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Abstract5

This paper proposes a novel self-adaptive strategy to control piezoelectric vibration ab-6

sorbers (PVA) using a semi-passive resonant shunt with tunable inductance for vibration7

attenuation of harmonically excited structures. The tunable inductor is realized using ferrite8

cores and its inductance is controlled by means of the air gap effect between the cores using9

piezoelectric stack actuators. This device allows the control of the resonance frequency of10

the shunt circuit. The adaptive resonant shunt leverages the effect of antiresonance resulting11

from the electromechanical coupling of the structure with a resonant shunt with low elec-12

trical damping to attenuate the vibration of the harmonically excited structure. A machine13

learning control method based on a Gaussian process regression model is used to drive the14

tunable inductance based on minimizing the time-averaged RMS response of the structure.15

The experimental application of the proposed strategy is illustrated in an application to at-16

tenuate a single-mode of a simplified aircraft fuselage structure. A reduction of about 30%17

in the maximum vibration amplitude is observed by comparing the self-adaptive resonant18

circuit and a traditional resonant circuit designed based on the equal-peaks method.19

Keywords: Adaptive shunt, Semi-passive resonant shunt, Piezoelectric vibration absorber,20

Tunable inductor, Machine learning control21

1. Introduction22

The growing demand for more efficient and environmentally friendly structures has led23

to a current trend toward lightweight structures, often more flexible and making them more24

susceptible to vibrations. This brings new challenges for current vibration control technolo-25

gies, which must operate with increasing efficiency and contribute a minimum of mass to the26

structures on which they are installed [1]. In this context, one such technology that is gaining27

increasing interest are piezoelectric vibration absorbers (PVA). These devices, invented by28

Forward [2], employ piezoelectric transducers mounted on or even embedded in a primary29
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structure to convert mechanical energy into electrical energy, which can be dissipated in30

an appropriate electrical circuit, called a shunt. The first shunt introduced by Forward [2]31

and one of the most famous is the so-called resonant shunt composed of a resistor and an32

inductor connected in series or parallel. Since then, different types of passive and active33

shunt circuits have been developed for single and multi-mode damping of vibrations [1].34

The theoretical foundations for the design of resonant PVA shunts were laid by Hagood35

and Flotow [3] based on the equal-peak design method developed for dynamic vibration36

dampers (DVA), which is considered to be an equivalent mechanical system. This method37

provides an approximate solution of values for resistance and inductance to the optimization38

problem defined by minimizing the H∞-norm of the system’s frequency response function39

(FRF) considering a single mode. Recently, an analytic closed-form solution to this opti-40

mization problem was proposed by Soltani et al. [4]. Several other methods for designing41

resonant circuits have been investigated and proposed in the literature, including more42

complex shunts and multiple modes of vibration [5, 6]. Most of these methods focus on43

broadband frequency excitation, with the objective of attenuating single or multiple vibra-44

tion modes as much as possible. Fundamentally, they rely on tuning the electrical resonance45

frequency to the desired mechanical resonance frequency, in order to maximize the transfer46

of vibration energy from the primary structure to the shunt circuit, where it is dissipated47

through electrical damping. Although PVA with resonant shunts can provide an important48

vibration attenuation for low frequency modes, small variations in the resonance frequency49

of the shunt or the primary structure cause substantial performance degradation [7, 8].50

In view of this problem many studies have investigated PVAs with adaptive resonant51

shunts, which are circuits capable of performing on-line adaptation of their impedance [1].52

This type of device is commonly used to improve the robustness of piezoelectric absorbers53

in operation, which are very sensitive to uncertainties due to operational and environmental54

conditions. The adaptive shunt circuit is able to change its properties to compensate for55

possible effects of variation in its resonance frequency or of the structure, improving the56

robustness of the vibration attenuation performance. For the design of an adaptive shunt57

two elements are essential: a mechanism to drive its natural frequency and a strategy of58

control. Hollkamp and Starchville [9] were the pioneers to propose a PVA with an adaptive59

shunt, capable of automatically adjusting to the resonance frequency of a defined vibration60

mode using a motorized potentiometer and a synthetic inductor. They proposed a control61

strategy based on the minimization of the root mean squared value of the time-vibration62

signal by gradient-search algorithm. Fleming et al. [10] applied a control strategy for the63

single-mode shunt damping in a cantilevered beam structure using a synthetic impedance64

controlled by adjusting the relative phase difference between the velocity and the electrical65

current flowing in the shunt, which was later extended to multi-mode shunt damping by66

Niederberger et al. [11]. Gripp et al. [12] explored the use of a negative capacitance with67

an adaptive resonant shunt, controlled by the relative phase difference between velocity and68

electrical current, to improve the attenuation robustness of the PVA in the face of variations69

in the natural frequency of the host structure. They demonstrated a significant gain in70

attenuation performance of this circuit in a shell structure compared to a purely adaptive71

resonant shunt. More recently, Gardonio et al. [13] demonstrated that minimizing the time-72
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averaged vibration response of a mechanical system with a PVA when the system is excited73

by a stochastic force is equivalent to maximizing the time-averaged electric power dissipated74

by the resonant shunt, which is characterized by a bell-type non-convex surface with a single75

maximum. From this result they developed an adaptive shunt using a controller based on76

the extremum seeking algorithm capable of adjusting online the resistance and inductance77

emulated by an synthetic impedance to maximize the time-averaged electric power dissipated78

by the PVA [14]. In addition to adaptive shunts, which are usually based on active circuits,79

switching shunts based on semi-active circuits such as state switching and synchronized80

switch damping have also been explored in the literature to improve the PVA robustness81

[15–18]. The major drawbacks of switching shunts are the high order frequency signals82

required to control the switching circuits and the acoustic disturbances during operation [1].83

The adaptive PVA shunts proposed in the literature are mostly oriented to structures84

excited in a broad frequency band, aiming to ensure near-optimal attenuation independent85

of variations in the natural frequencies of the structure’s modes, which usually leads to a fre-86

quency response function with two equal-peaks. On the other hand, in harmonically excited87

structures, minimizing the vibration amplitude at each frequency leads to an even more88

efficient solution by tuning the electrical resonance frequency to the excitation frequency89

and decreasing the electrical damping as much as possible, creating an anti-resonance [19].90

