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This work looks at the asymptotic behaviour of the solution to the Helmholtz equation
in a penetrable domain of R® with a thin layer of thickness § which tends to 0. We use
the method of multiscale expansion to derive and justify an asymptotic expansion of the
solution with respect to the thickness & up to any order. We then provide approximate
transmission conditions of order two defined on an interface located inside the thin layer,
with accuracy up to O(6%), which allow one to take into account the influence of the thin

layer.
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1 Introduction

In this work we study the asymptotic behaviour of the solution to the Helmholtz equation

div (05Vus) + k3us =0 in R3,
(1.1)
lim |a:| (8‘30‘ - ikext) (U5 - umc) = 0,

|z|—+o00

where g5 and kg are piecewise constant functions defined by

Oext fx€ Qext,éa kgxt ifzxe Qext,év
_ ~ . .2 _ It .
o5(x) =19 G5 ifzeQs, P ks(@) =49 k2 ifxeQy,
Oint ifrxe Qint,&a kiznt ifrxe Qint,zsa

where o5 and oy, are two strictly positive constants describing the contrast properties of
Qs and Qi 5 relative to the exterior propagation domain Qe 5. The refractive properties
of the media are defined by k2, and k? which are two complex numbers with strictly
positive real parts and positive imaginary parts. We also assume that oeyxy and keyt are
strictly positive constants and that oext, Ting, Kext, Kint are independent of §. The domain

Qint,s is a three dimensional bounded domain with regular boundary I's 1, surrounded by

a thin layer 5 of thickness § (which tends to 0) and Qext s is the exterior domain defined

by Qext,s = R*\ (Qint,s UTs51 UQs UTs2) (see Fig. 1). This work looks at the scattering

of an incident wave u;n.(x) = gikext (z.d)/Text by the penetrable domain (Qint’g Uls: U Q(;)

where d is a unit vector of R3 giving the direction of the plane wave ;.

Numerical simulations of scattering problems as the one considered here need to mesh
the thin layer. Since this can be a very costly task [39], it is of great interest to take into
account the effect of such thin layer thanks to suitable approximate boundary conditions.

The latter can be derived by studying the asymptotic behaviour, as § — 0, of the total
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FIGURE 1. Geometric data

field us. The asymptotic behaviour of solutions to problems with thin layers has been
adressed by many authors in the last decade (cf., e.g., [5, 7, 8, 12, 33, 15, 17, 20]...).
Many different techniques have been used in these papers and a variety of results have
been obtained. More precisely, approximate transmission conditions have been derived
for the electro-quasistatic equations in [29] and time-harmonic Maxwell equations in [28]
for thin layer and in [11, 12] for the Laplace equation in the case of thin periodic coating.
Higher order approximation were derived in smooth geometries of conductive thin sheets
for the Helmholtz equation in [37] and for the eddy current problem in [38]. The case of
a thin ring with regularly spaced inhomogeneities has been treated in [15, 17] for the 2D
Helmholtz equation.

Here, we derive transmission conditions to approximate the solution us to Problem
(1.1) by a solution uz” to a problem (Pg*) with the Helmholtz equation defined in a do-
main without a thin layer with Ventcel-type transmission conditions, involving tangential
differential operators of order two, with accuracy up to O(62). We propose a technique
(see [8]) that consists of dividing s into two thin layers separated by a surface I" parallel
to I's1 and I'so (see Fig. 2 and Fig. 3) and choosing it in such a way that transmis-

sion conditions ensure existence and uniqueness of the solution ug” to the approximate
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problem. The main difficulty here, compared to the studies performed in [7, 8], is that
the Helmholtz equation is not elliptic implying, for example, that we do not readily have
a stability result which is uniform with respect to 6. Another difficulty comes from the
unbounded setting of the study.

In order to accomplish our goal, we derive an asymptotic expansion of the solution
us to Problem (1.1). Two different approaches are often used: the matched asymptotic
expansions method (cf., e.g., [2, 3, 15, 21, 24]) and the method of multiscale expansion
(cf., e.g., [4, 7, 37]). However the problem is not defined on the exterior of the thin layer
and thus the multiscale expansion method is more suitable since we are dealing with the
transmission problem [7, 8].

The paper is organized as follows. In Section 2, we give the statement of the problem
considered, the existence and uniqueness theorem for the solution to Problem (1.1) to-
gether with a uniform stability estimate for us. Section 3 recalls some basic definitions
and notation from the differential geometry of surfaces.

In Section 4, we construct a formal asymptotic expansion for the solution to Problem
(1.1), while Section 5 focuses on the justification of the asymptotics and the convergence
of this ansatz. In Section 6, we model the effect of the thin layer by a problem with
Ventcel-type transmission conditions. The well-posedness of Problem (P5”) will also be
proved.

