

Scattering of electromagnetic waves by small obstacles Sébastien Tordeux

▶ To cite this version:

Sébastien Tordeux. Scattering of electromagnetic waves by small obstacles. AIP 2023 - 11th Applied Inverse Problems Conference, Sep 2023, Göttingen, Germany. hal-04518729

HAL Id: hal-04518729

https://hal.science/hal-04518729

Submitted on 24 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Scattering of electromagnetic waves by small obstacles

Justine Labat, Victor Péron, Sébastien Tordeux

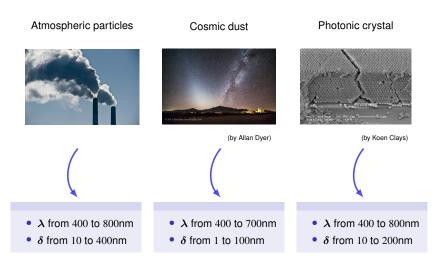
EPI Makutu, INRIA, Université de Pau, CNRS

September 4, AIP 2023

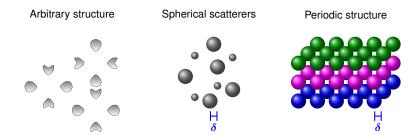
Outline

- 1. Introduction

Electromagnetic scattering problem by small obstacles



Electromagnetic scattering problem by small obstacles



Electromagnetic source

- Time-harmonic $\propto \exp(-\mathrm{i}\boldsymbol{\omega}t)$
- Wavelength $\lambda = \frac{2\pi c}{ct}$
- · Homogeneous and isotropic

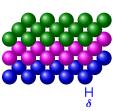


Electromagnetic scattering problem by small obstacles

Arbitrary structure

Spherical scatterers

Periodic structure



Electromagnetic source

- Time-harmonic $\propto \exp(-i\omega t)$
- Wavelength $\lambda = \frac{2\pi c}{\omega}$
- Homogeneous and isotropic

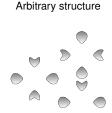
Reduced Maxwell equations

$$c=rac{\omega}{c}$$
 constant

curl
$$\mathbf{E}^{i} - i\kappa \mathbf{H}^{i} = 0$$
 in I
curl $\mathbf{H}^{i} + i\kappa \mathbf{E}^{i} = \mathbf{J}$ in I

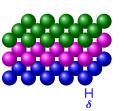
00000

Electromagnetic scattering problem by small obstacles



Spherical scatterers

Periodic structure



Electromagnetic source

- Time-harmonic $\propto \exp(-i\omega t)$
- Wavelength $\lambda = \frac{2\pi c}{\omega}$
- Homogeneous and isotropic

Asymptotic asumption

 $\delta \ll \lambda$

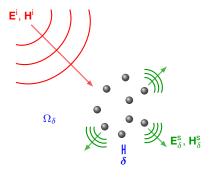
Reduced Maxwell equations

$$\epsilon = rac{\omega}{c}$$
 constant

 $\operatorname{curl} \mathbf{E}^{\mathsf{i}} - \mathrm{i} \kappa \mathbf{H}^{\mathsf{i}} = 0$ curl $\mathbf{H}^{i} + i \kappa \mathbf{E}^{i} = \mathbf{J}$ in \mathbb{R}^3

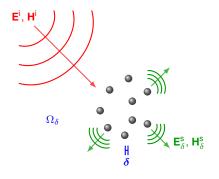
Introduction 00000

Model problem



- Obstacles $\mathfrak{B}^k_{\delta} = \mathfrak{B}(c_k, \boldsymbol{\delta})$
- Exterior domain $\Omega_{\delta} = \mathbb{R}^3 \setminus \bigcup \overline{\mathcal{B}_{\delta}^k}$
- Boundary $\Gamma_{\delta} = \bigcup \Gamma_{\delta}^{k}$

Model problem



- Obstacles $\mathfrak{B}^k_{\delta} = \mathfrak{B}(\boldsymbol{c}_k, \boldsymbol{\delta})$
- Exterior domain $\Omega_{\delta} = \mathbb{R}^3 \setminus \bigcup \overline{\mathcal{B}^k_{\delta}}$
- Boundary $\Gamma_{\delta} = \bigcup \Gamma_{\delta}^{k}$

Total electromagnetic fields

$$\mathbf{E}_{\delta} = \mathbf{E}^{\mathsf{i}} + \mathbf{E}_{\delta}^{\mathsf{s}} \qquad \mathbf{H}_{\delta} = \mathbf{H}^{\mathsf{i}} + \mathbf{H}_{\delta}^{\mathsf{s}}$$

Time-harmonic Maxwell equations

$$\begin{cases} \text{ curl } \mathbf{E}_{\delta}^{\mathtt{S}} - \mathrm{i} \boldsymbol{\kappa} \, \mathbf{H}_{\delta}^{\mathtt{S}} = 0 & \text{ in } \Omega_{\delta} \\ \text{ curl } \mathbf{H}_{\delta}^{\mathtt{S}} + \mathrm{i} \boldsymbol{\kappa} \, \mathbf{E}_{\delta}^{\mathtt{S}} = 0 & \text{ in } \Omega_{\delta} \end{cases}$$

Silver-Müller condition

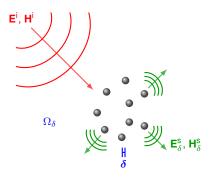
$$r\left(\mathbf{H}_{\delta} \times \frac{\mathbf{x}}{r} - \mathbf{E}_{\delta}\right) \underset{r \to \infty}{\longrightarrow} 0$$
 unif. in $\frac{\mathbf{x}}{r}$

Perfect conductor condition

$$\mathbf{n} imes \mathbf{E}^{\mathrm{s}}_{\delta} = -\mathbf{n} imes \mathbf{E}^{\mathrm{i}}$$
 on $\Gamma_{\boldsymbol{\delta}}$

Introduction

Model problem



- Obstacles $\mathfrak{B}_{\delta}^{k} = \mathfrak{B}(\boldsymbol{c}_{k}, \boldsymbol{\delta})$
- Exterior domain $\Omega_{\delta} = \mathbb{R}^3 \setminus \bigcup \mathcal{B}_{\delta}^k$
- Boundary Γ_δ = [] Γ^k_δ

Total electromagnetic fields

$$\mathbf{E}_{\delta} = \mathbf{E}^{\mathsf{i}} + \mathbf{E}_{\delta}^{\mathsf{s}} \qquad \mathbf{H}_{\delta} = \mathbf{H}^{\mathsf{i}} + \mathbf{H}_{\delta}^{\mathsf{s}}$$

Time-harmonic Maxwell equations

$$\begin{cases} \text{ curl } \mathbf{E}^{\mathrm{s}}_{\delta} - \mathrm{i} \kappa \, \mathbf{H}^{\mathrm{s}}_{\delta} = 0 & \text{ in } \Omega_{\delta} \\ \text{ curl } \mathbf{H}^{\mathrm{s}}_{\delta} + \mathrm{i} \kappa \, \mathbf{E}^{\mathrm{s}}_{\delta} = 0 & \text{ in } \Omega_{\delta} \end{cases}$$

Silver-Müller condition

$$r\left(\mathbf{H}_{\delta} imes \frac{\mathbf{x}}{r} - \mathbf{E}_{\delta}\right) \underset{r o \infty}{\longrightarrow} 0$$
 unif. in $\frac{\mathbf{x}}{r}$

Perfect conductor condition

$$\mathbf{n} \times \mathbf{E}_{\delta}^{\mathrm{s}} = -\mathbf{n} \times \mathbf{E}^{\mathrm{i}}$$
 on Γ_{δ}

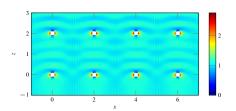
For $\mathbf{E}^{\mathbf{i}}$, $\mathbf{H}^{\mathbf{i}} \in \mathbf{H}_{loc}(\mathbf{curl}, \Omega_{\delta})$ there is a unique solution $\mathbf{E}_{\delta}^{\mathrm{S}}, \mathbf{H}_{\delta}^{\mathrm{S}} \in \mathbf{H}_{\mathrm{loc}}(\mathbf{curl}, \Omega_{\delta})$

