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Covariance Stability Conditions for Linear Systems under Unbounded
Additive and Parametric Uncertainties in Stochastic MPC applications∗

Kaouther Moussa1,2, Mirko Fiacchini3

Abstract— This paper proposes new expressions of the error
covariance dynamics for discrete-time linear systems affected
by unbounded additive and parametric uncertainties. In tube-
based stochastic MPC approaches, this dynamics is important
for the computation of stochastic invariant sets that are used for
time-varying constraints tightening. Furthermore, this paper
addresses stability conditions of the error covariance dynamics
that can be used either in checking a posteriori the stability or to
design the prestabilizing feedback gain depending on the level of
uncertainties. Numerical examples are proposed to compare the
evolution of the theoretical and the empirical error covariance.

Index Terms— Uncertain systems, invariance, stochastic MPC

I. INTRODUCTION

Model Predictive Control (MPC) being particularly
interesting for dynamical systems subject to different types
of constraints (state and input for example), many theoretical
results have been already established [11], specifically for the
case of systems without uncertainties and those with bounded
ones. Robust MPC approaches have been significantly
developed in the last decades, where the objective is to
design optimal control strategies handling different types of
uncertainties. In this case, the uncertainties are considered
to be lying in a known bounded set. Therefore, the control
strategies require to ensure the satisfaction of the constraints
for all the uncertainties realizations, which might lead to
pessimistic and conservative results since the worst case
scenario of uncertainties realizations is considered.

One of the main approaches to handle uncertainties in
MPC applications is the tube-based one [10]. It consists in
separating the state into a deterministic and an uncertain
component and to design a prestabilizing feedback allowing
to handle the uncertainties and their effects on chance
constraints. This approach has been firstly developed for
uncertainties of bounded nature, and was later extended to
unbounded stochastic ones, which allowed a less pessimistic
control design regarding systems for which probabilistic
uncertainties can be adequately characterized.

Tube-based stochastic MPC (SMPC) approaches focused
so far on considering disturbances that are additive to the
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dynamics, for instance in [8], [4] and [9], which means
that a detailed knowledge of the systems parameters is
required. However, many systems arising in practice involve
parameters that are uncertain by nature.

The literature on uncertain parameters and multiplicative
disturbances, in general, is less developed than for the
additives ones [7]. In [5], a stochastic MPC framework
considering both additive and multiplicative uncertainties has
been proposed, though defined by probability distributions,
the uncertainties were considered lying in a bounded support.

One of the recent works on the topic of multiplicative
uncertainties is [1], where a stochastic MPC framework is
presented, although the uncertainties on the parameters are
assumed to be bounded within a polytopic set. Furthermore,
in [7], a numerical solution of the covariance steering
problem, for linear systems affected by unbounded additive
and parametric uncertainties, has been proposed. In this case
the parameters are considered mutually independent and the
dependence between the state and the parameters is taken
into account, since the parameters are considered to be
constant.

In this paper, we examine the problem of characterizing
the dynamical evolution of the covariance of a linear
system subject to unbounded additive and parametric
uncertainties, this dynamical expression being fundamental
in the constraint tightening in the context of SMPC
applications. The main originality of this paper is to propose
an exact representation of the error covariance dynamics.
This expression turns out to be a generalization of the
commonly considered error covariance, when only additive
disturbances are dealt with, for example in [1] and [6].
Furthermore, it brings out a particular representation of
the parameters covariance effect on the evolution of the
error covariance. When the prestabilizing feedback gain is
designed, this expression can be used to check the stability of
the error covariance in presence of uncertainties. Moreover,
it can be used to design the prestabilizing feedback gain
knowing the level of parametric uncertainties.

Based on the knowledge of the parameters covariance
matrix, the state covariance evolution is exactly characterized
in form of a linear difference equation and stability
conditions for the related error covariance dynamics is
provided. Besides the presence of parametric uncertainty,
also additive stochastic disturbances are considered for
which stability conditions are given too. To the best of our
knowledge, this is the first time that such conditions are
derived. Therefore, this work opens many perspectives on
the design of controllers in the presence of uncertainties,



specifically in the stochastic MPC context.
This paper is structured as follows: Section II presents

the formulation of the problem, Section III describes the
main results concerning the error covariance expressions.
Section IV presents a stability analysis on the error
covariance dynamics. Section V presents some numerical
examples to compare the empirical error covariance with the
theoretical one. Finally Section VI concludes the paper with
some perspectives for future works.