For very low damping, this anti-resonance can practically cancel the steady state vibra-91

tion amplitude of the structure. This effect can be exploited with adaptive shunt circuits92

capable of tuning their electrical resonance frequencies by changing their parameters to93

attenuate structures excited with time-varying harmonic signals. This strategy, known as94

antiresonance locus, was recently exploited by Audeley et al. [19, 20] in an electromag-95

netic vibration absorber with adaptive resonant shunt controlled by an electronic chopper96

with pulse-width modulation. Despite being a well established strategy in the literature97

and already explored for electromagnetic vibration absorbers, the experimental application98

of the antiresonance locus strategy to absorbers based on piezoelectric transducers has not99

yet been investigated and proves to be challenging because the required reduction in the100

electrical damping reduces the robustness and stability margin of the structure, hindering101

the design of a suitable controller, and it also increases the energy flowing through the102

shunt circuit. This latter issue hampers the application of active circuits commonly used103

in adaptive shunts, such as virtual inductors realized for example using Antoniou’s circuit104

[21] or Riordan’s gyrators [22], or synthetic impedance circuits [23]. Although these active105

circuits provide a remarkable electrical frequency adaptability, they suffer from saturation106

limits often related to their operational amplifiers. Details of the saturation issues faced by107

virtual inductors and synthetic impedances, as well as the delay-induced instabilities of the108

latter, are discussed in Dekemele et al. [24] and Raze [25] respectively. In this context, a109

novel semi-passive resonant shunt is proposed in this work to enable the application of the110

antiresonance locus strategy using piezoelectric transducers for vibration attenuation, which111

has the potential to substantially reduce the mass added to the primary structure compared112

to electromagnetic transducers, since they are lighter and the resonant circuit that presents113

more weight can be positioned outside the structure through the electrical connection.114

The control of PVA with adaptive shunts mostly relies on traditional control approaches115
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based on system identification to design a controller, and then depend on accurate model de-116

scriptions to enable safe and high performance control. This process can be time-consuming117

and a complex endeavor in the presence of nonlinearities. Machine learning methods can118

circumvent this process by learning the system’s input-output characteristics directly from119

data, offering a significant potential for control, which although have been extensively ex-120

plored in the past years in robotic applications [26, 27], to the author’s best knowledge has121

not been yet explored in PVA. A machine learning control approach using a Gaussian Process122

Regression model (GPR) is investigated in this work in the development of a self-adaptive123

PVA based on the anti-resonance locus strategy for vibration attenuation of harmonically124

excited structures. It is important to note that the self-adaptive capability is fundamentally125

different from that applied in PVA with traditional adaptive shunts, as the system learns126

how to adapt to changes in excitation frequency by itself through the machine learning127

model. This type of self-adaptive or self-learning strategy has recently been explored in the128

literature for other vibration control techniques. Wang et al. [28] proposed a self-learning129

tuning method based on neural networks for an electromagnetic vibration absorber with130

negative stiffness under variable frequency excitation. Song et al. [29] investigated the use131

of a nonlinear autoregressive with exogenous input model for vibration identification and132

control of a flexural beam with piezoelectric actuators. A similar approach using a GPR133

model was recently explored by Maiworm et al. [30, 31] in a control framework for scanning134

quantum dot microscopy.135

In this paper, we propose a self-adaptive PVA with semi-passive resonant shunt for vi-136

bration attenuation of structures subjected to time-varying harmonic excitations. The main137

objective of this paper is to circumvent the above-mentioned challenges in developing this138

type of device and to demonstrate the experimental application for vibration attenuation139

in a demonstrator. We present the development of a tunable resonant shunt composed of a140

passive inductor with movable ferrite cores and low internal resistance. A simple mechanism141

to control its inductance and consequently the electrical resonance frequency of the shunt is142

proposed based on the use of voltage-driven piezoelectric stack actuators to control the air143

gap between its ferrite cores. A machine learning approach to control this device based on144

GPR model is investigated. This model is used in an offline step for supervised learning of145

the control signal applied to the resonant shunt to minimize the vibration of the main struc-146

ture as a function of the excitation frequency, thus providing the self-adaptive capability of147

its electrical resonance frequency to the time-varying tonal excitation for real-time control.148

Therefore, the self-adaptive PVA proposed in this work, which seeks to attenuate vibration149

based on the anti-resonance locus strategy using the ML control algorithm, requires, in addi-150

tion to the piezoelectric patch connected to the tunable semi-passive shunt circuit, a second151

piezoelectric sensor patch on the structure used as a sensor and a digital processing unit to152

execute the control algorithm. The potential range of applications of the self-adaptive PVA153

investigated here, which is limited to harmonically excited structures, targets propulsion154

systems, such as propellers or turbofan engines, and rotating machinery in general.155

This paper is organized as follows: in Section 2 a lumped mass model of a single-degree-156

of-freedom structure connected to a resonant shunt is reviewed and is used to present the157

theoretical foundations of the strategy for vibration attenuation of harmonically excited158
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structures based on antiresonance locus. A brief description of the semi-passive tunable res-159

onant shunt development and the theoretical concept behind the inductance tuning device160

based on the air gap between the movable ferrite cores is presented. Then, the self-adaptive161

control strategy based on the GPR model for the implementation of closed-loop system is162

presented. The experimental setup for applying the proposed methodology on the demon-163

strator and the results obtained are presented and discussed in Section 3. Finally, the164

conclusions are summarized in Section 4.165

2. Piezoelectric vibration absorbers166

In this section a lumped mass model of a structure connected to a PVA with resonant167

shunt is presented. This simplified model is sufficient to show the fundamentals of the168

operation and design of a PVA, as well as the adaptive strategy for vibration attenuation of169

harmonically excited structures. The fundamentals for the design of the tunable inductance170

are presented and discussed. Finally, the complete self-adaptive strategy for online control171

of the system is proposed.172

2.1. Lumped parameter model of structure with piezoelectric vibration absorber173

Figure 1: Lumped mass model of the structure with the piezolectric vibration absorber.

The lumped mass model of a structure coupled to a piezoelectric transducer connected174

to a resonant shunt composed of an inductor and a resistor in series is schematically repre-175

sented in Figure 1. An external force F is applied to the structure, causing a mechanical176

displacement x and a voltage V across the electrodes of the transducer. The governing177

equations of the coupled mechanical and electrical systems are given by [25]:178 mẍ+ cẋ+ kocx− θq = F

Lq̈ +Rq̇ +
1

Cε
q − θx = 0,

(1)

where m, c, koc represent the mass, damping and stiffness of the structure when the trans-179

ducer is open-circuited (including the mechanical stiffness of the piezoelectric component),180

q is the electric charge displacement, θ is the piezoeletric coupling coefficient and Cε is the181

piezoelectric capacitance at constant strain.182
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The electromechanical coupling factor of this system is defined based on the mechanical183

behavior considering open-circuit (q = 0) and short-circuit (V = 0) electrical boundary184

conditions, and it is given by:185

kc =

√
ω2
oc − ω2

sc

ω2
sc

(2)

where ωoc and ωsc are the resonance frequencies of the structure with the transducer in186

open-circuit and short-circuit configurations respectively, and are defined by:187

