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5

Abstract6

This article presents a novel approach for predicting vibration bandgaps in periodic composite7

plates with fluid-structure interaction (FSI) using a unit cell-based finite element model. The novelty of8

our approach lies in the formulation of a fluid-induced added mass matrix, which integrates the Bloch9

periodic boundary condition, allowing for the incorporation of the fluid’s inertial effect in the context10

of unit cell-based bandgap analysis. We therefore construct a unit cell model comprising a composite11

Mindlin plate which integrates periodic FSI effects with the simultaneous application of Bloch conditions12

on both the structure and the fluid domains. Subsequently, we studied a set of periodic composite13

plates with FSI effects on one or both sides, thereby assessing the influence of the fluid properties14

such as density and the fluid domain dimension on the structure vibration. The bandgap prediction15

is compared with the frequency response simulations which involve diversified microstructure designs.16

The obtained results provide indications regarding the effectiveness and applicability of the proposed17

numerical methodology.18

Keywords: Fluid-structure interaction; Bloch boundary condition; Vibration bandgap; Mindlin plate19

20

1 Introduction21

Periodic composite plates hold significant relevance in both civil and engineering applications. Due to22

their structural characteristics, such as the weak inertia across the thickness, their vibration behaviour23

can be significantly influenced by fluid-structure interaction (FSI). Therefore, accurately modelling the24

FSI effect is important in designing periodic composite structures to achieve desired wave propagation25

properties [1, 2, 3], including vibration bandgaps and dispersion [4, 5]. This necessity is particularly26

significant in fields which require tunable wave propagation properties, such as aerospace [6], vehicle27

[7], marine structures [8], and turbo machine components [9].28

While low-density airflow typically has minimal FSI effects, the presence of denser fluids, such as29

liquids, requires particular consideration of FSI conditions to account for their influence on the structure30

vibration. Various FSI coupled systems have been developed using finite element modelling [10, 11] to31

address different fluid conditions. For scenarios involving the pure inertial effects of the fluid on the32

structure, the method of effective added mass has been widely adopted [12, 13]. This approach calculates33
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the additional mass induced by the surrounding incompressible fluid environment and integrates its1

inertia into the structural dynamics equations, considering displacement and pressure fields for the2

structure and the fluid domains, respectively. In situations with more complex fluid conditions, such3

as hydro-elastic problems and structural-acoustic problems, coupled FSI systems have been proposed4

to account for fluid gravity and compressibility conditions [14], respectively. These methods, initially5

resolved as non-symmetric coupled systems based on classical kinematic descriptions, have evolved to6

include symmetric equivalents using additional degrees of freedom (DOFs) like fluid displacement and7

velocity potentials [15, 16]. Subsequently, these FSI models have been successfully applied to academic8

and engineering structures [17, 18, 19]. However, in the context of designing periodic plate structures,9

further adaptation is necessary to incorporate periodic boundary conditions into the description of the10

FSI coupled system, as required for vibration analysis that is performed based on unit cell calculations.11

Figure 1: Unit cells involving FSI of (a) solid/fluid phonic crystals, (b) periodic com-
posite liquid-filled pipe and (c) periodic composite plate in contact with fluids.

The unit cell model serves as a fundamental tool for describing the periodic microstructure of com-12

posite plates within their fluid environments, allowing for the prediction of their global vibroacoustic13

behaviours and enabling optimal design. This approach requires the incorporation of periodic boundary14

conditions on the unit cell model, using the Bloch-Floquet theorem [20]. While this methodology has15

been extensively utilised for the design of general periodic structure dynamics, its extension to the FSI16

context requires further investigation depending on the specific fluid-structure architecture. Existing17

literature has explored unit cell architectures depicted in Figures 1(a) and (b). In the former [18] [21]18

[22], Bloch boundary conditions are implemented solely on the fluid domain, given the periodic arrange-19

ment of the structure within the fluid domain, as shown in Figure 1(a). In the latter scenario [23] [24]20

[25], periodic conditions are applied to both the structure and fluid domains. The technique is particu-21

larly suited for tubular structures with interior fluid environment, as depicted in Figure 1(b). However,22

for immersed planar composite structures, as in the present study, prior research has solely focused on23

implementing periodic conditions on the boundaries of the structure domain [26]. Furthermore, while24

analytical model [27] adopting plane wave expansion (PWE) and hybrid modelling approach [28] com-25

bining semi-analytical PWE and finite element modelling have been explored, a comprehensive finite26

element-based unit cell model that integrates Bloch boundary conditions on both the fluid and solid27

domains, as depicted in Figure 1(c), remains to be explored. Such an architecture holds significant28

potential for a wide range of applications involving the vibration control of underwater thin-walled29

structures.30

In this context, we propose a modelling approach that involves calculating the effective added-mass31

matrix through unit cell calculations with Bloch periodic conditions applied to both the structure and32

fluid boundaries. This added mass calculation integrates the effect of fluid inertia on the composite33
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plate from one or both of its adjacent surfaces. Specifically, the composite structure is modeled using1

4-node Mindlin plate finite elements [29], while the fluid dynamics is represented using hexahedral2

solid elements. The fluid-structure interface is modeled by a consistent discretization comprising 4-3

node planar elements. Subsequently, a FSI matrix is computed by integrating over the fluid-structure4

interface, connecting the displacement DOFs of the structure domain to the pressure DOFs of the fluid5

domain. This unit cell model enables the prediction of vibration bandgaps for which dispersive band6

structures have been studied.7

Following the development of the unit cell design, its evaluation with respect to the associated8

full-scale composite plate model can be conducted using experimental, analytical, or numerical tech-9

niques. Experimental methods, such as ultrasonic transmission [30], provide insights into bandgaps in10

two-dimensional periodic composites within ultrasonic frequency ranges. Analytical evaluations often11

employ the PWE method [31], which, while effective, can be challenging for general applications in-12

volving complex structures due to the required effort in analytical integration over the heterogeneous13

material boundaries. In this study, we compare the bandgap predictions of the unit cell design with14

the associated full-scale models using a numerical model based on frequency response function (FRF)15

analysis [32]. By calculating and comparing the frequency responses of the full-scale composite plate16

with the bandgap predictions, it shows that the proposed numerical methodology is practicable and17

versatile.18

The paper is organised to present the theory, numerical implementation, and the achieved results of19

the proposed bandgap analysis approach with FSI effect. Section 2 will present the variational formula-20

tion of the FSI coupled system concerning wave propagation. Following that, Section 3 will introduce the21

finite element formulation of the general coupled system. Subsequently, Section 4 will provide details on22

the finite element implementation of the coupled system composed of periodic composite Mindlin plates23

and the acoustic fluid models, followed by the unit cell model incorporating Bloch-Floquet boundary24

conditions. In Section 5, the approach will be applied to three groups of numerical cases, starting with25

an investigation into the impact of FSI effects on the vibration and wave propagation characteristics26

of the composite immersed in a fluid environment, first on one side and then on both sides. Com-27

parison results will be presented based on frequency response simulations. Finally, Section 6 will offer28

concluding remarks.29

2 Elastodynamics of fluid-structure coupled system30

In this section, we describe the variational formulations of the wave propagation problem within the31

fluid-structure interaction (FSI) context. We start by presenting the equilibrium equations for the wave32

propagation problem in the solid domain, followed by the fluid domain. Then, by establishing the33

equilibrium at the fluid-structure interface, we deduce the equilibrium equations for the fluid-structure34

interaction problem within the context of linear oscillations.35

2.1 Equations of motion of the solid domain36

We use Ωs to denote the spatial domain occupied by the solid, and u the displacement vector of a37

point x(x1, x2, x3) ∈ Ωs at a given time instant t. The components of u in the Cartesian coordinates38

(x1, x2, x3) are u1, u2, and u3. Disregarding body forces, the vibration of Ωs can be described by u,39

3



which satisfies the elastodynamic equation:1

ρs
∂2u

∂t2
−∇ · σ = 0, in Ωs. (1)

This equation describes the equilibrium between the inertial and elastic forces. It can be obtained from2

d’Alembert’s wave equation under the assumption of homogeneous material and linear vibrations with3

respect to the equilibrium state. In Eq. (1), ρs denotes the solid density, and σ represents the Cauchy4

stress tensor, which is given by the constitutive relation:5

σ = C : ε. (2)

Under the condition of linear vibrations, infinitesimal transformation can be applied. The fourth-order6

elasticity tensor C involved in the constitutive relation Eq. (2) can be expressed using the matrix7

expression in Cartesian coordinates (x1, x2, x3) provided in Appendix A. Then, ε denotes the Cauchy8

strain, whose components are obtained from the displacement field by considering first-order terms as:9

ε =
1

2

[
∇u + (∇u)

T
]
. (3)

The equilibrium Eq. (1) for the solid domain Ωs is supplemented by the mechanical boundary conditions10

as follows:11

u = 0 on Γsu

σ · ns = 0 on Γsσ
, (4)

where Γsu and Γsσ represent the boundaries of Ωs, on which displacement and stress boundary condi-12

tions are considered, respectively. ns is the normal vector on the solid boundaries.13

2.2 Wave equation of the fluid domain14

Let Ωf denote the fluid domain and (x1, x2, x3) the Cartesian coordinates in which the kinematics of15

material points that belong to Ωf are expressed. The governing equation for acoustic wave propagation16

in Ωf can be formulated in terms of the pressure fluctuation p(x) at a point x relative to the fluid’s17

steady state . Considering a non-viscous, compressible fluid initially at rest and neglecting body forces,18

we can describe the fluid dynamics using the d’Alembert’s wave equation with respect to the pressure:19

1

c20

∂2p

∂t2
−∇ · ∇p = 0, in Ωf , (5)

where c0 denotes the speed of sound in the fluid under consideration. Analogous to Eq. (1), Eq. (5)20

incorporates second-order derivatives with respect to time and space. However, for dense and weakly21

compressible fluids, such as liquids, the fluctuation of fluid density with respect to the steady state22

density (ρ0 = ρf ) is often neglected, i.e. ρ(x) = 0. Then the mass and momentum conservation23

becomes:24

∂ρ

∂t
+ ρf∇ · v = 0 + ρf∇ · v = 0, in Ωf , (6)

25

ρf
∂v

∂t
+∇p = 0, in Ωf , (7)
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where v represents the fluctuation of fluid velocity. Subsequently, we substitute the time derivative into1

