
HAL Id: hal-04519112
https://hal.science/hal-04519112

Submitted on 25 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the Effectiveness of Supervised and
Semi-supervised NILM Approaches in an Industrial

Context
Mohammad Kaosain Akbar, Manar Amayri, Nizar Bouguila, Frederic Wurtz,

Benoit Delinchant

To cite this version:
Mohammad Kaosain Akbar, Manar Amayri, Nizar Bouguila, Frederic Wurtz, Benoit Delinchant.
Assessing the Effectiveness of Supervised and Semi-supervised NILM Approaches in an Industrial
Context. CIIS 2023: 6th International Conference on Computational Intelligence and Intelligent
Systems, Science and Engineering Institute (SCIEI), Nov 2023, Tokyo Japan, France. pp.7-13,
�10.1145/3638209.3638211�. �hal-04519112�

https://hal.science/hal-04519112
https://hal.archives-ouvertes.fr


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Assessing the Effectiveness of Supervised and Semi-supervised 
NILM Approaches in an Industrial Context 

Mohammad	Kaosain	Akbar	
Concordia	University,	Montreal,	QC,	Canada,	mo_kbar@live.concordia.ca	

Manar	Amayri	
Concordia	University,	Montreal,	QC,	Canada,	manar.amayri@concordia.ca	

Nizar	Bouguila*	
Concordia	University,	Montreal,	QC,	Canada,	nizar.bouguila@concordia.ca	

Benoit	Delinchant	
University	Grenoble	Alpes,	Grenoble,	France,	benoit.delinchant	@g2elab.grenoble-inp.fr	

Frederic	Wurtz	
University	Grenoble	Alpes,	Grenoble,	France,	frederic.wurtz@g2elab.grenoble-inp.fr	
	
	
Non-Intrusive	 Load	 Monitoring	 (NILM)	 is	 a	 technique	 that	 aims	 to	 estimate	 the	 energy	 consumption	 and	
operational	status	of	individual	appliances	in	a	building	by	analyzing	only	the	aggregate	power	usage	data.	This	
technique	plays	a	crucial	role	in	demand-side	management	and	energy	conservation	efforts	by	providing	detailed	
information	about	the	energy	consumption	patterns	of	individual	appliances.	Naturally,	NILM	is	considered	as	a	
supervised	problem,	that	is	a	Regression	and	Classification	problem.	Various	Deep	Neural	Network	models	have	
recently	been	developed	 for	NILM	regression	and	 classification	 tasks.	However,	 training	deep	neural	networks	
requires	a	significant	amount	of	 labeled	data	and	collecting	consumption	data	over	a	prolonged	period	exposes	
consumers	to	severe	privacy	risks.	Hence	semi-Supervised	learning	is	also	used	for	NILM.	Furthermore,	most	NILM	
research	 uses	 datasets	 from	 the	 residential	 sector,	 and	 only	 a	 handful	 of	 research	 uses	 datasets	 from	 tertiary	
sectors.	This	paper	comprehensively	studies	the	performance	of	supervised	and	semi-supervised	NILM	algorithms	
based	on	a	tertiary	sector	dataset	named	the	GreEn-ER	dataset.	The	semi-supervised	deep	learning	NILM	method	
performs	classification	tasks,	whereas	the	supervised	method	performs	classification	and	regression	NILM	tasks	
simultaneously.	Based	on	the	analysis,	 it	 is	concluded	that	the	presented	NILM	algorithms	can	yield	satisfactory	
results	using	the	tertiary	sector's	consumption	dataset.	Additionally,	the	ideal	input	parameters	that	facilitates	the	
performance	of	the	both	NILM	algorithms	are	also	noted.	
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1 Introduction 
In	the	past	decade,	there	has	been	a	rise	in	the	need	for	electricity	as	it	is	the	primary	energy	source	used	in	
industry,	agriculture,	and	daily	life	for	people	around	the	world.	The	increased	electricity	consumption	leads	to	
the	burning	of	large	amounts	of	fossil	fuels,	negatively	impacting	the	environment	and	climate	[1].	Therefore,	
reducing	electrical	energy	consumption	not	only	helps	the	environment	but	also	benefits	the	economy	and	society	
[2].	One	of	the	ways	to	increase	energy	saving	is	by	monitoring	users'	energy	consumption	in	residential	or	
commercial	environments.	According	to	a	study,	4.5%	of	energy	can	be	saved	when	residential	users	are	provided	
with	their	consumption	feedback	[3].	The	percentage	increases	even	more	when	users	are	provided	with	the	
information	of	the	consumption	made	by	their	individual	electrical	appliances	[4].	Appliance	load	monitoring	
system	(ALM)	can	provide	the	detailed	information	about	of	energy	consumption	made	by	individual	appliances	
using	smart	meters	[5].	ALM	helps	to	develop	robust	energy	management	systems	and	can	identify	faulty	
appliances	and	appliances	with	high	energy	consumption.	
	There	are	two	categories	of	ALM	systems	–	Intrusive	Load	Monitoring	(ILM)	and	Non-intrusive	Load	

