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Electromagnetic scattering problem by small obstacles

Atmospheric particles Cosmic dust Photonic crystal

(by Allan Dyer) (by Koen Clays)
® ) from 400 to 800nm ® )\ from 400 to 700nm ® )\ from 400 to 800nm
® § from 10 to 400nm ® § from 1 to 100nm ® § from 10 to 200nm

4 size of particle, A wavelength
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Electromagnetic scattering problem by small obstacles

Arbitrary structure Spherical scatterers Periodic structure
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Electromagnetic source
® Time-harmonic o exp(—iwt)
* Wavelength A = 2x¢
® Homogeneous and isotropic

AVAVA
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Electromagnetic scattering problem by small obstacles

Arbitrary structure Spherical scatterers Periodic structure

- L0
\V > € o * )

® o g °
H H
A s ]
Electromagnetic source ’o%
®
e Time-harmonic o exp(—iwt) 0’}?@/0
&

* Wavelength A = 2x¢
® Homogeneous and isotropic

w
(Reduced Maxwell equations) ~ ~ = — constant
-
W curlE' —ikH =0 inR’

>

curl H + ik E = J inR?
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Numerical solution for large number of scatterers

Electromagnetic scattering problem by small obstacles

Arbitrary structure

Electromagnetic source
® Time-harmonic « exp(—iwt)
* Wavelength A = 2x¢
® Homogeneous and isotropic

AVAVA

>

Spherical scatterers

Periodic structure

Asymptotic asumption
[ RSP

(Reduced Maxwell equations )

culE —ikH' =0 inR?

curl H + ik E = J inR?

Conclusion and perspectives

w
k = — constant
c
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Model problem
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e Obstacles B = B(cy, 8)
e Exterior domain Q5 = R3\ UBi’g
* Boundary I's = JT%

Conclusion and perspectives
o
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Numerical solution for large number of scatterers

Model problem

E, H

o
(*)

*]
Yo Hew
o

® Obstacles B% = B(cy, 8)
e Exterior domain Q5 = R3\ Uﬁiﬁ
® Boundary I's = |JI'%

= A

(*]
&
4

Total electromagnetic fields
Es=E +ES H;=H +HS
Time-harmonic Maxwell equations
{ curlES —ikHS =0  inQ;s
curl H +ikE; =0 inQy

Silver-Miller condition

X X
r (Hs x - - Es) —2 0 unif.in =

Perfect conductor condition

nxEi=-nxE  onls

Conclusion and perspectives
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Numerical solution for large number of scatterers

Model problem

E, H

o
(*)

*]
Yo Hew
o

® Obstacles B% = B(cy, 8)
e Exterior domain Q5 = R3\ Uﬁiﬁ
® Boundary I's = |JI'%

= A

(*]
&
4

For E', H' € Hjoc(curl, Q5) there is a unique solution
E3, H € Hyg(curl, Q5)

Total electromagnetic fields
Es=E +ES H;=H +HS
Time-harmonic Maxwell equations
{ curlES —ikHS =0  in Qs
curl H +ikE; =0 inQy

Silver-Miller condition

X X
r(H,; X o E5) rjo() unif. in =

Perfect conductor condition

nxEi=-nxE  onls

Well-posedness

Conclusion and perspectives
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Numerical strategies

Mesh-dependent methods

® Finite differences

* Finite element method Too expensive
® Discontinuous Galerkin

® Boundary element method
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Spectral models
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Mesh-dependent methods

® Finite differences

® Finite element method

® Discontinuous Galerkin

® Boundary element method

- - -
2 [ o) ol
-
of ‘* ‘o) ‘83

Numerical solution for large number of scatterers
00000

Numerical strategies

Montjoie on Plafrim

Order 2

2436 832 dof

Memory ~ 40 GB
Time = 2h on 4 cores

Conclusion and perspectives
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Numerical strategies

Mesh-dependent methods | Mesh-less methods

® Finite differences

® Finite element method

® Discontinuous Galerkin

® Boundary element method

® Asymptotic methods
® Spectral-based algorithms
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Numerical strategies