Finally, in Section 7, we extend our results to the case of materials having high magnetic

permittivity in the domain ;.
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FIGURE 2. Geometry of the studied

FIGURE 3. The thin layer (s
problem

2 Problem setting

We consider a parallel surface I' to I's ; and I's > dividing (s into two thin layers (s
and Q59 of respective thickness p10 and p»d, where p; and po are strictly positive real
numbers satisfying p; + p2 = 1 and such that p; and py belong to a small neighbourhood
of 1/2 (see Fig. 2 and Fig. 3). The term small neighbourhood means that the constants
p1 and py are not too close to 1 or 0, in order to avoid having a layer too thin compared
to the other because the following analysis does not lend itself to this case. Let us denote
by Uext,5, Udy,s, Udy,s and Uing,s the restrictions of us respectively to the domains Qexy s,
Qs.2, 25,1 and €iye,s. Under the aforementioned assumptions, we investigate in H }OC(RB)

the solution us to the following equivalent problem

AV (Tt Vitext 5) + kgptiext.s =0 in Qexe.s, (2.1a)
div (55Vua, 5) + kg, s = 0 in Q55, (2.1b)
div (55Vug, 5) + kFug, s =0 in Qs1, (2.1¢)
Aiv (Oine Viting,5) + ki Uing.s = 0 in Qs (2.1d)

m’
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with transmission conditions

Udy,6|Ts,2 = Uext,8|Ts,2 on ['s 2, (2.1¢)
060ns 2 Udy 5|55 = OextOns o Uext, 615, 0N L's2, (2.1)
Udy 5|7 = Udy,5|T onT, (2.19)
anudl,(ﬂl" = anud2,5|r on I, (2.1h)
Uint, 5|51 = Udy,6|Ts,1 onI's 1, (2.19)
TintOngs , Uint,8|T5., = 050n; ,Ud, 8|75, on I's 1, (2.19)

and radiation condition

lim |3?| (alx\ - Z.k‘ext) (uextﬁ - Uinc) =0, (2.1 k)

|z]|—+o00
where On; ,; On, On;, and On, denote the derivatives in the direction of the unit normal
vectors n, ng 1,52 and n. to I's 1, ', T's o and 99 respectively (see Fig. 1). The following

theorem gives the well-posedness of (2.1).

Theorem 2.1 Problem (2.1) has one and only one solution us in H} (R?).

Proof Uniqueness follows by Rellich’s lemma (cf. [35, 13]). Existence of a solution is

obtained by standard arguments involving the limiting absorption principle (cf., e.g.,

(30]). O

We now rewrite the problem in a truncated domain (see [4, 5, 3] for a similar reduction)

in order to get a uniform stability result with respect to §. The latter is actually going
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to be useful for proving error estimates between us and the asymptotic expansion that
is going to be built in the next sections.
Let 2 be a bounded domain of class C*° which contains the thin layer )5 as depicted

in Fig. 4.

Q

FIGURE 4. The truncated domain

We denote by T the DtN operator (Dirichlet-to-Neumann) defined on H'/2(9Q) by
T := —0On,w, where nq is the unit normal to 02 directed out of  and w is the unique
solution to the following problem
Find w € H} (R?*\Q)

div (0ext VW) + k2w = 0 in R3\(Q,

Wion = ¢ on 012,

lim |z (3‘x| — ikcxt) w=0.
|z| =400
The DtN operator T is a pseudodifferential operator of order one [4] and is linearly

continuous from H'/2(9Q) to H~'/2(9€). The next lemma, whose proof uses standard

elliptic regularity (cf., e.g., [4]), gives a useful decomposition of the DtN operator.

Lemma 2.1 Let ¢ € HY2(0Q) and py € H' (R \ Q) be the unique solution to the
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following coercive scattering problem

Apg—po=0 inR*\Q

wo=1¢ on 0f).
Now let us consider Top = —Ongpo. Then Tpy is bounded and coercive from H/2 (09)
into H='/2(0R2). In addition, there exists a compact operator K acting from H/?(0S)

into H3/2(09Q) such that

T="T+K. (2.3)

Using the DtN operator T', Problem (1.1) can be written as
Find us € H*(Q) such that
div (Ugvu(;) + k‘gu(s =0 in Q, (2'4)

(Ong + T)tus = (Ong + T) Uine on 0.