Mesh-dependent methods

- Finite differences
- Finite element method
- Discontinuous Galerkin
- Boundary element method

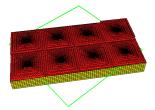
Mesh-dependent methods

- Finite differences
- Finite element method
- Discontinuous Galerkin
- · Boundary element method



Montjoie on Plafrim

- Order 2
- 2 436 832 dof
- Memory $\approx 40 \text{ GB}$
- Time \approx 2h on 4 cores



Mesh-dependent methods

Finite differences

Introduction

- Finite element method
- Discontinuous Galerkin
- Boundary element method

Mesh-less methods

- Asymptotic methods
- Spectral-based algorithms

Mesh-dependent methods

- Finite differences
- Finite element method
- Discontinuous Galerkin
- Boundary element method

Mesh-less methods

- Asymptotic methods
- Spectral-based algorithms

Asymptotic expansions

- Single scattering
- Restricted to small obstacles
- Low computational cost

Foldy-Lax model

- Multiple scattering
- Restricted to small obstacles
- Low computational cost

Mesh-dependent methods

- Finite differences
- Finite element method
- Discontinuous Galerkin
- Boundary element method

Mesh-less methods

- Asymptotic methods
- Spectral-based algorithms

Asymptotic expansions

- Single scattering
- Restricted to small obstacles
- Low computational cost

Foldy-Lax model

- Multiple scattering
- Restricted to small obstacles
- Low computational cost

Spectral method

- Single and multiple scattering
- All sizes of obstacles
- Analytical for spheres

(Non-exhaustive) List of references

Historic references

Rayleigh (1884), Foldy (1945), Lax (1951)

Small defect theory

Il'In (1992). Maz'va et al. (2000)

Acoustic obstacle

Ammari and Kang (2003), Ramm (2005), Claevs (2008)

Time-dependent domain

Mattesi (2014), Korikov (2015), Marmorat (2015)

Electromagnetic obstacle

Vogelius and Volkov (2000), Ammari et al. (2001), Korikov and Plamenevskii (2017)

Foldy theory

Martin (2004), Cassier and Hazard (2013), Bendali et al. (2014), Challa et al. (2014), Bouzekri and Sini (2019)

High-order spectral algorithms

Xu (1995), Ganesh and Hawkins (2009), Thierry (2011), Ammari et al. (2013), Barucq et al. (2017). Egel et al. (2017)

Inverse problem

Volkov (2001), Ammari and Kang (2004), Challa and Sini (2012)

(Non-exhaustive) List of references

Historic references

Rayleigh (1884), Foldy (1945), Lax (1951)

Small defect theory

Il'In (1992). Maz'va et al. (2000)

Acoustic obstacle

Ammari and Kang (2003), Ramm (2005), Claevs (2008)

Time-dependent domain

Mattesi (2014), Korikov (2015), Marmorat (2015)

Electromagnetic obstacle

Vogelius and Volkov (2000), Ammari et al. (2001), Korikov and Plamenevskii (2017)

Foldy theory

Martin (2004), Cassier and Hazard (2013), Bendali et al. (2014), Challa et al. (2014). Bouzekri and Sini (2019)

High-order spectral algorithms

Xu (1995), Ganesh and Hawkins (2009), Thierry (2011), Ammari et al. (2013), Barucq et al. (2017). Egel et al. (2017)

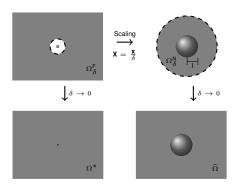
Inverse problem

Volkov (2001), Ammari-Kang (2004), Challa-Sini (2012)

Outline

- 1. Introduction
- 2. Foldy-Lax-based models
- 3. Spectral models
- 4. Numerical solution for large number of scatterers
- Conclusion and perspectives

Asymptotic method: the matched asymptotic expansions



- Domain decomposition
- Local approximations
- Matching procedure

• Far from the obstacle, the solution is approximated by

$$\mathbf{E}_{\delta}^{\mathsf{s}} \approx \delta^3 \, \widetilde{\mathbf{E}}_3 + \delta^5 \, \widetilde{\mathbf{E}}_5 + \dots$$

$$\mathbf{H}_{\delta}^{\mathtt{S}} \approx \delta^3 \, \widetilde{\mathbf{H}}_3 + \delta^5 \, \widetilde{\mathbf{H}}_5 + \dots$$

Far from the obstacle, the solution is approximated by

$$\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^{3}\,\widetilde{\mathbf{E}}_{3} + \delta^{5}\,\widetilde{\mathbf{E}}_{5} + \dots \qquad \qquad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^{3}\,\widetilde{\mathbf{H}}_{3} + \delta^{5}\,\widetilde{\mathbf{H}}_{5} + \dots$$

$$\begin{split} \widetilde{\mathbf{E}}_{3}(x) = & \qquad -\kappa^{3} \bigg(\widetilde{h}_{1}^{(1)}(\kappa r) \gamma_{\mathbf{1}}[\mathbf{d}_{\mathbf{e}}] + 2 \frac{h_{1}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathbf{n}}[\mathbf{d}_{\mathbf{e}}] \frac{x}{r} - h_{1}^{(1)}(\kappa r) \gamma_{\mathbf{\times}}[\mathbf{d}_{\mathbf{h}}] \bigg) \\ \widetilde{\mathbf{H}}_{3}(x) = & \qquad -\kappa^{3} \bigg(\widetilde{h}_{1}^{(1)}(\kappa r) \gamma_{\mathbf{1}}[\mathbf{d}_{\mathbf{h}}] + 2 \frac{h_{1}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathbf{n}}[\mathbf{d}_{\mathbf{h}}] \frac{x}{r} + h_{1}^{(1)}(\kappa r) \gamma_{\mathbf{\times}}[\mathbf{d}_{\mathbf{e}}] \bigg) \end{split}$$

$$\begin{split} \widetilde{\mathbf{E}}_{5}(x) &= \ldots + \frac{\kappa^{4}}{4} \left(\widetilde{h}_{2}^{(1)}(\kappa r) \gamma_{\mathsf{t}} [\mathbf{Q}_{\mathsf{e}} x] + 3 \frac{h_{2}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathsf{n}} [\mathbf{Q}_{\mathsf{e}} x] \frac{x}{r} + h_{2}^{(1)}(\kappa r) \gamma_{\mathsf{x}} [\mathbf{Q}_{\mathsf{h}} x] \right) \\ \widetilde{\mathbf{H}}_{5}(x) &= \ldots + \frac{\kappa^{4}}{4} \left(\widetilde{h}_{2}^{(1)}(\kappa r) \gamma_{\mathsf{t}} [\mathbf{Q}_{\mathsf{h}} x] + 3 \frac{h_{2}^{(1)}(\kappa r)}{\mathrm{i} \kappa r} \gamma_{\mathsf{n}} [\mathbf{Q}_{\mathsf{h}} x] \frac{x}{r} - h_{2}^{(1)}(\kappa r) \gamma_{\mathsf{x}} [\mathbf{Q}_{\mathsf{e}} x] \right) \end{split}$$

where

$$\mathbf{d}_{\text{e}} = \mathbf{E}^{\text{i}}(0) \qquad \quad \mathbf{d}_{\text{h}} = \mathbf{H}^{\text{i}}(0) \qquad \mathbf{Q}_{\text{e}} = -\frac{2}{3}\mathbf{J}_{\mathbf{E}^{\text{i}}}^{\text{sym}}(0) \qquad \quad \mathbf{Q}_{\text{h}} = \frac{4}{3}\mathbf{J}_{\mathbf{H}^{\text{i}}}^{\text{sym}}(0)$$

