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Direct 3D model-based object tracking with event camera by motion
interpolation

Y. Kang1,2, G. Caron1,3, R. Ishikawa2, A. Escande4, K. Chappellet1,5, R. Sagawa1, T. Oishi2

Abstract— Event cameras are recent sensors that measure
intensity changes in each pixel asynchronously. It is being used
due to lower latency and higher temporal resolution compared
to traditional frame-based camera. We propose a method of
3D model-based object tracking directly from events captured
by event camera. To enable reliable and accurate tracking
of objects, we use a new event representation and predict
brightness increment images with motion interpolation. Results
of object tracking show the new methods significantly improves
tracking duration and robustness, both for perspective and
fisheye cameras. Our implementation succeeds in tracking
objects when the camera speed is reaching 2 m/s.

I. INTRODUCTION

Event cameras are bio-inspired vision sensors that do not
capture frames of color (RGB) pixels but instead measure
pixel brightness changes asynchronously [1]. Compared to
frame-based cameras, their latency and power consumption
are much lower, whereas their dynamic range and tempo-
ral resolution are higher. Though recent, they have made
successful the fast visual control of robot flight [2] and
are gaining interest for autonomous vehicles [3], visual
odometry [4], 3D reconstruction [5] and, with additional
sensors, 3D model-based tracking [6] and Simultaneous
Localization And Mapping (SLAM) [7]. The recent ef-
forts of the scientific community in sharing comprehensive
datasets [8] develop the adoption of event cameras.

This work studies the task of high-speed 6 degrees of
freedom (DoF) object tracking problem with event cameras,
which is essential for real-time object manipulation with
robots, too. We deal with a challenging scenario of tracking
objects in first person view. To this end, we leverage [9]
to solve three interleaved challenges. First, when generating
brightness increment images by accumulating events, motion
blur is unavoidable in scenes where depth is various. Indeed,
several events at different image coordinates accumulated in
the same brightness increment image can be triggered by
the same 3D point. However, this accumulation blur was
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Fig. 1: (a) Event camera with a fisheye lens on the robot
wrist. (b) Data capturing with UR10 robot. (c) Events cap-
tured with a fisheye lens of a 130 cm diameter coil to track.
(d) - (f) Events plot over rendered intensity images of 3 target
objects. Blue and red points represent positive and negative
events respectively.

never considered in predicting brightness increment images,
decreasing the tracking accuracy and success rate ([9] and
Sec. II). Although recent works [10] generate brightness in-
crements by weighting to avoid motion blur, such approaches
are at a cost of information loss.

Second, we consider the 3D tracking of an object within
the camera field-of-view. Basically, it implies the camera
field-of-view might not always be filled of information,
contrary to the camera tracking inside a room. A more
important difference is that we can not predict the events
accurately since the background and the light condition are
unknown. The event polarities can be very different when
the same object moves in different background or when the
environment changes from bright to dark. Therefore, the
brightness increment image predicted from the 3D model
and the poses will not align well with the observed image.

Third, besides tracking moving objects while the camera is
static, we also deal with a more challenging problem where
the camera moves around the objects. In this case there can
be a lot of events triggered by the background instead of the
target object.

To solve these challenges, we propose some new methods
based on a 3D-2D registration framework. We not only use
a new event presentation of absolute brightness increments
but also introduce motion interpolation to the prediction of
brightness increment images from 3D model. In summary,
we make the following contributions in this paper:

• A novel method for 6-DoF object pose tracking which



takes only events and 3D model as input. To solve the
problem of accumulation blur, this method leverages
motion interpolation in the prediction of brightness
increment image to simulate accumulation blur.

• We use a new event generation model which considers
absolute brightness increments. We show this new rep-
resentation is necessary for successful object tracking
especially when the background is not pure color.

• We use a region of interest (ROI) from rendering module
to generate new event frames and exclude the irrelevant
events.

To the best of our knowledge, we are the first to track object
poses from events when camera moves, where events are
also triggered by the background. We present a compelling
evaluation of the proposed method on real data on a new
object tracking dataset. We show that our system reach
accurate and stable tracking in five different objects with
unified camera model.