A variational formulation of (2.4) is then given by
Find us € HY(Q), Yo € HY(Q)

as (ug,v) := / 05Vus. VU — k3usv dQ + ooyt (Tu(;,E)H_l/g(ag)le/z(ag) (2.5)
Q

= l5(v),
where (.,.) ;r-1/2(op)x sr1/2(9p) denotes the duality pairing between H~'/2(0Q) and
H'Y2(9) and I is an arbitrary linear form on H'(Q). For Problem (2.4), I5 is defined
by
ls(v) := aext/ (Ong + T) tineU do.

o9

For our purpose, one needs to know about the dependance of us as d goes to zero.
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Theorem 2.2 [Uniform stability.] Suppose that
>0, 55 =002, k2 =0(627°); (2.6)

Ja >0, V6 >0, R(os) > a; (2.7)

then, for all l5 in (HI(Q))I, Problem (2.5) admits a unique solution in H*($)). Further-

more, there exists a positive constant ¢ independent of § such that

lusll g1y < e llsll gy -

Proof We need to prove that

as(us, v
sl iy < € sup M.
verrt(e) [Vllg(q)

To do so, we use a standard proof (cf. e.g., [23, 16]), and proceed by contradiction by
assuming that there exists sequences (d,),,5 and (us, ), (denoted by (uy),~q) such

that

Jum dn =0, Jlunllpagy =1, Yn €N, lim \le\illlfz)zl |as,, (un, p)| = 0.
From Rellich’s embedding theorem, we can extract a subsequence, still denoted by
(Un), >0, such that

up — ug in L? (Q),

Up — up in H' ().
Since o5 and k3 satisfy (2.6) one gets

05 — 00 1= Tint Xy, (T) + Text XGy (z) in L? (Q),

K2 = k3 = KXy, (0) + Kaxg, (@) in L2(9),
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where Qi =7 gir% " Qint,s and Qoxt = O\ Qine (see Fig. 2) and xo denotes the indicator
—

function of the open set O. Indeed,

”06 - UO||2L2(Q) = / |O'5 - O'o‘gdﬂg < /
Qs

Qs1

i | A1+ / 1557 ds+ / (et 2.
Qs

Q5.2

Using Lebesgue dominated convergence theorem, we obtain

. 2 . 2
lim |oing|” d€2s,1 = lim |ext|” dQ2s.2 = 0.
6—0 Q5 1 6—0 Q& 5

Moreover, we have
2
/ 55)° dQs < C (5*%“) meas(s) = C6*meas(T) —5_50 0.
Qs

Now, upon using (2.8), we get

n—-+oo

lim as, (un, ) = / o0Vug.V — kZugp dQ for all ¢ in H* (Q),
Q

so up € H' (Q) satisfies
div (JovuO) + k%UO =0 in Q,

(Ong +T)up =0 on 0N.

As a result, well-known properties of uniqueness of the solution to this type of problem
based on Rellich’s lemma and the operator T imply that uy = 0. It only remains to
show that ngrfoo [unll g1y = 0. Note that, since ug is uniquely determined, the whole
sequence (un)n>0 that converges to ug. To obtain the contradiction, we now show that

Eﬂr-loo [Vun|12(q) = 0. From (2.7), we have

IVunl20) < C /Q 05 (V|2 d2

=CR <an(unaun) +/ kgn |un|2 dQ) — Ooxy <Tunaun>H1/2><H1/2> .
Q
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Using Lemma 2.1, we infer

Hvun”iQ(Q) < C {% |:a’n(unau7l) +/ k?n |U’n|2 ds) — Oext <Kun7un>H—1/2><H1/2:| } .
Q

Asu, — up=0in L*(Q) and k§ — kg in L? (Q), it follows that

n—-+oo n—-+oo
2
k2 |un|®> dQ — 0.
Q " n—-+00

Since K is compact and w, — 0 in H'(Q), (Kun,Un)g-1/2y 1,2 nI}ooO' Finally,

the hypothesis lirf R [an(tn,un)] = 0 yields [Vunllz2q) = 0 contradicting
n—+0o0o

lim
n—-+oo

||Un||H1(Q) =L O

Remark 2.1 In the proof of Theorem 2.2, we require the convergence in L? of o5 and

ks. This justifies assumption (2.6) used to prove that (2.8) holds.

3 Tools of differential geometry

The goal of this section is to define and to collect the main features of differential geometry
[19] (see also [27]) in order to formulate our problem in a fixed domain (independent of
0). This technique is a key tool to determine the asymptotic expansion of the solution

us-

3.1 Parametrization of the surface I'

Let (U, @) be a local coordinate patch for the surface T', with &/ being an open domain

of R? and
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A basis of the tangent plane T,,(T") to ' at the point m € T is given by

ra(m) = 22LELE),

=1,2.
aga 7a )

We assume that the coordinate patch {7o},_,, is compatible with the orientation,
namely, the unit normal n(m) to I' at point m is given by

T1 X Tg

n(m) :=

R

where x and |.| are respectively the usual cross product and norm in R3.

We denote by R the symmetric linear operator of the tangent plane T,,(I") that charac-
terizes the curvature of I' at point m, and defined by

on(m)
el3a

=R(m)Te; a=1,2.
Let II,,, be the orthogonal projector from R? into T;,(T") and w a vector of R3, we have
w=wp + w,n = Il,,w + w,n,

where wr = II,,w is the tangential component and w,, is the normal component of w.