Foldy-Lax-based models

Approximate solution to single scattering by a sphere

• Far from the obstacle, the solution is approximated by

$$\widetilde{\mathbf{E}}_{5}(x) = \quad \text{dipole} \quad + \frac{\kappa^{4}}{4} \left(\widetilde{h}_{2}^{(1)}(\kappa r) \gamma_{\mathsf{t}}[\mathbf{Q}_{\mathsf{e}}x] + 3 \frac{h_{2}^{(1)}(\kappa r)}{\mathrm{i}\kappa r} \gamma_{\mathsf{n}}[\mathbf{Q}_{\mathsf{e}}x] \frac{x}{r} + h_{2}^{(1)}(\kappa r) \gamma_{\mathsf{x}}[\mathbf{Q}_{\mathsf{h}}x] \right) \\ \widetilde{\mathbf{H}}_{5}(x) = \quad \text{dipole} \quad + \frac{\kappa^{4}}{4} \left(\widetilde{h}_{2}^{(1)}(\kappa r) \gamma_{\mathsf{t}}[\mathbf{Q}_{\mathsf{h}}x] + 3 \frac{h_{2}^{(1)}(\kappa r)}{\mathrm{i}\kappa r} \gamma_{\mathsf{n}}[\mathbf{Q}_{\mathsf{h}}x] \frac{x}{r} - h_{2}^{(1)}(\kappa r) \gamma_{\mathsf{x}}[\mathbf{Q}_{\mathsf{e}}x] \right)$$

• Far from the obstacle, the solution is approximated by

$$\mathbf{E}_{s}^{s} \approx \delta^{3} \widetilde{\mathbf{E}}_{3} + \delta^{5} \widetilde{\mathbf{E}}_{5} + \dots$$
 $\mathbf{H}_{s}^{s} \approx \delta^{3} \widetilde{\mathbf{H}}_{3} + \delta^{5} \widetilde{\mathbf{H}}_{5} + \dots$

$$\widetilde{\mathbf{E}}_{3}(x) = \mathcal{E}_{\mathsf{elec}}^{\mathsf{dip}}[\mathbf{d}_{\mathsf{e}}](x) + \mathcal{E}_{\mathsf{mag}}^{\mathsf{dip}}[\mathbf{d}_{\mathsf{h}}](x)$$

$$\widetilde{\mathbf{H}}_{3}(x) = \boldsymbol{\mathcal{H}}_{\mathrm{elec}}^{\mathrm{dip}}[\underline{\mathbf{d}}_{\mathrm{e}}](x) + \boldsymbol{\mathcal{H}}_{\mathrm{mag}}^{\mathrm{dip}}[\underline{\mathbf{d}}_{\mathrm{h}}](x)$$

$$\widetilde{\mathbf{E}}_{5}(x) = \frac{3\kappa^{2}}{10} \mathbf{\mathcal{E}}_{\text{elec}}^{\text{dip}}[\mathbf{d}_{\text{e}}](x) - \frac{3\kappa^{2}}{5} \mathbf{\mathcal{E}}_{\text{mag}}^{\text{dip}}[\mathbf{d}_{\text{h}}](x) + \mathbf{\mathcal{E}}_{\text{elec}}^{\text{quad}}[\mathbf{Q}_{\text{e}}](x) + \mathbf{\mathcal{E}}_{\text{mag}}^{\text{quad}}[\mathbf{Q}_{\text{h}}](x)$$

$$\widetilde{\mathbf{H}}_{5}(x) = \frac{3\kappa^{2}}{10} \mathcal{H}_{\text{elec}}^{\text{dip}}[\mathbf{d}_{\text{e}}](x) - \frac{3\kappa^{2}}{5} \mathcal{H}_{\text{mag}}^{\text{dip}}[\mathbf{d}_{\text{h}}](x) + \mathcal{H}_{\text{elec}}^{\text{quad}}[\mathbf{Q}_{\text{e}}](x) + \mathcal{H}_{\text{mag}}^{\text{quad}}[\mathbf{Q}_{\text{h}}](x)$$

• Far from the obstacle, the solution is approximated by

$$\mathbf{E}_{\delta}^{\mathrm{s}} \approx \delta^3 \, \widetilde{\mathbf{E}}_3 + \delta^5 \, \widetilde{\mathbf{E}}_5 + \dots \qquad \qquad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \delta^3 \, \widetilde{\mathbf{H}}_3 + \delta^5 \, \widetilde{\mathbf{H}}_5 + \dots$$

By using multipole expansion

$$\begin{split} \mathbf{E}_{\delta}^{s} &\approx \alpha_{\text{e}}(\delta) \boldsymbol{\mathcal{E}}_{\text{elec}}^{\text{dip}}[\mathbf{d}_{\text{e}}] \ + \alpha_{\text{h}}(\delta) \boldsymbol{\mathcal{E}}_{\text{mag}}^{\text{dip}}[\mathbf{d}_{\text{h}}] \ + \beta_{\text{e}}(\delta) \boldsymbol{\mathcal{E}}_{\text{elec}}^{\text{quad}}[\mathbf{Q}_{\text{e}}] \ + \beta_{\text{h}}(\delta) \boldsymbol{\mathcal{E}}_{\text{mag}}^{\text{quad}}[\mathbf{Q}_{\text{h}}] \ + \ldots \\ \mathbf{H}_{\delta}^{s} &\approx \alpha_{\text{e}}(\delta) \boldsymbol{\mathcal{H}}_{\text{elec}}^{\text{dip}}[\mathbf{d}_{\text{e}}] + \alpha_{\text{h}}(\delta) \boldsymbol{\mathcal{H}}_{\text{mad}}^{\text{dip}}[\mathbf{d}_{\text{h}}] + \beta_{\text{e}}(\delta) \boldsymbol{\mathcal{H}}_{\text{quad}}^{\text{quad}}[\mathbf{Q}_{\text{e}}] + \beta_{\text{h}}(\delta) \boldsymbol{\mathcal{H}}_{\text{mad}}^{\text{quad}}[\mathbf{Q}_{\text{h}}] \ + \ldots \end{split}$$

Multipole moments

- de, dh : dipole moment
- Qe, Qh: quadrupole moment tensor

- the incident fields
- the center of the obstacle
- the shape of the obstacle

$$\mathbf{d}_{\mathrm{e}} = \mathbf{E}^{\mathrm{i}}(\mathbf{0}) \qquad \qquad \mathbf{d}_{\mathrm{h}} = -\frac{1}{2}\mathbf{H}^{\mathrm{i}}(\mathbf{0})$$

$$\mathbf{Q}_{\mathrm{e}} = -\frac{2}{3}\mathbb{J}_{\mathbf{E}^{\mathrm{i}}}^{\mathrm{sym}}(\mathbf{0}) \ \ \mathbf{Q}_{\mathrm{h}} = \frac{4}{3}\mathbb{J}_{\mathbf{H}^{\mathrm{i}}}^{\mathrm{sym}}(\mathbf{0})$$

Far from the obstacle, the solution is approximated by

$$\mathbf{E}^{\mathbf{s}}_{\delta} \approx \delta^3 \, \widetilde{\mathbf{E}}_3 + \delta^5 \, \widetilde{\mathbf{E}}_5 + \dots \qquad \qquad \mathbf{H}^{\mathbf{s}}_{\delta} \approx \delta^3 \, \widetilde{\mathbf{H}}_3 + \delta^5 \, \widetilde{\mathbf{H}}_5 + \dots$$

