Scattering of electromagnetic waves by small obstacles

Sébastien Tordeux

To cite this version:

Sébastien Tordeux. Scattering of electromagnetic waves by small obstacles. AIP 2023-11th Applied Inverse Problems Conference, Sep 2023, Göttingen, Germany. hal-04518729

HAL Id: hal-04518729

https://hal.science/hal-04518729

Submitted on 24 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Scattering of electromagnetic waves by small obstacles

Justine Labat, Victor Péron, Sébastien Tordeux

EPI Makutu, INRIA, Université de Pau, CNRS

September 4, AIP 2023

Outline

1. Introduction
2. Foldy-Lax-based models
3. Spectral models
4. Numerical solution for large number of scatterers
5. Conclusion and perspectives

Electromagnetic scattering problem by small obstacles

Atmospheric particles

- $\boldsymbol{\lambda}$ from 400 to 800 nm
- $\boldsymbol{\delta}$ from 10 to 400 nm

Cosmic dust

(by Allan Dyer)

- $\boldsymbol{\lambda}$ from 400 to 700 nm
- δ from 1 to 100 nm

Photonic crystal

(by Koen Clays)

- $\boldsymbol{\lambda}$ from 400 to 800 nm
- $\boldsymbol{\delta}$ from 10 to 200 nm
$\boldsymbol{\delta}$ size of particle, $\boldsymbol{\lambda}$ wavelength

Electromagnetic scattering problem by small obstacles

Arbitrary structure
Spherical scatterers
Periodic structure

Electromagnetic source

- Time-harmonic $\propto \exp (-\mathrm{i} \omega t)$
- Wavelength $\boldsymbol{\lambda}=\frac{2 \pi c}{\omega}$
- Homogeneous and isotropic

Electromagnetic scattering problem by small obstacles

Arbitrary structure
Spherical scatterers
Periodic structure

Electromagnetic source

- Time-harmonic $\propto \exp (-\mathrm{i} \omega t)$
- Wavelength $\boldsymbol{\lambda}=\frac{2 \pi c}{\omega}$
- Homogeneous and isotropic

Reduced Maxwell equations
$\kappa=\frac{\boldsymbol{\omega}}{c}$ constant

$$
\begin{array}{ll}
\operatorname{curl} \mathbf{E}^{\mathrm{i}}-\mathrm{i} \kappa \mathbf{H}^{\mathrm{i}}=0 & \text { in } \mathbb{R}^{3} \\
\operatorname{curl} \mathbf{H}^{\mathrm{i}}+\mathrm{i} \kappa \mathbf{E}^{\mathrm{i}}=\mathbf{J} & \text { in } \mathbb{R}^{3}
\end{array}
$$

Electromagnetic scattering problem by small obstacles

Arbitrary structure
Spherical scatterers
Periodic structure

Electromagnetic source

- Time-harmonic $\propto \exp (-\mathrm{i} \boldsymbol{\omega} t)$
- Wavelength $\boldsymbol{\lambda}=\frac{2 \pi c}{\omega}$
- Homogeneous and isotropic

Asymptotic asumption

$$
\delta \ll \lambda
$$

$$
\begin{array}{ll}
\operatorname{curl} \mathbf{E}^{i}-\mathrm{i} \kappa \mathbf{H}^{i}=0 & \text { in } \mathbb{R}^{3} \\
\operatorname{curl} \mathbf{H}^{i}+\mathrm{i} \kappa \mathbf{E}^{i}=\mathbf{J} & \text { in } \mathbb{R}^{3}
\end{array}
$$

Model problem

- Obstacles $\mathcal{B}_{\delta}^{k}=\mathcal{B}\left(\boldsymbol{c}_{k}, \boldsymbol{\delta}\right)$
- Exterior domain $\Omega_{\delta}=\mathbb{R}^{3} \backslash \bigcup \overline{\mathcal{B}_{\delta}^{k}}$
- Boundary $\Gamma_{\delta}=\bigcup \Gamma_{\delta}^{k}$

Model problem

- Obstacles $\mathcal{B}_{\delta}^{k}=\mathcal{B}\left(\boldsymbol{c}_{k}, \boldsymbol{\delta}\right)$
- Exterior domain $\Omega_{\delta}=\mathbb{R}^{3} \backslash \bigcup \overline{\mathcal{B}_{\delta}^{k}}$
- Boundary $\Gamma_{\delta}=\bigcup \Gamma_{\delta}^{k}$

Total electromagnetic fields

$$
\mathbf{E}_{\delta}=\mathbf{E}^{\mathrm{i}}+\mathbf{E}_{\delta}^{\mathrm{s}} \quad \mathbf{H}_{\delta}=\mathbf{H}^{\mathrm{i}}+\mathbf{H}_{\delta}^{\mathrm{s}}
$$

Time-harmonic Maxwell equations

$$
\begin{cases}\text { curl } \mathrm{E}_{\delta}^{\mathrm{s}}-\mathrm{i} \boldsymbol{\kappa} \mathrm{H}_{\delta}^{\mathrm{s}}=0 & \text { in } \Omega_{\delta} \\ \operatorname{curl} \mathrm{H}_{\delta}^{\mathrm{s}}+\mathrm{i} \boldsymbol{\kappa} \mathrm{E}_{\delta}^{\mathrm{s}}=0 & \text { in } \Omega_{\delta}\end{cases}
$$

Silver-Müller condition

$$
r\left(\mathbf{H}_{\delta} \times \frac{\mathbf{x}}{r}-\mathbf{E}_{\delta}\right) \underset{r \rightarrow \infty}{\longrightarrow} 0 \quad \text { unif. in } \frac{\mathbf{x}}{r}
$$

Perfect conductor condition

$$
\mathbf{n} \times \mathbf{E}_{\delta}^{\mathrm{s}}=-\mathbf{n} \times \mathbf{E}^{\mathrm{i}} \quad \text { on } \Gamma_{\delta}
$$

Model problem

Total electromagnetic fields

$$
\mathbf{E}_{\delta}=\mathbf{E}^{\mathrm{i}}+\mathbf{E}_{\delta}^{\mathrm{s}} \quad \mathbf{H}_{\delta}=\mathbf{H}^{\mathrm{i}}+\mathbf{H}_{\delta}^{\mathrm{s}}
$$

Time-harmonic Maxwell equations

$$
\begin{cases}\text { curl } \mathrm{E}_{\delta}^{\mathrm{s}}-\mathrm{i} \boldsymbol{\kappa} \mathrm{H}_{\delta}^{\mathrm{s}}=0 & \text { in } \Omega_{\delta} \\ \text { curl } \mathrm{H}_{\delta}^{\mathrm{s}}+\mathrm{i} \kappa \mathrm{E}_{\delta}^{\mathrm{s}}=0 & \text { in } \Omega_{\delta}\end{cases}
$$

Silver-Müller condition

$$
r\left(\mathbf{H}_{\delta} \times \frac{\mathbf{x}}{r}-\mathbf{E}_{\delta}\right) \underset{r \rightarrow \infty}{\longrightarrow} 0 \quad \text { unif. in } \frac{\mathbf{x}}{r}
$$

