models provided by the organizing 
team. 

 

 
Figure 1: Left : Vs profile at KUMA site (left). Right: comparison of the linear spectral ratio between 

KUMA and SEVO velocity time histories (geometrical average TFlin and average ± 1 
standard deviation, black), H/V at Kuma site (average HVlin and average ± 1 standard 
deviation, red) and the 1-D linear numerical outcrop transfer function (TFnum, blue).. 

 
Required site (SCPs) and input motion (GMIMs) parameters 
 
The values of the site parameters were derived from the preferred soil model proposed by the 
organization and illustrated in figure 1. We also tested the Vs profiles provided in the first round of the 
benchmark by Diego Mercerat and Cécile Cornou but a sensitivity study showed that the predictions of 
non-linear corrections factors are very robust whatever the velocity model derived for the KUMA site. 
The fundamental resonance frequency f0 (Hz) was obtained from the empirical site response curves and 
confirmed by the H/V spectral ratio.  

 
Table 1: KUMA site parameters (SCPs) used for the prediction of NL correction  

Vs30 (m/s) B30 f0 (Hz) Vsmin(m/s) AOHV 
160 0.3 0.3 95 4.8 

 
 
The PGA of the foreshock and mainshock were predicted using the linear regression between the log10 
of PGAKUMA/PGASEVO modulated by the ratio between epicentral distance at KUMA and SEVO 
(DepiKUMA/DepiSEVO). The predicted PGA is 2.36 m/s2 for the foreshock and 4.85 m/s2 for the main shock. 
However, after a first round of calculation, we found a PGA for the foreshock at KUMA around 4.12 
m/s2, we decided to update the calculation using this value to correct for the non-linear soil behavior. 
 
Corrections factors and RSRNL 
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First method : Correction for soil non-linear behavior using RSRNL-L :  
To predict the correction factor for the nonlinearity, we used the site parameters defined in Table 1 and 
the PGA predicted at KUMA. Such a set of parameters is not the one that performs the best in terms of 
variance reduction, but it is a good compromise between ease of use (knowing the velocity profile) and 
model performance: the corresponding stanadard deviation reduction (Rc) is 18%. 
 
The use of the additional parameter fNL, that is a frequency from which we observe a de-amplification 
in the site response, would have increased Rc to 25%. However, in this case, considering that no other 
large events were recorded at KUMA and SEVO sites, it would have been necessary to infer a value for 
fNL from f0HV, and such a derivation is associated with a large uncertainty. 
Figure 2 displays the so-obatained RSRNL-L curves for the foreshock and the mainshock. Both curves 
are very closed since the predicted PGA at KUMA are very close. Below 1.2Hz, the non-linear soil 
behavior results in a slight increase of the amplification (around 10%), and above this frequency in a 
significant decrease that exceeds 40% between 10 and 20 Hz. As expected, the impact of non-linear soil 
behavior is slightly more important for the mainshock (dashed line). 

 
Figure 2: Correction curves for the foreshock and the mainshock.  
 
Second method : Correction for soil non-linear behavior using fsp  
Following the procedure described in Castro-Cruz et al. (2020), we obtain the frequency shift for each 
RSR with respect RSRlin. The fsp is then plotted in function of the intensity of the ground motions (see 
Figure 3). Using a non-linear correlation between the fsp and the intensity parameter (here the PGV at 
SEVO), we predict the fsp for the two strongest events. The red vertical lines in Figure 3 represent the 
PGV recorded at SEVO for the two target events. One can notice that the shift predicted differs 
depending on the component and considering that there is only weak motion data, the prediction is not 
constrained for the PGV recorded at SEVO for the foreshock and the main event. 
 

 
Figure 3: fsp curves for the three directions, NS (x), EW (y). 
 
Comparison of results 
Transfer function 
Figure 4 illustrates the transfer functions predicted by the two methods for the two events. The first 
method modifies mainly the amplitude of the transfer function, while the second method applies only a 
shift of the resonance frequencies. For the second method, the shape of the transfer function is different 
from the linear one, this is due to the fact that a different shift is applied to each horizontal component 
of the tranfer function. In the following figure, the average between horizontal componenents of the 
transfer function is illustrated. 
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Figure 4: Comparison of the transfer functions (average on the two horizontal components) corrected 

by the two methods with the linear transfer function for the foreshock and the mainshock. 
 