3.2 Differential operators on I'

Let v be a smooth function defined on T'. The surfacic gradient Vrv(m) of v at m € T is

defined by

2 2
Vro(m) =Y ZG*“(m)%(vw) (€, €2) | ma(m),
A=1 La=1

where (G**(m)) is the inverse of the metric tensor (7x(m).7a(m))x a=12-

If ¥ is a function defined in a neighbourhood of I', we have

Vr(@)(m) := 10, (Vo(m)); meT.
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Let wp be a smooth tangent vector field defined on I'. The surfacic divergence of wr is

the scalar function defined on I' through Stokes formula

/ (bdiVFWT dl == — / qub.WT dF,
r r

where ¢ is any regular function on I' and dI' = |7 x 73| d¢1dé? denotes the surfacic

measure on I'. The scalar Laplace-Beltrami operator on I' is finally given by

AF = din (VF) .

3.3 Parametrization of (s

In what follows, the Greek indice S takes the values 1 and 2. Let I5; = (—6,0) and
Is2 = (0,0). We parameterize the thin shell {25 3 by the manifold I" x I5 3 through the
mapping g defined by

TxIss 53 Qsp

(m,75) = @ :=m+pgngn(m).
As is well known [19], if the thickness of Qs  is small enough, 13 is a C*°-diffeomorphism
of manifolds and it is also known [32, Remark 2.1] that the normal vector ns gz to I's g
can be identified with n.
With each function vg defined on €5 g, we associate the function vg defined on I' x I g
by

vg(m,ng) = vp(x),

z =g (m,ns).

One then has
. 3 s
dvg Ovg Ox

- 5 Vs (I R)Ta; a=1,2
oer ~ Ly ggn VA pIERITe @
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and

Jug > dvg Oz’
—+ = — —— = pgVug.n,
ong e Ozt Ong PsVUs-1t

where I is the identity operator on the tangent plane T, (T).
Since the vector (I + pgngR)7q is in T,,(I') and (I + pgnsR) is a symmetric operator,

we can write

055

(950‘ = (I + pﬂnﬂR) Hvaﬂ.Ta,

or equivalently [18]

1L, Vg = (I +ppnsR)” " Vrig.

One gets
Vo = (I +psnsR)™ " Vo, +p_1%n
B BB B 8 5%
The volume element on the thin shell €5 g is given by
or dr Ox
dQs 5 = — X —=.—— d&1de3dng.
5,8 aé-] X 852 anﬂ 5 £ 1B
As
or or
21 X 9¢2 =T +psnsgR) T X (I +pgngR) e =det (I +psnsR) (11 X T2),
and
T X To| d€rde? = dr,
we obtain

dQs,3 = pgdet (I + pgnsR) dl'dng.
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Now, we introduce the scaling sg = 13/d, and the intervals Iy = (—1,0) and I = (0,1)
such that the C'°°-diffeomorphism ®g, defined by
®s
QB ::FXIB — 9575

(m,Sﬁ) - T ::m+5p535n(m),

parameterizes the thin shell 25 5.
To any function v defined on Qs 5, the function vl?l defined on Q7 is associated through
vl (m, 5) = vg(2),

x = ®g(m,sgp).

Then, in local coordinates (¢!, €2, sg), the gradient takes the form

- ovlsl
Vog = (I +6ppssR) " Vol + pt6~! 87; n (3.1)
B
The volume element on the thin shell 5 g becomes
dQ&B = pﬁ(g det Js g dl'dsg, (3.2)

where
J(;’g =1 +p5555R,
and the surfacic measure on I'; g is

dl's3 = det (I + (—1) pgdR) dI.
Let ug and vg be two regular functions defined on Qs 5. From (3.1) and (3.2), we get the
change of variables formula
/ VU5.VHB ngﬂ = pgcs/ J(S_EVFU[B].VF’U[B] det ngg dFdSB
Q5.8 Qs

+pgle! /Q ; s, ul?0, 0% det J5 5 dUdsg, (3.3)
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/ ugvg dfds g = p/gé/ ulPlolPl det Js g dl'dsg. (3.4)
ngﬁ (9L

Remark 3.1 For any function u defined in a neighbourhood of T', we denote, for con-
venience, by ur the trace of uw on I' indifferently in local coordinates or in Cartesian

coordinates.

4 The asymptotic analysis

This section is devoted to the asymptotic analysis of the solution to Problem (2.1). From
now on, we assume that g5 and %5 are independent of § (denoted by ¢ and k respectively)
to simplify the overall presentation. We give a hierarchy of variational equations defined
in a domain that does not depend on ¢ suited to the construction of a formal asymptotic
expansion up to any order. We then calculate the first two terms and we conclude with
a convergence theorem ensuring the validity of the ansatz.