Perfect conductor condition

$$
\mathbf{n} \times \mathbf{E}_{\delta}^{\mathrm{s}}=-\mathbf{n} \times \mathbf{E}^{\mathrm{i}} \quad \text { on } \Gamma_{\delta}
$$

For $\mathbf{E}^{\mathrm{i}}, \mathbf{H}^{\mathrm{i}} \in \mathbf{H}_{\text {loc }}\left(\mathbf{c u r l}, \Omega_{\delta}\right)$ there is a unique solution

$$
\mathbf{E}_{\delta}^{\mathrm{s}}, \mathbf{H}_{\delta}^{\mathrm{s}} \in \mathbf{H}_{\mathrm{loc}}\left(\mathbf{c u r l}, \Omega_{\delta}\right)
$$

Numerical strategies

Mesh-dependent methods

- Finite differences
- Finite element method
- Discontinuous Galerkin
- Boundary element method

Numerical strategies

Mesh-dependent methods

- Finite differences
- Finite element method
- Discontinuous Galerkin
- Boundary element method

Montjoie on Plafrim

- Order 2
- 2436832 dof
- Memory ≈ 40 GB
- Time ≈ 2 h on 4 cores

Numerical strategies

Mesh-dependent methods
Mesh-less methods

- Finite differences
- Finite element method
- Discontinuous Galerkin
- Boundary element method
- Asymptotic methods
- Spectral-based algorithms

Numerical strategies

Mesh-dependent methods

- Finite differences
- Finite element method
- Discontinuous Galerkin
- Boundary element method
- Asymptotic methods
- Spectral-based algorithms

Asymptotic expansions

- Single scattering
- Restricted to small obstacles
- Low computational cost

Foldy-Lax model

- Multiple scattering
- Restricted to small obstacles
- Low computational cost

Numerical strategies

- Finite differences
- Finite element method
- Discontinuous Galerkin
- Boundary element method
- Single scattering
- Restricted to small obstacles
- Low computational cost

Foldy-Lax model

- Multiple scattering
- Restricted to small obstacles
- Low computational cost

Spectral method

- Single and multiple scattering
- All sizes of obstacles
- Analytical for spheres

(Non-exhaustive) List of references

- Historic references

Rayleigh (1884), Foldy (1945), Lax (1951)

- Small defect theory

II'In (1992), Maz'ya et al. (2000)

- Acoustic obstacle

Ammari and Kang (2003), Ramm (2005), Claeys (2008)

- Time-dependent domain

Mattesi (2014), Korikov (2015), Marmorat (2015)

- Electromagnetic obstacle

Vogelius and Volkov (2000), Ammari et al. (2001), Korikov and Plamenevskii (2017)

- Foldy theory

Martin (2004), Cassier and Hazard (2013), Bendali et al. (2014), Challa et al. (2014), Bouzekri and Sini (2019)

- High-order spectral algorithms

Xu (1995), Ganesh and Hawkins (2009), Thierry (2011), Ammari et al. (2013), Barucq et
al. (2017), Egel et al. (2017)

- Inverse problem

Volkov (2001), Ammari and Kang (2004), Challa and Sini (2012)

(Non-exhaustive) List of references

- Historic references

Rayleigh (1884), Foldy (1945), Lax (1951)

- Small defect theory

II'In (1992), Maz'ya et al. (2000)

- Acoustic obstacle

Ammari and Kang (2003), Ramm (2005), Claeys (2008)

- Time-dependent domain

Mattesi (2014), Korikov (2015), Marmorat (2015)

- Electromagnetic obstacle

Vogelius and Volkov (2000), Ammari et al. (2001), Korikov and Plamenevskii (2017)

- Foldy theory

Martin (2004), Cassier and Hazard (2013), Bendali et al. (2014), Challa et al. (2014), Bouzekri and Sini (2019)

- High-order spectral algorithms

Xu (1995), Ganesh and Hawkins (2009), Thierry (2011), Ammari et al. (2013), Barucq et al. (2017), Egel et al. (2017)

- Inverse problem

Volkov (2001), Ammari-Kang (2004), Challa-Sini (2012)

Outline

1. Introduction
2. Foldy-Lax-based models
3. Spectral models
4. Numerical solution for large number of scatterers
5. Conclusion and perspectives

Approximate solution to single scattering by a sphere

- Asymptotic method: the matched asymptotic expansions

- Domain decomposition
- Local approximations
- Matching procedure

Approximate solution to single scattering by a sphere

- Far from the obstacle, the solution is approximated by

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{E}}_{3}+\delta^{5} \widetilde{\mathbf{E}}_{5}+\ldots
$$

$$
\mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{H}}_{3}+\delta^{5} \widetilde{\mathbf{H}}_{5}+\ldots
$$

Approximate solution to single scattering by a sphere

- Far from the obstacle, the solution is approximated by

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{E}}_{3}+\delta^{5} \widetilde{\mathbf{E}}_{5}+\ldots \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{H}}_{3}+\delta^{5} \widetilde{\mathbf{H}}_{5}+\ldots
$$

$$
\begin{array}{ll}
\widetilde{\mathbf{E}}_{3}(x)= & -\kappa^{3}\left(\widetilde{h}_{1}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{d}_{\mathrm{e}}\right]+2 \frac{h_{1}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{n}}\left[\mathbf{d}_{\mathrm{e}}\right] \frac{x}{r}-h_{1}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{d}_{\mathrm{h}}\right]\right) \\
\widetilde{\mathbf{H}}_{3}(x)= & -\kappa^{3}\left(\widetilde{h}_{1}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{d}_{\mathrm{h}}\right]+2 \frac{h_{1}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{n}}\left[\mathbf{d}_{\mathrm{h}}\right] \frac{x}{r}+h_{1}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{d}_{\mathrm{e}}\right]\right)
\end{array}
$$

$$
\widetilde{\mathbf{E}}_{5}(x)=\ldots+\frac{\kappa^{4}}{4}\left(\widetilde{h}_{2}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{Q}_{\mathrm{e}} x\right]+3 \frac{h_{2}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{h}}\left[\mathbf{Q}_{\mathrm{e}} x\right] \frac{x}{r}+h_{2}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{Q}_{\mathrm{h}} x\right]\right)
$$

$$
\widetilde{\mathbf{H}}_{5}(x)=\ldots+\frac{\kappa^{4}}{4}\left(\widetilde{h}_{2}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{Q}_{\mathrm{h}} x\right]+3 \frac{h_{2}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{n}}\left[\mathbf{Q}_{\mathrm{h}} x\right] \frac{x}{r}-h_{2}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{Q}_{\mathrm{e}} x\right]\right)
$$

where

$$
\mathbf{d}_{\mathrm{e}}=\mathbf{E}^{\mathrm{i}}(0) \quad \mathbf{d}_{\mathrm{h}}=\mathbf{H}^{\mathrm{i}}(0) \quad \mathbf{Q}_{\mathrm{e}}=-\frac{2}{3} \mathbf{J}_{\mathbf{E i}^{\mathrm{i}}}^{\text {sym }}(0) \quad \mathbf{Q}_{\mathrm{h}}=\frac{4}{3} \mathbf{J}_{\mathbf{H}^{\mathrm{i}}}^{\text {sym }}(0)
$$