Eq. 6 and the spatial derivative into Eq. 7, and combine the two equations, resulting in the governing2

equation for the pressure fluctuation in Ωf , the liquid-filled domain, in the form of the Laplace equation:3

∇ · ∇p = 0, in Ωf , (8)

which conforms to the Laplace equation. Therefore, the vibration of Ωf , considering non-viscous and4

incompressible fluids, which we focus on in this work, can be described by the following problem,5

comprising the governing equation Eq. (8), supplemented by the boundary conditions regarding the6

pressure and its variation on the free and fixed boundaries, which writes:7

p = 0 on Γf0

∇p · nf = 0 on Γfπ
, (9)

where Γf0 and Γfπ refer to the free and fixed boundaries of the fluid domain, respectively. nf is the8

normal vector on the fluid boundaries. It is worth noting that the assumptions made for the non-viscous,9

incompressible fluid do not prevent the formulation from being applied in practice to liquid flows with10

low or negligible velocities, corresponding to laminar flow conditions.11

2.3 Equilibrium on the fluid-structure interface12

Coupling between the fluid domain Ωf and the solid domain Ωs is described by the equilibrium condi-13

tions established at the fluid-structure interface Γ (see Figure 2). These conditions ensure the continuity14

of the normal components of the stress tensor and the acceleration field. The first condition arises from15

the action of the fluid on the solid. Specifically, the fluid exerts forces on the solid in the direction16

normal to the fluid-structure interface. This leads to the following condition:17

σ · ns = pn, on Γ, (10)

where n is the normal vector at the fluid-structure interface. In this work, we adopt the convention18

that the normal vector n points from Ωf towards Ωs.19

Conversely, the second equilibrium condition results from the action of the solid on the fluid. The20

solid domain imposes its acceleration onto the fluid through the fluid-structure interface, again in the21

direction normal to the interface. Thus, the continuity of acceleration yields:22

∇p · n = −ρf ü · n, on Γ, (11)

where ρf refers to the fluid density. Eq. (10) and Eq. (11) establish the mutual effect between the solid23

and fluid domains by balancing forces and accelerations at the interface. This balance is expressed as24

function of the mechanical displacement u, and the fluid pressure fluctuation p, and characterises the25

dynamics of the fluid-structure interaction problem.26
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Figure 2: The general FSI problem representation.

2.4 Weak formulation of the coupled problem1

Focusing on the equilibrium of the solid domain Ωs, its dynamics is dictated by the governing equation2

given by Eq. (1), under the influence of the boundary conditions (Eq. (10)) exerted via the fluid-3

structure interface Γ. Utilising the variational method, we assign a virtual displacement, denoted by4

δu, and a virtual pressure fluctuation, represented by δp, which are multiplied with Eq. (1) and Eq.5

(10). We then proceed with integration over the respective domain using Green’s formula, and obtain6

the integral form of the elastodynamic equation of the solid domain that accounts for the effects of7

fluid-structure interaction, as expressed in Eq. (12).8 ∫
Ωs

ρsü · δu dΩ +

∫
Ωs

σ : δε dΩs =

∫
Γ

pn · δu dΓ. (12)

Correspondingly, the dynamic behaviour of the fluid domain Ωf is described by its governing equation9

(Eq. (8)) under the influence of the boundary conditions given by Eq. (11). Adopting a similar approach10

as for Eq. (12), we apply the variational method on Eq. (8) and Eq. (11), and subsequently acquire11

the integral expression of the elastodynamic equation for the fluid domain involving the fluid-structure12

interaction, as stated in Eq. (13).13 ∫
Ωf

∇p·∇δp dΩf = −ρf
∫

Γ

ü·nδp dΓ. (13)

The set of equations, Eq. (12) and Eq. (13), constitutes the governing equation system that dictates the14

elastodynamic behaviour of the fluid-structure interaction problem. This system involves the behaviour15

of both the solid domain Ωs and the fluid domain Ωf , integrating the account for their interactions in16

terms of pressure forces and accelerations across the interface Γ. In subsequent sections, the focus will17

move to the resolution of this system using a discretisation approach for Ωs based on a 4-node plate18

finite element with 12 degrees of freedom, and for Ωf employing classical 8-node hexahedral elements.19

Particular attention will be placed on the treatment of the interface Γ that interconnects Ωs and Ωf .20
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3 FSI interface implementation1

With the variational formulation of the FSI system obtained in Section 2, we focus here on its finite2

element implementation. The FSI system comprises a solid domain Ωs, represented by Mindlin plate3

finite elements, a fluid domain Ωf , modeled using 8-node hexahedral elements, and an interface domain4

Γ. Appendices A and B offer details on the finite element implementation of the solid and fluid domains,5

respectively. We present particularly the implementation of the interface domain, with emphasise on6

the integration of Bloch boundary conditions within the periodic unit cell model.7

3.1 Fluid-structure coupling: interface finite element modelling8

The dynamic behaviour of both Ωs and Ωf is defined by their respective governing equations (Eq.9

(12) and Eq. (13)) and influenced by the corresponding boundary conditions applied via the fluid-10

structure interface Γ. These boundary conditions are expressed as pressure forces and accelerations11

that act across the interface Γ, following the direction of the normal vector n perpendicular to Γ. These12

interactions emerge from the reciprocal actions between the fluid and solid domains. Specifically, they13

involve the application of pressure forces from the fluid onto the solid and, conversely, the imposition14

of accelerations on the fluid due to the dynamic behaviour of the solid. These boundary conditions are15

manifested as the right-hand side terms in the equilibrium equations (Eq. (12, 13)) of both the solid16

and fluid domains.17

To illustrate the finite element implementation of these equations, let us consider a general scenario18

where an infinite plate is in contact with an infinite liquid fluid medium by its one side, as illustrated19

in Figure 3(a). The fluid’s properties comply with the assumptions presented in Section 6. As for20

demonstration, we have the homogeneous plate extends infinitely far away in four directions (including21

+x1, −x1, +x2, −x2), and the ideal liquid fluid medium is also unlimited in five directions (including22

+x1, −x1, +x2, −x2, −x3). The displacement field within the solid domain using the mindlin plate23

assumption will vary spatially according to the (x1, x2) coordinates. The pressure fluctuation within24

the fluid domain is assumed to vary spatially according to the (x1, x2, x3) coordinates.25

Figure 3: Example of a plate in contact with a fluid medium by one side, and the
associated interface finite element model: (a) the FSI system (b) and associated interface
finite element model.

7



Discretisation of the interface: The interface Γ between the plate the fluid medium is modelled1

by classical 4-node quadrilateral finite elements, but the discretisation of Γ requires particular consider-2

ation. In this work, the solid and fluid domains, Ωs and Ωf , along with the interface Γ, are discretised3

using separate but conforming meshes. This means that although the upper surface of the fluid domain,4

the plate model, and their interface are discretised independently, the meshes share common nodes, as5

depicted in Figure 3(b).6

Interactions between Ωs and Ωf are defined by their respective boundary conditions applied on7

Γ. This signifies that both the field of kinematics variables {u} associated with Ωs, and the field of8

pressure fluctuation {p} from Ωf , need to be approximated on the interface. Consequently, the chosen9

4-node quadrilateral finite element for discretising Γ should allow for the approximation of both {u}10

and {p}. Therefore, we construct the interpolation matrix [NΓs] as follows:11

[NΓs] =


NΓ1 0 0 NΓ4 0 0

0 NΓ1 0 · · · 0 NΓ4 0

0 0 NΓ1 0 0 NΓ4

 , (14)

for the interpolation of {u}, with {ue} = [NΓs] {u}. Meanwhile, we construct a second interpolation12

matrix [NΓf ] as:13

[NΓf ] =
[
NΓ1 NΓ2 NΓ3 NΓ4

]
, (15)

for the interpolation of {p}, where pe = [NΓf ] {p}. Notably, both [NΓs] and [NΓf ] are constructed from14

shape functions NΓi, where i = 1, .., 4. Given the structural similarity between the element topology15

used here and the 4-node Mindlin plate element presented in Section 6, we adopt the same shape16

functions as defined in Eq. (A.8) for NΓ1 = Ns1, NΓ2 = Ns2, NΓ3 = Ns3, NΓ4 = Ns4 inside [NΓs] and17

[NΓf ].18

Fluid-structure coupling matrix: Using the interface interpolation matrices given by Eq. (14)19

and Eq. (15), we establish the element fluid-structure coupling matrix [re] which results from the20

integration of the interface normal vector {ne} across the interface element area Γe directed outside the21

fluid domain, hence22

[re] =

∫
Γe

[NΓs]
T {ne} [NΓf ] dΓ . (16)

It is important to remark that the fluid-structure coupling matrix [re] is not square (12×4 in this case).23

It facilitates the interaction between Ωs and Ωf by establishing the connection between the kinematics24

field of Ωs and the pressure fluctuation from Ωf , and vice versa. Formulated for the e−th element of25

the interface Γ, this matrix can be assembled into the global system by considering the interface-solid26

element localisation matrix [Λe
Γs] on one hand, and the interface-fluid element localisation matrix

[
Λe

Γf

]
27

on the other:28

[R] =

NEΓ∑
e=1

[Λe
Γs]

T
[re]

[
Λe

Γf

]
. (17)

Here, [Λe
Γs] is focused on the nodes of the e−th element of Γ, which are shared with the Ωs mesh. It29

relates the indices of the displacement degrees of freedom (wi, φ1i, φ2i with i = 1, .., 4) to their respective30

postions in the global system associated with the solid mesh. Similarly,
[
Λe

Γf

]
also focuses on these31

shared nodes, which simultaneously belong to the Ωf mesh. It connects the indices of their pressure32

degrees of freedom (pi with i = 1, .., 4) to their corresponding positions in the global system associated33
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with the fluid mesh. In practice, both [Λe
Γs] and

[
Λe

Γf

]
are associated with the element assembly1

operation and can be implemented by attributing the element DOFs to the global system.2

Implementation of the fluid-structure interactions: Based on the fluid-structure coupling3

matrix [R] as given by Eq. (17), we are ready to implement the interactions between the solid and fluid4

domains. This includes the pressure forces exerted on Ωs due to the integration of p over Γ, represented5

by the right hand-side term of the solid domain equilibrium Eq. (12). This can be expressed as:6 ∫
Γ

pn · δu dΓ → {δU}T [R] {P} . (18)

