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Error of an eFDDM: What do matched
asymptotic expansions teach us?

Jérôme Michaud1 and Pierre-Henri Cocquet1

1 Introduction

In this paper, we are interested in heterogeneous decomposition methods.
For complex problems, it may be useful to rely on approximations on subdo-
mains and obtain an approximate global solution through appropriate cou-
pling conditions on the interface. For an overview of such techniques, see [5]
and references therein. In particular, we want to look at methods that neglect
diffusion in a subdomain of non-zero measure. Gander and Martin [6] have
compared the existing coupling methods with respect to their order in the
small parameter in the different subdomains. An example of such a method
is the χ-method, see [2, 1]. We want to extend these results to the Fuzzy Do-
main Decomposition Methods developed by Gander and Michaud [7]. This
method is interesting as it provides an adaptive coupling method that al-
lows for a tracking of domain of validity of different approximations. In [7],
the authors show an approximation error analysis for a very simple problem
that does not seem to generalize to higher dimensions. We develop a more
general analysis based on matched asymptotic expansions [3] that show the
convergence of an explicit FDDM (eFDDM) [7] method. For the comparison
with the result of Gander and Martin [6], we note that our results compare
with their a < 0 case. They show that the coupling is usually of order O(ν),
unless a factorization of the operator is done, in which case, the result can
be improved to get an order of O(νm). We show that an eFDDM is of order
O(ν) and have numerical evidence that (in 1D at least) this method is of
order O(ν3/2) in the subdomain where diffusion is taken into account.

Basic facts about eFDDMs: Following [7], we recall that an eFDDM
is a numerical method based on a FDD Ω = Ω1 + · · · + Ωn, where Ωi are
fuzzy sets of membership functions hi and

∑n
i=1 hi = 1. In this paper, we
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will work with a FDD of two subdomains Ω1 and Ω2 of membership function
h1 = h and h2 = 1− h respectively.

We approximate the linear problem with zero Dirichlet boundary condition

L(u) = f on Ω, u|∂Ω = 0, (1)

using two approximations Li, i = 1, 2, valid in a fuzzy sense in Ωi.
We have the global approximation

hL1(u) + (1− h)L2(u) = f, on Ω, u|∂Ω = 0, (2)

equivalent to the eFDD approximation

{
L̃1(u1) = hf + L12(u2) on Supp(Ω1), ui|∂Ω = 0,

L̃2(u2) = (1 − h)f + L21(u1) on Supp(Ω2),
(3)

with ui = hiu and L̃i and Lij linear operators coming from the application
of the product rule to exchange h with the operators Li, see [7] for details.

2 Model problem

We are interested in the reaction diffusion model problem

{
Lhν(uhν) := −hν∆uhν − a · ∇uhν + cuhν = f, in Ω

uhν = 0, on ∂Ω
(4)

where ν > 0, a > 0 and c(x) + div a(x)/2− ν∆h/2 ≥ α > 0 a.e. in a smooth
domain Ω, 0 ≤ h ≤ 1 is a smooth function with ∇(h1/2) ∈ L2(Ω)1.

We want to study the approximation error of an eFDDM for an approxi-
mation of L1ν(u1ν) = Lν(uν) = f by the global approximation hLν(u)+(1−
h)L0ν(u) = Lhν(uhν) = f , which can be written in the eFDDM as in (3).
We multiply (4) by v ∈ Hh

0 = {u ∈ L2(Ω), h1/2∇u ∈ L2(Ω), (h1/2u)|∂Ω = 0}
(this is a Hilbert space for the inner product (u, v)L2 + (h1/2∇u, h1/2∇v)L2)
and integrate by parts to obtain the following variational formulation

{
Find uhν := ũ ∈ Hh

0 such that for every v ∈ Hh
0 ,

ahν(ũ, v) := ν
∫
Ω
h∇ũ · ∇vdx−

∫
Ω
[((a− ν∇h) · ∇ũ)v + cũv]dx =

∫
Ω
fvdx.

(5)
In order to see that problem (5) is well-posed, we need the following lemma.

Lemma 1. If c(x)+div a(x)/2−ν∆h/2 ≥ α > 0 a.e., where α is independent

of ν, we have:

1 This is only a technicality to guaranty the wellposedness of the trace h1/2u on ∂Ω.
Typical smooth “plateau” functions satisfy this condition.
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ahν(u, u) ≥ ν‖h 1

2∇u‖2L2(Ω) + α‖u‖2L2(Ω), (6)

‖uhν‖L2(Ω) ≤
1

α
‖f‖L2(Ω). (7)

Proof. In order to obtain a lower bound of the bilinear form we use

ahν(u, u) = ν‖h 1

2∇u‖2L2(Ω) +

∫

Ω

(c+
1

2
diva)|u|2dx− ν

2

∫

Ω

∆h|u|2dx

≥ ν‖h 1

2∇u‖2L2(Ω) + α‖u‖2L2(Ω).