ωoc =

√
koc
m

and ωsc =

√
ksc
m

=

√
koc − θ2Cε

m
(3)

where ksc is the structural stiffness when the transducer is short-circuited.188

The electromechanical coupling defined by Equation 2 is an important factor consid-189

ered for shunt circuit design because it represents the efficiency of strain energy conversion190

into electrical energy. Furthermore, it can be easily identified experimentally through the191

frequencies of the structure in open and short-circuit, which allows to mitigate modeling192

uncertainties [25].193

The dynamic behavior of the electric circuit RL can be characterized by the resonance194

frequency (ωe) and the electrical damping (ξe), which are obtained by:195

ωe =
1√
LCε

, ξe =
R

2

√
Cε

L
(4)

The frequency response function of this model can be computed from the Fourier trans-196

form of the Equation 1 and results in:197

H(ω) =
X(ω)

F (ω)
=

−ω2L+ iωR + 1
Cε

p

(−ω2m+ iωc+Koc)
(
−ω2L+ iωR + 1

Cε

)
− θ2

(5)

where X(ω) is the Fourier transform of x, F (ω) is the Fourier transform of F and i =
√
−1 .198

Based on the FRF, the problem of vibration attenuation considering a broadband ex-199

citation can be described as an optimization problem, where one wants to minimize the200

H∞-norm, for example the FRF maximum amplitude. The solution of this optimization201

problem considering the FRF displacement/force leads to an approximation for the optimal202

inductance and resistance values [6]:203

Lep =
1

Cεω2
oc

and Rep =

√
3

2

kc
Cεωoc

(6)

This solution shows no significant difference for systems with low structural damping204

(below 10%) as demonstrated by Thomas et al. [6]. It leads to a FRF with two peaks of205

equal amplitudes around the resonance frequency of the mechanical system with a substantial206

amplitude attenuation compared to the system with an open-circuit transducer (or without207

PVA) as presented in Figure 2. However, small variations in the properties of the shunt208

6



or the structure can cause an important increase in the maximum amplitude. It should be209

remarked that this solution considers a broadband frequency excitation near the mode and210

constant properties of the shunt.211

2.2. Adaptive shunt based on antiresonance locus212

In considering a harmonic excitation of the structure of known frequency Ω and an213

adaptive resonant shunt in which the inductance and resistance can be varied, a more efficient214

attenuation can be obtained using a different strategy, the antiresonance locus [20]. This215

strategy can be inferred from the FRF presented in Equation 5. The electromechanical216

coupling of the transducer induces a term in the numerator of the equation. For a given217

excitation frequency (Ω) and assuming null electrical resistance, one can show from Equation218

5 that the FRF is zero for :219

Ladaptive =
1

CεΩ2
(7)

This occurs due to the existence of an antiresonance, in which the excitation force coun-220

teracts the force generated by the electromechanical coupling, making the structure remain221

at rest [20]. It should be noted, however, that this case of complete vibration attenuation222

of the structure at rest is purely theoretical as it would imply an infinite current in the223

circuit. In practice, although significant vibration attenuation can be achieved, it is lim-224

ited. By increasing the electrical resistance in the circuit, some of the energy is dissipated225

as heat, reducing the attenuation effect on the antiresonance. If the electrical resistance226

remains small, the maximum attenuation is obtained for the inductance given by Equation227

7, for which Ω = ωe. Therefore, by applying this strategy for a harmonic excitation vary-228

ing within a frequency range one can drastically attenuate the vibration amplitude of the229

structure as presented in Figure 2.230

The application of this strategy depends on controlling of the resonance frequency of231

the electrical circuit through the inductance and a circuit with low electrical resistance. Al-232

though these two issues can be solved using a synthetic impedance to emulate the resistance233

and the inductance, this type of active circuit has instability problems along with other234

limitations already discussed previously. To circumvent these limitations, we propose the235

use of a semi-passive device that will be discussed in the next subsection.236

2.3. Semi-passive tunable inductor237

A passive inductor is a simple device, typically consisting of a coil of wire, which can be238

wound around a core made of different materials such as iron, ferrite, or air. This electrical239

component stores energy in a magnetic field when a current flows though the coil. The240

great difficulty in using passive inductors in PVA is related to the high values of inductance241

required for attenuation of low frequency modes - usually in the order of tens of H - which are242

difficult to find commercially or present impractical dimensions [32]. Nevertheless, Lossouarn243

et al. [32] recently demonstrated the feasibility of more compact high-value passive inductors244

using ferrite cores with high magnetic permeability. Although this allows the fabrication of245

the inductors necessary for the resonant circuit, these devices have constant inductance. In246
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Figure 2: Frequency response function of primary system with an open-circuit transducer ( ) and with
resonant shunt circuit : L = Lep and R = Rep ( ); L = Lep and R = 0.1Rep ( ); L = 0.9Lep and
R = 0.1Rep ( ); L = 1

CεΩ2 and R = 0.1Rep ( ). A mechanical damping ratio of 0.08 % is considered for
the system with open-circuit shunt.

order to realize a device with tunable inductance, necessary to implement the antiresonance247

locus strategy, we will investigate the effect caused by the air gap between the ferrite cores.248

(a) (b)

Figure 3: Inductance with air gap scheme.

The effects of the presence of an air gap between the cores of the inductors have been well249

studied in the literature. It is commonly exploited to improve the design of these devices,250

since it increases the saturation current, allows the storage of more energy, and decreases251

the sensitivity of the inductor to variations in the magnetic properties of the cores [33]. For252

the inductor illustrated in Figure 3(a), under assumption of a homogeneous flux density253

distribution, the inductance and air gap lg are related by L = C1/(C2 + C3lg)N
2, where N254

is the number of turns in the coil, and C1, C2 and C3 constants are related to inductor’s255

dimensions and physical properties as discussed Darleux [34]. Indeed, the inductance can256

be controlled by the air gap between the cores. It is important to note that this linear257
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relationship is valid under the assumption of a homogeneous flux density distribution, which258

is reasonable for a small air gap. However, as the gap increases, the magnetic flux lines259

begin to bulge, causing the effective reluctance of the air gap to decrease and the inductance260

to increase in a non-linear relationship, a phenomenon known as the fringe effect. For more261

details on the fringe effect, the interested reader may refer to [33, 35].262

Small variations in the air gap can cause significant variations in inductance, thus re-263

quiring a precise control mechanism. For this purpose, we propose the use of the system264

illustrated in Figure 3(b) composed of two piezoelectric stack actuators capable of control-265

ling the air gap between the cores with micrometer precision and two mechanical supports266

attached to the cores. The piezoelectric stack actuators allow the upper core to be dis-267

placed by the force transmitted through the mobile support. The displacement is imposed268

by applying a constant voltage on the piezoelectric stacked actuators.269

2.4. Self-adaptive PVA based on machine learning control270

Figure 4: General schematic representation of the closed-loop control structure.