By using multipole expansion

$$\begin{split} \mathbf{E}^{s}_{\delta} &\approx \alpha_{e}(\delta) \boldsymbol{\mathcal{E}}^{\text{dip}}_{\text{elec}}[\mathbf{d}_{e}] \ + \alpha_{h}(\delta) \boldsymbol{\mathcal{E}}^{\text{dip}}_{\text{mag}}[\mathbf{d}_{h}] \ + \beta_{e}(\delta) \boldsymbol{\mathcal{E}}^{\text{quad}}_{\text{elec}}[\mathbf{Q}_{e}] \ + \beta_{h}(\delta) \boldsymbol{\mathcal{E}}^{\text{quad}}_{\text{mag}}[\mathbf{Q}_{h}] \ + \ldots \\ \mathbf{H}^{s}_{\delta} &\approx \alpha_{e}(\delta) \boldsymbol{\mathcal{H}}^{\text{dip}}_{\text{elec}}[\mathbf{d}_{e}] + \alpha_{h}(\delta) \boldsymbol{\mathcal{H}}^{\text{dip}}_{\text{mag}}[\mathbf{d}_{h}] + \beta_{e}(\delta) \boldsymbol{\mathcal{H}}^{\text{quad}}_{\text{elec}}[\mathbf{Q}_{e}] + \beta_{h}(\delta) \boldsymbol{\mathcal{H}}^{\text{quad}}_{\text{mag}}[\mathbf{Q}_{h}] + \ldots \end{split}$$

Multipole moments

- de, dh : dipole moment
- Q_e, Q_h: quadrupole moment tensor

Order of approximation

- Order 3: $\beta_e = \beta_h = 0$ and $\alpha_e = \alpha_h = \delta^3$
- Order 5: $\beta_{\mathbf{e}} = \beta_{\mathbf{h}} = \delta^5$, $\alpha_{\mathbf{e}} = \delta^3 (1 + \frac{3(\kappa \delta)^2}{10})$ $\alpha_{\mathbf{h}} = \delta^3 (1 - \frac{3(\kappa \delta)^2}{5})$

$$\begin{array}{ll} \textbf{d}_{\text{e}} = \textbf{E}^{\text{i}}(\textbf{0}) & \qquad \textbf{d}_{\text{h}} = -\frac{1}{2}\textbf{H}^{\text{i}}(\textbf{0}) \end{array}$$

$$\mathbf{Q}_{\text{e}} = -\frac{2}{3}\mathbb{J}^{\text{sym}}_{\textbf{E}^{\text{i}}}(0) \ \ \mathbf{Q}_{\text{h}} = \frac{4}{3}\mathbb{J}^{\text{sym}}_{\textbf{H}^{\text{i}}}(0)$$

Far from the obstacle, the solution is approximated by

$$\mathbf{E}_{\delta}^{\mathsf{s}} \approx \delta^3 \, \widetilde{\mathbf{E}}_3 + \delta^5 \, \widetilde{\mathbf{E}}_5 + \dots$$

$$\mathbf{H}_{\delta}^{\mathsf{s}} pprox \delta^3 \, \widetilde{\mathbf{H}}_3 + \delta^5 \, \widetilde{\mathbf{H}}_5 + \dots$$

By using multipole expansion

$$\textbf{E}_{\delta}^{s} \approx \alpha_{e}(\delta) \boldsymbol{\mathcal{E}}_{elec}^{dip}[\textbf{d}_{e}] \ + \alpha_{h}(\delta) \boldsymbol{\mathcal{E}}_{mag}^{dip}[\textbf{d}_{h}] \ + \beta_{e}(\delta) \boldsymbol{\mathcal{E}}_{elec}^{quad}[\textbf{Q}_{e}] \ + \beta_{h}(\delta) \boldsymbol{\mathcal{E}}_{mag}^{quad}[\textbf{Q}_{h}] \ + \ldots$$

$$\mathbf{H}_{\delta}^{\mathbf{s}} \approx \alpha_{\mathbf{e}}(\delta) \boldsymbol{\mathcal{H}}_{\mathsf{elec}}^{\mathsf{dip}}[\mathbf{d}_{\mathsf{e}}] + \alpha_{\mathsf{h}}(\delta) \boldsymbol{\mathcal{H}}_{\mathsf{mag}}^{\mathsf{dip}}[\mathbf{d}_{\mathsf{h}}] + \beta_{\mathsf{e}}(\delta) \boldsymbol{\mathcal{H}}_{\mathsf{elec}}^{\mathsf{quad}}[\mathbf{Q}_{\mathsf{e}}] + \beta_{\mathsf{h}}(\delta) \boldsymbol{\mathcal{H}}_{\mathsf{mag}}^{\mathsf{quad}}[\mathbf{Q}_{\mathsf{h}}] + \dots$$

Multipole moments

- d_e, d_h: dipole moment
- Q_e, Q_h: quadrupole moment tensor

$$\begin{array}{ll} \textbf{d}_{\text{e}} = \textbf{E}^{\text{i}}(\textbf{0}) & \qquad \textbf{d}_{\text{h}} = -\frac{1}{2}\textbf{H}^{\text{i}}(\textbf{0}) \end{array}$$

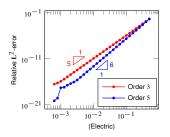
$$\mathbf{Q}_{\mathrm{e}} = -\frac{2}{3}\mathbb{J}_{\mathbf{E}^{\mathrm{i}}}^{\mathrm{sym}}(\mathbf{0}) \ \ \mathbf{Q}_{\mathrm{h}} = \frac{4}{3}\mathbb{J}_{\mathbf{H}^{\mathrm{i}}}^{\mathrm{sym}}(\mathbf{0})$$

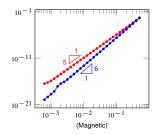
Order of approximation

- Order 3: $\beta_e = \beta_h = 0$ and $\alpha_e = \alpha_h = \delta^3$
- Order 5: $\beta_e = \beta_h = \delta^5$, $\alpha_e = \delta^3 (1 + \frac{3(\kappa \delta)^2}{10})$ $\alpha_{\rm h} = \delta^3 (1 - \frac{3(\kappa \delta)^2}{5})$

intermediate approximations

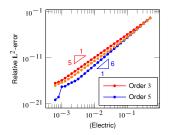
- Collected dipole
- Modified approximation

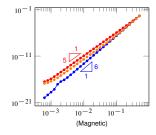




Data

- $\lambda = 5.0$
- Plane wave
- δ varies





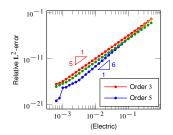
Data

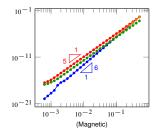
- $\lambda = 5.0$
- Plane wave
- δ varies

$$\mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \boldsymbol{\mathcal{E}}_{\mathrm{dip}}^{\mathrm{elec}}[\mathbf{d}_{\mathrm{e}}] + \alpha_{\mathrm{h}}(\delta) \boldsymbol{\mathcal{E}}_{\mathrm{dip}}^{\mathrm{mag}}[\mathbf{d}_{\mathrm{h}}]$$

$$\mathbf{H}_{\delta}^{\mathrm{s}} pprox lpha_{\mathrm{e}}(\delta) \mathbf{\mathcal{H}}_{\mathrm{dip}}^{\mathrm{elec}}[\mathbf{d}_{\mathrm{e}}] + lpha_{\mathrm{h}}(\delta) \mathbf{\mathcal{H}}_{\mathrm{dip}}^{\mathrm{mag}}[\mathbf{d}_{\mathrm{h}}]$$

• Collected dipole: $\beta_{\rm e}=\beta_{\rm h}=0,~\alpha_{\rm e}=\delta^3(1+\frac{3(\kappa\delta)^2}{10})$ and $\alpha_{\rm h}=\delta^3(1-\frac{3(\kappa\delta)^2}{5})$





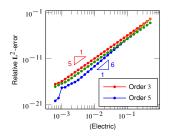
Data

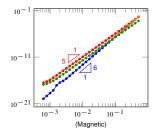
- $\lambda = 5.0$
- Plane wave
- δ varies

$$\mathbf{E}_{\delta}^{\mathrm{s}} pprox lpha_{\mathrm{e}}(\delta) \mathbf{\mathcal{E}}_{\mathrm{dip}}^{\mathrm{elec}}[\mathbf{d}_{\mathrm{e}}] + lpha_{\mathrm{h}}(\delta) \mathbf{\mathcal{E}}_{\mathrm{dip}}^{\mathrm{mag}}[\mathbf{d}_{\mathrm{h}}]$$

$$\mathbf{H}_{\delta}^{\mathsf{s}} pprox lpha_{\mathsf{e}}(\delta) \mathcal{H}_{\mathsf{dip}}^{\mathsf{elec}}[\mathbf{d}_{\mathsf{e}}] + lpha_{\mathsf{h}}(\delta) \mathcal{H}_{\mathsf{dip}}^{\mathsf{mag}}[\mathbf{d}_{\mathsf{h}}]$$