Similarly, we implement the continuity of accelerations imposed on Ωf , which is represented by the7

right-hand side term of the fluid domain equilibrium Eq. (13). This yields:8

−ρf
∫

Γ

ü·nδp dΓ → −ρf {δP}T [R]
T
{

Ü
}

. (19)

By combining Eq. (18, 19) with the expressions Eq. (A.18, B.8), we arrive at the final matrix repre-9

sentation of the fluid-structure interaction problem. This formulation accounts for the elastodynamics10

of the solid and fluid domains and their interactions through the interface.11

{δU}T [Ms] {Ü}+ {δU}T [Ks] {U} = {δU}T [R] {P} (20a)

12

{δP}T [Kf ] {P} = −ρf {δP}T [R]
T
{

Ü
}

(20b)

13

Let’s substitute pressure {P}, which results from solving Eq. (20b), into Eq. (20a). The pressure14

may therefore be treated as an auxiliary variable which can be eliminated from the structural dynamic15

equation. This substitution leads to the condensed standard governing equation for the fluid-structure16

interaction problem, which can be expressed as:17

([Ms] + [MA]) {Ü}+ [Ks] {U} = 0 . (21)

Depending on the way the equilibrium equations governing the fluid and solid domains are solved,18

general FSI problems can be categorised into strong and weak coupling approaches. The former involves19

expressing an global equation system that includes both the fluid and solid domains, which is solved20

simultaneously. In comparison, the latter requires partitioned modelling of the two domains, where the21

governing equations are solved separately, with interpolated data transfer through the FSI interface.22

Therefore, this work employs a strong coupling approach, since the FSI effect acting through the23

interface is formulated in the form of an added mass, that is integrated into the global modal problem,24

which is solved once for all. The added mass matrix [MA] is expressed as follows:25

[MA] = ρf [R] [Kf ]
−1

[R]
T . (22)

The added mass matrix is fully populated and obviously symmetric. It reflects the influence of the26

incompressible fluid on the dynamics of the structure. When the structure vibrates, it generates pressure27

within the fluid through its movement transmitted via the interface. As the fluid is incompressible, this28

9



pressure is instantaneously and uniformly distributed throughout the fluid domain (with respect to the1

inverse of the fluid stiffness matrix). Simultaneously, the fluid exerts a pressure force on the structure2

in response to the acceleration of the structure imposed through the interface.3

The formulation of the added mass matrix follows a standard format applicable to any discrete4

mechanical system that exhibits linearity and conservatism. It suggests that during free vibrations,5

the mechanical energy of the coupled system comprises kinetic energy from both the structure and the6

fluid, and potential energy only from the structural elasticity. Dynamic equilibrium is maintained as7

individual components of kinetic and potential energy oscillate at the frequency of vibrations, with their8

collective sum remaining constant. Hence, resolution of Eq. (21) yields elastodynamic solutions for the9

solid domain, represented by the Mindlin plate structure, with the account for the inertial effect due to10

the interaction with the fluid environment.11

The computation of the added mass matrix can be computationally costly, particularly in cases12

involving complex structures tightly coupled to extensive fluid domains, such as an periodic composite13

plates of large sizes in contact with an ideal fluid. Therefore, in the next section, we will explore some14

useful simplifications within the context of infinite periodic models.15

4 Periodic unit cell problem with FSI16

This section aims to illustrate the construction of the FSI unit cell system that leads to a modified17

added mass matrix integrating the Bloch periodic boundary conditions. The unit cell enables bandgap18

calculations, thereby predicting vibration behaviours in periodic composite plates of large sizes. We19

will begin by presenting the plate and fluid domain models separately. Then, we will introduce the20

technique that allows coupling of the two domains with the incorporation of the periodic boundary21

conditions.22

4.1 Plate unit cell23

In this study, we assume that the composite plate exhibits translational symmetry, forming a periodic24

unit cell that repeats itself in four directions (including +x1, −x1, +x2, −x2) as shown in Figure 4 (a)25

and (b). Therefore, the dimensions of the plate unit cell are characterised by its edge lengths along the26

x1 and x2 axes, which are denoted as a1 and a2, respectively.27

Currently, the periodic composite plate can be effectively represented by the plate unit cell. Due28

to the inherent translational symmetry in the structure, modelling the unit cell system necessitates29

the implementation of Bloch-Floquet boundary conditions (Bloch BCs). According to Bloch’s theorem30

(seen Appendix C), the solution for elastic wave propagation in a periodic medium satisfies the following31

relation:32

U (x + ai) = U(x)ei(k·ai) , (23)

where x represents the position vector, and k is the wave vector [33]. This relationship enforces the33

periodicity of wave propagation solutions U up to a phase factor ei(k·ai) over the extent of a unit cell34

ai.35

We begin with the implementation of Eq. (23) on the Mindlin plate, which is isolated for illustration36

in Figure 4(c). It’s noteworthy that the techniques used here are similar with those employed in 2D37
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Figure 4: Periodic composite plate and its unit cell.

problems. Therefore, imposing the Bloch boundary conditions leads to constraining the Mindlin plate1

degrees of freedom (DOFs), which involve displacements and rotations, on opposing nodes situated on2

the periodic boundaries. To facilitate the notation, we categorise these DOFs into nine distinct groups3

as follows: {U} = {UB UT UL UR UBL UBR UTR UTL UI}T. Here, the subscripts B, T , L, and R4

denote the DOFs of the nodes along the bottom, top, left, and right edges, respectively, excluding the5

four corner nodes. Subscripts BL, BR, TR, and TL correspond to the bottom-left, bottom-right, top-6

right, and top-left corner nodes, respectively. The remaining nodes’ DOFs are indicated by the subscript7

I. Constraints on DOFs within these nine groups can be represented through a linear transformation8

denoted as [Ts], which is parameterised by the wave numbers λ1 = eik·a1 and λ2 = eik·a2 as follows:9

{U} =



UI

UL

UR

UB

UT

UBL

UBR

UTR

UTL



=



I 0 0 0

0 I 0 0

0 λ1I 0 0

0 0 I 0

0 0 λ2I 0

0 0 0 I

0 0 0 λ1I

0 0 0 λ1λ2I

0 0 0 λ2I




UI

UL

UB

UBL

 = [Ts] {Ũ} . (24)
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4.2 Fluid unit cell1

The fluid medium in contact with the periodic composite plate does not extend indefinitely in the −x32

direction. It is confined to a depth of L3, with a rigid wall boundary employed at the bottom surface of3

the fluid medium, as illustrated in Figure 5 (a) and (b). The fluid under consideration is a homogeneous4

ideal liquid, complying with the assumptions in Section 6. The fluid domain is compartmentalised into5

unit cells, sharing the same periodicity as the structure domain along the x1 and x2 axes, with period6

lengths a1 and a2, respectively.7

Figure 5: Fluid medium and its unit cell.

Translational periodicity of the fluid domain suggests that the field of pressure in the fluid unit cell8

satisfies Bloch periodic conditions on its boundaries. Therefore, the pressure field P exhibits periodicity9

across the extent of a unit cell ai up to a phase factor ei(k·ai):10

P (x + ai) = P(x)ei(k·ai) . (25)

This relationship (Eq. (25)), is implemented to the fluid unit cell using similar technique as employed11

for the plate unit cell. Subsequently, the pressure DOFs within the fluid unit cell are organised into nine12

categories based on the node positions, as follows: {P} = {PB PT PL PR PBL PBR PTR PTL PI}T,13

where subscripts B, T , L, R, as well as BL, BR, TR, TL, and I carry the same interpretation as14

previously defined for the solid domain, but they are now associated with the respective surfaces and15

edges of the fluid domain. To enforce the DOF constraints within these nine groups, we use the linear16

transformation [Tf ], with the wave numbers λ1 = eik·a1 and λ2 = eik·a2 as parameters. Hence, the17
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DOFs of the fluid domain can be expressed as:1

{P} =



PI

PL

PR

PB

PT

PBL

PBR

PTR

PTL



=



I 0 0 0

0 I 0 0

0 λ1I 0 0

0 0 I 0

0 0 λ2I 0

0 0 0 I

0 0 0 λ1I

0 0 0 λ1λ2I

0 0 0 λ2I




PI

PL

PB

PBL

 = [Tf ] {P̃} . (26)

4.3 FSI unit cell problem and its governing equation2

We consider the FSI unit cell as indicated in Figure 6. Substituting the Bloch boundary conditions3

(Eq. (24) and Eq. (26)), into the FSI problem (Eq. (20)). We arrive at a revised governing equation:4 {
δŨ
}T

[Ts]
T

[Ms] [Ts]
{

¨̃U
}

+
{
δŨ
}T

[Ts]
T

[Ks] [Ts]
{

Ũ
}

=
{
δŨ
}T

[Ts]
T

[R] [Tf ] {P}, (27a)

5 {
δP̃
}T

[Tf ]
T

[Kf ] [Tf ]
{

P̃
}

= −ρf
{
δP̃
}T

[Tf ]
T

[R]
T

[Ts]
{

¨̃U
}
. (27b)

6

Figure 6: Periodic composite plate system and its unit cell.