Approximate solution to single scattering by a sphere

- Far from the obstacle, the solution is approximated by

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{E}}_{3}+\delta^{5} \widetilde{\mathbf{E}}_{5}+\ldots \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{H}}_{3}+\delta^{5} \widetilde{\mathbf{H}}_{5}+\ldots
$$

$-\kappa^{3} \overbrace{\left(\widetilde{h}_{1}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{d}_{\mathrm{e}}\right]+2 \frac{h_{1}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{n}}\left[\mathbf{d}_{\mathrm{e}}\right] \frac{x}{r}\right.}^{\text {electric dipole }} \overbrace{\left.-h_{1}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{d}_{\mathrm{h}}\right]\right)}^{\text {magnetic dipole }}$
$-\kappa^{3} \overbrace{\left(\widetilde{h}_{1}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{d}_{\mathrm{e}}\right]+2 \frac{h_{1}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{n}}\left[\mathbf{d}_{\mathrm{e}}\right] \frac{x}{r}\right.}^{\text {electric dipole }} \overbrace{\left.-h_{1}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{d}_{\mathrm{h}}\right]\right)}^{\text {magnetic dipole }}$
$\widetilde{\mathbf{E}}_{3}(x)=$
$\widetilde{\mathbf{H}}_{3}(x)=$
$-\kappa^{3}\left(\widetilde{h}_{1}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{d}_{\mathrm{h}}\right]+2 \frac{h_{1}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{n}}\left[\mathbf{d}_{\mathrm{h}}\right] \frac{x}{r}+h_{1}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{d}_{\mathrm{e}}\right]\right)$
$\widetilde{\mathbf{E}}_{5}(x)=$ dipole $+\frac{\kappa^{4}}{4} \overbrace{\left(\widetilde{h}_{2}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{Q}_{\mathrm{e}} x\right]+3 \frac{h_{2}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{n}}\left[\mathbf{Q}_{\mathrm{e}} x\right] \frac{x}{r}\right.}^{\text {electric quadrupole }} \overbrace{\left.+h_{2}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{Q}_{\mathrm{h}} x\right]\right)}^{\text {magnetic quadrupole }}$
$\widetilde{\mathbf{H}}_{5}(x)=$ dipole $+\frac{\kappa^{4}}{4}\left(\widetilde{h}_{2}^{(1)}(\kappa r) \gamma_{\mathrm{t}}\left[\mathbf{Q}_{\mathrm{h}} x\right]+3 \frac{h_{2}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathrm{n}}\left[\mathbf{Q}_{\mathrm{h}} x\right] \frac{x}{r}-h_{2}^{(1)}(\kappa r) \gamma_{\times}\left[\mathbf{Q}_{\mathrm{e}} x\right]\right)$

Approximate solution to single scattering by a sphere

- Far from the obstacle, the solution is approximated by

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{E}}_{3}+\delta^{5} \widetilde{\mathbf{E}}_{5}+\ldots \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{H}}_{3}+\delta^{5} \widetilde{\mathbf{H}}_{5}+\ldots
$$

$$
\begin{aligned}
& \widetilde{\mathbf{E}}_{3}(x)=\mathcal{E}_{\text {elec }}^{\mathrm{dip}}\left[\mathbf{d}_{\mathrm{e}}\right](x)+\mathcal{E}_{\mathrm{mag}}^{\mathrm{dip}}\left[\mathbf{d}_{\mathrm{h}}\right](x) \\
& \widetilde{\mathbf{H}}_{3}(x)=\mathcal{H}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\mathrm{e}}\right](x)+\mathcal{H}_{\mathrm{mag}}^{\mathrm{dip}}\left[\mathbf{d}_{\mathrm{h}}\right](x)
\end{aligned}
$$

$$
\widetilde{\mathbf{E}}_{5}(x)=\frac{3 \kappa^{2}}{10} \mathcal{E}_{\text {elec }}^{\text {dip }}\left[\mathbf{d}_{\mathrm{e}}\right](x)-\frac{3 \kappa^{2}}{5} \boldsymbol{\mathcal { E }}_{\text {mag }}^{\text {dip }}\left[\mathbf{d}_{\mathrm{h}}\right](x)+\boldsymbol{\mathcal { E }}_{\text {elec }}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{e}}\right](x)+\boldsymbol{\mathcal { E }}_{\text {mag }}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{h}}\right](x)
$$

$$
\widetilde{\mathbf{H}}_{5}(x)=\frac{3 \kappa^{2}}{10} \mathcal{H}_{\mathrm{elec}}^{\text {dip }}\left[\mathbf{d}_{\mathrm{e}}\right](x)-\frac{3 \kappa^{2}}{5} \mathcal{H}_{\text {mag }}^{\text {dip }}\left[\mathbf{d}_{\mathrm{h}}\right](x)+\mathcal{H}_{\text {elec }}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{e}}\right](x)+\mathcal{H}_{\text {mag }}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{h}}\right](x)
$$

Approximate solution to single scattering by a sphere

- Far from the obstacle, the solution is approximated by

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{E}}_{3}+\delta^{5} \widetilde{\mathbf{E}}_{5}+\ldots \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{H}}_{3}+\delta^{5} \widetilde{\mathbf{H}}_{5}+\ldots
$$

- By using multipole expansion

$$
\begin{aligned}
& \mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{elec}}^{\text {dip }}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{E}_{\text {mag }}^{\text {dip }}\left[\mathbf{d}_{\mathrm{h}}\right]+\beta_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{elec}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{e}}\right]+\beta_{\mathrm{h}}(\delta) \mathcal{E}_{\text {mag }}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{h}}\right]+\ldots \\
& \mathbf{H}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{H}_{\text {elec }}^{\text {dip }}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{H}_{\text {mag }}^{\text {dip }}\left[\mathbf{d}_{\mathrm{h}}\right]+\beta_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{elec}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{e}}\right]+\beta_{\mathrm{h}}(\delta) \mathcal{H}_{\text {mag }}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{h}}\right]+\ldots
\end{aligned}
$$

Multipole moments

- $\mathbf{d}_{\mathrm{e}}, \mathbf{d}_{\mathrm{h}}$: dipole moment
- $\mathbf{Q}_{\mathrm{e}}, \mathrm{Q}_{\mathrm{h}}$: quadrupole moment tensor

$$
\begin{array}{ll}
\mathbf{d}_{\mathrm{e}}=\mathbf{E}^{\mathrm{i}}(0) & \mathbf{d}_{\mathrm{h}}=-\frac{1}{2} \mathbf{H}^{\mathrm{i}}(0) \\
\mathbf{Q}_{\mathrm{e}}=-\frac{2}{3} \mathbb{J}_{\mathbf{E}^{\mathrm{i}}}^{\text {sym }}(\mathbf{0}) & \mathbf{Q}_{\mathrm{h}}=\frac{4}{3} \mathbb{J}_{\mathbf{H}^{\mathrm{i}}}^{\text {sym }}(\mathbf{0})
\end{array}
$$