Monitoring	(NILM).	Figure	1	represents	the	block	diagram	of	both	ILM	and	NILM.	Typically,	ILM	involves	placing	
sensors	at	the	end	of	users'	appliances	to	monitor	their	consumption.	Although	ILM	provides	highly	accurate	
information	on	appliance	energy	consumption	and	operational	states,	installing	and	maintaining	smart	meters	
attached	at	the	end	of	each	appliance	will	increase	the	economic	cost	for	users	and	expose	them	to	the	risk	of	
privacy	leakage	[6].	Thus,	NILM	is	considered	as	the	alternative	solution,	where	appliance-level	energy	
consumption	and	states	are	determined	from	the	aggregate	power	load	obtained	from	the	main	meter	of	users'	
residential	or	commercial	units.		

	

Figure	1:	Block	Diagram	of	two	categories	of	ALM	systems	
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Non-intrusive	Load	Monitoring,	often	termed	as	Energy	Disaggregation,	is	the	process	of	breaking	down	the	
aggregated	load	obtained	from	main	meter	into	the	energy	consumed	by	the	individual	appliances	[7].	This	
technique	was	first	proposed	by	Hart	in	1992	[9].	By	accurately	identifying	and	monitoring	individual	appliances'	
energy	consumption,	NILM	can	provide	valuable	insights	into	energy	usage	patterns	and	facilitate	informed	
decision-making	for	optimizing	energy	efficiency.	A	typical	NILM	framework	is	seen	in	Figure	2,	which	consists	of	
the	following	steps	[11,12]:	

• First step is data acquisition. This step involves the collection of electrical measurements from a single point or 
multiple points in a building, typically using smart meters or submetering devices. 

• Pre-processing is then performed to clean and normalize the acquired data, removing noise, handling missing 
values, and aligning timestamps. 

• The next step is feature extraction, where relevant features are derived from the pre-processed data. These 
features may include statistical measures, frequency domain analysis, or time-frequency analysis, capturing the 
characteristics and patterns of different appliances. 

• In the appliance identification step, machine and/or deep learning algorithms are employed to classify the 
extracted features and associate them with specific appliances. This step involves training a model using some 
labelled data, allowing the model to learn the distinct energy consumption patterns of different appliances. 

• Finally, energy disaggregation is performed, where the total energy consumption is disaggregated into 
individual appliance-level consumption based on the identified appliances' energy signatures. This step 
typically involves mapping the identified appliances' energy consumption profiles to the aggregated data, 
allowing for estimation of the individual appliances' contributions to the total energy consumption. 

