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2920 Chemin de la tour, Montréal (Québec, Canada) H3T 1J4
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I. INTRODUCTION

Density of states (DOS) plays an important role in var-
ious physical systems which have large number of parti-
cles confined in a given volume. Explicit or numerical
calculations of the DOS are in general used to compare
models with experiments, but very few explicit models
exist. Indeed, apart from models where the dispersion
relation is spherically symmetric and monotonically ris-
ing, it is complicated to invert it to express the quantum
number k as a function of the energy which would allow
to obtain the DOS by a derivation of the k-space volume.

Among all the references on this subject, mention
reference [12] which experimentally observe this va-
lence band using X-ray photoelectron spectroscopy
and restore the DOS, which presents multiple peaks.
The spinless fermion model [7] compares the Luttinger
liquids and the Fermi liquids. The density of states
D(ϵ), where ϵ is the (low) energy level considered) is
then computed numerically, using a 400-site chain, for
different values of an interaction parameter in some
interval [−2t, 2t]. They obtain numerically a behavior of
the form D(ϵ) ≃ |ϵ− ϵf |α, where α should be measured,
knowing that the non-interacting chain has a DOS equal
to 1

π
1√

4t2−ϵ2
1|ϵ|<2t. This makes this study close to the

type of behavior our paper addresses.

Our analysis focuses on comparisons between the spec-
trum of a one-dimensional Schrödinger operator for a par-
ticular periodic potential V (infinite in space) and for
its restriction to a finite number of sites (see Figure 1).
We deduce from this finite, but large, number of sites,
the Integrated Density of States (IDS) associated to the
Hamiltonian operator whose derivate is the DOS. The
exact formula for the IDS is given in the Appendix. The
expression of the DOS is analytical and, as the names
suggest, is the derivative of the IDS with respect to
the energy level E is the DOS. All our calculations are
done on the particular potential V, which is a new case
for which one has an analytical expression of the DOS.
It is a continuous, periodic potential of period 2L0, of
range [−V0, 0], piecewise affine (which spectrum is, clas-
sically a band spectrum). For computing the DOS, we
study the energy levels of the Schrödinger operator with
the potential V2N+1 := V1[−(2N+1)L0,(2N+1)L0] where
1[−(2N+1)L0,(2N+1)L0] is the characteristic function of the

interval [−(2N + 1)L0, (2N + 1)L0] equal to 1 on it and
0 elsewhere. We state all the results we obtain in a nut-
shell:
1. All eigenvalues of the finite range potential V2N+1

belong to the bands of the periodic potential (see [3]).
2. The number of eigenvalues smaller than a given energy
level E is equivalent, when the number N of atoms goes
to infinity, to 2L0(2N + 1)IDS(E) (see (3), which is the
result of a calculus based on certain special functions).
3. The derivative of the IDS is singular at the edges Eb of
the bands with a singularity |E−Eb|−

1
2 . It was obtained

numerically in [7] for the Fermion 1d model,

FIG. 1: The considered periodic potential V

II. DOS REPRESENTATION AND
PROPERTIES

A. The analytic solution

Introduce the dimensionless constant

κ =

(
2mL2

0V0

ℏ2

) 1
3

This constant is characteristic of the lattice.
Recall that the spectrum of the operator H =

− ℏ2

2m
d2

dx2 + V (of domain H2(R)) is a band spec-

trum ∪+∞
j=0[E

j
min, E

j
max], containing only elements of the

continuous spectrum, each of which being associated
with a pseudo-eigenfunction (a non necessarily square
summable function solution of HΨE = EΨE), whereas

the spectrum of the operatorH2N+1 = − ℏ2

2m
d2

dx2+V2N+1,
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FIG. 2: The DOS in the Hydrogen case (V0 = 13, 6eV,

L0 = 2Å and κ = 1.526)

FIG. 3: The DOS in the Carbon case (V0 = 489.99eV,

L0 = 3.08Å and κ = 10.682)

of domain D(H2N+1) = {ψ ∈ H2(R), ψ(−(2N +1)L0) =
ψ((2N + 1)L0)} is a pure point spectrum. By conven-
tion, we call “level of energies of V2N+1” the eigenvalues
of H2N+1 and “spectral bands or gaps of V” the spectral
bands and spectral gaps of H.
It is proven in [3] that there is no level of energy of

V2N+1 in the spectral gaps of V and there are exactly
2N + 2 level of energies of V2N+1 in each spectral band
of V.
A normalized counting function of the eigenvalues of

H2N+1 reads

IN (E) =
1

2L0(2N + 1)
#{λ ≤ E, λ ∈ σ(H2N+1)}.

The Integrated Density of States (IDS for short) is
the limit of IN (E) as N → +∞. Note that in the nor-
malization factor 2L0(2N + 1), 2N + 1 is the number of
atoms in the finite lattice.

The IDS is a natural object defined through Birkhoff’s
ergodic theorem and it is easier to compute and study
than its derivative which is defined as the mathematical
DOS, whenever possible.