- the incident fields
- the center of the obstacle
- the shape of the obstacle

Approximate solution to single scattering by a sphere

- Far from the obstacle, the solution is approximated by

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{E}}_{3}+\delta^{5} \widetilde{\mathbf{E}}_{5}+\ldots \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{H}}_{3}+\delta^{5} \widetilde{\mathbf{H}}_{5}+\ldots
$$

- By using multipole expansion

$$
\begin{aligned}
& \mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{E}_{\mathrm{mag}}^{\mathrm{dip}}\left[\mathbf{d}_{\mathrm{h}}\right]+\beta_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{elec}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{e}}\right]+\beta_{\mathrm{h}}(\delta) \mathcal{E}_{\mathrm{mag}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{h}}\right]+\ldots \\
& \mathbf{H}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{elec}}^{\text {dip }}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{mag}}^{\text {dip }}\left[\mathbf{d}_{\mathrm{h}}\right]+\beta_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{elec}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{e}}\right]+\beta_{\mathrm{h}}(\delta) \mathcal{H}_{\text {mag }}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{h}}\right]+\ldots
\end{aligned}
$$

Multipole moments

- $\mathbf{d}_{\mathrm{e}}, \mathbf{d}_{\mathrm{h}}$: dipole moment
- $\mathbf{Q}_{\mathrm{e}}, \mathrm{Q}_{\mathrm{h}}$: quadrupole moment tensor

$$
\begin{array}{ll}
\mathbf{d}_{\mathrm{e}}=\mathbf{E}^{\mathrm{i}}(0) & \mathbf{d}_{\mathrm{h}}=-\frac{1}{2} \mathbf{H}^{\mathrm{i}}(0) \\
\mathbf{Q}_{\mathrm{e}}=-\frac{2}{3} \mathbb{J}_{\mathbf{E}^{\mathrm{i}}}^{\text {sym }}(0) & \mathbf{Q}_{\mathrm{h}}=\frac{4}{3} \mathbb{J}_{\mathbf{H}^{\mathrm{i}}}^{\text {sym }}(\mathbf{0})
\end{array}
$$

Order of approximation

- Order 3: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0$ and $\alpha_{\mathrm{e}}=\alpha_{\mathrm{h}}=\delta^{3}$
- Order 5: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=\delta^{5}, \alpha_{\mathrm{e}}=\delta^{3}\left(1+\frac{3(\kappa \delta)^{2}}{10}\right)$

$$
\alpha_{\mathrm{h}}=\delta^{3}\left(1-\frac{3(\kappa \delta)^{2}}{5}\right)
$$

Approximate solution to single scattering by a sphere

- Far from the obstacle, the solution is approximated by

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{E}}_{3}+\delta^{5} \widetilde{\mathbf{E}}_{5}+\ldots \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^{3} \widetilde{\mathbf{H}}_{3}+\delta^{5} \widetilde{\mathbf{H}}_{5}+\ldots
$$

- By using multipole expansion

$$
\begin{aligned}
& \mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{E}_{\mathrm{mag}}^{\mathrm{dip}}\left[\mathbf{d}_{\mathrm{h}}\right]+\beta_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{elec}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{e}}\right]+\beta_{\mathrm{h}}(\delta) \mathcal{E}_{\mathrm{mag}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{h}}\right]+\ldots \\
& \mathbf{H}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{elec}}^{\text {dip }}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{mag}}^{\text {dip }}\left[\mathbf{d}_{\mathrm{h}}\right]+\beta_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{elec}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{e}}\right]+\beta_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{mag}}^{\text {quad }}\left[\mathbf{Q}_{\mathrm{h}}\right]+\ldots
\end{aligned}
$$

Multipole moments

- $\mathbf{d}_{\mathrm{e}}, \mathbf{d}_{\mathrm{h}}$: dipole moment
- $\mathbf{Q}_{\mathrm{e}}, \mathrm{Q}_{\mathrm{h}}$: quadrupole moment tensor

$$
\begin{array}{ll}
\mathbf{d}_{\mathrm{e}}=\mathbf{E}^{\mathrm{i}}(\mathbf{0}) & \mathbf{d}_{\mathrm{h}}=-\frac{1}{2} \mathbf{H}^{\mathrm{i}}(\mathbf{0}) \\
\mathbf{Q}_{\mathrm{e}}=-\frac{2}{3} \mathbb{J}_{\mathbf{E}^{\mathrm{i}}}^{\text {sym }}(0) & \mathbf{Q}_{\mathrm{h}}=\frac{4}{3} \mathbb{J}_{\mathbf{H}^{\mathrm{i}}}^{\text {sym }}(\mathbf{0})
\end{array}
$$

Order of approximation

- Order 3: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0$ and $\alpha_{\mathrm{e}}=\alpha_{\mathrm{h}}=\delta^{3}$
- Order 5: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=\delta^{5}, \alpha_{\mathrm{e}}=\delta^{3}\left(1+\frac{3(\kappa \delta)^{2}}{10}\right)$

$$
\alpha_{\mathrm{h}}=\delta^{3}\left(1-\frac{3(\kappa \delta)^{2}}{5}\right)
$$

intermediate approximations

- Collected dipole
- Modified approximation

Complements on single scattering

Data

- $\lambda=5.0$
- Plane wave
- δ varies

Complements on single scattering

Data

- $\lambda=5.0$
- Plane wave
- δ varies

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{dip}}^{\mathrm{elec}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{E}_{\mathrm{dip}}^{\mathrm{mag}}\left[\mathbf{d}_{\mathrm{h}}\right] \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{elec}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{mag}}\left[\mathbf{d}_{\mathrm{h}}\right]
$$

- Collected dipole: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0, \alpha_{\mathrm{e}}=\delta^{3}\left(1+\frac{3(\kappa \delta)^{2}}{10}\right)$ and $\alpha_{\mathrm{h}}=\delta^{3}\left(1-\frac{3(\kappa \delta)^{2}}{5}\right)$

Complements on single scattering

Data

- $\lambda=5.0$
- Plane wave
- δ varies

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{dip}}^{\mathrm{elec}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{E}_{\mathrm{dip}}^{\mathrm{mag}}\left[\mathbf{d}_{\mathrm{h}}\right] \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{elec}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{mag}}\left[\mathbf{d}_{\mathrm{h}}\right]
$$

- Collected dipole: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0, \alpha_{\mathrm{e}}=\delta^{3}\left(1+\frac{3(\kappa \delta)^{2}}{10}\right)$ and $\alpha_{\mathrm{h}}=\delta^{3}\left(1-\frac{3(\kappa \delta)^{2}}{5}\right)$
- Modified approximation: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0, \alpha_{\mathrm{e}}=\frac{3 \mathrm{i}}{2(\kappa \delta)^{3}} \frac{j_{1}(\kappa \delta)}{h_{1}(\kappa \delta)}$ and $\alpha_{\mathrm{h}}=-\frac{3 \mathrm{i}}{(\kappa \delta)^{3}} \frac{\tilde{i}_{1}(\kappa \delta)}{h_{1}(\kappa \delta)}$