	

Figure	2:	Steps	of	a	NILM	framework	

NILM	is	often	framed	as	a	supervised	learning	problem	comprised	of	regression	and	classification	tasks.	The	
regression	based	NILM	approaches	estimate	the	energy	consumption	of	individual	appliances,	while	in	the	
classification	approach,	the	aim	is	to	identify	the	operating	states	(usually	On/Off	states)	of	appliances	from	the	
aggregated	power.	Most	NILM	research	focus	either	on	classification	or	regression	NILM	problems	and	not	both	at	
the	same	time.	It	is	important	to	note	that	supervised	NILM	approaches	heavily	rely	on	labeled	training	data,	
where	the	power	consumed	by	each	appliance	are	recorded	with	the	total	power	signal.	Often	the	process	of	
labeling	training	data	is	time	consuming,	compromise	the	privacy	and	requires	manual	intervention	which	is	
unfeasible	for	practical	deployments	[11].	The	Semi-supervised	NILM	approaches	address	the	limitations	of	the	
supervised	approach	by	leveraging	small	amount	of	labeled	and	large	amount	of	unlabeled	data.	Incorporating	
unlabeled	data	exposes	the	semi-supervised	NILM	models	to	vast	amount	of	available	energy	consumption	data,	
which	scales	up	NILM	systems.	Moreover,	utilization	of	unlabeled	data	can	also	contribute	to	developing	models	
that	can	handle	new	appliances	and	adapt	to	changing	energy	usage	patterns	[13,14].	
Historically,	NILM	research	has	relied	on	residential	datasets	due	to	their	availability	and	easier	access.	The	

consumption	data	are	collected	from	various	residential	units	equipped	with	smart	meters,	recording	the	
electrical	measurements	necessary	for	appliance-level	energy	disaggregation.	Majority	of	NILM	research	uses	
residential	datasets	and	focusing	solely	on	such	datasets	limits	the	generalization	and	applicability	of	NILM	
techniques	in	other	sectors.	The	tertiary	sector	comprises	of	commercial,	industrial,	and	institutional	buildings	
which	have	distinct	energy	consumption	characteristics	compared	to	residential	buildings	[15].	Using	tertiary	
sector	datasets	in	NILM	research	facilitates	the	development	of	NILM	models	that	can	handle	the	unique	
challenges	posed	by	commercial	buildings,	industrial	facilities,	and	public	institutions.	
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In	this	paper	the	above	problems	are	addressed	by	evaluating	the	performance	of	the	two	NILM	models,	one	
supervised	and	the	other	one	semi-supervised,	using	a	novel	dataset	from	tertiary	sector	called	the	GreEn-ER	
dataset	[10].	Both	NILM	models	are	developed	using	deep	learning-based	architectures.	The	supervised	NILM	
model	performs	both	classification	and	regression	tasks	simultaneously.	The	semi-supervised	learning	model	is	
based	on	Mean-Teacher	learning	model.	In	a	nutshell,	the	main	contributions	of	the	paper	are	as	follows:	(i)	
Presenting	one	supervised	and	one	semi-supervised	deep	learning	based	NILM	models.	(ii)	Introducing	the	
GreEn-ER	NILM	dataset.	(iii)	Performance	of	the	two	NILM	models	using	the	novel	dataset.	
The	rest	of	the	paper	is	organized	as	follows.	Section	2	discusses	the	GreEn-ER	dataset	and	how	the	data	is	

prepared	to	train	and	evaluate	both	models.	Section	3	elaborates	the	frameworks	of	supervised	and	the	semi-
supervised	NILM	models	used	in	this	study,	along	with	a	brief	description	of	the	evaluation	metrics.	Section	4	
elaborates	the	model	implementation,	experimental	results	and	discussion.	Section	5	summarizes	the	
contributions	and	ideas	for	future	work.	

2 GreEn-ER Dataset 
The	dataset	utilized	in	this	paper	is	called	the	GreEn-ER	dataset	[10]	which	is	a	novel	dataset	gathered	from	the	
Grenoble	INP	Ense3	and	G2E	Lab	at	the	Institut	Polytechnique	de	Grenoble	in	Grenoble,	France.	From	January	
2017	to	December	2021,	this	dataset	captures	the	individual	usage	of	six	distinct	appliances	as	well	as	the	overall	
aggregated	power	signal.	