Outline: The rest of the paper is organized as follows.
Section II reviews the related work on event-based object
tracking. Section III describes our object tracking methods.
Section IV evaluates the method on a new object tracking
dataset for first person view tracking. Finally, Section V
conludes the paper.

II. RELATED WORK

Event-based ego-motion estimation has been developing
step-by-step in scenarios during the past years [1]. Started
from pure rotation [11], [12] or planar motion [13], [14],
state-of-the-art methods are able to estimate 6-DoF camera
pose in real world scenes where the photometric maps are
given. Existing works estimate the camera poses either by
event-to-event processing or by creating grids from multiple
events that are spatially or temporally related. They can
also be categorized according to whether intensity images
are used to help with the estimation. Here we review the
works related to the problem of event-based object tracking
in recent years.

1) Event-based Camera Tracking: Tracking the camera
pose in a scene where the photometric map is given can
be seen as inside-object tracking. [15] was the first work
to track 3-DoF object rotation in a panoramic setting.
The tracking was formulated as an optimization problem
given the panoramic map. Gallego et al. [16] proposed a
probabilistic method to estimate the 6-DoF pose of camera
in a indoor scene where the photometric map is given.
They estimate the camera pose with a robust likelihood
function upon the arrival of each single event. [17], [18]
were also event-by-event methods that dealt with event-based
pose tracking problem in Simultaneous Localization And
Mapping (SLAM) systems. [17] estimates the relative motion
from events and low-frequency grayscale frames of Dynamic
Vision Sensors (DVS) by defining the likehood that an event
can be observed given a certain motion. [18] estimates the

camera motion with an Extended Kalman Filter (EKF). The
main advantage of event-by-event methods is extreme high
time resolution which could easily reach 100 MHz.

Most state-of-the-art works convert groups of events into
grids for pose estimation, which is usually at cost of some
information loss. Bryner et al. [9] proposed a direct bright-
ness increment alignment approach to track a camera in
scenes where the photometric appearance is provided. The
6-DoF poses and velocities are estimated by comparing two
intensity variation images, one accumulated from the events
and the other rendered by the photometric map and motion
parameters. [10] combined the alignment with a photometric
bundle adjustment back-end to minimize brightness errors.
It also tried to avoid accumulation blur in event frame
generation by emphasizing the central part of the window
of events. Intensity images are used as keyframes to predict
the intensity variation from the motion. [19] tackles the prob-
lem of event-based visual odometry with the Time Surface
representation where each pixel stores the timestamp of the
last event at that pixel. The inherent distance field nature of
Time Surface is leveraged in the 3D-2D registration based
camera tracking.

2) Event-based Object Tracking: Event-based object
tracking requires the ability to discriminate the target objects
with respect to the background. Ramesh et al. [20] designed
a framework with a combination of tracking and detection to
track object positions in camera field of view. They use an
event-based local sliding window technique to deal with the
cluttered and textured background. Similarly, Jiang et al. [21]
combined an offline-trained detector with an online-trained
tracking which complement each other to track multiple
objects in the scene like vehicles. A particle filter method
was used to track a moving ball while the event camera
also moves [22]. Works of event-based 6-DoF object tracking
combine event camera with other cameras [6], [23]. Dubeau
et al. [6] proposed a deep learning based framework to handle
high speed object tracking by combining an existing RGB-D
network with a novel event-based network in a cascade
way. Li and Stueckler [23] derived a probabilistic generative
model from high rate events and refined the object trajectory
in slower rate image frames through direct image alignment.
However, they both deal with the easier case where the
camera is static and the target object moves, indicating most
events are related to the object itself.

3) Wrap-up: There are only a few works solving the
problem of 6-DoF object tracking with event camera, most
of which also use the information from other sensors like
RGBD cameras. What’s more, the only two existing works
of event-based 6-DoF object tracking dealt with the easier
case of static camera, where most events are triggered by
the moving objects. Different from the existing works, we
tackle the 6-DoF object tracking using only events and the 3D
model as input, making our approach applicable to various
scenes and tasks. What’s more, we tackle the object tracking
in noisy background where plenty of irrelevant events are
triggered.
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Fig. 2: Overview of BIAM. (Brightness increments in δ I∗ and δ I+ enlarged for visualization.)