Complements on single scattering

Data

- $\lambda=5.0$
- Plane wave
- δ varies

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{dip}}^{\mathrm{elec}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{E}_{\mathrm{dip}}^{\mathrm{mag}}\left[\mathbf{d}_{\mathrm{h}}\right] \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{elec}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{mag}}\left[\mathbf{d}_{\mathrm{h}}\right]
$$

- Collected dipole: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0, \alpha_{\mathrm{e}}=\delta^{3}\left(1+\frac{3(\kappa \delta)^{2}}{10}\right)$ and $\alpha_{\mathrm{h}}=\delta^{3}\left(1-\frac{3(\kappa \delta)^{2}}{5}\right)$
- Modified approximation: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0, \alpha_{\mathrm{e}}=\frac{3 \mathrm{i}}{2(\kappa \delta)^{3}} \frac{j_{1}(\kappa \delta)}{h_{1}(\kappa \delta)}$ and $\alpha_{\mathrm{h}}=-\frac{3 \mathrm{i}}{(\kappa \delta)^{3}} \frac{\widetilde{j}_{1}(\kappa \delta)}{\widetilde{h}_{1}(\kappa \delta)}$

Obstacle of arbitrary shape

- Approximation of order 3: $\mathbf{d}_{\mathrm{e}}=\mathbb{M}_{\mathrm{e}} \mathbf{E}^{\mathrm{i}}(\boldsymbol{c})$ and $\mathbf{d}_{\mathrm{h}}=-\frac{1}{2} \mathbb{M}_{\mathrm{h}} \mathbf{H}^{\mathrm{i}}(\boldsymbol{c})$

Complements on single scattering

Data

- $\lambda=5.0$
- Plane wave
- δ varies

$$
\mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{E}_{\mathrm{dip}}^{\mathrm{elec}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{E}_{\mathrm{dip}}^{\mathrm{mag}}\left[\mathbf{d}_{\mathrm{h}}\right] \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{elec}}\left[\mathbf{d}_{\mathrm{e}}\right]+\alpha_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{mag}}\left[\mathbf{d}_{\mathrm{h}}\right]
$$

- Collected dipole: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0, \alpha_{\mathrm{e}}=\delta^{3}\left(1+\frac{3(\kappa \delta)^{2}}{10}\right)$ and $\alpha_{\mathrm{h}}=\delta^{3}\left(1-\frac{3(\kappa \delta)^{2}}{5}\right)$
- Modified approximation: $\beta_{\mathrm{e}}=\beta_{\mathrm{h}}=0, \alpha_{\mathrm{e}}=\frac{3 \mathrm{i}}{2(\kappa \delta)^{3}} \frac{j_{1}(\kappa \delta)}{h_{1}(\kappa \delta)}$ and $\alpha_{\mathrm{h}}=-\frac{3 \mathrm{i}}{(\kappa \delta)^{3}} \frac{\widetilde{j}_{1}(\kappa \delta)}{\widetilde{h}_{1}(\kappa \delta)}$

Obstacle of arbitrary shape

- Approximation of order 3: $\mathbf{d}_{\mathrm{e}}=\mathbb{M}_{\mathrm{e}} \mathbf{E}^{\mathrm{i}}(\boldsymbol{c})$ and $\mathbf{d}_{\mathrm{h}}=-\frac{1}{2} \mathbb{M}_{\mathrm{h}} \mathbf{H}^{\mathrm{i}}(\boldsymbol{c})$
- High-order approximation:

$$
\widetilde{\mathbf{E}}_{4}=\text { dipole }+ \text { quadrupole } \quad \widetilde{\mathbf{E}}_{5}=\text { dipole }+ \text { quadrupole }+ \text { octupole }
$$

Approximate solution to multiple scattering by small spheres

- The electromagnetic fields are decomposed by superposition principle

$$
\mathbf{E}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \mathrm{E}_{\delta, k}^{\mathrm{s}}\left(x-\boldsymbol{c}_{k}\right) \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta, k}^{\mathrm{s}}\left(x-\boldsymbol{c}_{k}\right)
$$

- Each obstacle is modeled by a dipolar source around \boldsymbol{c}_{k}

$$
\mathbf{E}_{\delta, k}^{\mathrm{s}} \approx \mathcal{E}_{\text {elec }}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{e}}^{k}\right]+\mathcal{E}_{\text {mag }}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{h}}^{k}\right] \quad \mathbf{H}_{\delta, k}^{\mathrm{s}} \approx \mathcal{H}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{e}}^{k}\right]+\mathcal{H}_{\mathrm{mag}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, h}^{k}\right]
$$

Approximate solution to multiple scattering by small spheres

- The electromagnetic fields are decomposed by superposition principle

$$
\mathrm{E}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \mathrm{E}_{\delta, k}^{\mathrm{s}}\left(x-\boldsymbol{c}_{k}\right) \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta, k}^{\mathrm{s}}\left(x-\boldsymbol{c}_{k}\right)
$$

- Each obstacle is modeled by a dipolar source around \boldsymbol{c}_{k}

$$
\mathbf{E}_{\delta, k}^{\mathrm{s}} \approx \mathcal{E}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{e}}^{k}\right]+\mathcal{E}_{\text {mag }}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{h}}^{k}\right] \quad \mathbf{H}_{\delta, k}^{\mathrm{s}} \approx \mathcal{H}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{e}}^{k}\right]+\mathcal{H}_{\mathrm{mag}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{h}}^{k}\right]
$$

Born approximation

$$
\begin{aligned}
& \mathbf{d}_{\delta, \mathrm{e}}^{k}=\alpha_{\mathrm{e}}(\delta) \mathbf{E}^{\mathrm{i}}\left(\boldsymbol{c}_{k}\right) \\
& \mathbf{d}_{\delta, \mathrm{h}}^{k}=-\frac{1}{2} \alpha_{\mathrm{h}}(\delta) \mathbf{H}^{\mathrm{i}}\left(\boldsymbol{c}_{k}\right)
\end{aligned}
$$

\checkmark Explicit formulation
x Interactions are not taken into account

Approximate solution to multiple scattering by small spheres

- The electromagnetic fields are decomposed by superposition principle

$$
\mathbf{E}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{E}_{\delta, k}^{\mathrm{s}}\left(x-\boldsymbol{c}_{k}\right) \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta, k}^{\mathrm{s}}\left(x-\boldsymbol{c}_{k}\right)
$$

- Each obstacle is modeled by a dipolar source around \boldsymbol{c}_{k}

$$
\mathbf{E}_{\delta, k}^{\mathrm{s}} \approx \mathcal{E}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{e}}^{k}\right]+\mathcal{E}_{\text {mag }}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{h}}^{k}\right] \quad \mathbf{H}_{\delta, k}^{\mathrm{s}} \approx \mathcal{H}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{e}}^{k}\right]+\mathcal{H}_{\mathrm{mag}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{h}}^{k}\right]
$$

Born approximation

$$
\begin{aligned}
& \mathbf{d}_{\delta, \mathrm{e}}^{k}=\alpha_{\mathrm{e}}(\delta) \mathbf{E}^{\mathrm{i}}\left(\boldsymbol{c}_{k}\right) \\
& \mathbf{d}_{\delta, \mathrm{h}}^{k}=-\frac{1}{2} \alpha_{\mathrm{h}}(\delta) \mathbf{H}^{\mathrm{i}}\left(\boldsymbol{c}_{k}\right)
\end{aligned}
$$