Having designed the semi-passive tunable inductor presented in the previous subsection,271

it can be used in a closed-loop system to implement the vibration attenuation based on272

the antiresonance locus approach. A diagram with all of the components of this system is273

illustrated in Figure 4. Recall that the main goal of the self-adaptive strategy proposed here274

is to minimize the vibration of the mechanical structure for a given harmonic excitation by275

controlling the tunable inductance through the applied voltage on the piezoelectric stack276

actuators.277

As discussed for the simplified lumped mass model, the solution of this optimization278

problem is based on the strategy of an antiresonance locus considering a small resistance279

and adaptive inductance, leading to Equation 7, where the optimal inductance depends on280

the excitation frequency and represents the condition in which the frequency of the electrical281

circuit coincides with the excitation frequency. Although this solution can be directly related282

to the mechanism of inductance tuning through the air gap between the ferrite cores, it is283

important to note that this variable is driven by the voltage applied to the piezoelectric284

actuators, which has an unknown relationship with the air gap. To address this problem,285

we propose an approach based on machine learning control.286
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Machine learning control has recently been formalized by Duriez et al. [36] as a generic287

model-free strategy for controlling nonlinear systems, although one of the first works using288

this type of technique was reported by Fleming and Purshouse [37] in the past. In this289

approach, the control problem is formulated as an optimization with respect to a cost func-290

tion that can be evaluated using the system’s measured outputs. The control objective is291

to minimize the defined cost function within the space of the control laws. The controller is292

formulated based on a machine learning algorithm that is trained on an off-line learning loop293

using data from simulations or experiments. It is then used to minimize the objective in the294

online closed-loop control system [38]. Different machine learning algorithms have been used295

with this approach, including: genetic algorithms, reinforcement learning, artificial neural296

networks, and support vector machines [36, 39].297

In this paper we propose to use the Gaussian process regression (GPR) model, a machine298

learning algorithm that has attracted attention due to its stochastic formulation and ability299

to describe nonlinear functions. We propose to use the GPR model in an off-line loop for the300

supervised learning, where a training data set under operational conditions is provided and301

the model learns by itself the relationship between the observed variables, which is a priori302

unknown. This model is then used in the closed-loop system using a controller, based on the303

machine learning approach to determine the applied voltage for each excitation frequency,304

in order to minimize the vibration amplitude of the structure. This novel self-adaptive305

strategy to control the resonant shunt is illustrated in Figure 5 and presented in detail in306

what follows.307

In the problem presented in this paper, the cost function is the time-averaged RMS of308

the vibration of the mechanical system, which is assumed to depend only on the excitation309

frequency (Ω) and the applied voltage of the piezoelectric actuators (V a) of the tunable310

inductance, and is expressed as J(Ω, V a). This hypothesis is supported by the linear vibra-311

tion behavior of the structure for the applied excitation level. Additionally, environmental312

uncertainties, such as temperature variation, which can also impact this cost function, are313

not considered. This type of cost function was already explored with adaptive resonant314

shunts and is justified by its smooth behavior, less susceptible to noise than the maximum315

vibration amplitude, and the existence of a global minimum point as reported by Fleming316

and Moheimani [10].317

Consider a data set available for training with noisy observations of the time-averaged318

RMS response J = [J1, . . . , JN ]
T of the mechanical system for a set of applied actuator319

voltage Va = [V a
1 , . . . , V

a
N ]

T and excitation frequencies Ω = [Ω1, . . . ,ΩN ]
T . Adopting the320

notation of Rasmussen[40], let x = [Va,Ω]T denote a matrix of multivariate training inputs,321

and y = [J] denote the corresponding vector of training outputs. Assuming that these322

observations can be expressed following regression model :323

yi = f(xi) + ε, ε ∼ N
(
0, σ2

n

)
(8)

where f is a unknown function and ε is a Gaussian distributed noise with zero mean and324

variance σ2
n. Various methods can be used to solve this classic regression problem. We pro-325

pose in this work to apply the Gaussian Process regression (GPR) model, a non-parametric326
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stochastic model that has been recently explored for control problems of this type. Thus,327

the function f can be written as:328

f(x) ∼ GP (m(x), k (x,x′)) (9)

where m(x) and k (x,x′) are respectively the mean and covariance functions of the distri-329

bution over functions described by the Gaussian process.330

The main aim of the GPR model is to make predictions for new input data that are not331

in the training data. Given a new input vector, x∗, one can estimate the distribution over332

functions of a new point y∗ given the previous observations as :333

f∗(x∗) ∼ N (m∗ (x∗) , k∗ (x∗,x∗)) (10)

where334

m∗ (x∗) = kT
∗ (x∗,x)

[
K (x,x) + σ2

nI
]−1

y,

k∗ (x∗,x
′
∗) = k (x∗,x∗)− k (x∗,x)

⊤ (
K + σ2

nI
)−1

k (x,x∗) .
(11)

are the posterior mean and variance of the GPR model, I is the identity matrix, σ2
n is335

the variance of the noise and K is a matrix whose i,j-th element is given by the covari-336

ance function k(xi, xj). An effective and common choice for the covariance function is the337

squared-exponential function which is adopted in this paper. The hyperparameters of the338

GPR model comprising the noise signal (σ2
n) and length-scale of the squared-exponential339

covariance function are obtained through the maximization of the marginal likelihood func-340

tion using a gradient-based optimizer based on the Sequential Least Squares Programming341

method. This traditional procedure for training the GPR model is not detailed here for342

the sake of clarity. The interested reader is invited to consult [40, 41] for more details. In343

addition, the code used for implementation is available on the github repository1.344

Assuming that the posterior mean of GPR model adequately represents the cost function345

J(Ω, V a), it can be used to control the voltage applied to the piezoelectric actuators in order346

to minimize the vibration of the structure by solving the following minimization problem:347

V̄ a(Ω) = argmin
V a

m∗(Ω,Va) (12)

This problem can be solved for a given excitation frequency by interpolating the GPR348

model within the training domain and selecting the voltage to be applied to the piezoelectric349

actuators that provides the lowest value for the cost function. The complete closed-loop350

system based on the machine learning control approach is presented in the diagram of351

Figure 5. In the training step of the GPR model, which is carried out offline, the excitation352

frequency and the applied voltage are varied throughout the training domain and the cost353

function is obtained experimentally by calculating the RMS value of the system response for354

each operational condition. The excitation frequency is estimated from the system response355

1https://github.com/jessepaixao/SPARTA
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signal using the fast Fourier transform based on the parabolic interpolation approach, which356

provides improved frequency resolution for harmonic signals [42]. It is important to note357

that in the closed-loop operation of the control system, only the excitation frequency is used358

as the input variable of the trained GPR model, which is used to estimate the voltage value359

that minimizes the cost function. Additionally, it should be emphasized that the trained360

GPR model provides an approximation of the cost function within the training domain and361

is only valid for closed-loop operation under the training conditions.362

Figure 5: Proposed self-adaptive strategy for the the closed-loop operation of the PVA with semi-passive
tunable inductor based on the machine learning control approach using GPR model for vibration attenuation
of a harmonically excited structure.