- Collected dipole: $\beta_{\rm e}=\beta_{\rm h}=0,~\alpha_{\rm e}=\delta^3(1+\frac{3(\kappa\delta)^2}{10})$ and $\alpha_{\rm h}=\delta^3(1-\frac{3(\kappa\delta)^2}{5})$
- Modified approximation: $\beta_{\rm e}=\beta_{\rm h}=0, \ \alpha_{\rm e}=\frac{3{\rm i}}{2(\kappa\delta)^3}\frac{j_1(\kappa\delta)}{h_1(\kappa\delta)} \ {\rm and} \ \alpha_{\rm h}=-\frac{3{\rm i}}{(\kappa\delta)^3}\frac{j_1(\kappa\delta)}{\tilde{h}_1(\kappa\delta)}$





Data

- $\lambda = 5.0$
- Plane wave
- δ varies

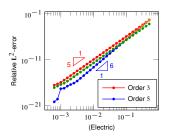
$$\mathbf{E}_{\delta}^{\mathrm{s}} pprox lpha_{\mathrm{e}}(\delta) \mathbf{\mathcal{E}}_{\mathrm{dip}}^{\mathrm{elec}}[\mathbf{d}_{\mathrm{e}}] + lpha_{\mathrm{h}}(\delta) \mathbf{\mathcal{E}}_{\mathrm{dip}}^{\mathrm{mag}}[\mathbf{d}_{\mathrm{h}}]$$

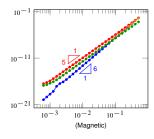
$$\mathbf{H}_{\delta}^{\mathrm{s}} pprox lpha_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{elec}}[\mathbf{d}_{\mathrm{e}}] + lpha_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{mag}}[\mathbf{d}_{\mathrm{h}}]$$

- Collected dipole: $\beta_{\rm e}=\beta_{\rm h}=0,~\alpha_{\rm e}=\delta^3(1+\frac{3(\kappa\delta)^2}{10})$ and $\alpha_{\rm h}=\delta^3(1-\frac{3(\kappa\delta)^2}{5})$
- Modified approximation: $\beta_{\rm e}=\beta_{\rm h}=0, \ \alpha_{\rm e}=\frac{3{\rm i}}{2(\kappa\delta)^3}\frac{j_1(\kappa\delta)}{h_1(\kappa\delta)} \ {\rm and} \ \alpha_{\rm h}=-\frac{3{\rm i}}{(\kappa\delta)^3}\frac{j_1(\kappa\delta)}{\tilde{h}_1(\kappa\delta)}$

Obstacle of arbitrary shape

• Approximation of order 3: $\mathbf{d_e} = \mathbf{M_e} \, \mathbf{E^i}(c)$ and $\mathbf{d_h} = -\frac{1}{2} \mathbf{M_h} \, \mathbf{H^i}(c)$





Data

- $\lambda = 5.0$
- Plane wave
- δ varies

$$\mathbf{E}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \boldsymbol{\mathcal{E}}_{\mathrm{dip}}^{\mathrm{elec}}[\mathbf{d}_{\mathrm{e}}] + \alpha_{\mathrm{h}}(\delta) \boldsymbol{\mathcal{E}}_{\mathrm{dip}}^{\mathrm{mag}}[\mathbf{d}_{\mathrm{h}}] \qquad \quad \mathbf{H}_{\delta}^{\mathrm{s}} \approx \alpha_{\mathrm{e}}(\delta) \boldsymbol{\mathcal{H}}_{\mathrm{dip}}^{\mathrm{elec}}[\mathbf{d}_{\mathrm{e}}] + \alpha_{\mathrm{h}}(\delta) \boldsymbol{\mathcal{H}}_{\mathrm{dip}}^{\mathrm{mag}}[\mathbf{d}_{\mathrm{h}}]$$

$$\mathbf{H}_{\delta}^{\mathrm{s}} pprox lpha_{\mathrm{e}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{elec}}[\mathbf{d}_{\mathrm{e}}] + lpha_{\mathrm{h}}(\delta) \mathcal{H}_{\mathrm{dip}}^{\mathrm{mag}}[\mathbf{d}_{\mathrm{h}}]$$

- Collected dipole: $\beta_e = \beta_h = 0$, $\alpha_e = \delta^3 (1 + \frac{3(\kappa \delta)^2}{10})$ and $\alpha_h = \delta^3 (1 \frac{3(\kappa \delta)^2}{5})$
- Modified approximation: $\beta_e = \beta_h = 0$, $\alpha_e = \frac{3i}{2(\kappa\delta)^3} \frac{j_1(\kappa\delta)}{h_1(\kappa\delta)}$ and $\alpha_h = -\frac{3i}{(\kappa\delta)^3} \frac{j_1(\kappa\delta)}{\tilde{h}_1(\kappa\delta)}$

Obstacle of arbitrary shape

- Approximation of order 3: $\mathbf{d}_{\mathsf{e}} = \mathbb{M}_{\mathsf{e}} \, \mathbf{E}^{\mathsf{i}}(c)$ and $\mathbf{d}_{\mathsf{h}} = -\frac{1}{2} \mathbb{M}_{\mathsf{h}} \, \mathbf{H}^{\mathsf{i}}(c)$
- High-order approximation:

$$\widetilde{\mathbf{E}}_4 = \text{dipole} + \text{quadrupole}$$

$$\widetilde{\mathbf{E}}_5 = \text{dipole} + \text{quadrupole} + \frac{1}{2}$$

• The electromagnetic fields are decomposed by superposition principle

$$\mathbf{E}_{\delta}^{\mathrm{s}}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{E}_{\delta,k}^{\mathrm{s}}(x - \boldsymbol{c}_k) \qquad \qquad \mathbf{H}_{\delta}^{\mathrm{s}}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta,k}^{\mathrm{s}}(x - \boldsymbol{c}_k)$$

Each obstacle is modeled by a dipolar source around c_k

$$\mathbf{E}_{\delta,k}^{\mathrm{s}} \approx \boldsymbol{\mathcal{E}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] \ + \boldsymbol{\mathcal{E}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}] \qquad \mathbf{H}_{\delta,k}^{\mathrm{s}} \approx \boldsymbol{\mathcal{H}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] + \boldsymbol{\mathcal{H}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}]$$

Approximate solution to multiple scattering by small spheres

The electromagnetic fields are decomposed by superposition principle

$$\mathbf{E}^{\mathrm{s}}_{\delta}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{E}^{\mathrm{s}}_{\delta,k}(x - \boldsymbol{c}_k) \qquad \qquad \mathbf{H}^{\mathrm{s}}_{\delta}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{H}^{\mathrm{s}}_{\delta,k}(x - \boldsymbol{c}_k)$$

Each obstacle is modeled by a dipolar source around c_k

$$\mathbf{E}_{\delta,k}^{\mathrm{s}} \approx \boldsymbol{\mathcal{E}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] \ + \boldsymbol{\mathcal{E}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}] \qquad \mathbf{H}_{\delta,k}^{\mathrm{s}} \approx \boldsymbol{\mathcal{H}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] + \boldsymbol{\mathcal{H}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}]$$

Born approximation

$$egin{aligned} \mathbf{d}_{\delta,\mathbf{e}}^k &= lpha_{\mathbf{e}}(\delta) \, \mathbf{E}^{\mathrm{i}}(c_k) \ \mathbf{d}_{\delta,\mathsf{h}}^k &= -rac{1}{2}lpha_{\mathsf{h}}(\delta) \, \mathbf{H}^{\mathrm{i}}(c_k) \end{aligned}$$