Notation: The sets of real and integer numbers
are denoted, respectively, R and N, E[x] stands for the
expectation of a random variable x. Given a random vector y,
cov(y) = E[(y−E[y])(y−E[y])T ] stands for the covariance
of y, if the later has a zero mean (E[y] = 0), then the
covariance of y is simply cov(y) = E[yyT ]. The normal
distribution of mean µ and covariance matrix Σ is denoted
N (µ,Σ). The Kronecker product is denoted by ⊗, vec(·)
stands for the vectorization operator and vec(·)−1 stands for
the inverse of the vectorization operator. ρ(M) stands for the
spectral radius of a square matrix M ∈ Rn×n with n ∈ N.
The zero matrix with n rows and m columns, with n,m ∈ N,
is denoted 0n,m. The identity matrix of n rows and columns
is denoted In. Given a symmetric matrix M , M ⪰ 0 means
that M is positive semidefinite. Given a time-varying vector
x, in this paper the time dependence is omitted except for
the initial value that is denoted x0, and the index xi, with
i ∈ N ̸=0, stands for the the i-th element of the vector, when
no ambiguity may raise.

II. PROBLEM FORMULATION

Let’s consider the following discrete-time linear system,
affected by additive and parametric uncertainties:

x+ = A(p)x+Bu+ w, (1)

where x ∈ Rn and u ∈ Rm represent, respectively the state
and the control input. The additive disturbance w ∈ Rn

is an i.i.d. sequence of random variables with E[w] = 0
and covariance cov(w) = E[(w − E[w])(w − E[w])T ] =
E[wwT ] = W , with W ⪰ 0. Let’s denote by p ∈ Rθ an
i.i.d. sequence of random variables representing the uncertain
parameters, affecting the terms of the state matrix A(p) in
an affine way, and having as covariance Σ ⪰ 0. Therefore,
the state matrix A(p) can be written as:

A(p) = A0 +

θ∑
i=1

Aipi = A0 + Ā(p),

where A0 represents the known (or nominal) and
deterministic component of A(p), whereas Ā(p) represents
the stochastic time-varying component. We can consider
without loss of generality that E[pj ] = 0 for all j = 1, · · · , θ,
and then E[Ā(p)] = 0, since the parameters means can
always be accounted for by appropriately adding an offset to
A0. The pair (A0, B) is assumed stabilizable.

Notice that since we do not assume that Σ and W
are identity matrices, then the parameters and the additive
disturbances might be mutually dependent, meaning that

E[pipj ] and E[wiwj ] can be different than zero for all
i ̸= j. Furthermore, we assume that the elements of Ā(p)
are mutually independent of the elements of w. Moreover,
since the sequences of p and w are i.i.d, then the elements
of Ā(p) and those of w are also independent of the state
for the same time step k, implying E[xĀ(p)] = E[x]E[Ā(p)]
and E[xw] = E[x]E[w].

Given system (1) and the assumptions formulated above,
the problem that will be addressed in this paper is finding
an exact expression of the error covariance dynamics related
to system (1), often useful in the context of tube-based
stochastic MPC applications. Generally, in this context, the
state is expressed as a sum of a deterministic and a random
component. This paper addresses the problem of finding the
error covariance dynamics from the same point of view.

Moreover, in this paper, we are interested in studying the
stability of the error covariance in order to derive conditions
allowing both to test and to design constant feedback gains
while guaranteeing the stability of the error covariance in the
presence of unbounded parametric and additive uncertainties.

III. MAIN RESULTS

Firstly, let’s consider the following discrete-time linear
dynamical system with uncertainties on the state parameters
p only, without additive uncertainties

x+ = A(p)x+Bu, (2)

with A(p) = A0 + Ā(p) and E[Ā(p)] = 0 such that the pair
(A0, B) is stabilizable.

The state x can be expressed as the sum of a deterministic
component z and a random component e that is

x = z + e, (3)

such that

z+ = A0z +Bv, (4)

with z0 = x0 and then e0 = 0. From e = x − z and by
considering u = Ke+ v we have:

e+ = x+ − z+ = (A0 +BK)e+ Ā(p)x

= (A(p) +BK)e+ Ā(p)z. (5)

The following standard assumptions are functional to the
subsequent results.