3. Experimental validation of the self-adaptive vibration absorber363

In this section the experimental application of the proposed strategy is presented for a364

simplified aircraft prototype. This mechanical structure is used only as a demonstrator for365

the validation of the methodology for vibration reduction. The design and realization of366

the resonant shunt and the passive tunable inductor are discussed. Then, the self-adaptive367

strategy is utilized for the vibration attenuation of the airplane prototype considering a368

swept harmonic excitation and the results obtained are discussed.369

3.1. Experimental Setup370

A photograph of the experimental apparatus is provided in Figure 6(a). The simplified371

aircraft mockup was suspended on a test rig by flexible cables to simulate free-free boundary372

conditions. Two piezoelectric patches were glued to the airplane wings, the first used for373

vibration attenuation connected to the shunt circuit, denoted PZT2, and another employed374

as a collocated sensor to measure the voltage, denoted as PZT1. A schematic representation375

detailing all components and the integration of the experimental setup is shown in Figure376

6(b), where three subsystems can be identified: the so-called testing subsystem highlighted377

in red, responsible for the excitation and vibration measurement of the structure to perform378

the tests; the named control subsystem highlighted in blue, an active circuit responsible for379

controlling the shunt circuit; and lastly the resonant shunt subsystem highlighted in green,380

a passive circuit.381
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The testing subsystem is managed by a computer dedicated to signal analysis and inte-382

grated with the Polytec controller. The structure is excited using an electrodynamic shaker383

positioned close to PZT 1 and the applied excitation force is measured using a load cell PCB384

type 208C01. The transverse velocity is measured at the point shown in Figure 6(b), the385

tip of the other wing to which the excitation is applied, using the Polytec Laser Doppler386

vibrometer PSV-500 Xtra 1D. The control subsystem is managed by the Raspberry Pi with387

the add-on boards MCC 128 and MCC 152 manufactured by Measurement Computing, ded-388

icated respectively for acquisition and analog signal generation. A voltage divider is used389

to adjust the voltage measurement at PZT2 to the acquisition card limits of plus or minus390

10V. The piezoelectric actuators in charge of the inductance variation are controlled by the391

signal generated in the MCC-152 card, which is amplified with a gain of 20 in the Cedrat XX392

power amplifier. The resonant circuit consisting only of the tunable inductor is connected393

to PZT2 and mounted right next to the aircraft prototype. The machine learning control394

algorithm for closed-loop operation in the experimental tests performed are implemented on395

the Raspberry Pi.396

(a) (b)

Figure 6: Photograph of the experimental setup (a) and its schematic representation (b).

3.2. Design and manufacturing of tunable passive inductor397

The position and dimensions of the piezoelectric patches shown in Figure 6 were chosen398

based on a parametric study of the finite element model of the aircraft prototype coupled399
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with the piezoelectric patches. This model of the prototype aircraft was recently explored in400

the study presented by Bachy et al. [43] with a different type of absorber, where more details401

about its formulation, material properties and dimensions are presented. The parametric402

study using this model was carried out by varying the position of the piezoelectric patches403

along the wings of the prototype. The position providing the maximum electromechanical404

coupling factor with respect to the third bending mode of the aircraft was chosen. The choice405

of this symmetric mode was based on a compromise between its frequency and the inductance406

required to tune the PVA. Note that a mode with a lower resonance frequency would be407

possible, but would require a higher inductance (see Equation 4) and would consequently408

increase the number of turns required for the same type of ferrite core, thus increasing the409

dimensions of the inductor. The width and length dimensions of the patches were chosen410

to maximize the piezoelectric capacitance, aiming to reduce the inductance required that,411

according to Equation 6, is inversely proportional to the piezoelectric capacitance.412

Figure 7: Mobility frequency response function and corresponding mode shapes for short-circuit and open-
circuit patch configurations.

The initial design of the resonant circuit was performed considering constant induc-413

tance, given by Equation 6. The electromechanical coupling was estimated using Equation414

3 and the natural frequencies obtained from the experimental FRFs shown in Figure 7415

for the piezoelectric transducers in open-circuit and short-circuit conditions. The value416

of the piezoelectric capacitance at constant strain was measured experimentally using an417

impedance analyzer. From the estimated experimental parameters and using Equation 6,418

an inductance of 28.64 H and a resistance of 1533.18 Ω were obtained for the equal-peak419

design solution. All the numerical values are summarized in Table 1.420

The inductance and resistance estimates for the solution based on the equal-peaks421

method was used as a starting point for the tunable inductor design. Among the various422

commercially available ferrite cores, the T26 ferrite was chosen because it offers a suitable423
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Table 1: Numerical values for the experimental estimated parameters.

ωoc(Hz) ωsc(Hz) kc Cε (nF) Lep (H) Rep (Ω) Al (µH/tr
2)

77.56 77.25 0.0897 147 28.64 1533.18 10

compromise between inductance factor and maximum saturation current. Based on the424

initial values of inductance an resistance and the inductance factor supplied by the manu-425

facturer of the T26 ferrite cores it is possible to calculate the number of windings required426

to make the coil, which was 1692 turns. However, since the tunable inductance is controlled427

by the air gap between the cores, which decreases the inductance as the air gap increases,428

the coil is made with a higher number of turns to allow the inductance to vary within a429

margin of plus or minus 10% of the calculated initial value. Thus, the coil was manufactured430

using an automatic winding machine with 1900 turns of 0.35 mm diameter copper wire. The431

inductor was assembled using the coil and the T26 ferrite cores along with piezoelectric stack432

actuators. The overall dimensions of the ferrite core are 70 mm in diameter and 42 mm in433

height. The inductance measured using a LCR meter for the assembled inductor without434

air gap between the cores was 35.5 H with a quality factor of 181.3, which is equivalent to a435