- ✓ Explicit formulation
- X Interactions are not taken into account

Approximate solution to multiple scattering by small spheres

The electromagnetic fields are decomposed by superposition principle

$$\mathbf{E}_{\delta}^{\mathrm{s}}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{E}_{\delta,k}^{\mathrm{s}}(x - \boldsymbol{c}_{k}) \qquad \qquad \mathbf{H}_{\delta}^{\mathrm{s}}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta,k}^{\mathrm{s}}(x - \boldsymbol{c}_{k})$$

Each obstacle is modeled by a dipolar source around c_k

$$\mathbf{E}_{\delta,k}^{\mathrm{S}} \approx \boldsymbol{\mathcal{E}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] \ + \boldsymbol{\mathcal{E}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}] \qquad \mathbf{H}_{\delta,k}^{\mathrm{S}} \approx \boldsymbol{\mathcal{H}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] + \boldsymbol{\mathcal{H}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}]$$

Born approximation

$$\begin{split} \mathbf{d}_{\delta,\mathbf{e}}^k &= \alpha_{\mathbf{e}}(\delta) \, \mathbf{E}^{\mathbf{i}}(\boldsymbol{c}_k) \\ \mathbf{d}_{\delta,\mathbf{h}}^k &= -\frac{1}{2} \alpha_{\mathbf{h}}(\delta) \, \mathbf{H}^{\mathbf{i}}(\boldsymbol{c}_k) \end{split}$$

- Explicit formulation
- X Interactions are not taken into account

Foldy-Lax approximation

$$\begin{split} \mathbf{d}_{\delta,\mathbf{e}}^k &= \alpha_{\mathbf{e}}(\delta) \left(\mathbf{E}^{\mathbf{i}}(c_k) + \sum_{\substack{\ell=1\\\ell \neq k}}^{N_{\mathrm{obs}}} \mathbf{E}_{\delta,\ell}^{\mathrm{s}}(c_k) \right) \\ \mathbf{d}_{\delta,\mathbf{h}}^k &= -\frac{1}{2} \alpha_{\mathbf{h}}(\delta) \left(\mathbf{H}^{\mathbf{i}}(c_k) + \sum_{\substack{\ell=1\\\ell \neq k}}^{N_{\mathrm{obs}}} \mathbf{H}_{\delta,\ell}^{\mathrm{s}}(c_k) \right) \end{split}$$

- Implicit formulation
- ✓ Interactions are taken into account

Approximate solution to multiple scattering by small spheres

The electromagnetic fields are decomposed by superposition principle

$$\mathbf{E}^{\mathrm{s}}_{\delta}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{E}^{\mathrm{s}}_{\delta,k}(x - \mathbf{c}_k) \qquad \qquad \mathbf{H}^{\mathrm{s}}_{\delta}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{H}^{\mathrm{s}}_{\delta,k}(x - \mathbf{c}_k)$$

Each obstacle is modeled by a dipolar source around c_k

$$\mathbf{E}_{\delta,k}^{\mathrm{s}} pprox oldsymbol{\mathcal{E}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] + oldsymbol{\mathcal{E}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}]$$

$$\mathbf{E}_{\delta,k}^{\mathrm{s}} \approx \boldsymbol{\mathcal{E}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] \ + \boldsymbol{\mathcal{E}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}] \qquad \mathbf{H}_{\delta,k}^{\mathrm{s}} \approx \boldsymbol{\mathcal{H}}_{\mathrm{elec}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{e}}^{k}] + \boldsymbol{\mathcal{H}}_{\mathrm{mag}}^{\mathrm{dip}}[\mathbf{d}_{\delta,\mathrm{h}}^{k}]$$

Vectorial formulation

$$\boldsymbol{d}_{\delta} = (\boldsymbol{d}_{\delta,e}^1, \dots \boldsymbol{d}_{\delta,e}^{N_{\text{obs}}}, \boldsymbol{d}_{\delta,h}^1, \dots \boldsymbol{d}_{\delta,h}^{N_{\text{obs}}}) \in \mathbb{C}^{6N_{\text{obs}}}$$

$$(\mathbb{I} - \alpha(\delta)\mathbb{A}) \, \mathbf{d}_{\delta} = \alpha(\delta)\mathbf{f}$$

where A is the "interaction" matrix

- Order 5: $\alpha(\delta) = \delta^3$
- Collected and Modified:

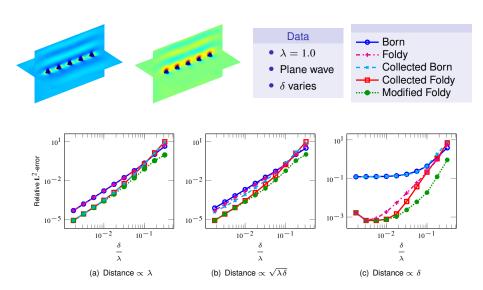
$$\alpha(\delta) = \begin{pmatrix} \alpha_{\mathsf{e}}(\delta)\mathbb{I} & \mathbf{0} \\ \mathbf{0} & \alpha_{\mathsf{h}}(\delta)\mathbb{I} \end{pmatrix}$$

Foldy-Lax approximation

$$egin{aligned} \mathbf{d}_{\delta,\mathbf{e}}^k &= lpha_{\mathbf{e}}(\delta) \left(\mathbf{E}^{\mathsf{i}}(c_k) + \sum_{\ell=1 top \ell
eq k}^{N_{\mathsf{obs}}} \mathbf{E}_{\delta,\ell}^{\mathsf{s}}(c_k)
ight) \ \mathbf{d}_{\delta,\mathsf{h}}^k &= -rac{1}{2} lpha_{\mathsf{h}}(\delta) \left(\mathbf{H}^{\mathsf{i}}(c_k) + \sum_{\ell=1 top \ell
eq k}^{N_{\mathsf{obs}}} \mathbf{H}_{\delta,\ell}^{\mathsf{s}}(c_k)
ight) \end{aligned}$$

- Implicit formulation
- Interactions are taken into account

Validation of asymptotic models



Outline

Spectral models

- 3. Spectral models

• The electromagnetic fields are represented by the Stratton-Chu formula for $x \in \Omega_{\delta}$

$$\mathbf{E}_{\delta}^{\mathtt{S}}(x) = \sum_{k=1}^{N_{\mathsf{obs}}} \mathbf{curl} \int_{\Gamma_{\delta}^{k}} \Phi(x - \boldsymbol{c}_{k}, y - \boldsymbol{c}_{k}) \mathbf{p}_{k}(y) \ ds_{y}$$

where
$$\Phi(x, y) = \frac{\exp(i\kappa|x-y|)}{4\pi|x-y|}$$

• The electromagnetic fields are represented by the Stratton-Chu formula for $x \in \Omega_{\delta}$

$$\mathbf{E}_{\delta}^{\mathrm{s}}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{curl} \int_{\Gamma_{\delta}^{k}} \Phi(x - \mathbf{c}_{k}, y - \mathbf{c}_{k}) \mathbf{p}_{k}(y) \ ds_{y}$$