Let vg be in H*(Q5). We denote by vg, its restriction to Qs 3. Multiplying Equation
div (5Vud75) + ’kv2ud75 =0 in Qs,
by test functions vg, using (2.1 f)-(2.1h), (2.15) and Green’s formula, we get

< OintOngs y Wint, 605,15 Vdy [Tsy > H-1/2(Dg.1)x H/2(Ts.1)

— < Uextan‘;,guext,éﬂ._‘{s,ga/Ud2|]._‘572 >H*1/2(F512)><H1/2(1"5’2)

4+ Vugs.Vog dQs — %2/ uq,5vq d€ds = 0.
Qs Qs

Using the dilation of the thin layers, (3.3) and (3.4), one obtains

1
< OintOny , Uing, 505, © P1(m, ~1), 0 (m, -1) > H-1/2(Dx{—1}) x H/2(Tx {-1})
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— < OextOng » Uext,8|Ts., © P2(m, 1), v (m, 1) >H-1/2(Dx {1})x HL/2(T'x{1})
I 22: [5(1([5] (Uﬁ v([iﬂ]) + 5ol (ug L [6])] 0,
B=1
where the bilinear forms a([f] (.,.) and bgﬁ] (.,.) (B =1,2) are defined by
a,[f] (u[ﬁ]m[ﬁ]) = Epg/ Jggvpu[ﬁ].vpv[m det J5 g dl'dsg
0p515 / 895“ Al det Js g dl'dsg,

and

bl (u[ﬁ]’v[ﬁl) = —k2ps /Q ; ulPlolPl det J5 5 dUdsp,

(4.3)

for every ull and vl in H'(Q). Standard regularity results for elliptic problems (see

e.g. [1]) ensure that the trace of us on I'5;1 or I'so is C°°. This fact allows us to write

Problem (4.1) as

/ TintOnUint, 8|75, © P1(m, —l)vg} (m,—1)det(I —p16R) dT’
r

- / TextOns o Uext,5|Ts.2 © Dy (m, 1)1)([12] (m,1) det(I + padR) dI’
F

- Z [ @f}s vf) + 6 (uﬂ,vgﬁ])] =0,

which is the starting point of the asymptotic analysis.

4.1 Hierarchy of the variational equations

To carry out an asymptotic expansion of the solution us of (2.1) in powers of §, we

consider two asymptotic expansions. Exterior expansions corresponding to the expansion

of us restricted to Qext,s and to Qing 5 are characterized by the ansatz

Uext,§ = Uext,0 + 6uext71 + -

(4.5)
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Uint,5 = Uint,0 + OUing,1 + -+, (4.6)
where the terms uext,n and Uing,n (n € N) are independent of ¢ and respectively defined
on Qext = Qoxt,s UL's 2U Q5 2, and on Qing := Qing s UL'5,1 ULs 1. The latter are the limits
of Qext,s and Qine,s when 6 — 0. They fulfill
div (Gint Viting,n) + k2 Uing,n = 0 in Qing,
Aiv (Text Vitextn) + k2 qUextn = 0 in Qexe, (4.7)

li az - .kex ex n_6 nWinc :07
lw‘inioo|$|( | — 2 t) (Uext, 0,nUinc)

where 0, indicates the Kronecker symbol. An interior expansion corresponding to the

asymptotic expansion of ug, s written in a fixed domain is now defined by the ansatz

ugﬂ; = ugm + 5u[1ﬁ] +--+, in QF, (4.8)
where the terms u[f ], n € N, are independent of d. Using a Taylor expansion in the
normal variable, we formally infer

Uing,5|Ts.1 = Wint, 0T + 0 (Uing, 10 — P10nUing,00) + -+
Ong 1 Uing,5|0s.; = OnUing,0r + 0(OnUine, 10 — plaiuint,o\l‘) +o
and
Uext, 5|55 = Uext,0]0 T O(Uext, 1|0 + P20nUexs,or) + -+

2
an(;,guext,6|1"5,2 = anuext,O\F + 5(anuext,1\1" +p28nuext70\1") + e

Transmission conditions (2.1 ¢), (2.1 ¢) and (2.1 ¢) become

Uext,0|T + 5(uext,1|l‘ +p28nuext,O|I‘) +oo= u([)Q‘]S2:1 + 5u[12‘]52:1 +eeey (49)
(1] [1] _ M2 (2]
Ugjs,—0 + 6U1|S1:0 to = Ugg, g T 5“1\32:0 +to (4.10)
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Uing,00 + 0 (Uing, 10 — P10nUing,00) + -+ = U([)l\] + 5“[11\151:—1 oo (410)