DC resistance of 95 Ω. A photograph of the tunable inductor including the fixed base and436

movable support additively fabricated using PLA and the piezoelectric actuators is shown437

in Figure 8(a).438

The characterization of the relationship between the inductance and the applied voltage439

in the piezoelectric actuators was performed using the experimental setup schematized in440

Figure 8(b). A voltage generator was used to apply a constant signal varying from 0 to 5441

V with a step of 0.5 V, while an LCR meter was used to measure the inductance at each442

level. This test was repeated three times and the results obtained are shown in Figure 8(c).443

Note in this curve that with increasing applied voltage, raising the space between the ferrite444

core proportionally, initially induces a linear variation in inductance. However, as the gap445

increases, the magnetic flux lines start to bulge out around the gap, causing a reduction446

in effective air gap reluctance and consequently an increase in inductance, a phenomenon447

known as the fringing effect, which explains the change in trend of the curve. For more448

details on fringing effect the interested reader can refer to [33, 35].449

3.3. Self-adaptive control based on Gaussian Process Regression450

The application of the proposed self-adaptive strategy requires an initial supervised learn-451

ing step performed off-line. The aircraft prototype is submitted to an automated data452

collection process for training the GPR model. Using the test and control subsystem simul-453

taneously, a constant amplitude harmonic excitation signal is applied to the shaker and the454

excitation frequency is varied from 70 to 85 Hz with a step of 0.5 Hz. For each frequency455

the voltage applied to the piezoelectric stack actuators is varied from 0 to 5 V with a step of456

0.25 V, for a total of 651 test configurations. For each configuration the structure is excited457

for 2 seconds followed by 1s of rest, and the synchronized acquisition of the time signals of458

velocity measured by the vibrometer and voltage at the PZT1 is performed. This process,459
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(a) (b)

(c)

Figure 8: Experimental characterization of the semi-passive tunable inductor. Photograph of the (a) fabri-
cated device, (b) schematic of the experimental setup used for the characterization, and (c) results of the
experimental characterization of the variable inductance as a function of the voltage applied to the stack
for the three tests performed: test 1 ( ), test 2 ( ) and test 3 ( ).

which is fully automated, takes approximately 32 minutes.460

Samples of the time signals for the wing velocity measured by the vibrometer and voltage461

at PZT1 for an excitation frequency of 70 Hz and applied voltage on the piezoelectric462

actuators of 0 V are presented in Figure 9. The time-averaged RMS values of the signals463

for all experimentally tested conditions as a function of excitation frequency and applied464

voltage on the stack are represented through the surface plots presented in Figure 10. It can465

be observed by analyzing the surface presented in Figure 10(a) that the RMS value of the466

velocity has a smooth behavior in relation to the excitation frequency, with the existence467

of minimum operating points - highlighted by the blue dots - as a function of the voltage468

applied to the piezoelectric stack actuators, which controls the resonance frequency of the469

electric circuit. It is important to note that the minimum points for the velocity surface470
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coincide exactly with the minimum points for the voltage values in PZT 1. This is because471

the two surfaces have a remarkably similar shape. This fact can be quantitatively verified472

by calculating the distance between the two normalized surfaces, which have a maximum473

distance of 0.0028. Therefore, it allows the use of the voltage signal measured at PZT 1474

to evaluate the cost function, which is considerably more practical for the implementation475

in practice than the velocity measured by the vibrometer, since the transducer is already476

installed in the structure and can be readily measured. The voltage measured on PZT sensor,477

which is proportional to its strain, is therefore in this case proportional to the velocity of the478

structure at the measured point. Hence, hereafter the measured velocity by the vibrometer479

will only be used for validation of the implemented control system.480

(a) (b)

Figure 9: Time signals of (a) velocity at measured point by the vibrometer and (b) voltage in PZT 1 for 75
Hz excitation frequency and 0V applied to piezoelectric stack actuators.

A total of five tests were performed to collect experimental data with the 651 mentioned481

configurations. The data sets from four of these tests were used to train the GPR model,482

considering the excitation frequency and the applied voltage on the piezoelectric actuators483

as input variables and the RMS voltage value at PZT 1 as output. The experimental data484

used for training and the predicted mean of the trained model is presented in Figure 11. The485

model validation was performed using Root-Mean Squared Error (RMSE) criterion based486

on leave-one-out cross-validation method, for which the last data set from the five was used.487

The maximum RMSE between the RMS voltage of PZT 1 experimentally observed and488

predicted by the model obtained was of 0.038. This low RMSE value is a strong indicator489

of adequate prediction the trained GPR model.490
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(a) (b)

(c) (d)

Figure 10: Experimental surfaces obtained for the RMS value of velocity (a)(b) and voltage at PZT 1 (c)(d)
as a function of excitation frequency and applied voltage on the piezoelectric actuators for the first test
performed.
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Figure 11: Predicted mean ( )by the GPR model trained with the experimental data ( ) used for training
from four of the five tests.
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3.3.1. Closed-loop control based on the trained GPR model491

Once the GPR model has been trained in the off-line learning loop, the self-adaptive492

control strategy can be tested in closed-loop. The test subsystem is used to excite the493

structure with a swept-sine signal with frequency varying linearly from 70 Hz to 85 Hz and494

a duration of 120 seconds. The machine learning control algorithm based on the trained495

GPR model is implemented on the Raspberry Pi, responsible for the control subsystem that496

runs independently. The voltage acquisition at PZT 1 is performed at a sampling frequency497

of 2500 Hz and with a duration of 0.5 s. For each voltage time signal acquired the frequency498

is estimated using the fast Fourier transform based on the parabolic interpolation approach.499

The signal frequency is then used as input to the GPR model, which is used to estimate500

the voltage that must be applied to the piezoelectric actuators to minimize the stress on501