Assumption 1: The constant feedback gain K is designed
such that ρ (A0 +BK) < 1.

Assumption 2: The system (4) is exponentially stabilized
by the control v.

These assumptions are not restrictive being (A0, B)
stabilizable and are commonly used in standard MPC
methods.

Proposition 1: From e0 = 0 it follows that E[e] = 0 for
all time instants.



Proof: The expectation of the error is

E[e+] = E[(A(p) +BK)e+ Ā(p)z]

= E[(A(p) +BK)e] + E[Ā(p)z].

Since that A(p) is independent of both e and z, being
independent of x, and the expectation of the product of
two independent random variables is the product of their
respective expectations [3] then it follows:

E[e+] = E[(A(p) +BK)]E[e] + E[Ā(p)]z. (6)

Moreover, since E[Ā(p)] = 0, then

E[e+] = E[(A(p) +BK)]E[e]

and therefore, from e0 = 0, we have that E[e] = 0 for all
time instants. ■

A direct implication of Proposition 1 is that cov(e) =
E[eeT ]. The following property, see [2], is used hereafter.

Property 1: Given three matrices A,B and V , the mixed
Kronecker matrix-vector product can be written as:

vec(BV AT ) = (A⊗B)vec(V ). (7)

The exact evolution of the error covariance matrix is given
below.

Theorem 1: The dynamics of the error covariance related
to system (2) is given by the following expression:

cov(e+) =(A0 +BK)cov(e)(A0 +BK)T

+ vec−1[E[Ā(p)⊗ Ā(p)]vec
(
cov(e) + zzT

)
]. (8)

Proof: From (5) and Proposition 1, it follows

cov(e+) = E[e+e+T
] = E

[ (
(A0 +BK) e+ Ā(p)x

)
· ((A0 +BK) e+ Ā(p)x)T

]
= (A0 +BK)E[eeT ] (A0 +BK)

T
+ E[Ā(p)xxT Ā(p)T ]

+ (A0 +BK)E[exT Ā(p)T ] + E[Ā(p)xeT ] (A0 +BK)
T
.

Since E[exT Ā(p)T ] = E[exT ]E[Ā(p)T ] = 0 and
E[Ā(p)xeT ] = E[Ā(p)]E[xeT ] = 0, it turns out that:

cov(e+) = (A0 +BK)E[eeT ] (A0 +BK)
T

+ E[Ā(p)xxT Ā(p)T ].

The first term is dependent on the error covariance cov(e) =
E[eeT ], while the second one, resulting from the presence of
uncertain parameters, is given by

E[Ā(p)xxT Ā(p)T ] = E[Ā(p)(e+ z)(e+ z)T Ā(p)T ]

= E[Ā(p)eeT Ā(p)T ] + E[Ā(p)zzT Ā(p)T ]

+ E[Ā(p)ezT Ā(p)T ] + E[Ā(p)zeT Ā(p)T ]. (9)

By using Property 1 on the different terms of (9), from
the linearity of the vectorization operator, and the fact that
the expectation of a matrix is the matrix of expectations,

implying that the vectorization operator and the expectation
can commute, we obtain the following result:

vec
(
E[Ā(p)xxT Ā(p)T ]

)
= vec

(
E[Ā(p)eeT Ā(p)T ]

+E[Ā(p)zzTĀ(p)T ]+E[Ā(p)ezTĀ(p)T ]+E[Ā(p)zeT Ā(p)T ]
)

= vec
(
E[Ā(p)eeT Ā(p)T ]

)
+ vec

(
E[Ā(p)zzT Ā(p)T ]

)
+ vec

(
E[Ā(p)ezT Ā(p)T ]

)
+ vec

(
E[Ā(p)zeT Ā(p)T ]

)
.

From Proposition 1 and Property 1 it follows

vec
(
E[Ā(p)ezT Ā(p)T ]

)
= E

[
vec

(
Ā(p)ezT Ā(p)T

)]
=E[

(
Ā(p)⊗Ā(p)

)
vec

(
ezT

)
]=E[

(
Ā(p)⊗Ā(p)

)
]vec

(
E[ezT ]

)
=E[

(
Ā(p)⊗ Ā(p)

)
]vec

(
E[e]zT

)
= 0 (10)

Analogous results hold for the term E[Ā(p)zeT Ā(p)T ], then

vec
(
E[Ā(p)xxT Ā(p)T ]

)
=vec

(
E[Ā(p)eeT Ā(p)T ]

)
+ vec

(
E[Ā(p)zzT Ā(p)T ]

)
and hence, following the same steps as in (10), one has:

vec
(
E[Ā(p)xxT Ā(p)T ]

)
= E[Ā(p)⊗ Ā(p)]vec

(
E[eeT ]

)
+ E[Ā(p)⊗ Ā(p)]vec

(
zzT

)
(11)

z being deterministic. Finally, from (11) it follows

cov(e+) = (A0 +BK)cov(e)(A0 +BK)T

+ vec−1[E[Ā(p)⊗ Ā(p)]vec
(
cov(e) + zzT

)
].