III. DIRECT BRIGHTNESS INCREMENT ALIGNMENT WITH
MOTION INTERPOLATION: BIAM

This section describes the direct brightness increment
alignment with motion interpolation (BIAM) we propose. It
is summarized in the diagram of Figure 2. First, we review
how event cameras work and present our new event frame
generation method (Sec. III-A). Then we describe the method
of predicting brightness increment images from 3D model
and camera poses with motion interpolation (Sec. III-B).
Finally, we describe the whole workflow (Sec. III-C).

A. Event Frame Generation

An event camera raises an event ek = (uk, tk, pk) at time
tk ∈R+ as soon as a change of the logarithmic brightness L
reaching the contrast sensitivity C is detected at the photosite
uk (pixel coordinates, for convenience):

δ I(uk, tk)
.
= I(uk, tk)− I(uk, tk −∆tk) = pkC (1)

where polarity pk ∈ {+1,−1} is the sign of the brightness
change and ∆tk is the time elapsed since the last event at
the same pixel. Unlike traditional frame-based cameras that
output images at a constant rate, event cameras output a
stream of asynchronous events ek in space-time.

A brightness increment image δ I∗ is the pixel-wise col-
lection of polarities pk of the Ne ∈ N events ek, k ∈ [[1,Ne]]
captured during a period of time ∆t = tNe − t1:

δ I∗(u) = ∑
tk∈T

pkCδ (u−uk), (2)

with T = {t1, t2, ..., tNe}, in a simplified writing. Here the
Kronecker δ selects the appropriate pixel. In first person
view object tracking, the event polarities at contours between
target object and the background are unpredictable as the
background information is unknown. Imagine a gray cube

object moves in front of an event camera. The event polarities
at the scene contours will be inversed when the background
changes from white to black. What’s more, although there
is no background to consider in inside-object tracking, the
light reflection can also make the polarities unpredictable.
Due to these reasons, we use the absolute increments when
generating the observed brightness increment image.

In addition, we generate the brightness increment image
δ I∗ by loading new events in the region-of-interest (ROI)
to preserve the events triggered by the target object and
exclude those relative to the background. The ROI is the
smallest bounding box which contains the object in the
intensity image I rendered from the hypothesized pose p of
the previous frame or the initial pose. A small padding of
a few pixels is also applied to compensate the motion and
increase robustness. The event number Ne in each frame is
determined by a certain fraction of the ROI size to assure
there are always enough events for tracking and avoid too
much motion blur at the same time. Therefore, our new δ I∗

is generated by accumulating Ne new events in the region-
of-interest:

δ I∗(u) = | ∑
tk∈T,uk∈ROI

pkCδ (u−uk)|, (3)

where k ∈ [[1,Ne]] and Ne is determined by a certain ratio of
the pixel number in the ROI.

B. Predicting Brightness Increments

a) Basis: When the number of events Ne in (3) spans
a small delta time ∆t = tNe − t1, the increment (1) can be
approximated with Taylor’s expansion. By substituting the
brightness constancy assumption, we have

δ I(u)≈ |−∇I(u) ·∆u|= |−∇I(u) ·v(u)∆t|, (4)



indicating that δ I is caused by brightness gradients ∇I
moving with velocity v on the image plane.