81:—1
We now use the identity
det Js. 3 = 14 2pgsgdH + (pssad)’ K,

where 2H := trR and K := det R are respectively the mean and the Gaussian curvatures

of the surface I'. We obtain
/Faimané,luim,g‘rm o ®q(m, 71)11([11] (m,—1)det(I — p10R) dT’
= Agint [Ontting,or + 0 (Onling, 1)1 — P1O2Uint, 00 — 201 HOning o)
+ 67 (3nuint,2|r — P13t T + %P%aﬁuint,ow — 2p1 HOnUine 1|1
+ 203 HO2 i o1 + PP Ontuineor) + - -] v (m, 1) dT, (4.12)
and

/ ToxtOng » Uext, 5055 © P2(m, 1)1152] (m, 1) det(I 4+ p20R) dl’
r
= / Oext [8nuext,0|f‘ +4 (anuext,1|F +p28r21uext,O|F + 2p2H8nuext,0\F)
r
2 2 L 503
+9 <8nuext,2|1" +p28nuext,1|r‘ + inanuext,Ou" + 2p2H8nuext,1|1"
+ 2p§7—[,3121uext,0‘p + p%K@nuext)mp) + .- ] ’ULQ] (m, 1) dT. (4.13)
It remains to give the expansion of at[sﬂ ] (.,.) defined in (4.2) in powers of §. We use the
identity (see [4, p. 1680])
J(S_,BQ = I*QSgpﬁ6R+3 (p585(57€)2+' ot n (*p58557€)n71+(*8ﬁp557€)n {TLJ(;/; + Jgg} .

The bilinear form a([sﬂ ] (.,.) then admits the expansion

ol () = 6726 al b+ () + b} ) + 00l ron el (), (414)
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where the forms agf % are independent of  and are given by

::/ pglaasﬂu[ﬁ]asﬁv[ﬁ] dl'dsg,

Qs

= / 253z 0s,ul”0,, 01! dldspg,
Qp

::/ pg&lCS%@sﬂu[m@SBv[ﬁ] dl'dsg,
Q8

a[ﬁ]l ulPl lPl ::/ Qp?ﬁsg (’HIfR)Vpuw].va[ﬁ] dl'dsg,

)
)
)
)im [ o5 drss
)
)
)

0B
af’} (ul,0l7) = / (P57 (KT — 4R + 3R?) s5Vrul? vrol) drdss,
Q
aL’Bl , ulfl WAl = / pio [(n—2) KR — (n—1)2HR" 2
Q

in which the index 1 in the bilinear forms agf ]1 (u[ﬁ],v[m) corresponds to the derivatives
of ulP! and vl with respect to the tangential variables and the index 2 refers to the
derivatives of ul?! and v!?! with respect to the normal variable s3. The remainder of

Expansion (4.14) is expressed as follows
riBl (Pl 1Py .= / & (Bp,s + 2MBp—1,5 + KBy_25) s§Vrul®l. VrolPlaldsg,
Q8

with

(=R)" (nJ; s+ J52) ifn >0,
Bn 5= ( o7 675)

)

Jy g otherwise.

The form bgﬂ ](., .) has the finite expansion

D2y =0 )+l () + 82 (), (4.15)
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where
7! (w01 = / _pi2ulfll®) drdsy,
Q8
blf! (u[m,v[m) — / —PAR22s5HuP) dTds g,
s
Y (017 1= / —piR2s2Kul?ul?) dlds .
Q8
Now inserting expansions (4.8) and (4.12)-(4.14) in (4.4) and matching the same powers

of 8, we obtain the following variational equations, which hold for all v[#! in H* (T'x Ig)

such that vl (.,0) = v (.,0),

a<[)1,]2 (u([)l],v[l]> + a([)Q,]z (u?],vm) =0, (4.16)

/Faintanuint70|pv[ I m,—1) dr + Z [ ( U[’B]) ([)]2 (u[lﬁ], 5 ]H

- / Uextanucxt,O|Fv[2] (m7 1) dl’ = 07 (417>
T

/ Tint [—2P1HOnUing, 07 + Onling, 1T — P102Uing 01 ol (m, —1) dr

1"

5 D (107) o ) (1.0) (o107

- / Oext [2p2H8nuext,0\F + anuext,1|F +p2aﬁuext,O|F] U[Q] (m7 1) dr' = 0, (418)
r

/ Oint [p%Kanuint,OU“ —2pH (8nuint,1|F - plaguint,o\l“) + 5’nuint,2|r
r

2
p
— P13 tine 1 r + ;aguint,0|l‘:| o'l (m, —1) dr + Z [GEB]Q (Ug U ])