Condensing Eq. (27b) and Eq. (27a) leads to the governing equation of the FSI unit cell problem:7 (
[Ts]

T
([Ms] + [Mnew

A ]) [Ts]
){

¨̃U
}

+
(

[Ts]
T

[Ks] [Ts]
){

Ũ
}

= 0 . (28)
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where the new added mass matrix [Mnew
A ] is expressed as follows:1

[Mnew
A ] = ρf [R] [Tf ]

(
[Tf ]

T
[Kf ] [Tf ]

)−1

[Tf ]
T

[R]
T . (29)

The modified added mass matrix [Mnew
A ] encompasses various factors, including the fluid density, the2

interface geometry via the fluid–structure coupling matrix, and the elastodynamics of the fluid domain3

represented by the fluid stiffness matrix. This new formulation facilitates the analysis of unit cell4

vibrations, thereby enabling predictions of vibration behaviours for periodic composite plates within5

the framework of fluid-structure interaction.6

5 Numerical cases7

This section presents three groups of numerical cases that investigate the influence of fluid-structure8

interaction on the vibration of periodic composite plates. First, we study the vibration bandgap based9

on a unit cell problem that involves a composite plate which is in contact with fluid medium, initially10

on one surface, then on both surfaces. Based on modal analysis, we will study the formation of the11

bandgaps and their evolution with the FSI properties. Particularly, we will explore the impact of FSI12

on anisotropic wave propagation by analyzing dispersive surfaces, phase velocities and group velocities.13

To evaluate the bandgap predictions, we will perform dynamic frequency analysis by calculating the14

frequency response functions, taking into account various unit cell geometries and full-scale plate models.15

5.1 Vibration of a periodic composite plate with single side16

fluid structure interaction17

This section investigates the impact of single-side fluid-structure interaction on the vibration behaviour18

of periodic composite plates. Specifically, we analyse the vibration of a bi-phase periodic composite19

plate with infinite repetitions along x1 and x2 directions in contact with a fluid medium on one of its20

surfaces, as illustrated in Figure 7 (a). As the plate does not consider the periodicity in x3 direction,21

we set a specific depth L3 for the fluid medium. Therefore the fluid medium is only infinitely large22

along x1 and x2 directions, and the bottom surface is considered as rigid wall boundary.23

To study the vibration properties, we employ a periodic cubic unit cell with dimensions of 0.2 ×24

0.2×0.2 m in the x1, x2, and x3 directions. The unit cell base plate, composed of epoxy, is represented25

in blue in Figure 7, while the square inclusion, composed of tungsten, is represented in yellow. We26

chose this material combination for the base plate and inclusion to achieve broader bandgap ranges.27

Tungsten, with its relatively high density and stiffness compared to other metals like steel, ensures28

that the bandgap of the composite plate remains significant even when considering FSI. The material29

properties of the plate and inclusion are provided in Table 1.30

The dimensions of the unit cell and its inclusion are a1×a2×h = 0.2×0.2×0.01 m and c1×c2×h =31

0.12× 0.12× 0.01 m in the x1, x2, and x3 directions, respectively, with h denoting the plate thickness.32

This configuration results in an inclusion area ratio of 36% relative to the plate area. To discretise the33

unit cell of the fluid-structure coupled system, quadrilateral Mindlin plate finite elements are used for34

the solid domain and 8-node brick elements for the fluid domain. To ensure that the bandgap result35

remains independent of the mesh density across all frequency ranges, particularly in higher frequency36
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Table 1: Plate material composition

Parameters Base plate (epoxy) Scattering plate (tungsten)

Density ρ (kg/m3) 1180.0 19300.0

Young’s modulus E (Pa) 3.3× 109 411.0× 109

Poisson’s ratio µ 0.33 0.28

ranges, we prescribed three distinct mesh refinements, as depicted in Figure 8.1

Figure 7: Example of a periodic composite plate in contact with a fluid medium by
one side, and the associated unit cell: (a) whole infinite periodic model (b) whole unit cell
model (c) separate unit cells in different domains.

For the vibration bandgap analysis, we compute band diagrams by considering wave vectors on2

the boundary of the irreducible first Brillouin zone. Due to the structural symmetry in the present3

study, the considered area is reduced to the edges of the triangle Γ − X −M − Γ, as shown in Figure4

9. Numerically, this calculation involves sweeping the boundary path Γ − X − M − Γ by evaluating5

59 equidistant and discrete points along the path. To perform finite element analysis on the unit cell6

model, we apply Bloch-Floquet periodic boundary conditions to the four side boundaries associated7

with both the solid and fluid domains, considering wave vectors ki = (kx1, kx2) (i = 1, 2, . . . ,Npoint),8

which take different forms on each section along the path Γ − X −M − Γ. Specifically, we have: from9

Γ to X, kx1 = π
a1
k, kx2 = 0, k ∈ [0, 1]; from X to M, kx1 = π

a1
, kx2 = π

a2
(k − 1), k ∈ [1, 2]; then, from10

M to Γ: kx1 = π
a1

(3− k), kx2 = π
a2

(3− k), k ∈ [2, 3]. To study then potential influence of Npoint on the11

bandgap results, we examined three distinct values of Npoint, which are 29, 59, and 89, as illustrated in12

Figure 10.13

We designed six cases for this study as detailed in Table 2. Case 1 serves as the reference and only14

15



Figure 8: Different mesh configurations for the unit cell of the coupled system.

Figure 9: (a) Unit cell with rectangular inclusion (b) Representation of the irreducible
first Brillouin zone on the unit cell.

considers the dry solid plate. Cases 2 through 6 involve coupling a solid plate with a fluid medium1

on one side of the plate. In particular, Cases 2 to 4 prescribe three different liquid densities, which2

correspond to water, pentane, and iodomethane, while Cases 5 and 6 feature varying depths of the fluid3

L3.4

We start by conducting analysis to ensure the independance of the bandgap results with respect to5

mesh refinement and the value of Npoint, using Case 1 and Case 2. From Figure 11, the band structures6

have converged, even for the highest-order band curve that represents the highest frequencies considered7

in the study, with the mesh density surpassing that of Mesh 1. In particular, Case 2 exhibits better8

convergence, as the consideration of FSI has reduced the frequency range of high-order band curves.9

Figure 12 shows that Npoint has a minor influence on the convergence of the band structure, although10

it leads to linearly increased computation time. In essence, Npoint primarily affects the smoothness of11

the band curves. Therefore, we opt to use Mesh 2 and Npoint = 59 for all cases in this section, as it12

represents a balance between computational cost and convergence of band structures especially in the13

high-frequency range.14

Then, with the parameters defined above, the band diagrams calculated based on the unit cell of15
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Figure 10: Discrete points on K-path with different Npoint: (a) Npoint=29 (a)
Npoint=59 (a) Npoint=89.

Figure 11: Bandgap diagram of Case 1 and Case 2 with different mesh densities.

the plate with fluid on one side are depicted in Figure 13. Figure 14 displays the vibration mode shapes1

associated with the 4th branch of the band structure at point A, highlighted with red circles in Figure2

13. Figure 15 presents the iso-frequency contours, which serve as the basis for phase velocities analysis3

and group velocities analysis, presented from Figure 16 to Figure 17.4

Bandgap analysis and the associated mode shapes:5

Bandgaps usually emerge from the interactions among periodically repeating units within the struc-6

ture. It refers to the phenomenon where specific frequencies of waves encounter impediments or undergo7

attenuation within its designated frequency range, particularly within the bandgap region. For instance,8

in Case 1, when an external force is applied exclusively at 1000Hz (falling within the bandgap region) to9

a periodic composite plate, the induced structural response will be significantly diminished compared10

Figure 12: Bandgap diagram of Case 1 with different Npoint.
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Table 2: Case configurations

Case index Model ρf (kg/m3) L3 (m)

1 Solid only / /

2 Single-side FSI 1000.0 0.2

3 Single-side FSI 626.0 (pentane) 0.2

4 Single-side FSI 2280.0 (iodomethane) 0.2

5 Single-side FSI 1000.0 0.1

6 Single-side FSI 1000.0 0.4

to the scenario where the external force is applied solely at 500Hz (outside the bandgap region).1

A comparison between Case 2 and Case 1, as depicted in Figure 13 (a) and (b), highlights the impact2

of the fluid environment on the structure’s vibration due to the coupling between fluid inertia and the3

structure. The added mass effect induces a general reduction in the natural frequency responses, which4

is particularly noticeable at higher natural frequencies, where frequency levels exhibit a substantial5

decrease due to fluid-structure interaction. This added mass effect on higher natural frequencies results6

in remarkable changes in the structure’s vibration bandgaps. Consequently, the first bandgap of Case7

1 undergoes a significant reduction in bandwidth, contracting from 694 Hz (range [670.8− 1365.4] Hz)8

to 118 Hz (range [581.5− 699.7] Hz). This contraction can be attributed to the significant decrease in9

the frequency level of the 4th band curve. Furthermore, this modification gives rise to a new narrow10

bandgap within the range of [1097.4 − 1282.0] Hz, which is not present in Case 1. In Cases 2 to 4, as11

depicted in Figure 13 (b) to (d), an increase in fluid density is observed to lower the natural frequencies,12

subsequently reducing the bandwidth of the vibration bandgaps. Therefore in Case 3 (fluid density of13

626.0 kg/m3), two full bandgaps emerge within the ranges [610.6− 817.5] Hz and [1239.6− 1437.6] Hz,14

formed by the 3rd and 4th, and the 4th and 5th band curves, respectively. Then in Case 4, only one full15

bandgap is observed, spanning the range [834.3− 976.3] Hz, created by the 4th and 5th band curves.16

Despite these changes, the fluid environment does not induce significant effect on the vibration mode17

shapes. As illustrated in Figures 14 (a) and (b), the mode shape remains predominantly unchanged,18

despite the considerable decrease in natural frequencies observed in Case 2 compared to Case 1 (without19

fluid environment), due to the account for fluid-structure interaction. Similarly, variations in fluid20

density only result in limited impact on the vibration mode shape, which can be confirmed by comparing21

Figures 14 (b) to (d). Hence, the effect of homogeneously distributed added mass on the composite plate22

significantly affects its vibration responses by lowering its natural frequencies. The vibration bandgaps23

evolve as if the composite plate behaves with additional mass, but the effect of added mass exhibits24

limited influence on the vibration mode shape.25

We subsequently study the influence of the fluid domain depths. Therefore, we prescribe in Cases 2,26

5, and 6 three fluid domain depths (L3) of 0.2 m, 0.1 m, and 0.4 m, respectively, as depicted in Figure 1327

(b), (e), and (f). The two full bandgaps in Case 5 (L3 = 0.1 m) span the ranges [581.4− 694.0] Hz and28

[1094.7−1281.4] Hz. For Case 6 (L3 = 0.4 m), the two full bandgaps cover the ranges [581.5−699.7] Hz29

and [1097.5 − 1282.0] Hz. It becomes evident that the bandgaps in these three cases remain nearly30

constant as the fluid domain depth (L3) increases from 0.2 m to 0.4 m. This observation suggests that31

once the fluid volume is sufficiently large, its impact on the bandgaps and natural frequencies of the32

solid becomes insignificant. The consistent mode shapes across the three cases, as shown in Figures 1433

(b), (e), and (f), further confirm this conclusion. We therefore neglect the factor of the fluid domain34
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Figure 13: Bandgap diagrams of cases with single side fluid.