■

Theorem 1 provides to exact characterisation of the
dynamics of the covariance of mismatch between the
nominal state z and the real one x.

A. Presence of additive uncertainties

Let’s consider now the case of additive disturbances in
addition to the parametric ones as follows:

x+ = A(p)x+Bu+ w, (12)

where w is defined such that:

E[w] = 0 and cov(w) = E[wwT ] = W.

In this case e+ has the following expressions:

e+ = x+ − z+ = (A0 +BK)e+ Ā(p)x+ w

= (A(p) +BK)e+ Ā(p)z + w (13)

and its covariance matrix dynamics can be characterized.
Theorem 2: The dynamics of the error covariance related

to system (12) is given by the following expression:

cov(e+) = (A0 +BK)cov(e)(A0 +BK)T +W

+ vec−1
(
E[Ā(p)⊗ Ā(p)]

(
cov(e) + zzT

))
. (14)



Proof: From (13) and Proposition 1, it follows that

cov(e+) = E[e+e+T
] = E

[ (
(A0 +BK) e+ Ā(p)x+ w

)
·
(
(A0 +BK) e+ Ā(p)x+ w

)T ]
and therefore, by using Theorem 1, we can prove that:

cov(e+) =(A0 +BK)E[eeT ])(A0 +BK)T

+ vec−1[E[Ā(p)⊗ Ā(p)]vec
(
E[eeT ] + zzT

)
]

+ E[w
(
(A0 +BK) e+ Ā(p)x

)T
]

+ E[
(
(A0 +BK) e+ Ā(p)x

)
wT ] + E[wwT ].

It can be proved that E[
(
(A0 +BK) e+ Ā(p)x

)
wT ] =

E[w
(
(A0 +BK) e+ Ā(p)x

)T
] = 0, since w is independent

of e, x and Ā(p) and E[w] = 0, which implies (14). ■

Theorem 2 is therefore an extension of results on the
covariance dynamics already presented in the literature, for
example in [1] and [6], which considered only additive
disturbances. It shows thereby the effect that uncertain
parameters have on the error covariance dynamics through
the specific matrix Cp = E[Ā(p)⊗ Ā(p)].

Remark 1: The matrix Cp = E[Ā(p)⊗ Ā(p)] is constant,
since it contains the parameters variances E[p2i ], i =
1, · · · , θ as well as their mutual covariances E[pipj ], i, j =
1, · · · , θ with i ̸= j, or an affine combination of the laters
in the case where the matrix Ā(p) elements contain affine
combinations of the uncertain parameters pi, i = 1, · · · , θ.
Therefore, this matrix is a representation of the covariance
matrix with a different structure.

Example 1: Consider the following two dimensional
example:

A(p) = A0 + Ā(p) with Ā(p) =

(
p1 p2
p3 p4

)
,

in which case we have:

Cp =


E[p21] E[p1p2] E[p1p2] E[p22]
E[p1p3] E[p1p4] E[p2p3] E[p2p4]
E[p1p3] E[p2p3] E[p1p4] E[p2p4]
E[p23] E[p3p4] E[p3p4] E[p24]

 . (15)

Note that Cp contains all the parameters variances as well
as their covariances, but it has not the same structure as the
covariance matrix, which is symmetric positive definite.

IV. COVARIANCE STABILITY ANALYSIS

Consider first the case of system (2), without additive
uncertainties. Sufficient conditions for the convergence of
the error covariance can be given. From Theorem 1,
the covariance of e+ can be exactly computed from the
covariance matrix of e, the value of z and the knowledge
of A0, B,K and Cp.