2.1 Dataset Description 
The	dataset	is	comprised	of	the	aggregated	power	signal	and	individual	energy	usage	of	six	different	appliances,	
namely	Ventilation,	Socket	plugs,	Lighting,	Other	electricity,	Cooling	and	Heating.	Each	reading	is	recorded	at	an	
interval	of	one	hour,	for	which	GreEn-ER	dataset	is	considered	as	a	low	frequency	NILM	dataset.	Following	is	
some	of	the	advantages	of	low	frequency	NILM	datasets	[16,17,18]:	

• The reduced frequency dataset reduces the data acquisition and processing requirements, making it easier to 
collect and handle large-scale datasets. The researchers can also analyze longer periods of energy consumption 
with fewer computational resources. 

• By sampling at lower frequencies, these datasets provide a broader perspective on appliance usage over 
extended periods, enabling researchers to analyze daily, weekly, or monthly consumption trends. Long-term 
patterns are valuable in understanding appliance behaviour, detecting changes in energy consumption patterns, 
and developing more accurate load disaggregation models. 

Low-frequency	NILM	datasets	often	exhibit	a	higher	signal-to-noise	ratio	compared	to	high-frequency	datasets.	
The	lower	sampling	rate	eliminates	high-frequency	noise,	resulting	in	cleaner	power	signal	data.	This	enhanced	
signal	quality	improves	the	accuracy	of	feature	extraction	and	load	disaggregation	algorithms,	leading	to	more	
reliable	and	precise	NILM	outcomes.	
Figure	3	represents	the	pie	chart	of	the	usage	of	six	appliances	of	the	GreEn-ER	dataset	from	2017	to	2021.	

Most	power	is	consumed	by	the	Other	electricity	appliances	which	is	33%,	followed	by	Heating	which	is	26%.	The	
Cooling	and	the	Ventilation	appliances	consumed	17	and	12%	power	respectively.	And	oinally,	the	Socket	plugs	
consumed	7%	and	Lighting	appliance	consumed	5%	of	the	total	energy	recorded	between	5	years’	time	period.	
Table	1	presents	the	maximum,	mean	and	minimum	value	of	total	aggregated	signal	and	consumption	made	by	
individual	appliances	for	the	entire	dataset	and	individual	years.	
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Figure	3:	GreEn-ER	consumption	by	end	use	from	2017	to	2021	

2.2 Dataset Preprocessing 
The	NILM	datasets	contain	aggregate	power	load	as	well	as	individual	appliance	usage	and	do	not	include	an	
explicit	label	for	the	operational	states	of	the	appliances.	Classioication	NILM	tasks	predict	the	appliance	states	
based	on	the	aggregate	signal,	and	it	is	difoicult	to	detect	whether	a	specioic	appliance	is	switched	On	or	Off	based	
just	on	its	power	consumption.	The	GreEn-ER	dataset	only	contains	consumption	information	and	for	NILM	
classification	task	of	the	supervised	approach,	it	is	important	to	obtain	the	states	of	the	individual	appliances	for	
each	recorded	measurement.	In	order	to	obtain	states	of	the	appliances	of	the	dataset	at	an	instance,	a	
thresholding	technique	titled	Middle	Point	thresholding	is	adapted	in	this	paper	[19].	Table	2	shows	the	threshold	
values	obtained	for	the	individual	appliances	after	applying	Middle	Point	thresholding.	If	the	consumption	value	
of	an	individual	appliance	is	more	than	or	equal	to	the	thresholding	value	of	the	respective	appliance,	then	the	
appliance	is	assigned	value	1	(On	state).	Otherwise,	the	appliance	is	assigned	value	0	(Off	state).	For	the	semi-
supervised	learning	approach,	similar	dataset	is	copied	but	now,	random	instances	are	selected	where	appliances’	
states	are	assigned	value	-1	which	means	unlabeled.	Additionally,	the	consumption	value	of	the	appliances	is	
removed	from	the	dataset	used	for	training	and	evaluating	the	semi-supervised	learning	approach.	In	other	
words,	supervised	learning	of	this	paper	used	one	set	of	GreEn-ER	dataset	and	semi-supervised	learning	used	
another	separate	set	of	datasets.	For	each	learning	approaches,	70%	of	the	dataset	is	used	for	training	and	30%	is	
used	for	testing.	