\checkmark Explicit formulation
x Interactions are not taken into account

Foldy-Lax approximation

$$
\mathbf{d}_{\delta, \mathrm{e}}^{k}=\alpha_{\mathrm{e}}(\delta)\left(\mathbf{E}^{\mathrm{i}}\left(\boldsymbol{c}_{k}\right)+\sum_{\substack{\ell=1 \\ \ell \neq k}}^{N_{\mathrm{obs}}} \mathbf{E}_{\delta, \ell}^{\mathrm{s}}\left(\boldsymbol{c}_{k}\right)\right)
$$

$$
\mathbf{d}_{\delta, \mathrm{h}}^{k}=-\frac{1}{2} \alpha_{\mathrm{h}}(\delta)\left(\mathbf{H}^{\mathrm{i}}\left(\boldsymbol{c}_{k}\right)+\sum_{\substack{\ell=1 \\ \ell \neq k}}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta, \ell}^{\mathrm{s}}\left(\boldsymbol{c}_{k}\right)\right)
$$

x Implicit formulation
\checkmark Interactions are taken into account

Approximate solution to multiple scattering by small spheres

- The electromagnetic fields are decomposed by superposition principle

$$
\mathbf{E}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{E}_{\delta, k}^{\mathrm{s}}\left(x-\boldsymbol{c}_{k}\right) \quad \quad \mathbf{H}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta, k}^{\mathrm{s}}\left(x-\boldsymbol{c}_{k}\right)
$$

- Each obstacle is modeled by a dipolar source around \boldsymbol{c}_{k}

$$
\mathrm{E}_{\delta, k}^{\mathrm{s}} \approx \mathcal{E}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{e}}^{k}\right]+\mathcal{E}_{\text {mag }}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{h}}^{k}\right] \quad \mathbf{H}_{\delta, k}^{\mathrm{s}} \approx \mathcal{H}_{\mathrm{elec}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, \mathrm{e}}^{k}\right]+\mathcal{H}_{\mathrm{mag}}^{\mathrm{dip}}\left[\mathbf{d}_{\delta, h}^{k}\right]
$$

Vectorial formulation

$\mathbf{d}_{\delta}=\left(\mathbf{d}_{\delta, \mathrm{e}}^{1}, \ldots \mathbf{d}_{\delta, \mathrm{e}}^{N_{\text {obs }}}, \mathbf{d}_{\delta, \mathrm{h}}^{1}, \ldots \mathbf{d}_{\delta, \mathrm{h}}^{N_{\text {obs }}}\right) \in \mathbb{C}^{6 N_{\text {obs }}}$

$$
(\mathbb{I}-\alpha(\delta) \mathbb{A}) \mathbf{d}_{\delta}=\alpha(\delta) \mathbf{f}
$$

where \mathbb{A} is the "interaction" matrix

- Order 5: $\alpha(\delta)=\delta^{3}$
- Collected and Modified:

$$
\alpha(\delta)=\left(\begin{array}{cc}
\alpha_{\mathrm{e}}(\delta) \mathbb{I} & \mathbf{0} \\
\mathbf{0} & \alpha_{\mathrm{h}}(\delta) \mathbb{I}
\end{array}\right)
$$

Foldy-Lax approximation

$$
\left.\begin{array}{l}
\mathbf{d}_{\delta, \mathrm{e}}^{k}=\alpha_{\mathrm{e}}(\delta)\left(\begin{array}{c}
\mathbf{E}^{\mathrm{i}}\left(\boldsymbol{c}_{k}\right)+\sum_{\substack{\ell=1 \\
\ell \neq k}}^{N_{\mathrm{obs}}} \mathbf{E}_{\delta, \ell}^{\mathrm{s}}\left(\boldsymbol{c}_{k}\right)
\end{array}\right) \\
\mathbf{d}_{\delta, \mathrm{h}}^{k}=-\frac{1}{2} \alpha_{\mathrm{h}}(\delta)\left(\mathbf{H}^{\mathrm{i}}\left(\boldsymbol{c}_{k}\right)+\sum_{\substack{\ell=1 \\
\ell \neq k}}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta, \ell}^{\mathrm{s}}\left(\boldsymbol{c}_{k}\right)\right.
\end{array}\right)
$$

\checkmark Interactions are taken into account

Validation of asymptotic models

(a) Distance $\propto \lambda$

(b) Distance $\propto \sqrt{\lambda \delta}$

(c) Distance $\propto \delta$

Outline

1. Introduction
2. Foldy-Lax-based models
3. Spectral models
4. Numerical solution for large number of scatterers
5. Conclusion and perspectives

Principle of the spectral method

- The electromagnetic fields are represented by the Stratton-Chu formula for $x \in \Omega_{\delta}$

$$
\mathbf{E}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \operatorname{curl} \int_{\Gamma_{\delta}^{k}} \Phi\left(x-\boldsymbol{c}_{k}, y-\boldsymbol{c}_{k}\right) \mathbf{p}_{k}(y) d s y
$$

where $\Phi(x, y)=\frac{\exp (i \kappa|x-y|)}{4 \pi|x-y|}$

Principle of the spectral method

- The electromagnetic fields are represented by the Stratton-Chu formula for $x \in \Omega_{\delta}$

$$
\mathbf{E}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \operatorname{curl} \int_{\Gamma_{\delta}^{k}} \Phi\left(x-\boldsymbol{c}_{k}, y-\boldsymbol{c}_{k}\right) \mathbf{p}_{k}(y) d s_{y}
$$

- Each $\mathbf{p}_{\ell} \in \mathbf{H}_{t}^{-\frac{1}{2}}\left(\operatorname{div}_{\Gamma_{\delta}^{\ell}}, \Gamma_{\delta}^{\ell}\right)$ satisfies the boundary integral equation

$$
\sum_{\ell=1}^{N_{\text {obs }}}\left\langle\mathcal{M}_{\Gamma}^{k \ell} \mathbf{p}_{\ell}, \mathbf{v}_{k}\right\rangle_{\Gamma_{\delta}^{k}}=-\left\langle\mathbf{n} \times \mathbf{E}^{\mathrm{inc}}, \mathbf{v}_{k}\right\rangle_{\Gamma_{\delta}^{k}} \quad \forall \mathbf{v}_{k} \in \mathbf{H}_{\mathrm{t}}^{-\frac{1}{2}}\left(\operatorname{curl}_{\Gamma_{\delta}^{k}}, \Gamma_{\delta}^{k}\right)
$$

where $\mathcal{M}_{\Gamma}^{k \ell}: \mathbf{H}_{t}^{-\frac{1}{2}}\left(\operatorname{div}_{\Gamma_{\delta}^{\ell}}, \Gamma_{\delta}^{\ell}\right) \longrightarrow \mathbf{H}_{t}^{-\frac{1}{2}}\left(\operatorname{div}_{\Gamma_{\delta}^{k}}, \Gamma_{\delta}^{k}\right)$ is the extension of

$$
\mathcal{M}_{\Gamma}^{k \ell} \boldsymbol{\lambda}\left(x_{\Gamma}\right)=\mathbf{n}\left(x_{\Gamma}\right) \times \lim _{x \rightarrow x_{\Gamma}} \operatorname{curl} \int_{\Gamma_{\delta}^{\ell}} \Phi\left(x-\boldsymbol{c}_{\ell}, y-\boldsymbol{c}_{\ell}\right) \boldsymbol{\lambda}(y) d s_{y} \quad \boldsymbol{\lambda} \in \mathscr{C}^{\infty}\left(\Gamma_{\delta}^{\ell}\right) \quad x_{\Gamma} \in \Gamma_{\delta}^{k}
$$