Mesh-dependent methods | Mesh-less methods

® Finite differences

Finite element method

® Discontinuous Galerkin

® Boundary element method

® Asymptotic methods
® Spectral-based algorithms

Asymptotic expansions | | Foldy-Lax model

® Single scattering ® Multiple scattering

® Restricted to small ® Restricted to small
obstacles obstacles

® Low computational cost ® Low computational cost



Introduction Foldy-Lax-based models Spectral models Numerical solution for large number of scatterers Conclusion and perspectives
[e]e]e] o} 00000 00000 00000

Numerical strategies

Mesh-dependent methods | Mesh-less methods
® Finite differences ® Asymptotic methods
e Finite element method ® Spectral-based algorithms

® Discontinuous Galerkin
® Boundary element method

Asymptotic expansions | | Foldy-Lax model | | Spectral method
® Single scattering ® Multiple scattering ® Single and multiple
® Restricted to small ® Restricted to small scattering

obstacles obstacles ® All sizes of obstacles

® Low computational cost ® Low computational cost ® Analytical for spheres
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(Non-exhaustive) List of references

® Historic references

Rayleigh (1884), Foldy (1945), Lax (1951)
Small defect theory

I'ln (1992), Maz'ya et al. (2000)

® Acoustic obstacle
Ammari and Kang (2003), Ramm (2005), Claeys (2008)

® Time-dependent domain
Mattesi (2014), Korikov (2015), Marmorat (2015)

® Electromagnetic obstacle
Vogelius and Volkov (2000), Ammari et al. (2001), Korikov and Plamenevskii (2017)

® Foldy theory
Martin (2004), Cassier and Hazard (2013), Bendali et al. (2014), Challa et al. (2014),
Bouzekri and Sini (2019)

® High-order spectral algorithms
Xu (1995), Ganesh and Hawkins (2009), Thierry (2011), Ammari et al. (2013), Barucq et
al. (2017), Egel et al. (2017)

® Inverse problem
Volkov (2001), Ammari-Kang (2004), Challa-Sini (2012)
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Approximate solution to single scattering by a sphere

® Asymptotic method: the matched asymptotic expansions

® Domain decomposition
® Local approximations
® Matching procedure
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Approximate solution to single scattering by a sphere
® Far from the obstacle, the solution is approximated by

ES~ G0 E;+0°Es+... HS ~ 8 H; + 8 Hs + ...
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Approximate solution to single scattering by a sphere
® Far from the obstacle, the solution is approximated by

ES~&6E;+8Es+... HS ~ 6°H; + 6> Hs + . ..
O)
- - hy/ (kr
E(x) = = (R ot + 27 el — )
o 3(70) <l>('@ X
= = (WG] + 27 0] 4 1 (o))
0)
= hy’ (kr
Ew= .+ (M><nawdoeﬂ+s 2 Qe+ h“%nwwx[ohﬂ>
~ 4 12D (er
Hs)= ..+ (hé”(nr)m[ohx] #3200 ) (s Q]
where

de=E©O)  a=HO Q=-23I"0) Q=3I"0)
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Approximate solution to single scattering by a sphere

® Far from the obstacle, the solution is approximated by

ES~&6E;+8Es+... HS ~ 6°H; + 6> Hs + . ..
electric dipole magnetic dipole

)

~ K

Exl) = <h< (orymlde) +2 - ] sy [dh1>
)

~ - h Kr

Fiy () = = (R oyl 4 22 ) 4 0 )

electric quadrupole magnetic quadrupole

h(l) (fir)

Es(x) = dipole +

<h< ) (kr)1[Qex] + 3 [Qex]> L )y [th]>

Ii
4

o . h(l)(f-er)
Hs(x) = dipole +

(h‘ ) (k) n[Qu] + 3 Q1 — 1D () [Qex]>

h}
4
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Approximate solution to single scattering by a sphere
® Far from the obstacle, the solution is approximated by

E$~&6E;+8Es+... HS ~ 8°Hy + 8 Hs + ...