Introduce U(x) = π(Bi′(−x − κ E
V0

)Ai(x) − Ai′(−x −
κ E
V0

)Bi(x)) and V(x) = π(Ai(−x−κ E
V0

)Bi(x)−Bi(−x−

κ E
V0

)Ai(x)), as well as the function Φ, defined on σ(H)
through

Φ(E) = 2 arctan

√
−U′V

UV′

(
−κE

V0

)
,

were, incidentally, we notice that

σ(H) = {E, (UU′VV′)
(

κE
V0

)
≤ 0},

the edges of the bands Ei
min, E

i
max being the roots of

UU′VV′. The derivative of the IDS given by (3) yields,
for all real numbers E and all κ ≥ κ0:

DOS(E) = (−1)p(
κE
V0

) 1

2π

κ

V0
Φ′(κEV0

)1
[E

p( κE
V0

)

min ,E
p( κE

V0
)

max ]
(1)

where p(κEV0
) = [ 4

3πκ
3
2 (1 + E

V0
)

3
2 ]. Note that p(κEV0

) = 1
corresponds to the conduction band.
Recall that for generic Schrödinger operators with pe-

riodic potentials, the density of states behave, at the bot-
tom of the spectrum, as C(E − E0

min)
− 1

2 with C > 0 a
constant. In general nothing is known about the other
bands. For a mathematical proof, see [9, Theorem 2.1]
where the assumption of non-degeneracy of the spectral
edges needed to apply [10, Proposition 1.1] is proven.
See also [4] for the non-degeneracy of the bottom of the
continuous spectrum in the dimension 1 case. Our po-
tential V yields an example of periodic Schrödinger oper-
ator for which the IDS behaves as K(Eb)|E−Eb|

1
2 at all

edges Eb of the spectral bands (see (4)). By derivation
of our explicit expression (3), we recover that the DOS

has asymptotics |E − Eb|−
1
2 at the edges of all spectral

bands.
From the expression (1) or from the Figure 5, one no-

tice that when N gets large, the eigenvalues of H2N+1 ac-
cumulate in the spectral bands. They accumulate more
at the edges of the bands than in the middle of the bands.
One also notice that the bands gets thinner when they
approach the bottom of the spectrum and also when κ,
our dimensionless parameter, gets larger.
The formula (1) allows us to add a simple model, an-

alytically tractable, which does not need numerical com-
putations, (apart from plotting a classical function de-
duced from the Airy functions), in the list of 1d models
one could hope to compare to the experimental data.

B. Adding a random perturbation

Another related situation worth mentioning is the be-
havior of the IDS in the presence of a random pertur-
bation. In this case, the behavior of the IDS changes
drastically compared to the deterministic periodic case.
In 1963, Lifshitz had conjectured that, for a continuous
random Schrödinger operator acting on L2(R), there ex-
ist c1, c2 > 0 such that its IDS satisfies the asymptotic
c1 exp(−c2(E − E0)

− 1
2 ) as E tends to E0, where E0 is the
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bottom of the spectrum of the considered Schrödinger op-
erator (see [14]). This asymptotic behavior is known as
Lifshitz tails and the exponent −1/2 is called the Lifshitz
exponent of the operator.

Note that the IDS itself is defined through a ther-
modynamical limit which existence is proven through
Birkhoff’s ergodic theorem. Hence the IDS is almost-
surely a deterministic quantity and it is not surprising
that its asymptotic behavior at the bottom of the spec-
trum does not depend on the random parameters defining
the random model.

The Lifschitz tails behavior has been proven first for
the Poisson model (see [6]) then for the Anderson model
(see [10] for a general result about internal Lifschitz tails)
and for the random displacement model (see [11]). The
Lifshitz tails behavior means that the spectrum is very
“thin” near E0 and is a clue of the presence of the phe-
nomenon of Anderson localization [1]. Actually, the ran-
dom models for which the Lifschitz tails behavior has
been rigorously proven present Anderson localization in
the sense that the almost-sure spectrum of these models
is pure point and all eigenfuctions associated to eigenval-
ues in this pure point spectrum are exponentially decay-
ing at infinity. And indeed, a pure point spectrum corre-
sponds to the idea of a “thin” spectrum, by comparison
to an absolutely continuous spectrum which contains full
intervals as in the periodic case.

The random case is, from a mathematical point of
view, better understood in the framework of the IDS than
in the one of the DOS. If there is a vast literature about
the IDS for random Schrödinger operators, very few is
known for the DOS of the same models.