Principle of the spectral method

- The electromagnetic fields are represented by the Stratton-Chu formula for $x \in \Omega_{\delta}$

$$
\mathbf{E}_{\delta}^{\mathrm{s}}(x)=\sum_{k=1}^{N_{\mathrm{obs}}} \operatorname{curl} \int_{\Gamma_{\delta}^{k}} \Phi\left(x-\boldsymbol{c}_{k}, y-\boldsymbol{c}_{k}\right) \mathbf{p}_{k}(y) d s_{y}
$$

- Each $\mathbf{p}_{\ell} \in \mathbf{H}_{t}^{-\frac{1}{2}}\left(\operatorname{div}_{\Gamma_{\delta}^{\ell}}, \Gamma_{\delta}^{\ell}\right)$ satisfies the boundary integral equation

$$
\sum_{\ell=1}^{N_{\text {obs }}}\left\langle\mathcal{M}_{\Gamma}^{k \ell} \mathbf{p}_{\ell}, \mathbf{v}_{k}\right\rangle_{\Gamma_{\delta}^{k}}=-\left\langle\mathbf{n} \times \mathbf{E}^{\text {inc }}, \mathbf{v}_{k}\right\rangle_{\Gamma_{\delta}^{k}} \quad \forall \mathbf{v}_{k} \in \mathbf{H}_{\mathrm{t}}^{-\frac{1}{2}}\left(\operatorname{curl}_{\Gamma_{\delta}^{k}}, \Gamma_{\delta}^{k}\right)
$$

- Galerkin discretization of the BIE on local spectral basis with $N_{\text {mod }}$ modes

$$
\mathbf{p}_{\ell}(x)=\sum_{n=1}^{N_{\mathrm{mod}}} \sum_{m=-n}^{n} p_{n, m}^{\ell, \perp} a_{n}(\delta) \nabla_{\mathcal{S}^{2}} Y_{n, m}\left(\widehat{x}_{\ell}\right)+p_{n, m}^{\ell, \times} b_{n}(\delta) \operatorname{curl}_{\mathbb{S}^{2}} Y_{n, m}\left(\widehat{x}_{\ell}\right) \quad x \in \Gamma_{\delta}^{\ell}
$$

with $\widehat{x}_{\ell}=\frac{x-c_{\ell}}{\left|x-c_{\ell}\right|}$ and $\nabla_{\mathcal{S}^{2}} Y_{n, m}, \boldsymbol{c u r l}_{\mathcal{S}^{2}} Y_{n, m}$: complex-valued vector spherical harmonics

Vectorial formulation

The variational formulation: Find $\left(\mathbf{p}_{k}\right) \in \mathbf{H}_{\mathrm{t}}^{-\frac{1}{2}}\left(\operatorname{div}_{\Gamma_{\delta}^{k}}, \Gamma_{\delta}^{k}\right)$ such that

$$
\left\langle\mathcal{M}_{\Gamma}^{k k} \mathbf{p}_{k}, \mathbf{v}_{k}\right\rangle_{\Gamma_{\delta}^{k}}+\sum_{\substack{\ell=1 \\ \ell \neq k}}^{N_{\mathrm{obs}}}\left\langle\mathcal{M}_{\Gamma}^{k \ell} \mathbf{p}_{\ell}, \mathbf{v}_{k}\right\rangle_{\Gamma_{\delta}^{k}}=-\left\langle\mathbf{n} \times \mathbf{E}^{\text {inc }}, \mathbf{v}_{k}\right\rangle_{\Gamma_{\delta}^{k}} \quad \forall \mathbf{v}_{k} \in \mathbf{H}_{t}^{-\frac{1}{2}}\left(\operatorname{curl}_{\Gamma_{\delta}^{k}}, \Gamma_{\delta}^{k}\right)
$$

Can be put under vectorial form $\mathbf{p}=\left(\left(p_{n, m}^{1, \perp}\right), \ldots,\left(p_{n, m}^{N_{\text {obs }}, \perp}\right),\left(p_{n, m}^{1, \times}\right), \ldots,\left(p_{n, m}^{N_{\text {obs }}, \times}\right)\right)^{\top} \in \mathbb{C}^{N}$

$$
\mathbb{M} \mathbf{p}=\mathbf{f}
$$

$$
\text { with } N=2 N_{\bmod }\left(N_{\mathrm{mod}}+2\right) N_{\mathrm{obs}}
$$

$$
\mathbb{M}=\left(\begin{array}{cc}
\mathbb{M}_{\perp \perp} & \mathbb{M}_{\perp \times} \\
\mathbb{M}_{\times \perp} & \mathbb{M}_{\times \times}
\end{array}\right) \quad \text { with } \quad \mathbb{M}_{\alpha \beta}=\left(\begin{array}{cccc}
\mathbb{M}_{\alpha \beta}^{11} & \mathbb{M}_{\alpha \beta}^{12} & \ldots & \mathbb{M}_{\alpha \beta}^{1 N_{\mathrm{obs}}} \\
\mathbb{M}_{\alpha \beta}^{21} & \mathbb{M}_{\alpha \beta}^{22} & \ldots & \mathbb{M}_{\alpha \beta}^{N_{\text {obs }}} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{M}_{\alpha \beta}^{N_{\text {obs }}^{1}} & \mathbb{M}_{\alpha \beta}^{N_{\text {obs }}^{2}} & \ldots & \mathbb{M}_{\alpha \beta}^{N_{o b s} N_{\text {obs }}}
\end{array}\right)
$$

The analytical blocks $\mathbb{M}_{\alpha \beta}^{k \ell}$ depend on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$

Validation of spectral models

Data

- $\lambda=1.0$
- Plane wave
- δ varies
\rightarrow Spectral 1
- 曰- Spectral 2
-e - Spectral 3
...... Spectral 4
...-... Spectral 5

(d) Distance $\propto \lambda$

(e) Distance $\propto \sqrt{\lambda \delta}$

Validation of spectral models

Data

- $\lambda=1.0$
- Plane wave
- h varies
\rightarrow Finite Element 1
- ョー Finite Element 2
-• - Finite Element 3

Figure: Spectral solutions vs. Finite element solutions (Montjoie)

Validation of spectral models

Data

- $\lambda=1.0$
- Plane wave
- δ varies
-. \cdot - Modified Foldy
...-... Spectral 1

(a) Foldy vs Spectral 1

(b) Radar cross section

However ...

The spectral method has some disadvantages ...