depth for consideration in subsequent investigations.1

Dispersive surface, phase velocities and group velocities:2

The iso-frequency contour, also referred to as the dispersive surface, is calculated across the entire3

first Brillouin zone. By sweeping the wave vector k over all points within and on the boundary of the4

first Brillouin zone, we derive the complete eigenfrequency surface ω = ω(k) corresponding to various5

dispersion branches. The dispersion surfaces illustrate the frequency distribution for each order of6

eigenfrequencies and represent an important tool for studying the anisotropy of wave propagation.7

Here, we focus on the 1st mode, as well as the 3rd, 4th, and 5th order modes in the vicinity of8

the bandgaps, as depicted in Figure 15. We observe that the wave propagation within the periodic9

composite structure exhibits significant anisotropy across a wide frequency spectrum, with the iso-10

frequency contours changing more rapidly along the clinodiagonal direction compared to the horizontal11

and vertical directions. Notably, the 1st mode demonstrates weaker anisotropy compared to the higher12
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Figure 14: Mode shape of cases with single side fluid.

order modes. Meanwhile, the influence of fluid added mass is more pronounced on the 4th and 5th1

modes than on the lower order 1st and 3rd modes. These effects are particularly concentrated near the2

center of the contours. The low-frequency portion of the wave, when considering FSI, tends to exhibit3

characteristics of full 360◦ propagation, which is especially remarkable in the 5th mode.4

Analysis of phase velocities and group velocities provides further insight into the anisotropic wave5

propagation and the associated energy flow in periodic structures. The phase velocity (Vph) of two-6

dimensional periodic structures for a given frequency can be expressed as Vph = ω
k , where k = (kx1, kx2).7

Similarly, the group velocities along the x1 and x2 directions for a given frequency are expressed as8

Vgx1 = ∂ω
∂kx1

and Vgx2 = ∂ω
∂kx2

, which are defined as the gradient of an iso-frequency curve. The9

direction of the outer normal at each point on the iso-frequency contour aligns with the group velocity10

direction, indicating the energy propagation direction of the vibration at that frequency. Therefore,11

by calculating the gradient at each point on the iso-frequency contour, we can determine both the12
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propagation direction and the corresponding region of propagation for a given vibration frequency.1

As depicted in Figures 16 and 17, we illustrate phase velocity and group velocities corresponding2

to different frequencies. For the 1st and 3rd modes, we fix the frequency values at 100Hz and 450Hz,3

respectively. For the 4th mode, we select relatively high frequencies within each iso-frequency contour,4

while for the 5th mode, we opt for relatively low frequencies within each contour. The discrepancies5

between phase velocity and group velocity across all cases, with and without the fluid added mass effect,6

exhibit pronounced dispersive behaviour. In Figure 17 (a)-(d), the distributions of group velocity in the7

1st mode at 100 Hz indicate that the presence of the fluid medium leads to a concentration of energy8

flow from all directions (Case 1) towards the diagonal directions (Cases 2-4), where clusters of velocities9

significantly increase with higher fluid density. This demonstrates a pronounced energy aggregation10

along the kx1 and kx2 directions, suggesting weaker energy propagation in these directions compared to11

the diagonal direction, as indicated by the smaller clusters of group velocities. On the contrary, for the12

5th mode, increasing fluid density tends to broaden the energy flow direction of low-frequency waves13

from the kx1 and kx2 directions to all directions.14

Figure 15: Iso-frequency contours of cases with single side fluid.

In conclusion, the results of this study reveal that for periodic composite plates with single-side fluid-15

structure interaction, the introduction of fluids results in homogeneously distributed added mass, leading16

to a reduction in the plate’s natural frequencies and subsequent modifications in its vibration bandgaps.17
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Figure 16: Phase velocities of cases with single side fluid.

This influence is amplified with increased fluid density, while the depth of the fluid environment exerts1

only a limited effect. In addition, the presence of the fluid does not significantly alter the plate’s mode2

shape, indicating the pure inertial effect of fluids that act upon the plate structure. Furthermore, the3

existence of fluid medium will also influence the vibration behaviour of the periodic structure outside4

the bandgap range, especially on the wave propagating directions on some specific frequencies.5
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Figure 17: Group velocities of cases with single side fluid.

5.2 Vibration of a periodic composite plate with double-side1

fluid structure interaction2

In practical situations, a plate might be in contact with fluids on both sides instead of just one. Con-3

sequently, this section investigates a double fluid cavity configuration involving a vibrating composite4

plate with double-sided fluid-structure interaction. Consequently, this section investigates a double fluid5

medium configuration involving a vibrating periodic composite plate with double-sided fluid-structure6

interaction.7

This investigation aims to study the effect of added mass due to fluid inertia from both sides of8

the plate. As depicted in Figure 18 (a), the periodic composite plate is in contact with fluid mediums9

(ideal incompressible, non-viscous fluids) on both sides. The fluid mediums have infinite dimensions10

along x1 and x2 directions, similar to the periodic composite plate, but are bounded by a limited depth11

L3 in the x3 direction. The remaining surfaces of the fluid mediums, including one top surface and12

one bottom surface, are considered as rigid wall boundaries. The vibration behaviour of the system13

is studied based on a periodic unit cell, as shown in Figure 18 (b). The unit cell comprises a solid14

domain representing the unit plate microstructure, which is in contact with a fluid domain on both15

sides. The side surfaces of the unit cell, including those of the fluid domain and the four edges of16
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the unit plate, incorporate Bloch-Floquet boundary conditions to represent the unit cell as part of a1

continuous periodic domain. The fluid unit cells are bounded by rigid walls on the top and bottom2

surfaces. The unit cell dimensions are a1× a2× h = 0.2× 0.2× 0.01 m in the x1, x2, and x3 directions3

for the solid domain and a1 × a2 ×L3 = 0.2× 0.2× 0.2 m in the x1, x2, and x3 directions for the fluid4

unit cells. The material parameters for the solid and wave vector settings are consistent with those5

described in Section 5.1.6

Figure 18: Example of a periodic composite plate in contact with double-side fluid
mediums (a), and the periodic unit cell (b) subject to bandgap calculations.

Figure 19: Mesh of the unite cell of the coupled system: (a) Using 20 × 20 mesh
with rectangular elements to divide the solid cell (b) Using 20 × 20 × 20 mesh with cubic
elements to divide the fluid cell.

The unit cell of the coupled system is discretised using quadrilateral plate elements, as detailed in7

Section 6 for the solid domain (Figure 19 (a)), and 8-node hexahedral elements for the fluid domain8

(Figure 19 (b)). Concerning the mesh density, the element edge length is set to 0.01 m. Despite the9

symmetric nature of the unit cell structure, the top and bottom fluid domains are meshed independently.10

We consider in this study three cases, as outlined in Table 3. For each case, the lower fluid domain is11

filled with one of three distinct fluids with varying densities, while water is consistently used as the fluid12

for the upper cavity. Considering the linear material behaviours, it is expected that the superposition13

principle can be applied to predict the plate vibration behaviour by combining the effects of different14
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Table 3: Case configurations

Case index Model ρ(upper) (kg/m3) ρ(lower) (kg/m3) L3 (m)

7 Double-side FSI 1000.0 1000.0 0.2

8 Double-side FSI 1000.0 626.0 0.2

9 Double-side FSI 1000.0 2280.0 0.2

fluid densities. As previously stated in Section 5.1, the depths of the fluid domains remain constant at1

L3 = 0.2 m.2

Bandgap analysis and the associated mode shapes:3

The vibration band diagrams associated with the composite plate featuring double-sided fluid-4

structure interaction are depicted in Figure 20. A comparison of Case 7 and Case 2, as shown in5

Figure 13 (b) and Figure 20 (a), reveals that accounting for fluid-structure interaction on both sides6

of the composite plate results in a greater reduction in natural frequencies compared to cases involving7

water on only one side of the plate. This frequency reduction is especially pronounced at higher natural8

frequencies. Consequently, the bandgaps [581.5−699.7] Hz and [1097.4−1282.0] Hz, observed in Case 29

with single-sided fluid-structure interaction and a single water cavity, narrow down to [520.1−529.8] Hz10

and [876.2 − 1025.4] Hz in Case 7, which involves double-sided water mediums. The first bandgap, in11

particular, experiences a significant reduction, with its bandwidth contracting to a mere 8.7 Hz. Figure12

21 further illustrates the mode shapes in terms of vibration amplitude, corresponding to the 4th band13

curve at point A, as highlighted by red circles in Figure 20. A comparison of Figure 14 (b) and Figure14

21 (a) indicates no substantial changes in the vibration mode shapes between Cases 2 and 7. This15

observation suggests that the presence of water on both sides of the plate results in a superposition16

effect of the added mass, leading to further reduced natural frequencies and bandgap widths without17

impacting the associated mode shapes.18

In Cases 7 to 9, as illustrated in Figures 20 (a) to (c), we examine the influence of varying fluid19

densities in the lower cavity while maintaining water in the upper cavity. This allows us to observe20

the consequent changes in bandgap behaviour. The results indicate that an increase in fluid density21

augments fluid inertia, thereby enhancing the added mass effect on the vibration behaviour. This leads22

to a reduction in both natural frequency levels and bandgap ranges. Consequently, the first bandgap23

[540.6 − 572.7] Hz observed in Case 8 with ρ(lower) = 626.0 kg/m3 disappears when the fluid density24

increases to ρ(lower) = 2280.0 kg/m3 (Case 9), and the second bandgap [940.3 − 1102.3] Hz narrows25

down to [725.1 − 846.1] Hz. Regarding the vibration mode shapes, as depicted in Figures 21 (a) to26

(c), altering the fluid density on one side of the plate does not affect the associated mode shapes. This27

observation suggests that the impact of the added mass remains constant, irrespective of whether fluid28

inertia is applied from one or both sides of the plate.29

Dispersive surface, phase velocities and group velocities:30

Figure 22 presents the iso-frequency contours of cases with fluid on both sides, displaying the 1st,31

3rd, 4th, and 5th order modes, as shown in Figure 22. These contours exhibit the characteristic of32

changing rapidly in the clinodiagonal direction while becoming flatter in the horizontal and vertical33

directions, akin to Figure 15. This suggests that the anisotropic behaviours of the composite plate are34

solely associated with the solid structure and are not influenced by the number of sides in contact with35

the fluid medium. Significant changes are observed in the center of the contour, where the value tends36
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Figure 20: Bandgap diagrams of cases with two sides fluid.

to shift to a higher frequency in the 4th mode with an increase in fluid density, and conversely, the value1

shifts to a lower frequency in the 5th mode. Except for the 1st mode, the maximum and minimum2

frequency values are located at the corner points and the midpoints of the edges, corresponding to the3

X and M points on the band diagram path Γ−X−M− Γ and forming the bandgap regions.4

Based on the iso-frequency contour in Figure 22, the phase and group velocities are plotted in5

Figure 23 to Figure 24. Similar to Section 5.1, different frequency values are chosen for each mode.6

The differences between phase velocity and group velocity for cases with fluid on both sides illustrate7

strong dispersive behaviour in these cases. In Figure 24 (a)-(d), the group velocities in the 1st mode all8

concentrate on the diagonal directions. Simultaneously, with an increase in the density of the fluid on9

the lower side, the degree of concentration is further enhanced, and the magnitude of group velocity at10

100,Hz in the 1st mode decreases. Regarding the distribution of group velocities of the 3rd mode with11

a constant frequency value of 450,Hz, the shapes change from concave to convex with an increase in12

the density of the fluid on the lower side, indicating a weakening of directional concentration of energy13

flow. A similar situation is also observed in the group velocities of the 5th mode.14
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Figure 21: Mode shapes of cases with two sides fluid.