Ex(x) = E2,[de] (x) + Embyldn] (x)

H (x) = HIP; [de] (x) + Hipog[dn] (x)

Es(v) = —e;’l'sc[dew) = 38,1000 + EL Q100 + £ (NI

elec

Hs(x) = —%d"’ [de](x) — 37 g 1] (5) + He' [Qe](x) + Hihag [Qn] ()



Introduction Foldy-Lax-based models Spectral models Numerical solution for large number of scatterers Conclusion and perspectives
00000 [e] le]e]e} 00000 00000

Approximate solution to single scattering by a sphere

® Far from the obstacle, the solution is approximated by

E$~&6E;+8Es+... HS ~ 6°Hs + 8°Hs + ...

® By using multipole expansion
[de] + an(6)Embgldn] + Be(8)EA2[Qe] + Bn(6)EMIQn] + ...
[de] + an(8) Hbg[dn] + Be(6)HAZ[Qe] + Bn(8) Hibes [Qn] + - ..

ES ~ ae(5)ESP

elec

HS ~ ae(5)HP

elec

Ll dependon o o incident fields

® de, d, : dipole moment
- the center of the obstacle

® Qe, Qn: quadrupole moment tensor
® the shape of the obstacle

do=E(0)  dy=—H(0)

i]]sym (0)

— 2 sym —
=-ZI2"(0) Qv =3I

Qe 3 Ei
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Approximate solution to single scattering by a sphere

® Far from the obstacle, the solution is approximated by

E$~&6E;+8Es+... HS ~ 8 Hy + 8 Hs + ...
® By using multipole expansion

ES ~ e (6)ESR [de] + an(6)Embg[dn] + Be(6)E22Qe] + 5in(6)EIRQn] + ...

elec
HS ~ ae (6)HOE[de] + an () Hindg[dn] + B (6)HAZ[Qe] + Bn(6) Hibag [Qn] + . .-
Multipole moments Order of approximation
® de, dy, : dipole moment ® Order3: Be = By = 0and e = o, = 6°
® Qe, Qp: quadrupole moment tensor ° Order5: Be = B = 6, ae = 63(1 + 3(73)2)
ap = 8(1 — A2y
. 1. .
do =E'(0)  dy=—2H(0)
2 _sym 4 sym
Qe = 2J¥™(0) Qn=-I2™(0)

3°F 3°H
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Approximate solution to single scattering by a sphere
® Far from the obstacle, the solution is approximated by
E$~&6E;+8Es+... HS ~ 6°H; + 6°Hs + . ..
® By using multipole expansion
ES ~ ae(8)E50,de] + an(0)Embgldn] + o (6)ES[Qe] + n(0)Efag [Qn] + ..
HS ~ ae(§)HIP, [de] + an(6)HIog[dn] + Be(8)HIVQe] + Bn (6) HAZ[Qn] + . ..

Multipole moments Order of approximation
® de, dy, : dipole moment ® Order3: Be = fn =0and ag = o = 83
® Qe, Qp: quadrupole moment tensor ° Order5: Be = Bn =6, ae = 63(1 + 3(73)2)
an = 8 (1 — 2Dy
. 1 .
_Ei _ i
de = E'(0) dn = _EH (0) ( intermediate approximations
2 4 .
Qe — ,q]]s)i'm (0) Q= *JS}i]m (0) o CoIIL?(.:ted d|pole‘ .
3°E 3°H * Modified approximation
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Complements on single scattering

10— FETT T T T T T TR 10— L T T T T T T T
5 Data
3
¢ ° —
R - =111 N A=350
o
2 ® Plane wave
°
« Order 3 ® § varies

—e— Order 5
1072 b 1l 10~ 2 bl vl vl v im
103 1072 10! 10=3 1072 10!