Dense matrix inherited from BIEs
Increasing in number of unknowns as the number of obstacles grows
Quickly limited with memory resources

III-conditionned system requiring preconditionning
Smart storage and assembling in specific configurations Implementation of an iterative resolution

However ...

The spectral method has some disadvantages ...

Dense matrix inherited from BIEs
Increasing in number of unknowns as the number of obstacles grows
Quickly limited with memory resources

III-conditionned system requiring preconditionning
Smart storage and assembling in specific configurations Implementation of an iterative resolution
... and that can be applied on the Foldy systems too

Outline

1. Introduction

2. Foldy-Lax-based models
3. Spectral models
4. Numerical solution for large number of scatterers
5. Conclusion and perspectives

Iterative solver

- Simple calculations improve condition number associated with the matrix

$$
\mathbb{M} \mathbf{p}=\mathbf{f}
$$

- The matrix is decomposed as

$$
\mathbb{M}=\mathbb{I}+\mathbb{A}+\mathbb{B}
$$

where $(\mathbb{I}+\mathbb{A})$ invertible contains the main interactions

$$
A_{i j}=M_{i j} \quad \text { if }\left|M_{i j}\right| \geq \text { tolerance }
$$

We solve iteratively

$$
\left\{\begin{array}{l}
\mathbf{p}^{(0)}=(\mathbb{I}+\mathbb{A})^{-1} \mathbf{f} \\
(\mathbb{I}+\mathbb{A}) \mathbf{p}^{(n+1)}=\mathbf{f}-\mathbb{B} \mathbf{p}^{(n)}
\end{array}\right.
$$

- \mathbb{I} is the identity matrix
- \mathbb{A} is a sparse matrix
- \mathbb{B} is dense and never assembled

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$
- Example: 4 aligned obstacles

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$
- Example: 4 aligned obstacles

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$
- Example: 4 aligned obstacles

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and ($\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}$)
- Example: 4 aligned obstacles

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$
- Example: 4 aligned obstacles

$$
2 \rightarrow 1
$$

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$
- Example: 4 aligned obstacles

$$
3 \rightarrow 1
$$

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$
- Example: 4 aligned obstacles

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$

Instead of storing wholly \mathbb{M}, we only keep the (two-by-two) different blocks

$$
\mathbb{M}_{\perp \perp}^{k l}, \mathbb{M}_{\perp \times}^{k \ell}, \mathbb{M}_{\times \perp}^{k \ell} \text { and } \mathbb{M}_{\times \times}^{k \ell}
$$

Smart storage and assembling

- $\mathbb{M}_{\alpha \beta}^{k \ell}$ depends only on δ and $\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{\ell}\right)$

Instead of storing wholly \mathbb{M}, we only keep the (two-by-two) different blocks

$$
\mathbb{M}_{\perp \perp}^{k l}, \mathbb{M}_{\perp \times}^{k l}, \mathbb{M}_{\times \perp}^{k \ell} \text { and } \mathbb{M}_{\times \times}^{k \ell}
$$

- The decomposition becomes $\mathbb{M}_{\text {Block }}=\mathbb{A}_{\text {Block }}+\mathbb{B}_{\text {Block }}$
- Assembling of $\mathbb{A}_{\text {Block }}$ in sparse matrix
- Define the action of $\mathbb{B}_{\text {Block }}$

$$
\mathcal{A}\left(\mathbb{B}_{\text {Block }}, \mathbf{p}\right)=\mathbb{B} \mathbf{p}
$$

Uniformly distributed configurations of obstacles

Example with 24 obstacles. For each part

On a line

$$
2 N_{\text {obs }}-1 \text { blocks }
$$

On a plane (4×6)

$$
\left(2 N_{\mathrm{l}}-1\right)\left(2 N_{\mathrm{C}}-1\right) \text { blocks }
$$

Into a volume $(2 \times 3 \times 4)$

$\left(2 N_{\mathrm{h}}-1\right)\left(2 N_{\mathrm{l}}-1\right)\left(2 N_{\mathrm{C}}-1\right)$ blocks

$$
\text { instead of } N_{\mathrm{obs}}^{2}=N_{\mathrm{l}}^{2} N_{\mathrm{c}}^{2}=N_{\mathrm{l}}^{2} N_{\mathrm{c}}^{2} N_{\mathrm{h}}^{2} \text { blocks per part }
$$

Numerical results

- Test n° 1: 1000 aligned obstacles

$$
\delta=0.1, d=1.0, \lambda=5.0
$$

	Modified Foldy	
Solver	Spectral 1	
Density	Direct	
Dens	100%	
Linear system	21.25 s	44.59 s
Post-processing	16.12 s	21.19 s
Total time	37.37 s	65.78 s

	Modified Foldy	Spectral 1
Solver	Iterative	
Density	4.95%	
Linear system	29.74 s	163.25 s
Post-processing	76.6 s	262.97 s
Total time	106.46 s	426.34 s

- Test n° 2: 10000 aligned obstacles $\delta=0.5, d=2.0, \lambda=5.0$

Numerical results

- Test $\mathrm{n}^{\circ} 3: 50 \times 50=2500$ obstacles uniformly distributed on a plane

$$
\delta=0.1, d=1.0, \lambda=5.0
$$

	Modified Foldy		Spectral 1	
Solver	Direct	Iterative	Direct	Iterative
Density	100%	29.66%	100%	29.66%
Linear system	595.10 s	38.32 s	613.10 s	234.84 s
Post-processing	22.96 s	19.00 s	62.69 s	58.47 s
Total time	618.48 s	57.32 s	676.09 s	293.31 s

(f) Foldy vs Spectral: direct solver

(g) Foldy Iterative vs Direct

(h) Spectral Iterative vs Direct

Outline

1. Introduction
2. Foldy-Lax-based models
3. Spectral models
4. Numerical solution for large number of scatterers
5. Conclusion and perspectives

Conclusion and Perspectives

Conclusion

\checkmark High-order asymptotic expansions to single scattering (Labat, Péron and Tordeux, In revision 2019)
\checkmark Low-order Born and Foldy-Lax models to multiple scattering
\checkmark High-order spectral models equivalent to the Generalized Multiparticle Mie-solution theory (Xu, 1995)
\checkmark Fast resolution using few memory to the multiple scattering problem by a large number of spheres

On-going work

~ Comparison of preconditionners and iterative solvers
\sim Smart assembling for obstacles uniformly distributed into a volume

Perspectives

x Definition of high-order asymptotic models to multiple scattering
x Extension to obstacles of arbitrary shape
x Extension to time-dependent domain

Conclusion and Perspectives

Conclusion

\checkmark High-order asymptotic expansions to single scattering (Labat, Péron and Tordeux, In revision 2019)
\checkmark Low-order Born and Foldy-Lax models to multiple scattering
\checkmark High-order spectral models equivalent to the Generalized Multiparticle Mie-solution theory (Xu, 1995)
\checkmark Fast resolution using few memory to the multiple scattering problem by a large number of spheres

On-going work

~ Comparison of preconditionners and iterative solvers
\sim Smart assembling for obstacles uniformly distributed into a volume

Perspectives

x Definition of high-order asymptotic models to multiple scattering
x Extension to obstacles of arbitrary shape
x Extension to time-dependent domain