In the object tracking problem, we assume the edges make
main contributions to successful tracking. Thus we use the
pixels u where ∇I(u)> ε , where ε is a pre-set threshold for
gradient. Since ∇I is rendered from the 3D model at virtual
camera pose p ∈ R6 and v(u) can be calculated with the
point sensitivity matrix Lu and the camera velocity ṗ ∈ R6,
we have

δ I(u) =

{
|−∇I(u) Lu ṗ ∆t|, if ∇I(u)≥ ε)

0, if ∇I(u)< ε)
. (5)

b) Camera Model: In this work, we leverage the unified
central camera projection model (UCM) [24] which is com-
patible with both perspective and omnidirectional cameras.
The sensitivity matrix of a digital point u with respect to the
camera pose is:

Lu =
[
αu 0
0 αv

]
Lx, (6)

where αu ∈R∗, αv ∈R∗ are the generalized focal length and:

Lx =
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T

, (7)

where x = [x,y]⊤ ∈ R2 is the projection of a 3D point
X= [X ,Y,Z]⊤ ∈R3 on the normalized image plane, ξ ∈R is a
parameter associated to the shape of lens, ρ =

√
X2 +Y 2 +Z2

and γ =
√

1+(1−ξ 2)(x2 + y2) [25].
c) Motion Interpolation: In Sec. I we introduced the

problem of accumulation blur when generating δ I∗. To
produce similar distribution in the predicted brightness incre-
ment image δ I, we propose the motion interpolation method.

Suppose the relative camera pose between two desired
frames δ I∗m and δ I∗m+1 is ∆p in SO(3). A visible point on
the 3D model moves from cmX ∈ R3 to cm+1X ∈ R3 in 3D
space. Because of this motion, we have:

cm+1X = cm+1Mcm
cmX, (8)

where cm+1Mcm ∈ SE(3) is the Rodrigues’ formulae expres-
sion from ∆p. On the 2D image plane, the 3D points are
projected to um ∈ R2 and um+1 ∈ R2 respectively, as shown
in Figure. 3. Assuming the depth ρ ∈ R+ constant for each
pixel, we have:

um+1 = π(
1
ρ
( cm+1Mcmρ π

−1(um))) (9)

where π−1 : R2 ⇒ R3 back-projects 2D pixel coordinate to
unit line of sight, π : R3 ⇒R2 projects the unit line of sight
to 2D plane.

Instead of calculating the intensity variation images only
at um+1 as in [9], we interpolate the motion by predicting the
absolute intensity variation image at a series of intermediate

!!𝑿

Event camera

3D point trajectory

𝒖"

interpolation

𝒖"#$

𝒖$ 𝒖%

!!"#𝑿

Perspective
or UCM

!!"#𝑴!!

Fig. 3: Motion Interpolation

pixels on the 2D trajectory from um to um+1. Formally, we
predict the absolute brightness increment image by:

δ I+ =
1
n

n

∑
i=1

δ I(ui), (10)

where δ I(ui) are computed by (5) at the intermediate pixels
ui on the 2D trajectory between um and um+1:

ui = π(
1
ρ
(iMcm ρ π

−1(um))). (11)

where iMcm is the transformation matrix from cmX to in-
termediate point iX computed by taking i

n of both transla-
tion and rotation components in cm+1Mcm . The interpolation
parameter n is determined by rounding the length of 2D
segment between um and um+1 which can be approximated
by assuming linear motion in 2D space.

C. The Optimization Problem for Alignment
Aligning δ I∗ with the object 3D model to estimate the

pose p and the velocity ṗ of the event camera is done by
minimizing the Sum-of-Squared-Differences (SSD) between
δ I∗ in (3) and the predicted δ I+ in (10). p is calculated from
the optimal pose of the previous frame and the relative pose
∆p to reach the current camera pose, thus solving the below
optimization problem:

[∆̂p, ̂̇p]⊤ = argmin
∆p,ṗ

|| δ I+

||δ I+||2
− δ I∗

||δ I∗||2
||2. (12)

The tracker takes only the 3D model of the object and
events as input. The initial pose is manually set before the
tracking starts. After the optimization of each frame, the new
pose p is used as the initial pose of the next frame. p is also
used to calculate the bounding box for event loading.