3 Description of learning approaches and Evaluation Metrics 
One	supervised	learning	approach	and	one	semi-supervised	learning	approach	is	used	to	evaluate	the	GreEn-ER	
dataset.	Both	of	these	approaches	used	deep	learning	architecture	for	disaggregation	task.	Supervised	learning	
approach	performs	both	classification	and	regression	task	simultaneously,	meanwhile	the	semi-supervised	
approach	leverage	the	small	amount	of	label	data	and	large	amount	of	unlabeled	data	to	classify	states	of	all	six	
appliances	[20].	In	this	section,	the	description	of	both	supervised	and	semi-supervised	models	are	presented	and	
the	metrics	which	helps	to	evaluate	the	performance	of	the	models	are	also	elaborated	briefly.		
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3.1 Supervised learning model 
For	the	supervised	learning	approach,	a	deep	learning	framework	based	Temporal	Convolution	Neural	(TCN)	
architecture	is	adopted.	TCN	is	an	improved	version	of	one-dimensional	convolutional	neural	network.	The	
advantage	of	TCN	lies	in	the	integration	of	causal	convolution,	dilated	convolution,	and	skip	connection	into	the	
network	structure.	Causal	convolution	ensures	that	the	output	of	time	step	will	not	use	future	information	and	
will	only	be	obtained	based	on	convolution	operations	Dilated	convolution	allows	the	input	of	convolution	to	have	
interval	sampling,	and	the	sampling	interval	is	determined	by	the	dilation	rate.	Therefore,	this	allows	TCN	to	use	
fewer	layers	and	obtain	a	large	receptive	field.		

Table	1:	Maximum,	Mean	and	Minimum	consumption	values	in	kWh	of	all	appliances	and	aggregate	power	load	for	the	
entire	dataset	and	individual	years	

Table	2:		Threshold	values	of	the	appliances	in	kWh	obtained	using	Middle	Point	thresholding	

Skip	connection	is	directly	connecting	the	feature	map	of	the	lower	layer	to	the	upper	layer	and	1	×	1	
convolution	ensures	the	addition	of	the	same	shape	of	feature	maps.	Skip	connection	helps	to	avoid	the	

	 Total	 Ventilation	 Sockets	
plug	 Lighting	 Other	

electricity	 Cooling	 Heating	 	

Maximum	
Value	 2037	 793	 980	 132	 971	 1641	 1120	

Entire	Dataset	Mean	Value	 269.09	 32.43	 18.40	 14.30	 87.8	 47.08	 68.99	
Minimum	
Value	 3.13	 0	 0	 0	 0	 0	 0	