(8)

The first equality follows from the definition of the bilinear form using an
integration by parts and the divergence theorem to rewrite

∫
Ω u(a · ∇u)dx =

− 1
2

∫
Ω(diva)|u|2dx.

The a priori estimate (7) follows from the fact that ahν(uhν , uhν) ≤
‖uhν‖L2(Ω)‖f‖L2(Ω) and using (6). '(
Remark 1. We want the constant α > 0 to be independent on ν. In general,
this induces a restriction on h since ν∆h/2 needs to be small. For example
this is achieved if h is independent of ν.

We assume that (4) has a solution in Hh
0 at least, then the a priori estimate

(7) ensures the uniqueness and the stability of the solution whenever the
assumptions of Lem. 1 holds.

3 Matched asymptotic expansion

From now on, we restrict ourself to a 1D problem with constant coefficient
on Ω = (0, 1). We want to use matched asymptotic expansions to study
of the approximation error of the eFDDM. Therefore we compute a matched
asymptotic expansions solution of (4) assuming that the membership function
h = 1 at least in the boundary layer of size of order ν forming near 0 [3].

To obtain a matched asymptotic expansions solution, we use:

1. For the external field we assume that u(x) ≈ ∑
k≥0 ν

kϕk(x), x ∈ (0, 1].
2. For the internal field, we zoom in the boundary layer by rescaling x.

This is done by setting X = x/ν and assuming that u(νX) = Φ(X) ≈∑
k≥0 Φk(X)νk.

The zeroth-order approximation, to which we will restrict our analysis, is
obtained by solving the following system [3]






−aϕ′
0 + cϕ0 = f, ϕ0(1) = 0,

−Φ′′
0 − aΦ′

0 = f(0), Φ0(0) = 0,
limX→∞ Φ0(X) = ϕ0(0).

(9)

If f(0) = 0, the solution of this system is given by
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Φ0(X) =
1− e−aX

a

∫ 1

0

f(y)e−
cy

a dy, ϕ0 (x) =
1

a
e

cx
a

∫ 1

x

f (y) e−
cy

a dy; (10)

otherwise the matching fails and the system does not have any solution.
We obtain a globally valid approximation by merging the two solutions

using a partition of unity {χ, 1− χ}

ũν,χ(x) := χ(x)Φ0(
x

ν
) + (1− χ(x))ϕ0(x); (11)

χ(x) :=





1, if x < d1ν
s

χ∗ ∈ [0, 1], if d1ν
s ≤ x ≤ d2ν

s, 0 < s < 1,
0, otherwise

(12)

is smooth. Note that if we scale the χ function χ(xνs), then χ and its deriva-
tives become independent of ν.

Lemma 2. For every function χ defined as in (12), we have

‖χ(n)‖L∞(Ω) = O(ν−ns). (13)

Proof. This result is a direct consequence of the independence of χ(xνs) on ν.
We change the variable in the function χ and every derivative leads to an
additional factor of ν−s, hence the result. '(

4 Approximation error estimates

We use a membership function similar to χ to simplify the computations

h(x) :=






1, if x < c1ν
t

h∗(x) ∈ [0, 1], if c1ν
t ≤ x ≤ c2ν

t

0, otherwise,
(14)

and have the following result:

Theorem 1. Let uhν be the weak solution of (4) with constant a *= 0 and c, h
defined in (14) with 0 ≤ t < 1 such that c− ν∆h/2 ≥ α > 0 a.e. and ũν,χ the

globally valid approximation of the corresponding first term in the matched

asymptotic expansions. Assume also that f(0) = 0 and f ∈ W 1,∞(Ω). For
Ω = (0, 1) and s = 2/3 + t/3 in (12), we have

‖uhν − ũν,χ‖L2(Ω) = O(ν1+t/2). (15)

Proof. We look at the equation for the error and use the fact that the internal
and external fields satisfy (9) and Lhν(ũν,χ) = (−h∆− a · ∇+ c)(χΦ0 + (1−
χ)ϕ0). The triangle inequality implies
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‖Lhν(uhν − ũν,χ)‖L2(Ω) = ‖f − Lhν(ũν,χ)‖L2(Ω)

≤ ‖χf‖L2(Ω) +
∥∥∥cχΦ0(

·
ν
)
∥∥∥
L2(Ω)

+
∥∥∥(Φ0(

·
ν
)− ϕ0(·))(hνχ′′ + aχ′)

∥∥∥
L2(Ω)

+
∥∥∥2hνχ′(Φ′

0(
·
ν
)− ϕ′

0(·))
∥∥∥
L2(Ω)