(Electric) (Magnetic)
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Complements on single scattering

10— ! AT T TIIIT T TII T ITTE 10— L T T T T T T T
5 Data
3
¢ ° _
R - =111 - A=50
o
2 ® Plane wave
°
« Order 3 ® § varies
—e— Order 5
10~ 2 bl 1l 10~ 2V ko vl vl i
10=3 1072 ! 10=3 1072 !
(Electric) (Magnetic)
- I ma - I mag
5 & e(8)EGs[de] + an(8)Egio? d] 5~ oe(0)Hep [de] + an(0) Mgy [dn]

o Collected dipole: fle = fin = 0, ae = 6°(1 + 2522) and ap = 83(1 — 222



Introduction Foldy-Lax-based models Spectral models Numerical solution for large number of scatterers Conclusion and perspectives
00000 00e00 00000 00000 o

Complements on single scattering

10— ! AT T TIIIT T TII T ITTE 10— L T T T T T T T
5 Data
3
¢ ° _
R - =111 - A=50
o
£ ® Plane wave
°
« Order 3 ® § varies
—e— Order 5
10~ 2 bl 1l 10~ 2V ko vl vl i
10=3 1072 ! 10=3 1072 !
(Electric) (Magnetic)
- I ma - I mag
5 & e(8)EGs[de] + an(8)Egio? d] 5~ oe(0)Hep [de] + an(0) Mgy [dn]

o Collected dipole: fle = fin = 0, ae = 6°(1 + 2522) and ap = 83(1 — 222

3 ji(kd)

3 ji(k9) _
(+6)3 hy (15)

3(x8)? hi (kD)

® Modified approximation: 8e = 8, =0, ae = and ay, =
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Complements on single scattering

T S S L B AR L1 R R A1 R

10—[]7

Relative L2-error

Order 3
—e— Order 5
ol 1l ]
103 1072 !
(Electric)

10=21

Numerical solution for large number of scatterers
00000

10— 1 FFTTT

T T T T T T T
10~ 1=
102V bl vl ool 1o
103 1072 !
(Magnetic)
s elec
H; ~ ae(d)Hgp

E§ ~ ae(d )ggilgc[de} +an(6) &g, dlp *[d]

e Collected dipole: Be = B, =0, ae = §(1

® Modified approximation: S8e = 8, =0, ae =

Obstacle of arbitrary shape

© Approximation of order 3: de = M E'(c) and dy, =

3 ji1(rkd)
2(k68)3 hi(K6)

2
+ %) and ap = 83(1

f%Mh Hi(c)

and a, = —

Conclusion and perspectives

Data
® \=5.0
® Plane wave
® § varies

[de] + an () H0[dy]

©6)2
73(5))

3i ji(k0)
(+6)3 hy (15)
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Complements on single scattering

10— 1 T T T T T T T 10— FRITTI T TIIIT T T TIT T TTT
5 Data
O
q ° _
% onl h ol | A=50
o
£ ® Plane wave
°
= Order 3 ® § varies
—e— Order 5
10_2] ol Ll T TTTImT T 10721 il Ll Ll L LT
10=3 1072 ! 10=3 1072 !
(Electric) (Magnetic)
elec s elec mag
E§ ~ ae(8)EG5°[de] + an(8)Egic” dn] H; ~ ae(6)Hgp [de] + an(8)H gy [dn]

2 2
* Collected dipole: fe = fn = 0, ae = 63(1 + 221y and ap, = 63(1 — 2520

® Modified approximation: 8e = 8, = 0, ae = 2(2—3);{111((’;‘?) and o, = — (;5‘)3 %‘ ((';‘?)
1

Obstacle of arbitrary shape
© Approximation of order 3: de = Me E'(c) and dy, = f%Mh Hi(c)
® High-order approximation:

E4 = dipole + quadrupole ES = dipole + quadrupole + octupole
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Approximate solution to multiple scattering by small spheres
® The electromagnetic fields are decomposed by superposition principle

Nobs Nobs
ES() =D ES (v —ex) H3(x) = D HS (v —ew)
k=1 k=1

® Each obstacle is modeled by a dipolar source around ¢,

s . gdip
E&,k ~ gelec

dip [k di di
[dlfs,e] + gmlgg [dfs,h] Hf =~ H P [dlfs,e] + 'Hn:gg[dlth]

elec
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Approximate solution to multiple scattering by small spheres
® The electromagnetic fields are decomposed by superposition principle