Figure 22: Iso-frequency contours of cases with two sides fluid.

27



Figure 23: Phase velocities of cases with two sides fluid.

Figure 24: Group velocities of cases with two sides fluid.
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5.3 Dynamic response analysis1

In the preceding section, bandgap predictions were conducted for the unit cell within infinitely extended2

periodic structures. However, it is important to acknowledge the practical challenges associated with3

manufacturing a periodic composite plate featuring an infinite repetition of unit cells in both the x14

and x2 directions. For the experimental tests carried out in the laboratory, such plates are often con-5

strained by finite dimensions. Therefore, in this section, we extend our investigation to the experiments6

which may be done in the future with finite periodic composite plate considering fluid inertial effects.7

We accomplish this by performing dynamic response analyses in the frequency domain, taking into8

consideration the limitations imposed by the finite size of the structure.9

These analyses focus on representative structures consisting of periodic unit cells with different10

types of solid boundary conditions, and the results will be compared to bandgap predictions, considering11

both the presence and absence of fluid inertial effects. It should be clarified that these different solid12

boundaries will only be applied to the dynamic response analysis of the full-scale structure and are13

unrelated to the bandgap analysis of a single unit cell. Moreover, this section aims to showcase the14

versatility of the developed method when applied to periodic composite plates that incorporate intricate15

geometrical configurations.16

The frequency domain dynamic response is obtained using the frequency response function (FRF)17

as detailed in Appendix D, which calculates the steady-state dynamic response of a complete full-scale18

structure concerning sinusoidal input excitation adopting the transfer function [H] in Eq. (D.11).19

We present two examples of full-scale periodic composite plates with single-side fluid-structure20

interaction for analysis. These composite plates consist of 25 unit cells arranged along the x1 and21

x2 directions, featuring square and octagonal star inclusions, as depicted in Figure 25. The plate’s22

dimensions are L1 × L2 = 1 × 1 m in the x1 and x2 directions, with a thickness of 0.01 m. In both23

cases, one side of the composite plate is submerged in a fluid cavity with a depth L3 of 0.2 m. For the24

octagonal star inclusion, we use 2b to represent its outer diameter and 2c for the inner diameter, with25

2b = 0.18 m and 2c = 0.10 m. The plate material parameters and mesh density for the various material26

domains remain consistent with those described in Section 5.1.27

In the 25-cell fluid-structure system, the plate and fluid domains no longer extend indefinitely in28

the x1x2 plane but have finite size ranges. Therefore, the periodic boundaries will not be used for29

the four side boundaries of the plate and fluid anymore. Instead, we consider the fluid medium to be30

contained in a fluid cavity, in which the four side surfaces are defined as rigid walls, with the exception31

of the top surface in contact with the 25-cell composite plate. Regarding the plate, three different kinds32

of boundary conditions are considered: all four side edges are clamped, simply supported, or free, as33

shown in Figure 26. An input excitation F3 = Feiωt is applied at the point (x1, x2) = (0.5, 0.5) m.34

As the input wave signal propagates through the plate structure, the steady-state dynamic response35

is recorded at the point (x1, x2) = (0.1, 0.5) m, as illustrated in Figure 25. By analyzing the output36

dynamic response with respect to the input excitation, we can draw comparisons with the bandgap37

predictions.38

Figures 27 and 28, (a) and (e), (b) and (f), (c) and (g), illustrate the frequency responses of the39

composite plate with square and octagonal inclusions adopting different boundary conditions, both with40

and without accounting for the effect of fluid-structure interaction, calculated using frequency response41

functions (FRFs). The vibration bandgap predictions based on the respective unit cell calculations42

are provided in Figures 27 and 28 (d) and (h) for comparison. Remarkably, the predicted bandgap43
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Figure 25: A twenty-five-cell system of periodic composite plate with ideal fluid cav-
ity used for dynamic response analysis in frequency domain: red arrow indicates input
excitation; green cross refers to the position of output wave measurement.

Figure 26: Plates with three different boundary conditions.

range aligns well with the frequency range of dynamic response attenuation observed in the full-scale1

structure with different boundary conditions, regardless of whether fluid-induced added mass effects2

are considered. However, anti-resonance points are evident in all the frequency responses with clamped3

boundaries. The term ”anti-resonance point” numerically indicates a complete cancellation of structure4

vibrations, which is challenging to achieve in experiments, although this phenomenon is commonly ob-5

served in other research [32, 34, 35, 36]. From the frequency response results, it is apparent that these6

anti-resonance points are more likely attributable to the choice of plate boundaries. Changing from7

clamped to simply supported and free boundaries reduces the constrained degrees of freedom on the8

boundaries, resulting in fewer anti-resonance points within the amplitude attenuation range. Neverthe-9

less, complete elimination of anti-resonance points through changes in plate boundary conditions is not10

achievable. Additionally, considering that clamped boundaries are difficult to realise in a laboratory11

environment, we would recommend using simply supported or free boundaries for the composite plate.12

The overall consistency between bandgap predictions of single unit cell and frequency responses of13

full-scale structure shows the effectiveness of the bandgap analysis in predicting dynamic behaviours14

of composite plates in both fluid-free and fluid-structure interaction scenarios. Moreover, the approach15

exhibits good versatility in its application to composite plates with different inclusion shapes, confirming16

its potential for exploring and optimising a wide range of composite structures with varying geometric17
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Figure 27: The comparison between the bandgap and the frequency responses for the
periodic composite plate with square inclusion with different boundary conditions.

configurations. Through comparison of the dynamic behaviours of the composite plate with and without1

the fluid environment, we see a significant impact on the dynamic response of the composite plate by2

fluid-structure interaction. This confirms the importance of accounting for fluid-structure interaction3

in the design and analysis of composite structures for applications involving fluids.4
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Figure 28: The comparison between the bandgap and the frequency responses for the
periodic composite plate with octagonal star inclusion with different boundary conditions

6 Conclusion1

This work has investigated a unit cell-based finite element model for predicting the vibration bandgaps of2

composite plates in the context of fluid-structure interaction (FSI). The approach utilises a unit cell FSI3

system composed of fluid and solid domains with boundaries incorporating Bloch periodic conditions,4

enabling vibration bandgap analysis. The effective inertial effect resulting from fluid-structure inter-5

action is described by an added mass matrix, which integrates Bloch periodic conditions for bandgap6

calculations. The composite plate, modeled using Mindlin kinematics, shares a discretised interface7

with the fluid domain, where integration leads to the calculation of the added mass. Results indicate8

that the presence of fluids has a considerable effect on structural vibration, with parameters such as9

fluid density significantly affecting the bandgap range and position. Additionally, the study demon-10

strates that the depth of the fluid domain has little impact on structural vibration when the effect of11

gravity is not considered. While FSI conditions have a negligible effect on vibration mode shape, their12

consideration significantly affects the inertial mass of the structure and the wave propagation outside13

the bandgap range.14

To further evaluate the method and prepare for future experimental research, full-scale models are15

employed using frequency response simulations with frequency response functions (FRFs), which are16

then compared with bandgap predictions. Here, simply supported or unconstrained boundary conditions17

have been considered for the full-scale model to minimise anti-resonance points in the wave attenuation18

range. The comparison results indicated the effectiveness of the approach, allowing for the design19

of composite plates that operate under FSI conditions with specific requirements regarding vibration20

behaviours.21

However, we acknowledge that the method presented in this study becomes less suitable in the ultra22

high-frequency domain. This limitation arises from the necessity of utilizing a significantly dense mesh23
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to accurately capture wave propagations with very small wavelengths, which may result in unacceptable1

computational costs. Moreover, when considering scenarios involving unconstrained fluid surfaces or2

compressible fluid assumptions, which go beyond the inertial FSI conditions, specific FSI models ac-3

counting for fluid gravity and compressibility will be necessary. Nevertheless, the methodology allowing4

for the integration of periodic boundary conditions in the context of unit cell-based bandgap analysis5

still holds. Therefore, in perspective, efforts in applying further FSI models are necessary to extend the6

applicability of this methodology to a broader range of applications.7
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Appendix A10

Solid domain: Mindlin plate finite element11

The solid domain, denoted by Ωs, is characterised by a periodic composite plate structure in the current12

study. We employ a 4-node plate finite element involving 12 degrees of freedom, and compatible with13

the Mindlin kinematics assumptions to discretise Ωs. In this specific study, we investigate a plate of14

thickness h h, subjected to concentrated or distributed out-of-plane force load F3 along the x3 axis15

and in-plane couple loads (pure moments) M1 and M2 applied relative to the x1 and x2 axes, as16

illustrated in Figure A.1. The 3D kinematics of the Mindlin plate can be described by the displacement17

vectors u1(x1, x2, x3), u2(x1, x2, x3), and u3(x1, x2, x3), defined on a point (x1, x2, x3) belonging to18

Ωs. Regarding the kinematics of the plate middle plane (x3 = 0), it is described by three kinematics19

variables: the out-of-plane displacement w(x1, x2), and the rotation angles of the normal vector, denoted20

φ1(x1, x2) and φ2(x1, x2), defined around the x1 and x2 axes, respectively.21

Figure A.1: Mindlin plate kinematics: initial and deformed configurations.