+
∥∥∥ν(1− h)χ(Φ′′

0 (
·
ν
)− ϕ′′

0(·))
∥∥∥
L2(Ω)

+ ‖ν(h− χ)ϕ′′
0‖L2(Ω)

≤ ‖f‖L2(0,d2νs) + c
∥∥∥Φ0(

·
ν
)
∥∥∥
L2(0,d2νs)

+
∥∥∥(Φ0(

·
ν
)− ϕ0(·))

∥∥∥
L2(d1νs,d2νs)

‖(νχ′′ + aχ′)‖L∞(d1νs,d2νs)

+ 2ν ‖χ′‖L∞(d1νs,d2νs)

∥∥∥(Φ′
0(

·
ν
)− ϕ′

0(·))
∥∥∥
L2(d1νs,d2νs)

+ ν
∥∥∥(Φ′′

0 (
·
ν
)− ϕ′′

0 (·))
∥∥∥
L2(0,d2νs)

+ ν ‖ϕ′′
0‖L2(d1νs,c2νt) .

(16)
The second inequality follows from the definition of χ using the support of
its derivatives. In order to finish the proof, we need a technical lemma.

Lemma 3. Let s < 1, Ωs = (κ1ν
s, κ2ν

s) and f(0) = 0. For n = 0, 1, 2 we

have the following estimates

∥∥∥∥
dn

dxn

(
Φ0(

·
ν
)− ϕ0(·)

)∥∥∥∥
L2(Ωs)

= O(ν
5

2
s−ns). (17)

Proof. We start by computing the derivatives of Φ0(
x
ν )− ϕ0(x):

Φ0(
x

ν
)− ϕ0(x) =

1

a

[∫ x

0

f(y)e−
cy

a dy − e−
ax
ν

∫ 1

0

f(y)e−
cy

a dy

]
,

d

dx

(
Φ0(

x

ν
)− ϕ0(x)

)
=

1

a
f(x)e−

cx
a +

1

ν
e−

ax
ν

∫ 1

0

f(y)e−
cy

a dy,

d2

dx2

(
Φ0(

x

ν
)− ϕ0(x)

)
=

(
f ′(x)

a
− cf(x)

a2

)
e−

cx
a − a

ν2
e−

ax
ν

∫ 1

0

f(y)e−
cy

a dy.

In order to estimate the L2-norm of these expressions, we use the fact that
‖
∫ x

0 f(y)dy‖L2(Ωs) ≤
√
3νs/2(κ3

2−κ3
1)

1/2‖f‖L∞(Ωs)/3, ‖f‖L2(Ωs) ≤ νs/2(κ2−
κ1)

1/2‖f‖L∞(Ωs) and the fact that e−
cx
a < 1, for all x ∈ (0, 1). Furthermore,

as f(0) = 0, we have ‖f‖L∞(Ωs) ≤ νsκ2‖f ′‖L∞(0,κ2), hence we have

∥∥∥Φ0(
·
ν
)− ϕ0(·)

∥∥∥
L2(Ωs)

≤
√
3‖f‖L∞(Ωs)

3a
ν

3s
2 (κ3

2 − κ3
1)

1

2 +O(ν
1

2 e
−aκ1

ν1−s )

≤ C1ν
s‖f ′‖L∞(Ωs)ν

3s
2 +O(ν

1

2 e
−aκ1

ν1−s )

= O(ν5s/2 + ν
1

2 e
−aκ1

ν1−s ),
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∥∥∥∥
d

dx

(
Φ0(

·
ν
)− ϕ0(·)

)∥∥∥∥
L2(Ωs)

≤
√
κ2 − κ1

a
νs/2‖f‖L∞(Ωs) +O(ν−

1

2 e
−aκ1

ν1−s )

≤ C2ν
s‖f ′‖L∞(Ωs)ν

s
2 +O(ν−

1

2 e
−aκ1

ν1−s )

= O(ν3s/2 + ν−
1

2 e
−aκ1

ν1−s ),

∥∥∥∥
d2

dx2

(
Φ0(

·
ν
)− ϕ0(·)

)∥∥∥∥
L2(Ωs)

≤
√
κ2 − κ1ν

s/2

∥∥∥∥
(
f ′

a
− cf

a2

)∥∥∥∥
L∞(Ωs)

+O(ν−
3

2 e
−aκ1

ν1−s )

= O(νs/2 + ν−
3

2 e
−aκ1

ν1−s ).