Nobs Nobs
ES() =D ES (v —ex) H3(x) = D HS (v —ew)
k=1 k=1

® Each obstacle is modeled by a dipolar source around ¢,

s . gdip
E6,k ~ gelec

dip [k d di
[d5e] +Emdgldsn]  HS L~ Hogolds o] + Higglds 1]

elec

Born approximation

d5 o = ce(6) E'(cy)

1 ;
djp = — 5 on(8) Hi(er)

(

v Explicit formulation
X Interactions are not taken into account
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Approximate solution to multiple scattering by small spheres
® The electromagnetic fields are decomposed by superposition principle

Nobs Nobs
ES() =D ES (v —ex) H3(x) = D HS (v —ew)
k=1 k=1

® Each obstacle is modeled by a dipolar source around ¢,

d dip [k d di
ES i = Equoldse] +Embgldsn]  HS . = Hgeold§ o] + Higglds ]

Born approximation Foldy-Lax approximation

d = e (8) El(cr) A Nobs
o df o = ae(d) | E'led) +>_ E5 oler)
a5 = —5on(®) H(ew) =1
Nobs

@5 = —3on(8) | Hier) + S ()

( £ =4

v Explicit formulation X Implicit formulation
X Interactions are not taken into account v Interactions are taken into account
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Approximate solution to multiple scattering by small spheres
® The electromagnetic fields are decomposed by superposition principle

Nobs Nobs
ES() =D ES (v —ex) H3(x) = D HS (v —ew)
k=1 k=1

® Each obstacle is modeled by a dipolar source around ¢,

di di di 2
ErSS,L ~ £e|§c[d ol + 8mlgg [do h) H3 , ~ 'H'e:gc[dlfs,e] n:gg[d nl
Vectorial formulation
=(d,,.. Adg’f’gs,dgh, . d'g?ﬁs) € C8obs Foldy-Lax approximation
I— a(5)A)ds = a(8)f i Nobs
(e el o = ae(d) | Elcr) + 3 E5 (e
where A is the “interaction” matrix ’ —
Lk
N,
° : — 53 obs
Order 5: O(((S) 4 dl;h :_704h(o> HI ck)+ZH55(ck
® Collected and Modified:
e#

ae(d)I 0
() = ( 0 ah(é)ﬂ) ‘

X Implicit formulation
v Interactions are taken into account
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Validation of asymptotic models

Data —e— Born

°* \=1.0 --+-- Foldy
® Plane wave - « = Collected Born
O §verice —&— Collected Foldy
--@- Modified Foldy

LR N R R A1 N LIS N 11 1
10! |~ 10! - 10 —
g
®
N 2 —1p _
= - 10
=3
k]
©
o
10—3 1073 - N
Lol ol Lol il 11 Lol el 1
1072 10~! 1072 10! 1072 10~!
5 5 s
A A A
(a) Distance oc A (b) Distance o< VA& (c) Distance o &
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Principle of the spectral method

® The electromagnetic fields are represented by the Stratton-Chu formula for x € Q5
Nobs

ES) = >_eurl [ (= eey — cpelr) dy
k=1 Iy

where ®(x,y) = W
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Principle of the spectral method

® The electromagnetic fields are represented by the Stratton-Chu formula for x € Q5

Nobs
ES) = Y ourl [ @(— ey —eom() dy
k=1 S

_1
® Eachp, € H, ? (divrg,Ff;) satisfies the boundary integral equation

Nobs 1
Z<M’i‘/’pg,vk>rg = —<n X Emc,vk>rk Vv € H‘t Z(CUrlrg,Fg)
=1 5

1 _1
where MY H, 2 (divpg ,T4) —H, 2 (divrg,l“’g) is the extension of

MEA(xr) = n(xr) x lim curl/[ B(x—cp,y—coAY) dsy A €FPTE)  apeTk
r

X—xT
5
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Principle of the spectral method

® The electromagnetic fields are represented by the Stratton-Chu formula for x € Q5