Employing these parameters, we formulate fundamental kinematic relationships that respect the22

classical Mindlin plate assumptions [29], implying that the plate cross-section remains flat but does not23

necessarily remain perpendicular to the mid-plane during deformation. Moreover, in-plane stretching24

is disregarded in light of the vibration analysis, where the out-of-plane movements are predominant.25

Consequently, the 3D displacement field of Ωs can be described in terms of the middle plane kinematics26
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variables w(x1, x2), φ1(x1, x2) and φ2(x1, x2) as:27

u1(x1, x2, x3) = −x3φ1(x1, x2)

u2(x1, x2, x3) = −x3φ2(x1, x2)

u3(x1, x2, x3) = w(x1, x2)

, (A.1)

with w(x1, x2), φ1(x1, x2) and φ2(x1, x2), the nodal degrees of freedom of the Mindlin plate finite1

element, again defined on the plate middle plane. Substituting the Mindlin plate kinematics relation2

Eq. (A.1) into Eq. (3), we obtain the expression of the Cauchy strain vector {ε} as3

{ε} =



ε11

ε22

γ12

γ13

γ23


=



−x3
∂φ1

∂x1

−x3
∂φ2

∂x2

−x3

(
∂φ1

∂x2
+ ∂φ2

∂x1

)
∂w
∂x1
− φ1

∂w
∂x2
− φ2


=

{
εb

εs

}
, (A.2)

in which in-plane and out-of-plane strain components are denoted distinctly as {εb} and {εs}, respec-4

tively, which are associated with the effects of bending and transverse shear. To decouple the bending5

strain components from their dependence on x3, we can define the generalised strain ε̂ for the Mindlin6

plate as follows:7

{ε̂} =

{
ε̂b

ε̂s

}
=



∂φ1

∂x1

∂φ2

∂x2

∂φ1

∂x2
+ ∂φ2

∂x1

∂w
∂x1
− φ1

∂w
∂x2
− φ2


, (A.3)

using {ε} = [Sε] {ε̂}, with the transformation matrix [Sε] that factorises the coordinate x38

[Sε] = diag [−x3 − x3 − x3 1 1 ] . (A.4)

In the subsequent discussion, we present the finite element interpolation technique, which leads to9

matrix expressions of ε and ε̂ as functions of nodal degrees of freedom (w, φ1, φ2)i, where i = 1, ..., 4.10

Finite element interpolation: Referring to Eq. (A.1), the Mindlin finite element employs four11

nodal kinematic variables, resulting in the nodal displacement vector:12

{ui} =
[
w φ1 φ2

]
i
, i = 1, ..., 4 . (A.5)

For a 4-node element, this leads to the element displacement vector:13

{u}12×1 =
[
{u1}, {u2}, {u3}, {u4}

]T
. (A.6)

Hence, the approximation of the displacement field for the 4-node Mindlin plate element is expressed14

34



using linear shape functions in the reference element of domain [−1, 1]× [−1, 1]:15

w =
4∑
i=1

Nsiwi, φ1 =
4∑
i=1

Nsiφ1i, φ2 =
4∑
i=1

Nsiφ2i, . (A.7)

with1

Nsi =
1

4
(1 + ξiξn) (1 + ηiηn) , (A.8)

where (ξi, ηi) with i = 1, 2, 3, 4 represent the positions of the i-th node in the parametric coordinates,2

and (ξn, ηn) represents the position within the reference element.3

Element stiffness matrix and mass matrix: Using the shape functions (Eq. (A.8)), we can4

present the strain-displacement matrix [Bs] by considering the expression of the generalised strain {ε̂}5

(Eq. (A.3)) and the element vector of displacement {u} (Eq. (A.6)):6

[Bs] =



0 ∂Ns1

∂x1
0 0 ∂Ns4

∂x1
0

0 0 ∂Ns1

∂x2
0 0 ∂Ns4

∂x2

0 ∂Ns1

∂x2

∂Ns1

∂x1
· · · 0 ∂Ns4

∂x2

∂Ns4

∂x1

∂Ns1

∂x1
−Ns1 0 ∂Ns4

∂x1
−Ns4 0

∂Ns1

∂x2
0 −Ns1 ∂Ns4

∂x2
0 −Ns4


, (A.9)

which leads to7

{ε̂} = [Bs] {u} . (A.10)

The element stiffness matrix [kes] can be determined by using the strain-displacement matrix [Bs] (Eq.8

(A.9)) in consideration of linear elasticity with the constitutive relation:9

[kes] =

∫
Ωse

[Bs]
T
[
Ĉ
]

[Bs] dΩse , (A.11)

in which Ωse refers to the middle plane area of the Mindlin plate element e, and
[
Ĉ
]
, the generalised10

elasticity matrix for the Mindlin plate, can be obtained by integration across the plate thickness h using11 [
Ĉ
]
, the generalised elasticity matrix for the Mindlin plate:12

[
Ĉ
]

=

h
2∫

−h
2

[Sε]
T

[C] [Sε] dx3 , (A.12)

based on linear elasticity, which for plane stress assumption, writes13

[C] =



E
1−v2

vE
1−v2 0 0 0

vE
1−v2

E
1−v2 0 0 0

0 0
�

��E
2(1+v) G 0 0

0 0 0 k11G 0

0 0 0 0 k22G


. (A.13)

Here, E refers to Young’s modulus, v is Poisson’s ratio, G is the shear modulus, and k11, k22 are in14

plane shear correction parameters, which in this article, take the following value k11 = k22 = 5
6 .15
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In a similar manner, we can construct the element mass matrix [me
s] using the plate density matrix16

[ρs], which arises from integrating the material unit mass and inertia over the plate thickness (h). With:1

[ρs] =

h
2∫

−h
2


ρs 0 0

0 ρsx3
2 0

0 0 ρsx3
2

dx3 , (A.14)

we obtain the element mass matrix [me
s] for the element e as:2

[me
s] =

∫
Ωse

[Ns]
T

[ρs] [Ns] dΩse , (A.15)

where the matrix of shape functions [Ns], composed of Eq. (A.8) writes3

[Ns] =


Ns1 0 0 Ns4 0 0

0 Ns1 0 · · · 0 Ns4 0

0 0 Ns1 0 0 Ns4

 . (A.16)

Global stiffness matrix and mass matrix: Let us introduce the element localisation matrix4

[Λe
s] for the solid domain. This matrix, of dimension 12× NDOFglobal, establishes the correspondance5

between the indices of the element degrees of freedom and their respective positions within the global6

system. In numerical implementation, this process can be achieved through the assembly operation.7

This leads to the expression of the global stiffness and mass matrices of the solid domain Ωs, [Ks] and8

[Ms], which are given by:9

[Ks] =

NEs∑
e=1

[Λe
s]

T
[kes] [Λe

s]

[Ms] =

NEs∑
e=1

[Λe
s]

T
[me

s] [Λe
s]

, (A.17)

where [kes] and [me
s] represent the element stiffness and mass matrices, obtained from Eq. (A.11) and10

Eq. (A.15), respectively. Utilising the expressions of the global stiffness and mass matrices, we can11

formulate the matrix representation that implements the elastodynamics of the solid domain Ωs, which12

corresponds to the left-hand side of Eq. (12), as follows:13 ∫
Ωs

σ : δεdΩs → {δU}T [Ks] {U}∫
Ωs

ρsü · δuΩs → {δU}T [Ms]
{

Ü
} . (A.18)

The boundary conditions applied on Ωs, which are exerted through the fluid-structure interface and14

described by the right-hand side of the governing equation Eq. (12), require integration over the fluid-15

structure interface. A comprehensive discussion on this aspect will be presented in Section 3.1.16
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Appendix B17

Fluid domain: 8-node hexahedral finite element1

In this section, we focus on the finite element formulation that implements the wave equation in terms2

of the pressure fluctuation of Ωf relative to its steady state. We consider Ωf filled with a weakly3

compressible, non-viscous fluid without body forces whose pressure fluctuation is described by the4

Laplace equation (Eq. (8)). The domain is discretised using a 8-node hexahedral finite element, for5

which the nodal pressure p is the sole degree of freedom. We construct the element vector of pressure6

as follows:7

{p}8×1 =
[
p1 p2 p3 p4 p5 p6 p7 p8

]T
. (B.1)

The pressure field is approximated by interpolating nodal pressures through linear shape functions in8

the reference element of domain [−1, 1]× [−1, 1]× [−1, 1], resulting in the expression:9

p =
8∑
i=1

Nfipi . (B.2)

Here, the shape function is defined as:10

Nfi =
1

8
(1 + ξiξn) (1 + ηiηn) (1 + λiλn) , (B.3)

where (ξi, ηi, λi) with i = 1, 2, 3, ..., 8 represents the positions of the i-th node in the parametric coordi-11

nates, and (ξn, ηn, λn) represents the position within the reference element. Using the shape functions12

(Eq. (B.3)), we can write the shape function gradients matrix [Bf ]:13

[Bf ] =


∂Nf1

∂x1

∂Nf2

∂x1

∂Nf8

∂x1
∂Nf1

∂x2

∂Nf2

∂x2
· · · ∂Nf8

∂x2
∂Nf1

∂x3

∂Nf2

∂x3

∂Nf8

∂x3

 , (B.4)

which leads to:14

{∇p} = [Bf ] {p} . (B.5)

We can construct the element stiffness matrix
[
kef

]
for the fluid domain, which represents the15

linearised elastic properties of the fluid. Holding the assumptions that for the weakly compressible ideal16

fluid initially at rest, the perturbation of the fluid pressure is supposed to be small with respect to the17

steady state. Under these conditions, the linearised elastic properties of the fluid imply that the fluid18

pressure field responds linearly to an external vibroacoustic load, characterised by the fluid stiffness19

matrix. By considering the governing equation of the fluid domain Eq. (13), we obtain the expression20

of
[
kef

]
for the e−th element of the fluid domain as:21

[
kef
]

=

∫
Ωfe

[Bf ]
T

[Bf ] dΩfe , (B.6)

where Ωfe refers to the volume of the element. Subsequently, we proceed with the assembly operation22

by using the element localisation matrix
[
Λe
f

]
, defined similarly as for the solid domain. Here,

[
Λe
f

]
is23

of dimensions 8×NDOFglobal and allows relating the indices of the element degrees of freedom to their24
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respective positions within the global system. Consequently, the global stiffness matrix for the fluid25

domain can be obtained based on Eq. (B.6) as follows:1

[Kf ] =

NEf∑
e=1

[
Λe
f

]T [
kef
] [

Λe
f

]
, (B.7)