We obtain the desired result noting that if s < 1 then the exponential terms
are negligeable and can be neglected in the O. '(

We can now finish the proof of Thm. 1. Using Eqs. (13) and (17) and estimates
previously used for the norms of f and ϕ′′

0 . Eq. (16) becomes

‖f − Lhν(ũν,χ)‖L2(Ω) = O(ν3s/2) +O(ν3s/2) +O(ν5s/2)
(
O(ν1−2s) +O(ν−s)

)

+ νO(ν−s)O(ν3s/2) + νO(νs/2) + νO(νt/2)

= O(ν3s/2 + ν1+s/2 + ν1+t/2)

We know that t < s by hypothesis so that the second term is subdominant,
choosing s such that 3s/2 = 1 + t/2 gives the condition on s in Thm. 1. We
conclude the proof using the a priori estimate (7). '(

Corollary 1. The approximation error done by the use of an eFDDM as

described in Sect. 2 is of order 1 in ν, that is

‖uν − uhν‖L2(Ω) = O(ν). (18)

Proof. This follows from Thm. 1 by the triangle inequality, noting that h = 1
implies t = 0. '(

The approximation error obtained here is global. We now show a numerical
example that illustrates the local convergence of the approximation error of
the method.

Numerical experiment: We show here that an eFDDM for the problem
Lν(u) = f on Ω = (0, 1) is of order O(ν) as predicted by Corol. 1 and that
it is numerically of order O(ν3/2) in the subdomain where diffusion is taken
into account. For this, we solve the corresponding eFDD approximation (3)
with L1 := Lν and L2 := L0ν and a = c = 1, see [7] for the definition of the

operators L̃k and Lkl, k, l = 1, 2.
We define h as in (14) with h∗ a cubic spline on (c1ν

t, c2ν
t),

h∗(x) = δ−3(2x3 − 3νt(c1 + c2)x
2 + 6ν2tc1c2x− c22ν

3t(3c1 − c2)),
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(a) Results for the pure advective subdo-
main. Approximation error of order 1.
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(b) Results for the diffusive subdomain. Ap-
proximation error of order 3/2.

Fig. 1 Approximation errors where we refined the grid keeping nν constant.

with δ := (c2 − c1)ν
t and 0 < c1ν

t ≤ c2ν
t ≤ 1.

In order to satisfy the hypothesis of Thm. 1, we need to have α > 0. In
our case, we have ‖h′′‖L∞(Ω) = 6/δ2 which implies the condition νt−1/2 >

(3/c)1/2/(c2 − c1). Choosing t = 1/2, c1 = 6 and c2 = 8, we satisfy this
condition and we expect an order of convergence of O(ν5/4) in the diffusive
domain. Intuitively we can understand this result by Thm. 1, as both uν and
uhν have h = 1 in this domain. A triangle inequality then implies the result.
This order of convergence is better than the order of most of the available
methods [6], but not optimal. Using the same reasoning, we can hope for a
O(ν3/2−ε) for t = 1− ε.

We now show an numerical example with t = 0.99 that realizes an order
O(ν3/2−ε). Even if we can not prove the corresponding hypothesis in this
case, the numerical example behaves as expected.

We introduce a set of equidistant points xi = i · ∆x, i = 0, . . . , n + 1
and ∆x = 1/(n + 1) and discretize the eFDDM with an upwind 3-point
finite difference scheme. This gives us a system of 2n coupled equations. For
each component uj , j = 1, 2, we remove from the system all the irrelevant
equations, those for which hj(xi) = 0; this corresponds to the restriction to
Supp(Ωj). In order to obtain an approximation error curve, we let ν tends to
0 keeping nν constant to insure the resolution of the boundary layer. This is
just to test the behavior of the method. In Figure 1 we display the L2 relative
error between the numerical approximations of uν and uhν computed with
the eFDDM scheme for three choices of f .

We see that for the three choices of f the method behaves as predicted by
Corol. 1, that is the error is of order O(ν) in the advective subdomain. And
we see numerically that the error curves are of order O(ν3/2) in the diffusive
subdomain, as expected.
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5 Conclusion

In this paper we have shown that matched asymptotic expansions are useful
for the analytical study of approximation error of an eFDDM. We have proved
that the error is of order ν by taking advantage of the similarities between
the two approaches. The first is based on a decomposition of the operator
whereas the second is based on a decomposition of the solution.

Our results compare the results for a < 0 in Gander and Martin [6] with
Dirichlet boundary conditions. We have proven that an eFDDM is not worse
than the other coupling methods and our numerical example shows that we
are in fact better inside the diffusive subdomain. The justification of the order
O(ν3/2) in the diffusive subdomain is only heuristic as we have not been able
to prove it yet. We will address this problem and get local estimates in future
work. The only other known method that achieves an order better than O(ν)
is the one based on the factorization of the operator, which does not generalize
to higher dimensions. Our method generalize to higher dimensions and we are
working on extension of this work to 2D, 3D and time-dependent problems.
We also want to generalize the method to more complicated problem such as
the kinetic equations. This has been done for example in the work of Degond
et al. [4], but without any approximation error analysis.
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