Nobs
ES) = Y ourl [ @(— ey —eom() dy
k=1 S

_1
® Eachp, € H, ? (divrg,Ff;) satisfies the boundary integral equation

Nobs . 1
Z<3\’[’i?’pg,vk>rg = —<n X Emc,vk>rk Vv € H‘t Z(CUrlrg,Fg)
=1 5

® Galerkin discretization of the BIE on local spectral basis with Ny,oq modes

Nmod  n
pe(x) = Z Z pﬁjrﬂ; an(6) V2 Yum(¥e) +P£:;§ bu(d)curlg: Yy m(3,)  x € Fg

n=1 m=—n

with X, = ﬁ and Vg2 Yy m, curlg ¥, ,»,: complex-valued vector spherical harmonics
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Vectorial formulation

_1
The variational formulation: Find (py) € H, ? (divrg,l"g) such that

Nobs

M/\'k :Nt/\f ,

( Fpkvvk>[‘1((5 +;7]< T Pes Vi)
Lk

. 1
L =—(nx E'”°7vk>rg Vv €H, ? (curlrg,F’g)

Can be put under vectorial form p = ((pi ), - - (Pno= ™), (ph), ., (paee ")) T e Y

Mp=f
With N = 2Nmod (Nmod + 2)Nobs
1 12 I
My Mgy ... M%&gbs
21 22 <IN op;
Mo (Mir Mix with My = Mag  Map - Mgg™
= MXL My » aff = . . . .
ol U T T

The analytical blocks Mﬁfﬂ depend on ¢ and (¢x — ¢¢)
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Figure: Spectral solutions vs. Finite element solutions (Montjoie)
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Validation of spectral models

Data
st b
e A=1.0 .
L --e-- Modified Foldy
® Plane wave
i =+ Spectral 1
® § varies
L s 1 e s 1 e
100 |~ B
R T B
_ S
5 -
5 dist = 5 &
N - -
N -t S
-% 2 03 B
g s . .
o e 8
dist=1.0 [
@ 10—5 |- |
Lol Lol Lol [ | | | |
104 103 102 10! 0 2 4 6
8 Angle ¢

(a) Foldy vs Spectral 1 (b) Radar cross section



Introduction Foldy-Lax-based models Spectral models Numerical solution for large number of scatterers Conclusion and perspectives
00000 00000 [e]e]e]e] } 00000

However . ..

The spectral method has some disadvantages . ..

Dense matrix inherited from BIEs
Increasing in number of unknowns as the number of obstacles grows
Quickly limited with memory resources

lll-conditionned system requiring preconditionning
Smart storage and assembling in specific configurations
Implementation of an iterative resolution
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However . ..

The spectral method has some disadvantages . ..

Dense matrix inherited from BIEs
Increasing in number of unknowns as the number of obstacles grows
Quickly limited with memory resources

lll-conditionned system requiring preconditionning
Smart storage and assembling in specific configurations
Implementation of an iterative resolution

... and that can be applied on the Foldy systems too
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Outline

4. Numerical solution for large number of scatterers
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lterative solver

® Simple calculations improve condition number associated with the matrix
Mp=f
® The matrix is decomposed as
M=I+A+DB
where (I + A) invertible contains the main interactions

Aj = My if |M;;| > tolerance

We solve iteratively
® [ is the identity matrix

o) _ -1
{p =@+a)7f * A is a sparse matrix
(I+A)p"™) =f—Bp™" * B is dense and never assembled
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Smart storage and assembling

. M’jfﬂ depends only on § and (cx — ¢;)

® Example: 4 aligned obstacles
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Smart storage and assembling

. M’gfﬁ depends only on § and (c; — ¢;) i L
e Example: 4 aligned obstacles id 0
M =
1—2 0 Id

e S S
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Smart storage and assembling

. M’gfﬁ depends only on § and (c; — ¢;) ﬂ L
e Example: 4 aligned obstacles id 0
M =
1—=3 0 Id

900
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Smart storage and assembling
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* MY, depends only on § and (cx — /)

® Example: 4 aligned obstacles

1—4

90 00
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Smart storage and assembling

. M’gfﬁ depends only on § and (cx — ¢;)

® Example: 4 aligned obstacles

2 =1

*—90 O O
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Smart storage and assembling

. M’gfﬁ depends only on § and (c; — ¢;)