IV. EXPERIMENTS

We evaluate the performance of BIAM on a new event-
based object tracking dataset. First, we introduce the new
dataset and the experimental setup (Sec. IV-A). After that
we introduce the metrics we use for evaluation (Sec. IV-B).
Then we present the object tracking experiments with BIAM
(Sec. IV-C). Finally, we present complementary experiments
and discussions (Sec. IV-D).
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Fig. 4: Qualitative results of object tracking with BIAM on the new dataset. The images depict the events over the rendered
intensity images. (a) to (d) are the results of the large coil, (e) to (h) are the results on the other four objects.

A. Dataset and Experimental Setup

We evaluate the performance of BIAM by applying it to
the tracking of 5 different objects: a large coil, a noodle
box, a controller, a bleach cleanser and a cracker box. The
large coil (Fig. 1b) has a diameter of 130 cm and weighs
140 kg. It is used in industries to carry cables, paper, ruber.
The noodle box and the controller are common objects.
The bleach cleanser and the cracker box are from the Yale-
CMU-Berkeley dataset [26]. Their 3D models are dense
point clouds sampled from featured Computer Aided Design
(CAD) mesh or scanned mesh. We present quantitative
evaluation on the large coil. For the other objects, we present
qualitative to show that our method is general.

Considering the size of the coil, we use a fisheye lens so
that the camera could always see the whole object at similar
viewpoints that an operator or a robot moving such an object
would have. We also use pinhole lens for ablation study. For
the other 4 objects, we place them on the table and move
the perspective camera at a distance of about 30cm.

Our dataset consists of 14 perspective sequences captured
with a conventional lens and 15 omni sequences captured
with a fisheye lens, in which perspective 1-6 and omni
sequences 1-15 are about the coil, perspective 7-8 for the
noodle box, perspective 9-10 for the controller, perspective
11-12 for the bleach cleanser and perspective 13-14 for
the cracker box. perspective 1-2 and omni 14-15 sequences
were captured by moving the coil in front of static camera.
The others were captured by moving the camera with a
Universal Robots UR10 robot arm or human hands in front
of the static objects. The duration of the sequences vary
from 2s to 20s. The camera-robot calibration was performed
before recording the sequences with the robot arm to record
reliable ground truth. The sequences acquired with the robot
arm show various trajectories from pure translations to

complicated 6-DoF motions. When using the robot arm, the
camera poses in robot base frame were recorded from the
robot side with the extrinsic parameters acquired from hand-
eye calibration. The events are captured with a Prophesee
Gen3.1 event camera (640×480 pixels of k = 15 µm pitch)
with a pinhole lens and a fisheye lens. In our experiments,
both cameras are well calibrated with a blinking checkboard
pattern. In the hand-held sequences, we shake the camera
against real world background. We will share the dataset in
the future.

Emprically, we set once for all Ne (Section III-A) to 0.15
times of the pixel number in the ROI in order to ensure high
SNR and avoid too much blur at the same time. In all the
experiments the initial pose is manually set.

B. Evaluation Metrics

We use the evaluation metrics in [9], where the position
error is calculated by the Euclidean distance between the
ground truth and the estimated position and orientation error
measured with the geodesic distance in the rotation group
SO(3). Although [9] presented the quantitative results with
median errors, we also give root-mean-square (RMS) errors
which have been used by more state-of-the-art works. Since
the true object pose in robot frame is hard to get, we calculate
the transformation matrix from the initial camera frame c0
to the current camera frame c:

cMc0 =
cMb

c0M−1
b , (13)

where cMb and c0Mb are the transformation matrices from
the robot base frame b to a camera frame. We extract the
current camera pose relative to the initial frame from the
transformation matrix and use its position and orientation
components in the evaluation.



TABLE I: Comparison between BIA and BIAM on omni
recordings in RMS Position and Rotation error.