Maximum	
Value	 1427	 479	 49.80	 80	 765	 622	 763	

2017	Mean	Value	 298.14	 36.52	 18.84	 16.68	 89.13	 53.82	 83.14	
Minimum	
Value	 25.35	 0	 4.22	 0	 0	 5.84	 0.25	

Maximum	
Value	 1913.4	 608	 103	 132	 879	 1641	 1120	

2018	Mean	Value	 246.46	 26.58	 17.99	 15.59	 58.38	 60.70	 67.19	
Minimum	
Value	 20.49	 0	 3.91	 0	 0	 0.18	 0	

Maximum	
Value	 2037	 793	 547	 71.50	 971	 1599	 850	

2019	Mean	Value	 294.41	 30.77	 18.23	 15.45	 116.20	 53.77	 59.97	
Minimum	
Value	 17.92	 0	 0.56	 0	 0	 0	 0	

Maximum	
Value	 1167.40	 322	 622	 65.90	 537	 543	 724	

2020	Mean	Value	 240.30	 29.02	 16.70	 10.47	 97.99	 33.56	 52.54	
Minimum	
Value	 34.09	 0.87	 0	 0.62	 0	 0	 0	

Maximum	
Value	 1180.70	 569	 980	 68.10	 215	 558	 691	

2021	Mean	Value	 266.48	 39.44	 20.33	 13.44	 77.51	 33.88	 81.85	

Minimum	
Value	 3.13	 0	 0	 0	 0	 0	 0	

Appliances	 Ventilation	 Socket	plug	 Lighting	 Other	electricity	 Cooling	 Heating	
Threshold	
Value	 107.6	 245.4	 26.3	 278.5	 301.7	 84.6	
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disappearance	of	the	gradient	when	there	is	an	increase	in	the	number	of	network	layers	to	strengthen	the	
stability	of	the	network.	Using	batch	normalization	and	spatial	dropout	to	each	layer	helps	to	regularize	the	
network.	Figure	4	(a)	shows	two	such	layers	with	skip	connection	of	1x1	convolution	that	are	encapsulated	into	a	
residual	module.	The	deep	TCN	network	is	formed	by	stacking	multiple	number	of	these	residual	modules.	
Components	of	each	residual	block	is	shown	in	Figure	4	(b).	The	fully	connected	layer	on	top	of	the	seven	TCN	
residual	blocks	generate	all	six	appliances’	states	and	power	consumed	when	the	aggregate	power	signal	is	
provided	to	the	model.	

	

Figure	4:	(a)	Residual	Block	of	the	proposed	TCN	NILM	model.	(b)	The	architecture	of	the	proposed	TCN	
NILM	model.	

3.2 Semi-supervised learning model 
The	semi-supervised	model	is	developed	using	deep	learning	architecture	based	on	Mean-teacher	model.	The	
Mean	Teacher	model	is	a	semi-supervised	learning	technique	that	has	gained	popularity	in	the	context	NILM.	It	is	
an	extension	of	the	standard	supervised	learning	approach,	which	leverages	both	labeled	and	unlabeled	data	to	
improve	the	performance	and	generalization	of	the	NILM	model.	The	Mean	Teacher	model	introduces	a	teacher-
student	paradigm,	where	the	teacher	model's	weights	are	an	exponential	moving	average	of	the	student	model's	
weights.	During	training,	the	student	model	is	updated	using	labeled	and	unlabeled	data,	while	the	teacher	
model's	weights	provide	soft	targets	for	guiding	the	student's	learning	process.	By	employing	the	Mean	Teacher	
model,	the	NILM	system	can	effectively	harness	the	information	present	in	unlabeled	data,	leading	to	improved	
energy	disaggregation	performance	and	enhanced	robustness	against	variations	in	energy	consumption	patterns	
[8].	Figure	5	represents	the	block	diagram	of	a	Mean-teacher	model.	The	oinal	output	for	the	semi-supervised	
model	is	obtained	from	the	student	network.	The	student	and	teacher	network	are	comprised	of	TCN	and	LSTM	
architecture.	The	TCN	architecture	used	in	this	model	is	similar	to	the	one	used	in	the	supervised	model.	
From	Figure	5,	it	is	observed	that	each	network	is	comprised	of	TCN	and	LSTM	architecture.	The	Long	Short-

Term	Memory	(LSTM)	architecture	is	a	type	of	recurrent	neural	network	(RNN)	that	has	been	widely	used	in	Non-
Intrusive	Load	Monitoring	(NILM)	research.	LSTM	is	designed	to	address	the	vanishing	gradient	problem	
commonly	encountered	in	traditional	RNNs,	making	it	well-suited	for	sequence-to-sequence	tasks,	such	as	energy	
disaggregation.	The	key	feature	of	LSTM	is	its	ability	to	learn	and	retain	information	over	long	time	intervals,	
which	is	crucial	for	capturing	complex	temporal	dependencies	in	energy	consumption	data.	The	architecture	
incorporates	a	system	of	gates,	including	input,	forget,	and	output	gates,	which	regulate	the	flow	of	information	
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through	the	network.	This	gating	mechanism	enables	LSTM	to	selectively	update	and	retain	information,	making	
it	effective	in	modelling	the	energy	consumption	patterns	of	various	appliances	in	NILM	tasks.	

	

Figure	5:	Architecture	of	the	proposed	semi-supervised	TCN-LSTM	technique	for	appliance	states	
classification	in	NILM.	

4 Experimental Evaluation 
In	this	section,	implementation	details	of	the	two	models	are	presented	and	discussion	is	made	on	performance	of	
both	models	using	GreEn-ER	dataset	based	on	Mean	absolute	error	(MAE),	F1	score	and	Hamming	Loss	evaluation	
metrics.	