PZT 1 and consequently the vibration in the structure. This whole process takes place in a502

closed-loop online on the Raspberry Pi board.503

The experimental results of the self-adaptive control strategy is compared to the solution504

provided by the equal-peak design, in which the inductance is kept constant regardless of505

the operating conditions. This solution is obtained experimentally by adjusting the tunable506

inductance to the condition where the experimental FRF of the system has two equal-507

peaks around the mode of interest. It is important to note that the resistance of the shunt508

circuit was kept unchanged at 95 Ohms. The results obtained for these two strategies509

are presented in Figure 12. An attenuation gain of 3.07 dB (equivalent to an amplitude510

reduction of approximately 30%) is obtained by comparing the maximum amplitudes can511

be observed for the self-adaptive strategy for frequencies around the third mode, which can512

be explained by the antiresonance locus at the excitation frequency. In particular, at the513

resonant frequency of the mode of interest, the two solutions perform similarly, which is to514

be expected, since in this case the excitation frequency coincides with the frequency of the515

mode for which equal-peak method solution is based and the resistance of the shunt has516

not modified. It should be emphasized here that the purpose of this comparison is only517

to highlight the strategic difference between the two methodologies, since better vibration518

attenuation is already expected for harmonically excited structures from the self-adaptive519

methodology, which is based on the antiresonance localization strategy, compared to the520

equal-peaks methodology. The peak in the velocity response at 80s is due to the drastic521

decrease in the voltage applied to the piezoelectric actuators, causing a sharp decrease in522

inductance. This causes a transient response of the system, which soon reaches the steady-523

state response, but that should be further investigated.524

The voltage signal applied to the tunable inductor has a relationship with the electrical525

resonance frequency of the shunt whose trend can be inferred from its inductance. With the526

increase of the applied voltage, it is expected a decrease in inductance (see Figure 8) and527

consequently an increase in the electric resonance frequency of the shunt (see Equation 4).528

Thus, the analysis of the time signal of the voltage applied to the actuators indicates that529

there was an overall increase in resonance of the electrical circuit from 0 to approximately530

60 s, following approximately the same trend of the excitation frequency. However, one can531

question the behavior of the sharp reduction of the applied voltage around 80 s which indi-532

cates a reduction of the electric resonance frequency as the excitation frequency increases.533
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Although this behavior cannot be explained regarding the antiresonance locus strategy pre-534

sented in the previous section for the lumped mass model, it is important to note that this535

experimental application involves a complex structure with multiple modes, some of which536

are close to each other (see mode 3 and 4 in Figure 7). Moreover, the nonlinear effects of the537

semi-passive tunable inductor as well as uncertainties, are difficult to take into account in538

the traditional model-based control approach. This justifies and strengthens the advantages539

of the model-free approach based on the machine learning control method presented here.540

The machine learning control strategy proposed in this work is applicable for the op-541

eration of the structure under operating conditions within the conditions used in training542

of the GPR model, which limits its application in more challenging scenarios susceptible543

to unforeseen variations in environmental and operating conditions. However, recent works544

involving the use of GPR models has already shown the possibility of updating a trained545

model with data obtained during operation in a way that allows the adaptation of the con-546

troller in case of structural changes [44]. Alternatively, the application of gradient-based547

optimization methods for the online controlling of the input variable of the closed-loop sys-548

tem as applied in the past may be envisaged [10, 11]. This approach offers the advantages549

of not requiring a training phase as is the case in the machine learning approach, and of550

being adaptable in operation to the different sources of uncertainty affecting the system.551

However, they require a longer convergence time to a control solution for the system, which552

hinders their application in cases of time-varying harmonic signals such as those studied in553

this work.554
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Figure 12: Closed-loop experimental application of the self-adaptive strategy based on the trained GPR
model ( ) compared to the solution provided by the equal-peak method ( ), in which inductance remains
constant.The structure is excited with a swept-sine signal with frequency varying linearly ( ) from 70 Hz
to 85 Hz.

4. Conclusions555

This paper proposed a self-adaptive PVA with semi-passive resonant shunt for used in556

the vibration attenuation of harmonically excited structures. This technique has many ad-557

vantages. A resonant shunt composed only of passive components circumvents the main558

limitation of the widely used synthetic impedances, in particular the problem of instabil-559

ity. In addition, the inductance of the novel high-Q tunable inductor can be controlled by560

the application of a simple constant voltage signal, unlike the devices with similar capabili-561

ties based on SSD and PWM techniques that require signals at high-switching frequencies.562

Moreover, the proposed self-adaptive strategy based on machine learning control does not563

require a physical model of the closed-loop system since it employs a supervised learning564

approach via a GPR model to learn how to control the semi-passive tunable inductor to565

achieve the maximum vibration attenuation as function of the excitation frequency. The ap-566

plication of this strategy was demonstrated experimentally on a simplified airplane mockup.567

The results show a significant improvement of approximately 3.07 dB (equivalent to an am-568

plitude reduction of approximately 30%) in vibration attenuation for a swept sine excitation569

compared to a traditional resonant shunt with fixed inductance. Future applications to the570
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attenuation of vibrations in rotating machinery are envisaged as well as an extension to the571

case of broadband frequency excitations.572
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[20] M. Auleley, C. Giraud-Audine, H. Mahé, O. Thomas, Tunable electromagnetic resonant shunt using632

pulse-width modulation, J. Sound Vib. 500 (2021) 116018. https://doi.org/10.1016/j.jsv.2021.633

116018.634

[21] A. Antoniou, Realisation of gyrators using operational amplifiers, and their use in rc-active-network635

synthesis, Proc. Inst. Electr. Eng. 116 (1969) 1838–1850(12).636

[22] R. Riordan, Simulated inductors using differential amplifiers, Electron. Lett. 3 (1967) 291–291(0).637

[23] G. Raze, A. Jadoul, S. Guichaux, V. Broun, G. Kerschen, A digital nonlinear piezoelectric tuned vi-638

bration absorber, Smart Mater. Struct. 29 (1) (2019) 015007. https://doi.org/10.1088/1361-665X/639

ab5176.640

[24] K. Dekemele, P. V. Torre, M. Loccufier, High-voltage synthetic inductor for vibration damping in641

resonant piezoelectric shunt, J. Vib. Control 27 (17-18) (2021) 2047–2057. https://doi.org/10.642

1177/1077546320952612.643

[25] G. Raze, Piezoelectric digital vibration absorbers for multimodal vibration mitigation of complex me-644

chanical structures, Ph.D. thesis, University of Liege (2021).645

[26] M. P. Deisenroth, D. Fox, C. E. Rasmussen, Gaussian processes for data-efficient learning in robotics646

and control, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2) (2015) 408–423. https://doi.org/10.647

1109/TPAMI.2013.218.648

[27] L. Hewing, J. Kabzan, M. N. Zeilinger, Cautious model predictive control using gaussian process649

regression, IEEE Trans. Control Syst. Technol. 28 (6) (2020) 2736–2743. https://doi.org/10.1109/650

TCST.2019.2949757.651

[28] X. Wang, D. Wang, F. Li, Y. Zhang, Z. Xu, T. Wang, G. Fu, C. Lu, Self-learning vibration absorber652

with negative electromagnetic stiffness for variable vibration, Int. J. Mech. Sci. 248 (2023) 108225.653

https://doi.org/10.1016/j.ijmecsci.2023.108225.654

[29] H. Song, X. Shan, L. Zhang, G. Wang, J. Fan, Research on identification and active vibration control655

of cantilever structure based on NARX neural network, Mech. Syst. Signal Process. 171 (2022) 108872.656

https://doi.org/10.1016/j.ymssp.2022.108872.657

[30] M. Maiworm, Gaussian process in control : model predictive control with guarantees and control of658

scanning quantum dot microscopy, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät659

für Elektrotechnik und Informationstechnik (2021).660

[31] M. Maiworm, C. Wagner, R. Temirov, F. S. Tautz, R. Findeisen, Two-degree-of-freedom control com-661

bining machine learning and extremum seeking for fast scanning quantum dot microscopy, in: 2018662