• Each $\mathbf{p}_\ell \in \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_\delta^\ell}, \Gamma_\delta^\ell)$ satisfies the boundary integral equation

$$\sum_{\ell=1}^{N_{\mathrm{obs}}} \left\langle \mathbf{\mathcal{M}}_{\Gamma}^{k\ell} \mathbf{p}_{\ell}, \mathbf{v}_{k} \right\rangle_{\Gamma_{\delta}^{k}} = -\left\langle \mathbf{n} \times \mathbf{E}^{\mathrm{inc}}, \mathbf{v}_{k} \right\rangle_{\Gamma_{\delta}^{k}} \qquad \forall \, \mathbf{v}_{k} \in \mathbf{H}_{\mathrm{t}}^{-\frac{1}{2}}(\mathrm{curl}_{\Gamma_{\delta}^{k}}, \Gamma_{\delta}^{k})$$

where $\mathbf{M}_{\Gamma}^{k\ell}: \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{\delta}^{\ell}}, \Gamma_{\delta}^{\ell}) \longrightarrow \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{\delta}^{k}}, \Gamma_{\delta}^{k})$ is the extension of

$$\mathcal{M}_{\Gamma}^{k\ell} \boldsymbol{\lambda}(x_{\Gamma}) = \mathbf{n}(x_{\Gamma}) \times \lim_{x \to x_{\Gamma}} \mathbf{curl} \int_{\Gamma_{\delta}^{\ell}} \Phi(x - \boldsymbol{c}_{\ell}, y - \boldsymbol{c}_{\ell}) \boldsymbol{\lambda}(y) \, ds_{y} \qquad \boldsymbol{\lambda} \in \mathscr{C}^{\infty}(\Gamma_{\delta}^{\ell}) \qquad x_{\Gamma} \in \Gamma_{\delta}^{k}$$

Principle of the spectral method

• The electromagnetic fields are represented by the Stratton-Chu formula for $x \in \Omega_{\delta}$

$$\mathbf{E}_{\delta}^{\mathrm{s}}(x) = \sum_{k=1}^{N_{\mathrm{obs}}} \mathbf{curl} \int_{\Gamma_{\delta}^{k}} \Phi(x - \mathbf{c}_{k}, y - \mathbf{c}_{k}) \mathbf{p}_{k}(y) \ ds_{y}$$

• Each $\mathbf{p}_\ell \in \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_\delta^\ell}, \Gamma_\delta^\ell)$ satisfies the boundary integral equation

$$\sum_{\ell=1}^{N_{\mathrm{obs}}} \left\langle \mathbf{\mathcal{M}}_{\Gamma}^{k\ell} \mathbf{p}_{\ell}, \mathbf{v}_{k} \right\rangle_{\Gamma_{\delta}^{k}} = -\left\langle \mathbf{n} \times \mathbf{E}^{\mathrm{inc}}, \mathbf{v}_{k} \right\rangle_{\Gamma_{\delta}^{k}} \qquad \forall \, \mathbf{v}_{k} \in \mathbf{H}_{\mathsf{t}}^{-\frac{1}{2}}(\mathrm{curl}_{\Gamma_{\delta}^{k}}, \Gamma_{\delta}^{k})$$

• Galerkin discretization of the BIE on local spectral basis with $N_{\rm mod}$ modes

$$\mathbf{p}_{\ell}(x) = \sum_{n=1}^{N_{\mathsf{mod}}} \sum_{m=-n}^{n} p_{n,m}^{\ell,\perp} \, a_n(\delta) \, \nabla_{\mathbb{S}^2} Y_{n,m}(\widehat{x}_{\ell}) + p_{n,m}^{\ell,\times} \, b_n(\delta) \, \mathbf{curl}_{\mathbb{S}^2} Y_{n,m}(\widehat{x}_{\ell}) \qquad x \in \Gamma_{\delta}^{\ell}$$

with $\widehat{x}_\ell = \frac{x-c_\ell}{|x-c_\ell|}$ and $\nabla_{\mathbb{S}^2} Y_{n,m}$, $\mathbf{curl}_{\mathbb{S}^2} Y_{n,m}$: complex-valued vector spherical harmonics

The variational formulation: Find $(\mathbf{p}_k) \in \mathbf{H}_{\mathsf{t}}^{-\frac{1}{2}}(\mathsf{div}_{\Gamma^k_\delta}, \Gamma^k_\delta)$ such that

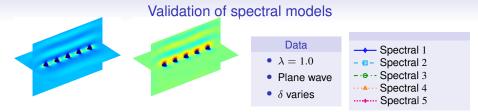
$$\langle \mathbb{M}^{kk}_{\Gamma} \mathbf{p}_k, \mathbf{v}_k \rangle_{\Gamma^k_{\delta}} + \sum_{\substack{\ell=1\\\ell \neq k}}^{N_{\text{obs}}} \langle \mathbb{M}^{k\ell}_{\Gamma} \mathbf{p}_{\ell}, \mathbf{v}_k \rangle_{\Gamma^k_{\delta}} = - \langle \mathbf{n} \times \mathbf{E}^{\text{inc}}, \mathbf{v}_k \rangle_{\Gamma^k_{\delta}} \qquad \forall \, \mathbf{v}_k \in \mathbf{H}^{-\frac{1}{2}}_t(\text{curl}_{\Gamma^k_{\delta}}, \Gamma^k_{\delta})$$

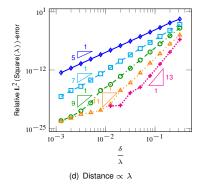
Can be put under vectorial form
$$\mathbf{p} = \left((p_{n,m}^{1,\perp}), \ldots, (p_{n,m}^{N_{\text{obs}},\perp}), (p_{n,m}^{1,\times}), \ldots, (p_{n,m}^{N_{\text{obs}},\times})\right)^{\top} \in \mathbb{C}^N$$

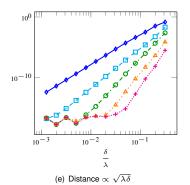
$$\mathbb{M} \ \mathbf{p} = \mathbf{f}$$

with $N = 2N_{\text{mod}}(N_{\text{mod}} + 2)N_{\text{obs}}$

$$\mathbb{M} = \begin{pmatrix} \mathbb{M}_{\perp \perp} & \mathbb{M}_{\perp \times} \\ \mathbb{M}_{\times \perp} & \mathbb{M}_{\times \times} \end{pmatrix} \qquad \text{with} \qquad \mathbb{M}_{\alpha\beta} = \begin{pmatrix} \mathbb{M}_{\alpha\beta}^{11} & \mathbb{M}_{\alpha\beta}^{12} & \dots & \mathbb{M}_{\alpha\beta}^{1N \text{obs}} \\ \mathbb{M}_{\alpha\beta}^{21} & \mathbb{M}_{\alpha\beta}^{22} & \dots & \mathbb{M}_{\alpha\beta}^{2N \text{obs}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{M}_{\alpha\beta}^{N \text{obs} 1} & \mathbb{M}_{\alpha\beta}^{N \text{obs} 2} & \dots & \mathbb{M}_{\alpha\beta}^{N \text{obs} N \text{obs}} \end{pmatrix}$$







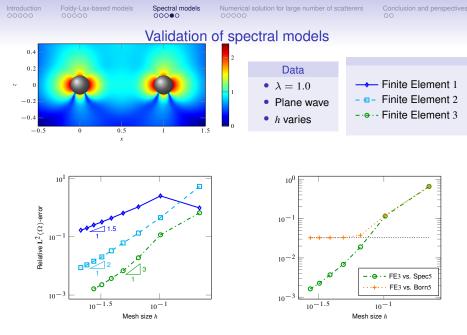
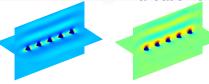


Figure: Spectral solutions vs. Finite element solutions (Montjoie)

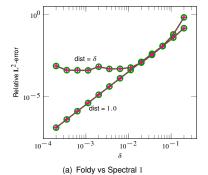
Validation of spectral models

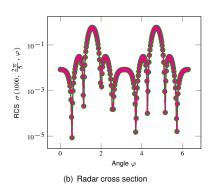


Data

- $\lambda = 1.0$
- Plane wave
- δ varies

-- • ·- Modified Foldy ...+ ··· Spectral 1





However ...

The spectral method has some disadvantages . . .

Dense matrix inherited from BIEs Increasing in number of unknowns as the number of obstacles grows Quickly limited with memory resources

Ill-conditionned system requiring preconditionning
Smart storage and assembling in specific configurations
Implementation of an iterative resolution

... and that can be applied on the Foldy systems too

The spectral method has some disadvantages . . .