4.1 Implementation Details 
For	the	supervised	NILM	model,	the	filter	size	of	the	TCN	is	set	to	3	and	dilation	factor	for	each	residual	block	is	
set	to	2!	where	i	is	the	residual	block	number.	The	TCN	network	is	comprised	of	seven	TCN	residual	blocks	with	
each	block	having	128	filters	for	hidden	layers.	The	final	layer	is	a	fully	connected	layer	from	which	the	final	
appliance	states	and	power	consumption	are	obtained.	The	spatial	dropout	rate	is	set	to	0.2.	The	experiment	was	
performed	in	Mac	Mini	M1	device	having	a	Ram	capacity	of	8	GB	and	a	storage	of	512	GB.	The	device	is	composed	
of	8	core	CPU	and	8	core	GPU.	
Considering	the	semi-supervised	NILM	model,	similar	TCN	architecture	is	adopted	with	similar	number	of	

filter	size	and	dilation	factor	but	here,	each	block	has	256	filters	instead	of	128	filters	for	hidden	layers.	Besides	
TCN,	the	Mean-teacher	model	also	contains	LSTM	architecture.	The	first	LSTM	layer	consists	of	64	filters	with	
kernel	size	of	1*5	and	the	second	LSTM	layer	is	comprised	of	120	filers	with	similar	kernel	size	as	the	first	LSTM	
layer.	A	fully	connected	layer	is	attached	at	the	end	of	the	final	layer	of	both	teacher	and	student	networks.	The	
smoothing	hyperparameter	of	the	EMA	is	set	to	0.99.	The	semi-supervised	loss	is	then	calculated	using	the	
classification	and	consistency	losses	and	is	used	to	update	the	student	network	with	Adam	optimizer.	The	value	of	
the	learning	rate	with	Adam	optimizer	is	set	to	0.001.	The	teacher	network	is	then	updated	using	EMA.	A	total	of	
150	epochs	was	used	during	training.	

4.2 Experimental results and Discussion 
Table	3	shows	the	MAE	and	F1-score	of	the	supervised	model	when	trained	and	evaluated	using	GreEn-ER	
dataset.	The	model	had	an	overall	MAE	score	of	0.37,	with	the	best	MAE	score	obtained	by	the	Socket	plug,	having	
a	score	of	0.25,	followed	by	cooling	appliance	having	a	score	of	0.29.	Heating	and	Ventilation	appliance	have	a	
MAE	score	of	0.31	and	0.33	respectively.	Lastly	other	electricity	appliance	obtained	an	MAE	score	of	0.42	and	
score	of	lighting	appliance	is	0.56.	Based	on	the	MAE	score	it	can	be	said	that	the	error	in	energy	estimation	by	the	
supervised	model	for	the	socket	plug,	cooling,	heating	and	ventilation	is	less	than	other	electricity	and	lighting	
appliance.	F1	scores	of	the	Table	3	represents	the	performance	of	the	supervised	learning	model	in	respect	to	its	
classification	task.	According	to	the	F1	scores,	the	model	is	able	to	predict	the	state	of	the	lighting,	other	electricity	
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and	ventilation	appliance	than	the	socket	plug,	cooling	and	heating	appliance.	The	overall	F1-score	of	the	model	is	
0.81,	showing	the	model’s	satisfactory	capability	in	estimating	operational	states.	

Table	2:	MAE	and	F1-score	for	the	supervised	NILM	model	

Appliances	 Ventilation	 Socket	
plug	 Lighting	 Other	

electricity	 Cooling	 Heating	 Overall	
Model	

MAE	 0.33	 0.25	 0.56	 0.42	 0.29	 0.31	 0.37	

F1	Score	 0.76	 0.52	 0.94	 0.83	 0.49	 0.68	 0.81	

From	Table	3,	Hamming	Loss	and	F1	score	for	the	semi-supervised	model	is	observed.	The	semi-supervised	
model	performs	NILM	classification	tasks	and	so	evaluation	metrics	traditionally	used	for	classification	problems	
is	used	here	for	the	model’s	performance	assessment.	Based	on	the	HL	score	heating,	lighting,	other	electricity	and	
ventilation	appliances’	states	are	properly	predicted	in	contrast	to	socket	plug	and	cooling.	The	overall	HL	score	of	
the	model	came	out	to	be	as	0.224.	For	the	F1-score,	similar	patterns	are	also	observed	where	again	lighting,	
heating,	other	electricity	and	ventilation	obtained	better	score	than	the	remaining	socket	plug	and	cooling	
appliance.	F1-score	of	the	overall	model	is	0.75.	