+ alf) (u[zﬁ],v[ﬁ]) (a[ﬁ +alf + bgﬂ]) (u[lﬁ]w[ﬁ]) i (a[f]l i b[f]) (u([) ],U[mﬂ

- / Oext [p%’(:anuext,ml—‘ + 2p27{ (8nuext,1|F +p28r21uext,0|F) + 6nuext,2\l—‘
T

2
+ p2aﬁuext,l|F + p;aiuext,O|F:| 0[2] (mv 1) dl' = 0, (419)
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S IR R WA D R CA
+ (a([f]l + b([)m> (ufll,vwg + (a[lﬁ]l + b[lm> (u%ﬂz,v[ﬂ]) + (a[f]l + b[f]) (ufl3,vw])

n
+ Zagbjl,l (uf]hv[m)] - /FUeXt [8nuext,n|f‘ + - ] U[2] (mv 1) dl' =0, n > 4. (420)
=4

4.2 Computation of the first two terms

In this paragraph, we compute explicitly the first two terms in order to present a recursive
method to define successively the asymptotic expansions. We need the following theorem

whose proof can be found in [36].

Theorem 4.1 Let h € H'/?(T) and ¢ € H=Y/2(T"). Then the following problem

div (01t VUint) + k2 Uint = 0 in Qing,

div (Gext VUext) + k2 Uoxt = 0 in Qext,

Uing)r — Uexeir = on T, (4.21)
TintOnUingr — ext OnUextir = ¢ on I,

Ly yoo |2 (Ofaf = ikext) Uext = 0,

admits a unique solution (Usng, Uext) in H' (Qint) leloc (ﬁext). Moreover, for kg € N, h €
Hko=1/2(T), ¢ € H*=3/2(T") and T U 9 C*o-continuous, let (Uing, Uext) € H* (Qng) X

Hl

loc

(ﬁext) be the solution of (4.21). For any positive integer k < ko, there exists a

constant ¢;, such that

Uil i () + 10extll g (65) S 6 (Wllare—1r2 oy + €N arn-s/2qry ) -
( mt) ( cxt) () (™)
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We also need the following technical result to determine terms of asymptotic expansions

whose proof is obtained in a straightforward way.

Lemma 4.1 For = 1,2, let ¢/} be a given function in L*(T) and let k®) be a vectorial
function in L*(QP,C®) such that the partial application sg — EVI(., sg) is valued in the
space of vectorial fields tangent to T' and also divpkl®! € L2(QP). Then the solution h°]
of the variational equation
LBl = /QB A8 (m, s;;)@sﬁvm (m,sg) dl'dsg
+ /Qﬁ kP (m, s5) Vol (m, sg) + 01 (m, s5) P! (m, s5) dTdss
+ /Fq[ﬂ](m)vw] (m,(-1)") dT' =0

for all v1Pl € H? (QB) : lfl(.,0) = 0 is explicitly given by

(-1)°f
WA (m, s5) = (=1)PT2¢lF (m) +/ (dink[m _ g[ﬁ]) (m,A) dA.

B

Moreover, for all v1%! € H! (Qﬁ), we have
rI81,18) — (_1),8+1/h[ﬁ](mﬂ)v[ﬁ](m,o) T
r

(-1)?
:/F [q[ﬁ](m)(l)ﬁ/o (dwpk[ﬁl fa[ﬁl) (m, 35) dsﬁl o (m, 0 dr.

4.2.1 Term of order 0

Equation (4.16) implies that (“)Sﬁu([)ﬁ] = 0. Using (4.9), (4.10) and (4.11), we obtain

Uint, 0| = U([)l] (m, 31) = UgQ] (m, 82) = Uext,0|T) M € I. (4-22)
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The choice of v) = 0 in (4.17) gives
ol (uf, o) + affh (o) — e /F Ontlexs, o0 (m, 1)dT = 0.
We apply Lemma 4.1 with hl2 = ])2_1568211[12}7 ¢ (m) = —GextOntle 0|1 2 — 0 and
012l = 0, to obtain
py'o 552U[12] = OextOnUext, 0T (4.23)

Similarly, choosing v[? = 0 in (4.17) gives

a[ll’]Q(ugl],v[l]) + a([J{]Q(u[ll],v[l]) + Oint / 5‘nuint,0|pv[1] (m,—1) dI"' = 0.
r
We apply Lemma 4.1 with plt) = pf15aslu[11],q[1](m) = OintOnUint, 0|7 kM = 0 and

ol = 0, to find

p1—13881u[11] = O'intanuint,O\F- (4.24)

From the second part of Lemma 4.1, one gets

/Uintanuint,mrvm(maO)dr:/Uextanuext,owvm(m,O)dr,
r r
then

Jintanuint,O\F = Uextanuext,O\F' (425)

Let us define g, u, and kg by

Oext ifxe cht; 9 kgxt ifz e chta
oo(x) = i ko(z) =
Oint if © S Qint7 kiQHt if S Qinta

and

Uext,n, 1M Qexts
Uy =

Uint,n m Qint .
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Therefore, with (4.7), (4.22), (4.25) and Theorem 4.1, ug satisfies the following problem
div (00V'LLO) + ]CS’LLO =0 in RB,

hm |x\ (3|T| - Z'kext) (UO - uinc) = 0

|z|—+o00

The zeroth-order term is then determined. Note that ug is nothing but the solution to

the scattering problem where there is no thin layer.