Dense matrix inherited from BIEs Increasing in number of unknowns as the number of obstacles grows Quickly limited with memory resources

Ill-conditionned system requiring preconditionning Smart storage and assembling in specific configurations Implementation of an iterative resolution

... and that can be applied on the Foldy systems too

Outline

- 4. Numerical solution for large number of scatterers

Iterative solver

Simple calculations improve condition number associated with the matrix

$$\mathbb{M}\,p=f$$

The matrix is decomposed as

$$\mathbb{M} = \mathbb{I} + \mathbb{A} + \mathbb{B}$$

where $(\mathbb{I} + \mathbb{A})$ invertible contains the *main* interactions

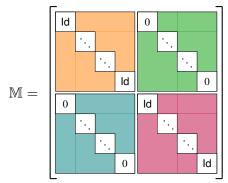
$$A_{ij} = M_{ij}$$
 if $|M_{ij}| \ge$ tolerance

We solve iteratively

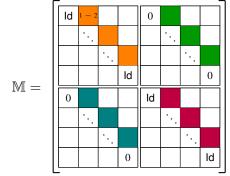
$$\begin{cases} \mathbf{p}^{(0)} = (\mathbb{I} + \mathbb{A})^{-1} \, \mathbf{f} \\ (\mathbb{I} + \mathbb{A}) \, \mathbf{p}^{(n+1)} = \mathbf{f} - \mathbb{B} \, \mathbf{p}^{(n)} \end{cases}$$

- I is the identity matrix
- A is a sparse matrix
- B is dense and never assembled

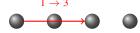
- $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k c_\ell)$
- Example: 4 aligned obstacles

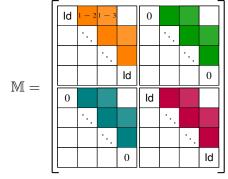


- $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k c_\ell)$
- Example: 4 aligned obstacles

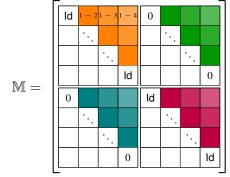


- $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k c_\ell)$
- Example: 4 aligned obstacles

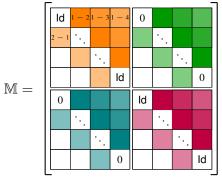




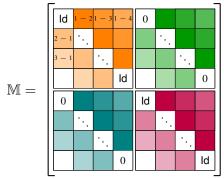
- $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k c_\ell)$
- Example: 4 aligned obstacles



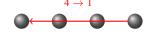
- $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k c_\ell)$
- Example: 4 aligned obstacles

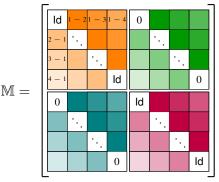


- $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k c_\ell)$
- Example: 4 aligned obstacles



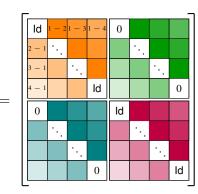
- $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k c_\ell)$
- Example: 4 aligned obstacles





• $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k - c_\ell)$

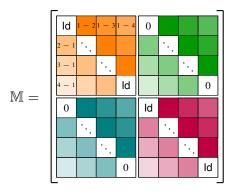
Instead of storing wholly M, we only keep the (two-by-two) different blocks $\mathbb{M}_{++}^{k\ell}$, $\mathbb{M}_{+\times}^{k\ell}$, $\mathbb{M}_{\times+}^{k\ell}$ and $\mathbb{M}_{\times\times}^{k\ell}$



• $\mathbb{M}_{\alpha\beta}^{k\ell}$ depends only on δ and $(c_k - c_\ell)$

Instead of storing wholly M, we only keep the (two-by-two) different blocks

$$\mathbb{M}^{k\ell}_{\perp\perp}$$
, $\mathbb{M}^{k\ell}_{\perp imes}$, $\mathbb{M}^{k\ell}_{ imes\perp}$ and $\mathbb{M}^{k\ell}_{ imes imes}$

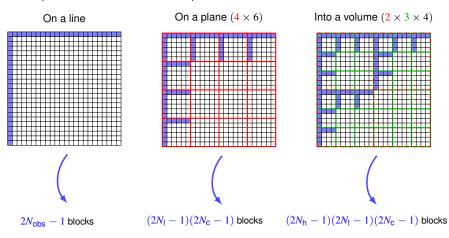


- The decomposition becomes $\mathbb{M}_{\mathsf{Block}} = \mathbb{A}_{\mathsf{Block}} + \mathbb{B}_{\mathsf{Block}}$
- Assembling of A_{Block} in sparse matrix
- Define the action of $\mathbb{B}_{\mathsf{Block}}$

$$\mathcal{A}(\mathbb{B}_{\text{Block}}, \mathbf{p}) = \mathbb{B}\,\mathbf{p}$$

Uniformly distributed configurations of obstacles

Example with 24 obstacles. For each part



instead of $N_{\text{obs}}^2 = N_1^2 N_0^2 = N_1^2 N_0^2 N_h^2$ blocks per part

Numerical results

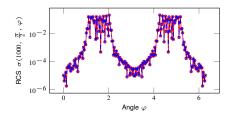
• Test n°1: 1 000 aligned obstacles

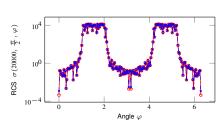
$$\delta = 0.1, d = 1.0, \lambda = 5.0$$

• Test n°2: 10 000 aligned obstacles $\delta = 0.5, d = 2.0, \lambda = 5.0$

	Modified Foldy	Spectral 1		
Solver	Direct			
Density	100%			
Linear system	21.25s	44.59s		
Post-processing	16.12s	21.19s		
Total time	37.37s	65.78s		

	Modified Foldy	Spectral 1	
Solver	Iterative		
Density	4.95%		
Linear system	29.74s	163.25s	
Post-processing	76.64s	262.97s	
Total time	106.46s	426.34s	

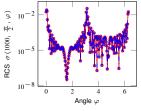


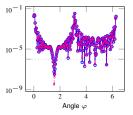


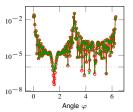
Numerical results

• Test n°3: $50 \times 50 = 2500$ obstacles uniformly distributed on a plane $\delta = 0.1, d = 1.0, \lambda = 5.0$

	Modified Foldy		Spectral 1	
Solver	Direct	Iterative	Direct	Iterative
Density	100%	29.66%	100%	29.66%
Linear system	595.10s	38.32s	613.10s	234.84s
Post-processing	22.96s	19.00s	62.69s	58.47s
Total time	618.48s	57.32s	676.09s	293.31s







- (f) Foldy vs Spectral: direct solver
- (g) Foldy Iterative vs Direct
- (h) Spectral Iterative vs Direct

- 1. Introduction
- 2. Foldy-Lax-based models
- Spectral models
- 4. Numerical solution for large number of scatterers
- 5. Conclusion and perspectives

Conclusion

- High-order asymptotic expansions to single scattering (Labat, Péron and Tordeux, In revision 2019)
- ✓ Low-order Born and Foldy-Lax models to multiple scattering
- High-order spectral models equivalent to the Generalized Multiparticle Mie-solution theory (Xu, 1995)
- Fast resolution using few memory to the multiple scattering problem by a large number of spheres

On-going work

- Comparison of preconditionners and iterative solvers
- Smart assembling for obstacles uniformly distributed into a volume

Perspectives

- X Definition of high-order asymptotic models to multiple scattering
- Extension to obstacles of arbitrary shape
- X Extension to time-dependent domain

Conclusion

- High-order asymptotic expansions to single scattering (Labat, Péron and Tordeux, In revision 2019)
- ✓ Low-order Born and Foldy-Lax models to multiple scattering
- High-order spectral models equivalent to the Generalized Multiparticle Mie-solution theory (Xu, 1995)
- Fast resolution using few memory to the multiple scattering problem by a large number of spheres

On-going work

- Comparison of preconditionners and iterative solvers
- Smart assembling for obstacles uniformly distributed into a volume

Perspectives

- X Definition of high-order asymptotic models to multiple scattering
- X Extension to obstacles of arbitrary shape
- X Extension to time-dependent domain

Thank you for your attention