BIA BIAM
Pos. [mm] Rot. [◦] Pos. [mm] Rot. [◦]

omni Traj. 1 28.4 1.83 19.9 0.86
omni Traj. 2 39.7 2.21 33.0 1.54
omni Traj. 3 35.8 1.35 36.8 1.18
omni Traj. 4 15.8 2.26 15.5 2.19
omni Traj. 5 22.4 1.50 20.1 1.40
omni Traj. 6 227 14.4 12.9 2.11
omni Traj. 7 502 30.9 28.0 2.50
omni Traj. 8 348 22.1 16.6 2.56
omni Traj. 9 / / 18.7 1.17

omni Traj. 10 / / 16.3 1.59

C. Results

We start BIAM on all the omni sequences with manually
set initial poses. Quantitatively (Tab. I), BIAM tracked the
position and rotation poses at the best accuracy on all the
sequences, regardless of the trajectory or the viewpoint. The
tracking of BIAM is as good on the fast motion sequences
(1.0 to 2.0 m/s, Traj. 9 - Traj. 12) as on those with slower
camera motion (0.1 to 0.5 m/s, Traj. 1 - Traj. 8). The
maximum RMS error is 36.8 mm for position and 3.87 ◦

for rotation. Figure 5 shows the estimated and ground truth
trajectories of BIAM on Traj. 9.

Qualitative results of BIAM on all the objects are reported
in Figure 4a to 4h. BIAM reports small difference between
the events captured and the image rendered in all the omni
sequences. Even if there are many irrelevant objects and
patterns in the background like Figure 4a and 4b, the tracking
still runs stable.

BIAM is capable of estimating p accurately in fast mo-
tion. The average frames per second (FPS) of tracking is
351.39 Hz on Traj. 9 and 403 Hz on Traj. 10. For the fast
hand-held sequences (Traj. 11 and Traj. 12), the FPS reached
up to 750 Hz due to the super fast camera motion.

For more details, please refer to the accompanying video.

D. Discussion

a) Ablation study: For comparison, we also run the
method without motion interpolation (BIA). The quantitative
results on the coil can be found in Table. I. On most
sequences the accuracy of BIA is worse than BIAM, and
on the fast motion sequences BIA always encounters failure
(omni Traj. 9 - Traj. 12). On 4 of the sequences of the other
objects, BIA also fails to track until the end.

When we do not use the absolute brightness increments
and follow the event generative model in [9], the tracking
fails on more than 70% of the sequences, mainly due to the
failure in predicting the event polarities in real world scenes.

We also tried to track the large coil with perspective
camera on perspective 1-6. However, all the experiments
failed in 1s because the object could only show part of itself.

b) Camera tracking on public dataset: As there is
about no public event-based object tracking dataset, we
evaluate BIAM on the room dataset where the method in
[9] was evaluated on. Since there are a lot of similarities
between camera tracking and object tracking, we believe
this evaluation is meaningful. On room Traj. 1, [9] reached
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Fig. 5: Object pose tracking results of BIAM with position
and rotation variations on omni Traj. 9. The poses of X, Y,
Z axes are plot as red, green and blue curves (dash lines:
ground truth, dense lines: estimated poses).

a median position error of 9.95cm and a median orientation
error of 3.08◦. While using BIAM, the median position error
is 2.34cm and the median orientation is 0.783◦ on the same
sequence. Both the position error and the orientation error
are decreased significantly with our new method.

c) Computational cost: Compared to [9] which took
22.7s to process each frame, we realized faster processing.
Although we also built our method with ceres-solver, we
made a better implementation in multi-thread and point
selection. To track each event frame, BIAM takes 0.63s to
track each event frame when tracking the large coil.

V. CONCLUSION

This paper proposed the 3D tracking of objects described
by a 3D model within events captured with a event camera.
For this, we extended the state-of-the-art method capable of
directly tracking in brightness increment images the pose of
an event camera in a room, by introducing motion interpola-
tion and a new event frame representation. We generate the
desired image by accumulating the events in the region-of-
interest and ignoring the polarity information while render
the predicted image with motion interpolation to produce
similar accumulation blur.

The motion interpolation is proved a key contribution in
the evaluation on both public camera tracking dataset and
our new object tracking dataset, especially when the camera
motion is fast. We also evaluated our proposed method BIAM
with objects closely observed with a event camera. It shows
much more reliable tracking for significantly longer times
than the previous state-of-the-art approach especially in fast
relative motion between the camera and the target objects.
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