Fourier Spectrum at the surface 
The predicted Fourier spectra using a linear transfer function and the two non-linear transfer functions 
corrected with the methods 1 and 2 at the KUMA surface site are compared in Figure 5. This comparison 
is made for the three components of motion (as one can notice, in the first method the vertical component 
is not corrected for non-linear soil behavior) of the foreshock (Ev 1) and the mainshock (Ev 2). We can 
observe that the main effect of the first method – as expected from Figure 3 - is a decrease of the Fourier 
spectra amplitude at high frequencies, while the second method exhibits larger discrepancies with the 
linear prediction with a clear shift of the frequencies to the low frequency bandwidth. Whatever the 
method used the Fourier spectra at SEVO is amplified over a broad frequency range (at least 0.3 - 10 
Hz). For the vertical component, the linear and the non-linear Fourier spectrum are similar for the first 
method. 
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Figure 5: Fourier spectra at the surface of the predicted earthquake at Kuma using only the linear 

transfer function and the non-linear transfer function corrected by the two methods. The 
Fourier spectra at SEVO is also provided as a reference. 

 
Acceleration time histories at KUMA surface site 
The time domain predictions displayed for two time windows (14-21s in Figure 6 and 21-26 s or 21-24 
s in Figure 7) indicate similar overall waveforms, with however very significant amplitude changes. The 
similarity is due to the minimum phase assumption for all predictions. The frequency shift correction of 
the second method makes the accelerations at a specific time either increased or decreased, while the 
first method systematically provides results with lower amplitude than the linear one (except for the 
vertical component where method 1 assumes a linear site response). 
The predicted PGA values were 4.12 m/s2 for the foreshock and 4.85 m/s2 for the main shock, in the 
following figures we can observe that the predicted PGA are 3.9 and 4.9 m/s2 for the first method which 
is equivalent to the predicted ones. 
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Figure 6: Acceleration time histories at the surface of the predicted earthquake at Kuma using only the 

linear transfer function and the non-linear transfer function corrected by the two methods. 
The acceleration at SEVO is also provided as a reference. Zoom between 14 to 21 seconds. 

 
Figure 7: Zoom between 21 to 26 seconds for the foreshock. 

 
Quantifying the differences with Anderson goodness-of-fit criteria 
 
The two sets of predictions can be compared in a more quantative way using some "goodness-of-fit" 
measures. In that aim, the 10 criteria proposed by Anderson (2004) are considered here, labeled as  SDa 
for Arias duration, SDe for Energy duration, Sia for Arias Intensity, Siv for Energy Integral, Spga for 
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PGA, Spgv for PGV, Spgd for PGD, Ssa for response spectra and finally Sf for Fourier spectra. For 
instance, for the PGA parameter, the Anderson goodness-of-fit is estimated by the Eq.6, where PGA1 
and PGA2 are the PGA values predicted by the first and de second method. 

𝑆(𝑃𝐺𝐴(, 𝑃𝐺𝐴2) = 10. 𝑒𝑥𝑝 5−A
𝑃𝐺𝐴( − 𝑃𝐺𝐴2

𝑚𝑖𝑛(𝑃𝐺𝐴(, 𝑃𝐺𝐴2)
F
2
> 

Eq.6 
Given this formula, a GOF score from 8 to 10 is considered an excellent fit, from 6 to 8 a good fit, from 
4 to 6 a medium fit and below 4 a poor fit. 
 
Figure 8 diagrams indicate very high scores for frequencies above 2 Hz, and lower scores at lower 
frequnecies, especially for the energy content (SIa and Siv) in the frequency range corresponding to 
largest amplifications, i.e., between 0.8 to 2 Hz. This result is in good agreement with the comparison 
of the predicted transfer function from M1 and M2 where the shift performed in the second method 
creates a trough in this specific frequency range. Comparing the results from the 2 events, it is surprising 
to observe that the discrepancy between the two methods is more pronounced for the first event where 
less non-linear behavior is observed.  

 
Figure 8: Anderson criteria of goodness of fit between the surface acceleration predicted by the method 

M1 and the method M2. 
 

CONCLUSIONS 
 
These two purely empirical approaches provide acceleration time histories predictions which differ 
significantly from one another. The first method involves a simple modulation for the linear 
amplification curve, combining a slight increase at low frequencies,  and a significant decrease at high 
frequencies, reproducing the two main observations of non-linear behavior on site response, i.e., the 
shift of the resonance frequency towards lower values, and the amplification decrease associated to 
increase of soil damping with larger strain. The second method emphasizes the first aspect of soil non-

Ev. 1  
Mw 6.4 

Ev. 2  
Mw 7.4 
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linear behavior with a shift of the whole linear transfer function. The results are compared in terms of 
Fourier spectrum, non-linear transfer function, acceleration time series and Anderson criteria.  
The main differences between the two approaches are found between 0.8 Hz (1.25 s) and 2 Hz (0.5 s), 
which corresponds to the frequency range with largest linear amplifications (predominant frequency),  
and mainly affect the energy content parameters. One of the next step is to perform an iterative correction 
of the non-linear soil behaviour until we reach an agreement between the PGA use to define the non-
linear corrections and the predicted ones. 
Finally, only with the comparison of the results with the real recording at KUMA site will it be possible 
to provide more definitive conclusions on the validity of each method, and may be to develop a hybrid 
approach to predict strong ground motion including non-linear soil behavior. 
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