Consider the evolution of vec
(
E[eeT ]

)
, and notice that,

provided that the dynamics of z is exponentially stable
(Assumption 2), then the effect of the value of z on cov(e)
is vanishing. Defining

ϵ = vec(cov(e)) ∈ Rn2

, ζ = vec((zzT )) ∈ Rn2

.

From Property 1 and since the vectorization is a linear
transformation, then the evolution of the vectorization form
of the covariance matrix provided in (8) is given by the
following difference equation:

ϵ+ = vec
(
(A0 +BK)cov(e)(A0 +BK)T

)
+ E[Ā(p)⊗ Ā(p)](ϵ+ ζ)

=
(
(A0 +BK)⊗ (A0 +BK)

)
vec(cov(e)) + Cpϵ+ Cpζ

=
(
(A0 +BK)⊗ (A0 +BK)

)
ϵ+ Cpϵ+ Cpζ

=
(
(A0 +BK)⊗ (A0 +BK) + Cp

)
ϵ+ Cpζ (16)

that is a linear time invariant system. Defining

M =
(
(A0 +BK)⊗ (A0 +BK) + Cp

)
,

the following corollary holds.
Corollary 1: Let Assumption 2 hold. Then the covariance

matrix of e for system (2) converges to the null matrix if

ρ (M) < 1. (17)

Remark 2: The necessity of condition (17) is not direct
since the matrix M might involve unstable modes provided
that are not excited by the input Cpζ, since ϵ0 = 0. A
less conservative condition could consist in imposing that
the controllable subspace of the pair (M,Cp) is contained
in the subspace related to the asymptotically stable modes
of M . Neither this condition might be necessary, though,
since the vector ζ could evolve in a subspace smaller than
the controllable one, from its structure. A careful analysis is
required to formulate necessary and sufficient conditions for
the covariance convergence, in our opinion.

Note that condition (17) can be used to check if with
the designed feedback gain K, the covariance of the error
remains stable knowing the covariance matrix Σ of the
parametric uncertainties p. Furthermore, for a given feedback
gain K, condition (17) can also be used to obtain bounds
on the covariance matrix of the parametric uncertainties
that the system can afford while remaining stable. Indeed,
considering AK = A0+BK, since the set of eigenvalues of
AK⊗AK is given by λi(AK)λj(AK) for all i, j = 1, . . . , n,
see [2], which means that in discrete time context, the
stability of AK ⊗ AK is equivalent to the stability of AK .
This can help to derive other sufficient stability conditions
allowing to facilitate the design of a feedback gain K that
satisfies (17). Deriving constructive stability conditions from
(17) might be more complex, though, due to the presence of
joint products of the elements of K.

A. Presence of additive uncertainties

Consider now the more general case of system (1),
involving both additive and parametric uncertainties. Denote
by ω the vectorization of the additive disturbance covariance
W as follows:

ω = vec (cov(w)) = vec (W ) ∈ Rn2

.



The difference equation (16) can be rewritten in the case of
system (1) as follows:

ϵ+ = Mϵ+ Cpζ + ω,

which is a linear time invariant system with an exponentially
vanishing input and a constant one, then the following
corollary holds.

Corollary 2: Suppose Assumptions 1 and 2 hold. The
covariance matrix of e for system (1) converges to the matrix
vec−1

(
(In2 −M)

−1
ω
)

if (17) holds.
The comments on the necessity of condition (17) and its

practical use that have been formulated for system (2) hold
also for system (1).

V. NUMERICAL EXAMPLES

We present in this section two examples illustrating both
the case of systems affected by parametric uncertainties only
and those affected also by additive uncertainties.

A. Parametric uncertain systems

Consider the following dynamical system:

x+ =

(
2 + p1 1 + p2
p3 0.1 + p4

)
x+

(
1
1

)
u, (18)

leading to matrices A0 and Ā(p), with p = (p1, p2, p3, p4)
T

as follows:

A0 =

(
2 1
0 0.1

)
, Ā(p) =

(
p1 p2
p3 p4

)
.