Based on the global stiffness matrix, we can construct the matrix formulation to solve the pressure2

fluctuation of the fluid domain Ωf . This formulation corresponds to the left-hand side of Eq. (13) and3

can be expressed as:4 ∫
Ωf

∇p · ∇δp dΩf → {δP}T [Kf ] {P} , (B.8)

where {δP} and {P} are the global vectors of the virtual pressure fluctuation, and of the pressure5

fluctuaton of Ωf , respectively. The boundary conditions on Ωf are applied through the fluid-structure6

interface, and is described by the right-hand side of Eq. (13).7

Appendix C8

Bloch boundary conditions for bandgap analysis9

Due to the periodic nature of the composite plate considered in this study, its microstructure can10

be described using the 2-dimensional Bravais lattice [37] in real space, as depicted in Figure C.1(a).11

This lattice is formed by generating an infinite number of translation vectors with integer coefficients:12

Rn = n1a1 + n2a2 n1, n2 ∈ Z (C.1)

where vectors a1 and a2 are lattice vectors in two periodic directions, considering the 2-dimensional13

periodicity. The lattice points repeat endlessly in all periodic directions, making it challenging to14

represent the entire lattice with limited computational resources. Therefore, adopting the periodicity15

of the lattice, it is sufficient to only identify one period. This region is a parallelogram represented in16

Figure C.1(a) and is also called the primitive unit cell, which is a square in a square Bravais lattice.17

Subsequently, the entire Bravais lattice can be generated by using translations only.

Figure C.1: The square Bravais lattice in real space (a), the reciprocal lattice in
reciprocal space (b), and Brillouin zone (c).

18

Applying a Fourier transform of the geometric lattice (Bravais lattice) yields a lattice system in19

reciprocal space, as depicted in Figure C.1(b). To illustrate the reciprocal space, consider a function20
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uk(x) following the periodicity of the Bravais lattice, which can be expressed as a multi-dimensional21

Fourier series:1

uk (x) =
∑
Gm

fGme
iGm·x (C.2)

where fGm represents the Fourier coefficients associated with the reciprocal lattice vector Gm. Then,2

translating the space vector x by any lattice vector Rn, the function uk(x+Rn) will be equal to uk(x):3

uk (x) = uk (x + Rn)∑
Gm

fGm
eiGm·x =

∑
Gm

fGm
eiGm·(x+Rn)

∑
Gm

fGm
eiGm·x =

∑
Gm

fGm
eiGm·xeiGm·Rn

eiGm·Rn = 1

Gm ·Rn = 2πN N ∈ Z

(C.3)

Mathematically, the reciprocal lattice is the set of all 2-dimensional reciprocal lattice vectors Gm,4

which are wave vectors of plane waves in the Fourier series of a spatial function whose periodicity is the5

same as that of the Bravais lattice (the set of all Bravais lattice point position vectors Rn):6

Gm = m1b1 +m2b2 m1,m2 ∈ Z (C.4)

where ai · bj = 2πδij , which reveals the mapping relationship between Gm and Rn. Vectors in the7

Bravais lattice have dimensions of [length], while vectors in the reciprocal lattice have the dimensions8

of [1/length].9

Similar to the primitive unit cell in real space, there is a region of reciprocal space that contains all10

the information of the lattice. This region is known as the first Brillouin zone [37], which is the smallest11

volume entirely enclosed by planes that are the perpendicular bisectors of the reciprocal lattice vectors12

drawn from the origin, as shown in Figure C.1(c).13

The consequences of periodicity are described mathematically by the Bloch’s theorem [38], which14

states that solution of the wave equation (mechanical, electromagnetic, schrodinger, etc.) can be com-15

pletely characterised by their behaviour in a single Brillouin zone expressed as a periodic function16

modulated by a plane wave:17

ψ(x,k) = e(ik·x)uk (x) (C.5)

where uk is the periodic function mentioned earlier, and k is the wave vector. The calculation of the18

band structure for the periodic composite plate requires the use of periodicity and symmetry of the19

crystal lattice, and usually assumes that the crystal is ideal and has periodic boundaries and discrete20

translational symmetries. Because of this, the band gap is typically plotted only for k vectors within21

the first Brillouin zone. The solution of the wave vector outside the first Brillouin zone corresponds to22

the solution inside. For the solution of elastic wave propagation in a periodic medium, we have:23

U(x,k) = e(ik·x)uk (x) (C.6)

Similarly, we consider the translation of space vector x by lattice vector Rn = n1a1 + n2a2 with24
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n1 = n2 = 1, and obtain the boundary conditions of the mechanical wave of a unit cell in real space:25

U(x + ai,k) = ei(k·(x+ai))uk (x)

= ei(k·ai)ei(k·x)uk (x)

= ei(k·ai)U(x,k)

(C.7)

which respects the Bloch theorem. In general, high-symmetry points in the first Brillouin zone are1

often associated with energy level degeneracy and reflect the lattice symmetry. Therefore, the band2

structure diagram is typically presented along high-symmetry points [39]. The high-symmetry points3

in the first Brillouin zone of a square reciprocal lattice are often denoted as Γ, X, M, as shown in Figure4

C.1(c). The Bloch wave vectors k in Eq. (C.5) will be further simplified within the path formed by the5

connection of high-symmetrical points Γ−X−M−Γ, where the region inside the path is the irreducible6

Brillouin zone. For each k on the path, the wave equation with the boundary condition Eq. (C.7) will7

have multi solutions for the characteristic frequencies. The number of solutions are also the number of8

band branches. Each band changes periodically with k.9

Appendix D10

Consider the free vibration of an undamped finite solid structure. The equation of motion for this11

structure can be solved using finite element method, for which the governing equation in matrix form12

writes:13

[Ms]
{

Ü
}

+ [Ks] {U} = 0 (D.1)

It should be noted that the Bloch boundary conditions are not involved in this equation as they are14

only applied for the unit cell system. For such a solid system without external force, the displacement15

solution of Eq. (D.1) can be expressed in a harmonic form, {U} = {U0} eiωt. Then Eq. (D.1) can be16

rewritten as:17 (
[Ks]− ω2 [Ms]

)
{U0} eiωt =

(
[Ks]− ω2 [Ms]

)
{U} = 0 (D.2)

In the case of nontrivial solutions ({U} 6= 0), the determinant of the coefficient matrix
(
[Ks]− ω2 [Ms]

)
18

should be zero according to Cramer’s Rule. Therefore, the natural frequencies {ω} of the solid structure19

can be obtained. It should be noted that the number of natural frequencies of a structure is, in fact,20

equal to the number of DOFs, denoted as Ndof. However, in general, we only consider the first few21

natural frequencies of the structure, denoted as Nω.22

Substituting the rth natural frequency ωr back into Eq. (D.2) yields the corresponding rth mode23

shape of the structure, denoted as {Φr}. After that, all Nω orders of mode shapes are combined into24

a mode matrix [Φ] = [{Φ1} , {Φ2} , ..., {ΦNω}]Ndof×Nω . For a linear vibration solid system, the solution25

of the displacement field can be written as a linear combination of mode shapes:26

{U} ≈ [Φ] {q} (D.3)

where {q}Nω×1 denotes the amplitudes of mode shapes. The approximate relationship is used in Eq.27

(D.3) since not all the characteristic modes of the solid system are employed.28

Then, we further consider the mentioned undamped finite solid structure subjected to an external29
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force. The governing equation of this forced vibration solid system in matrix form can be written as:30

[Ms]
{

Ü
}

+ [Ks] {U} = {F} (D.4)

If the external force is harmonic, {F} = {F0} eiωt, which will stimulate the structure to generate1

harmonic displacement response: {U} = {U0} eiωt. Therefore, Eq. (D.4) can be rewritten as:2

(
[Ks]− ω2 [Ms]

)
{U0} eiωt =

(
[Ks]− ω2 [Ms]

)
{U} = {F} (D.5)

For Eq. (D.5), the number of unknowns is equal to the number of dofs of the solid structure Ndof.3

However, by substituting Eq. (D.3) to Eq. (D.5), the the number of unknowns will be reduced to the4

number of modes Nω:5 (
[Ks]− ω2 [Ms]

)
[Φ] {q} = {F} (D.6)

Due to the orthogonality of the modes to the mass and stiffness matrices of the structure, the6

decoupling of the motion equations is achieved by left-multiplying Eq. (D.6) by the matrix [Φ]
T

:7 (
[Φ]

T
[Ks] [Φ]− ω2 [Φ]

T
[Ms] [Φ]

)
{q} = [Φ]

T {F} (D.7)

where [Φ]
T

[Ms] [Φ] is the mode mass matrix [ms] = diag
[
ms,1 ms,2 ... ms,Nω

]
, and [Φ]

T
[Ks] [Φ]8

is the mode stiffness matrix [ks] = diag
[
ks,1 ks,2 ... ks,Nω

]
. Therefore, with this decoupled equa-9

tion, the solution of amplitude of mode shapes {q} can be given:10

{q} =
(
[ks]− ω2 [ms]

)−1
[Φ]

T {F} (D.8)

And specifically, the rth order of amplitude of mode shapes qr is written as:11

qr =
{Φr}T {F}
ks,r − ω2ms,r

(D.9)

where {Φr} is the rth mode shape of the structure. After that, by combining Eq. (D.3) and (D.8) the12

stimulated displacement field {U} is given as follow:13

{U} =

(
Nω∑
r=1

{Φr} {Φr}T

ks,r − ω2ms,r

)
{F} (D.10)

This equation indicates the process of force input and response out of a linear undamped solid14

structure system, and we denote the Frequency Response Function (FRF) transfer matrix [H] as:15

[H] =

Nω∑
r=1

{Φr} {Φr}T

ks,r − ω2ms,r
(D.11)

where [H] has the matrix size of Ndof×Ndof; ω denotes the frequency of harmonic force. The components16

of the transfer matrix, Hij , can be physically interpreted as the dynamic response measured on the ith17

degree of freedom in relation to an input excitation prescribed on the jth degree of freedom. In case18

of a solid structure coupled with ideal liquid, we just need to replace the mass matrix [Ms] of solid19

structure in Eq. (D.1) and (D.4) by ([Ms] + [MA]), where [MA] = ρf [R] [Kf ]
−1

[R]
T

.20
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