Annual American Control Conference (ACC), 2018, pp. 4360–4366. https://doi.org/10.23919/663

24

https://doi.org/10.1016/j.jsv.2022.117154
https://doi.org/10.1117/12.349773
https://doi.org/10.1016/j.jsv.2009.07.030
https://doi.org/10.1121/1.3327238
https://doi.org/10.1121/1.3327238
https://doi.org/10.1121/1.3327238
https://doi.org/10.1016/j.ymssp.2018.10.024
https://doi.org/10.1177/1045389X20957097
https://doi.org/10.1177/1045389X20957097
https://doi.org/10.1177/1045389X20957097
https://doi.org/10.1016/j.jsv.2021.116018
https://doi.org/10.1016/j.jsv.2021.116018
https://doi.org/10.1016/j.jsv.2021.116018
https://doi.org/10.1088/1361-665X/ab5176
https://doi.org/10.1088/1361-665X/ab5176
https://doi.org/10.1088/1361-665X/ab5176
https://doi.org/10.1177/1077546320952612
https://doi.org/10.1177/1077546320952612
https://doi.org/10.1177/1077546320952612
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.1109/TCST.2019.2949757
https://doi.org/10.1109/TCST.2019.2949757
https://doi.org/10.1109/TCST.2019.2949757
https://doi.org/10.1016/j.ijmecsci.2023.108225
https://doi.org/10.1016/j.ymssp.2022.108872
https://doi.org/10.23919/ACC.2018.8431022
https://doi.org/10.23919/ACC.2018.8431022
https://doi.org/10.23919/ACC.2018.8431022


ACC.2018.8431022.664

[32] B. Lossouarn, M. Aucejo, J. F. Deu, B. Multon, Design of inductors with high inductance values for665

resonant piezoelectric damping, Sens. Actuators A: Phys. 259 (2017) 68–76, publisher: Elsevier B.V.666

https://doi.org/10.1016/j.sna.2017.03.030.667

[33] V. Valchev, A. Van den Bossche, Inductors and Transformers for Power Electronics, 1st Edition, CRC668

Press, Boca Raton, 2018.669

[34] R. Darleux, Development of analogous piezoelectric networks for the vibration damping of complex670

structures, Ph.D. thesis, HESAM Université (2020).671

[35] M. Frivaldsky, M. Pipiska, M. Zurek-Mortka, D. Andriukaitis, PFC Inductor Design Considering672

Suppression of the Negative Effects of Fringing Flux, Appl. Sci. 12 (13) (2022) 6815. https:673

//doi.org/10.3390/app12136815.674

[36] T. Duriez, S. L. Brunton, B. R. Noack, Machine Learning Control – Taming Nonlinear Dynamics and675

Turbulence, Fluid Mechanics and Its Applications, Springer International Publishing, Cham, 2017.676

[37] P. Fleming, R. Purshouse, Evolutionary algorithms in control systems engineering: a survey, Control677

Eng. Pract. 10 (11) (2002) 1223–1241. https://doi.org/10.1016/S0967-0661(02)00081-3.678

[38] S. L. Brunton, J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Sys-679

tems, and Control, 1st Edition, Cambridge University Press, 2019.680

[39] R. Li, B. R. Noack, L. Cordier, J. Borée, F. Harambat, Drag reduction of a car model by linear genetic681

programming control, Exp. Fluids 58 (8) (2017) 103. https://doi.org/10.1007/s00348-017-2382-2.682

[40] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT Press, 2006.683

[41] K. Worden, P. Green, A machine learning approach to nonlinear modal analysis, Mech. Syst. Signal684

Process. 84 (2017) 34–53, recent advances in nonlinear system identification. https://doi.org/10.685

1016/j.ymssp.2016.04.029.686

[42] M. Gasior, J. L. Gonzalez, Improving FFT Frequency Measurement Resolution by Parabolic and Gaus-687

sian Spectrum Interpolation, AIP Conf. Proc. 732 (1) (2004) 276–285. https://doi.org/10.1063/1.688

1831158.689

[43] E. Bachy, K. Jaboviste, E. Sadoulet-Reboul, N. Peyret, G. Chevallier, C. Arnould, E. Collard, In-690

vestigations on the performance and the robustness of a metabsorber designed for structural vibration691

mitigation, Mech. Syst. Signal Process. 170 (2022) 108830. https://doi.org/10.1016/j.ymssp.2022.692

108830.693

[44] A. Cully, J. Clune, D. Tarapore, J. B. Mouret, Robots that can adapt like animals, Nat. 521 (7553)694

(2015) 503–507. https://doi.org/10.1038/nature14422.695

25

https://doi.org/10.23919/ACC.2018.8431022
https://doi.org/10.23919/ACC.2018.8431022
https://doi.org/10.23919/ACC.2018.8431022
https://doi.org/10.1016/j.sna.2017.03.030
https://doi.org/10.3390/app12136815
https://doi.org/10.3390/app12136815
https://doi.org/10.3390/app12136815
https://doi.org/10.1016/S0967-0661(02)00081-3
https://doi.org/10.1007/s00348-017-2382-2
https://doi.org/10.1016/j.ymssp.2016.04.029
https://doi.org/10.1016/j.ymssp.2016.04.029
https://doi.org/10.1016/j.ymssp.2016.04.029
https://doi.org/10.1063/1.1831158
https://doi.org/10.1063/1.1831158
https://doi.org/10.1063/1.1831158
https://doi.org/10.1016/j.ymssp.2022.108830
https://doi.org/10.1016/j.ymssp.2022.108830
https://doi.org/10.1016/j.ymssp.2022.108830
https://doi.org/10.1038/nature14422

	Introduction
	Piezoelectric vibration absorbers
	Lumped parameter model of structure with piezoelectric vibration absorber 
	Adaptive shunt based on antiresonance locus
	Semi-passive tunable inductor
	Self-adaptive PVA based on machine learning control

	Experimental validation of the self-adaptive vibration absorber
	Experimental Setup
	Design and manufacturing of tunable passive inductor
	Self-adaptive control based on Gaussian Process Regression
	Closed-loop control based on the trained GPR model


	Conclusions