The parameter vector p follows a multivariate normal
distribution with zero mean and a covariance matrix Σ, i.e.
p∼N (0,Σ), where

Σ =


1.58 1.48 1.49 1.63
1.48 3.14 2.78 2.85
1.49 2.78 2.58 2.54
1.63 2.85 2.54 2.72

 · 0.01

has been randomly generated. From (15), the matrix Cp then
results in

Cp =


1.58 1.48 1.48 3.14
1.49 1.63 2.78 2.85
1.49 2.78 1.63 2.85
2.58 2.54 2.54 2.72

 · 0.01. (19)

We design the feedback gain K, using pole placement with
desired poles vector (0.5, 0.9)

T for the matrix (A0 +BK),
giving K = (−0.569,−0.131). Of course the gain K can
also be designed using other methods. Furthermore, the same
designed gain K is used also for stabilizing the dynamics of
z, i.e. v = Kz, although v should be given by a deterministic
MPC control to implement a stochastic MPC for system (1).
The vectorized error covariance is

ϵ = (ϵ11, ϵ12, ϵ12, ϵ22)
T
.

We compute the evolution of the vectorization of the error
covariance using the difference equation in (16), as well
as the empirical covariance based on N = 10000 trials.

0 5 10 15 20 25 30 35 40 45 50
−40

−20

0

20

40

60

80
ϵemij
ϵthij

Fig. 1. Theoretical and empirical error covariance evolution related to
system (18) with Cp as in (19).

Fig. 2. The nominal and stochastic states z and x corresponding to
system (18) using Cp as in (19), (up) The first components z1 (in black)
and x

(l)
1 (in grey) for N = 1000 trials with l = 1, · · · , N , (bottom) The

second components z2 (in black) and x
(l)
2 (in grey).

We denote by ϵthij and ϵemij , respectively, the theoretical and
the empirical elements of the error covariance matrix, for
i, j ∈ {1, 2}. Fig. 1 shows that the empirical error covariance
matches the theoretical one. Furthermore, they both converge
to the null matrix since there is no additive disturbance in
this case (w = 0).

Moreover, one can check the stability condition in (17)
by defining M = (A0 + BK) ⊗ (A0 + BK) + Cp and
computing its spectral radius ρ(M) = 0.8702, which is a
sufficient condition for the stability of the error covariance.

Fig. 2 shows the nominal states z1 and z2 as well as the
stochastic ones x1 and x2 for N trials and x0 = (1, 10)

T ,
with which the empirical covariance has been computed. We
can see that, since the stability conditions are satisfied, both
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Fig. 3. Theoretical and empirical error covariance evolution related to
system (21) with Cp as in (20) and the samplings S1 (in red) and S2 (in
blue).

the nominal and the real state vectors converge to 0.
Consider now higher uncertainties levels with:

Cp =


3.94 3.70 3.70 7.85
3.72 4.08 6.95 7.12
3.72 6.95 4.08 7.12
6.46 6.34 6.34 6.80

 · 0.01. (20)

In this case the stability condition on ρ(M) still holds
since ρ(M) = 0.9652. Consider two batches of N random
trajectories generated with the uncertain parameters using
Cp as in (20), and denote them S1 and S2. Fig. 3 shows
the empirical and the theoretical covariances for S1 and S2.
We can notice that the theoretical and empirical covariances
are more affected by the uncertainties in this case, and that
depending on the sampling of uncertainties, the empirical
covariance can be either worse or better than the theoretical
one, although the convergence remains guaranteed.

B. Presence of additive uncertainties

Consider the same system as in (18) with also an additive
disturbance w:

x+ =

(
2 + p1 1 + p2
p3 0.1 + p4

)
x+

(
1
1

)
u+ w, (21)

where the covariance of w is defined as E[wwT ] = W = In.
The same setup as for system (18) is considered, with
Cp as in (19). Fig. 4 shows that the error covariance is
asymptotically stable, since the same stability condition
ρ(M) = 0.8702 holds in this case too. Furthermore we can
compute the matrix to which the error covariance converges
theoretically:

vec−1
(
(I4 −M)

−1
ω
)
=

(
50.6293 −27.0591
−27.0591 16.8446

)
(22)

Fig. 4 shows that both the empirical and theoretical
covariances converge to the matrix in (22).
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Fig. 4. Theoretical and empirical error covariance evolution related to
system (21) with Cp as in (19).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we provide the exact characterization
of the dynamics of the error covariance for discrete-
time linear systems under unbounded additive and
parametric uncertainties and presented sufficient conditions
for asymptotic stability, useful in the context of stochastic
tube-based MPC approaches. The numerical examples
proposed show that the theoretical and the empirical error
covariance converge to the same value when the stability
conditions are satisfied. Future works would focus on the
problem of designing the prestabilizing feedback gain K that
satisfies the stability conditions in presence of uncertainties.
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