III. SKETCH OF THE PROOF

The operator H is a self-adjoint operator, of non com-
pact resolvent (because the potential is not compactly
supported). Hence it has no pure point spectrum (see [2]
where the results of Reed-Simon are recalled), and the
absolutely continuous spectrum is composed of bands.
Recall first that it has been proven in [2] that the bands
of H (segments of the purely absolutely continuous spec-
trum) are the [Ei

min, E
i
max], where E

2i
min, E

2i+1
max ... are the

eigenvalues of − ℏ2

2m
d2

dx2 +V(x) on H1([−L0, L0]) supple-
mented with the boundary conditions ψ(L0) = ψ(−L0)
and ψ′(L0) = ψ′(−L0) and E

2i
max, E

2i+1
min ..., are the eigen-

values of − ℏ2

2m
d2

dx2 +V(x) onH1([−L0, L0]) supplemented
with the boundary conditions ψ(L0) = −ψ(−L0) and
ψ′(L0) = −ψ′(−L0).
The proofs are based upon the construction of a solu-

tion ΨE of the eigenvalues equation HΨE = EΨE usign
transmission conditions between each period. We use
there the uniqueness (up to a constant) of the solution
outside the symmetric domain [−(2N+1)L0, (2N+1)L0]
and connect this solution to the inside of it.

Introduce the pair (U, V ) of fundamental solutions of
the Airy equation. The functions U(λ(V(x) − E)) and

sign(V(x)−E− [V(x)−E])V (λ(V(x)−E)) are solution
of H outside the points nL0, and construct a Bloch mode
of H if and only if an equality on E using U, V, U ′, V ′ is
fulfilled (with four different equalities, see [2] for details).
Extremely precise study of the behavior of the solutions
of the Airy equations allow us to see the edges of the
bands as all these ordered (interlaced) solutions of these
equations.
It is then easy to define all eigenfuctions of H2N+1

as being equal to AnU(V2N+1(x)) + BnV (V2N+1(x))
for all x ∈ [(2n − 1)L0, (2n + 1)L0]. The regularity of

the eigenfunction implies transfer conditions on
(
An

Bn

)
, of

the form
(

An+1

Bn+1

)
= T κE

V0

(
An

Bn

)
, supplemented with the

conditions expressing the fact that the eigenfunction is a

solution of the ODE − ℏ2

2m
d2

dx2ψ = Eψ decaying at ±∞
outside the interval [−(2N + 1)L0, (2N + 1)L0].(

A−N

B−N

)
∝

(
1

−κ
3
2

√
− E

V0

)
,
(
AN

BN

)
∝

(
1

κ
3
2

√
− E

V0

)
.

The eigenvalues E are thus solutions of

T 2N
( 1

κ
3
2

√
− E

V0

)
.
(

κ
3
2

√
− E

V0

1

)
= 0. (2)

This equation is explicitly written using again
U, V, U ′, V ′. These expressions allow us to study
precisely the roots of the equation (2). The distribu-
tion of these roots then yields the IDS (the complete
description of this method is done in [3]).

IV. APPENDIX: MATHEMATICAL
CALCULATIONS

We are able to describe the DOS and the IDS in the
conduction band and in the valence band. The potential
that we are able to treat is V, the 2L0 periodic function
which restriction to [−L0, L0] is −V0 + V0

L0
|x|.

For E a real number, IDS(E) is given by

1

2
p(
κE

V0
)+


1
2πΦ(

κE
V0

)1
[E

p( κE
V0

)

min ,E
p( κE

V0
)

max ]
, p(κEV0

) even

( 12 − 1
2πΦ(

κE
V0

))1
[E

p( κE
V0

)

min ,E
p( κE

V0
)

max ]
, p(κEV0

) odd ,

(3)

where p(κEV0
) = [ 4

3πκ
3
2 (1 + E

V0
)

3
2 ] for κ ≥ κ0.

Here, −κ0 is the largest zero of V introduced above
(κ0 ≃ 1.515). This is proven in [3]. The presence of the
integer multiple of 1

2 = π
2π is also a consequence of the

gap-labelling theorem (see [8]). For a simple explanation,
see [5, Page 390].
In the case E not close to zero, one proves that (i ≤ p)

IDS(E)√
E − Ei

min

= Ki
min(E),

IDS(E)√
Ei

max − E
= Ki

max(E) (4)

where the functions Ki
min(E),Ki

min(E) are smooth, re-
spectively, in the neighborhood of Ei

min, E
i
max. One has
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respectively in the neighborhood of Ei
min, E

i
max, the ex-

istence of functions Ri
min, R

i
max smooth such that

DOS(E) = (E − Ei
min)

− 1
2Ri

min(E),

DOS(E) = (Ei
max − E)−

1
2Ri

max(E).

We also obtain the following exact expression equiv-

alent to (3), where τ0 = Ai
Bi (−

cE
V0

), τ1 = Ai′

Bi′ (−
cE
V0

), P
and Q are functions defined through the fractional Bessel
functions (see [2, 13]), ζ = 2

3 (κ + E)
3
2 , and a, b, c, d are

constructed with P,Q, cos ζ, sin ζ

Φ(E) =

√
a+ τ0b− τ1c− τ0τ1d

a+ τ0c− τ1b− τ0τ1d
≃

√√√√τ0 − 1
τ1

− 2 cos ζ

τ1 − 1
τ0

+ 2 cos ζ
.

The graph for the IDS is given at Figure 4. This is the
graph of a function, given by (3). The graph of the DOS
is given at Figure 5.

FIG. 4: Integrated density of states for κ = 2.8

FIG. 5: The DOS associated to the potential V for
κ = 2.8
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