Table	3:	Hamming	Loss	(HL)	and	F1-score	for	the	semi-supervised	NILM	model	

For	the	supervised	model,	considering	all	data	of	the	tertiary	sector	to	be	labelled,	the	overall	error	in	
estimating	appliance	power	lies	between	20	to	50%.	For	classifying	operational	states,	four	appliances	achieved	
good	F1	scores,	meaning	that	most	of	their	states	were	predicted	correctly	compared	to	two	remaining	appliances	
which	has	lower	F1	scores.	For	the	semi-supervised	model,	which	utilized	small	amount	of	labelled	data	and	large	
amount	of	unlabelled	data,	in	terms	of	both	HL	and	F1	score,	similar	appliances	generated	satisfactory	scores	
meaning	that	states	of	appliances	with	good	HL	and	F1	scores	are	predicted	more	accurately.	In	both	cases	socket	
plug	appliances	had	lower	chance	of	estimating	proper	operational	states	and	power	consumption.	This	might	be	
due	to	the	fact	that	various	appliance	having	different	consumption	patterns	might	be	connected	to	the	socket	
plugs	for	which	the	scores	for	both	models	came	out	poor.	It	is	also	important	to	note	that	disaggregation	task	
achieved	by	the	semi-supervised	model	incorporated	more	appliance	having	average	results	whereas	
disaggregation	task	performed	by	the	supervised	model	incorporated	less	appliance	but	with	more	accurate	
disaggregation	results.	

5 Conclusion 
In	this	paper,	detailed	analysis	of	the	performance	of	supervised	and	semi-supervised	NILM	models	on	a	novel	
tertiary	dataset	is	presented.	First	description	of	the	novel	tertiary	NILM	dataset	along	with	its	importance	in	
NILM	research	is	discussed.	Next	two	deep	learning	based	supervised	and	semi-supervised	NILM	models	are	
implemented	and	based	on	standard	evaluation	metrics,	the	performance	of	the	models	on	the	novel	dataset	is	
accessed.	It	is	observed	that	semi-supervised	NILM	model	generated	average	classification	results	for	large	
number	of	appliances,	but	the	supervised	NILM	model	generated	more	accurate	results	but	for	less	number	of	
appliances	than	the	semi-supervised	model.	Future	work	may	explore	the	impacts	of	various	supervised	and	
semi-supervised	NILM	model	having	a	foundation	of	different	deep	learning	architectures	on	datasets	of	other	

Appliances	 Ventilation	 Socket	
plug	 Lighting	 Other	

electricity	 Cooling	 Heating	 Overall	
Model	

HL	 0.215	 0.572	 0.119	 0.176	 0.638	 0.127	 0.224	

F1	Score	 0.65	 0.48	 0.79	 0.73	 0.39	 0.71	 0.75	



10	

tertiary	sectors.	Experimenting	the	impacts	of	tertiary	datasets	on	NILM	models	enhances	the	scalability	and	
effectiveness	of	NILM	techniques	in	real-world	scenarios	beyond	residential	settings.	In	conclusion,	while	
residential	datasets	have	been	extensively	used	in	NILM	research,	incorporating	datasets	from	the	tertiary	sector	
is	crucial	for	a	comprehensive	understanding	of	energy	consumption	and	the	development	of	robust	NILM	
techniques.	The	inclusion	of	datasets	from	commercial,	industrial,	and	institutional	buildings	enhances	the	
scalability,	generalization,	and	real-world	applicability	of	NILM	techniques	beyond.	
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