® Example: 4 aligned obstacles

3—1

*—0—9
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Smart storage and assembling

. M’gfﬁ depends only on § and (c; — ¢;)

® Example: 4 aligned obstacles

4 —1

*—90 900
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Smart storage and assembling

. M’;fﬁ depends only on § and (c; — ¢;)

Instead of storing wholly M, we only keep M =
the (two-by-two) different blocks

WiLg4 194 194 194
MILL’ MJ_X’ ij_ and Mxx
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Smart storage and assembling

* M*, depends only on § and (¢, — ¢,) O
2 —1f . :
3 — 1
: 4—1 Id 0
Instead of storing wholly M, we only keep M =
the (two-by-two) different blocks 0
MK MK, MK and MEE
0

CSCNNEEE CNEE (CEEN N

® The decomposition becomes Mgjock = ABjock + BBlock
® Assembling of Agjyck in sparse matrix

® Define the action of Bgjock
A(Bglock, P) = Bp
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Uniformly distributed configurations of obstacles
Example with 24 obstacles. For each part

On aline On aplane (4 x 6) Into a volume (2 x 3 x 4)

2Ngps — 1 blocks (2N, — 1)(2N¢ — 1) blocks (2Np — 1)(2N; — 1)(2N¢ — 1) blocks

instead of NZ . = NPNZ = N} N3N} blocks per part
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Numerical solution for large number of scatterers
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Numerical results

® Testn®1: 1000 aligned obstacles

0=0.1,d=10,A=5.0

Conclusion and perspectives

® Test n°2: 10000 aligned obstacles
6=0.5,d=20,A=5.0

Modified Foldy | Spectral 1 Modified Foldy | Spectral 1
Solver Direct Solver Iterative
Density 100% Density 4.95%
Linear system 21.25s 44.59s Linear system 29.74s 163.25s
Post-processing 16.12s 21.19s Post-processing 76.64s 262.97s
Total time 37.37s 65.78s Total time 106.46s 426.34s
E ,g ]04 I |
e 1072 - .
g g
2 s 10 B
T o104 — T
g 8
100 = —4 L N
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Numerical results
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® Test n°3: 50 x 50 = 2500 obstacles uniformly distributed on a plane

6=0.1,d=10,A=5.0

Modified Foldy Spectral 1
Solver Direct lterative Direct lterative
Density 100% 29.66% 100% 29.66%
Linear system 595.10s 38.32s 613.10s | 234.84s
Post-processing 22.96s 19.00s 62.69s 58.47s
Total time 618.48s 57.32s 676.09s 293.31s
10-!

RCS & (1000, T, )

103

10—9

(f) Foldy vs Spectral: direct solver

Angle ¢

(g) Foldy lterative vs Direct

Angle ¢

(h) Spectral Iterative vs Direct
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Conclusion and Perspectives

Conclusion

v High-order asymptotic expansions to single scattering (Labat, Péron and Tordeux,
In revision 2019)

v/ Low-order Born and Foldy-Lax models to multiple scattering

v/ High-order spectral models equivalent to the Generalized Multiparticle
Mie-solution theory (Xu, 1995)

v/ Fast resolution using few memory to the multiple scattering problem by a large
number of spheres

On-going work
Comparison of preconditionners and iterative solvers
Smart assembling for obstacles uniformly distributed into a volume

Perspectives
X Definition of high-order asymptotic models to multiple scattering
X Extension to obstacles of arbitrary shape
X Extension to time-dependent domain
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Conclusion

v High-order asymptotic expansions to single scattering (Labat, Péron and Tordeux,
In revision 2019)

v/ Low-order Born and Foldy-Lax models to multiple scattering

v/ High-order spectral models equivalent to the Generalized Multiparticle
Mie-solution theory (Xu, 1995)

v/ Fast resolution using few memory to the multiple scattering problem by a large
number of spheres

On-going work
Comparison of preconditionners and iterative solvers
Smart assembling for obstacles uniformly distributed into a volume

Perspectives
X Definition of high-order asymptotic models to multiple scattering
X Extension to obstacles of arbitrary shape
X Extension to time-dependent domain

Thank you for your attention
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