4.2.2 Term of order 1

Integrating Relations (4.23) and (4.24) in sg and identifying terms of order 1 in (4.9)

and (4.11), yields
U[ll] (m,$1) = tine 1y + p1 [(51 + Do ' — 1] Onttineor, V(m,s1) € QF,
and
ul?(m, 53) = e ar + P2 [(52 = Doexid ! + 1] Ontiexs oprs V(m, s2) € Q2.
The identification of first-order terms of (4.10) gives a first transmission condition on I’
Uint, 1| — Uext,1|T = pi(l— O'intgil)anuint,ou“ +pa(l— Uexta’/il)anuext,mr" (4.26)

The second one follows the same lines as for order 0. Indeed, we apply Lemma 4.1 to

Equation (4.18) once for 8 = 2 and another for 8 = 1, and using the identity [27, p. 75]
Au = Aru + 2HOnu + 5‘31u,
we obtain

Uintanuint,lu" - Uextanuext,l\l“ =P (J - Jint)AFuint,mF + p2(0 - Uext)AFuext,Oﬂ"

+m (f]52 - k?nt) Uing,0|T + P2 (EQ - k&) Uext,o|0 (4.27)
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It follows from (4.7), (4.26), (4.27) and Theorem 4.1 that u; is the unique solution to
the following problem
div (Uintvuint,l) + k?ntuint,l =0 in Qinta

. 2 _ .
div (Uextvuext,l) + kextuext,l =0 m Qext;

lim ‘I| (3‘$| - Z'kext) Uext,1 = 07

|z| =400

with the following transmission conditions on I"

Ui, 1)1 — Uesct, 1| = P1(L = 0100 ) Ontiing,or + P2(1 — Oext 0 ) Ontlext 0T
Ointanuint,l\F - Uextanuext,ﬂl“ =DM (& - Uint)AFuint,O\F + P2 (5 - Uext)AFuext,OW
+ 1 (EQ - kfnt) Uint, 0T 1 P2 (Ez - kixt) Uext,0|T
or

P10extO + P20int0 — TintText

Uint, 1|7 — Uext,1|T = 20 it Ot
intOex

(Uintanuint,mF + Uextanucxt,O\F) )

1
TintOnUing, 1|7 — TextOnlUext, 1|7 = 3 (0 — P10int — P20ext) (Artingor + Artext,or)

+ (ki2 — ikl — p2k§xt> (Uing, 0|1 + Uext,0T) -

N |

5 Optimal error estimates

The process described in the previous section can be continued up to any order provided
that the data are smooth enough. Here the source term is given by a plane wave which is

C*>. We can also estimate the error made by truncating the series after a finite number
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of terms. Let n be in N, we set ﬁext}(; = ﬁext\ﬁ[;)%

n
u((h,)é = Z &g, 5 inQs1,

. E : E : (n)
1nt 0 6J Uint,j > ext 6 - 6 Uext,j and Ugs =
n
ufiz) Z g, 4 in Qs9,

[B](

where uq, (@) 1= tUay,;(m, dsg) = u; (M, sg); Vo = @g(m, sp) € Qs 5.

Theorem 5.1 (Convergence of the asymptotic expansion) For all integers n, there ex-

ists a constant ¢ independent of & such that

|

(n)

n+1
Uext,§ — Uext,s <o :

H (Qext,s)

1§/ Hud>5 _ u(né)

d, HHl(Qa) * ‘

Uint,6 — mt 6HH1(Q )
int,s

Proof Let us define the remainders Rp, », Rp,.n, RN, »n and Ry, , of Taylor expansions

I ORI ()

in the normal variable with respect to ¢ up to order n of u,, S50 ot 8105 57 Onsn Ying o175 4

and On; , exz 6|Ts.2 respectively by
n n—j 15+l
(=1)"¢?
Rpyn = ui(:t),é\F(M - Z Tpllafluint,ju“
§=0 1=0 ’
Y L (Y
= Z 07 Uing ](m7 —0) — N 8slumt j(m7 O)a (5 1)
j=0 §=0 1=0
n n—j <
5i+
RD2 n 1(3:2,5|ng2 - 7'p2anuext 3T
7=0 1=0
LI n T siH -
= Zéjuext,](m,é) - 7‘852Uext7]‘(m,0)7 (52)
j=0 j=01=0

e I 9l+1
RNl,n = an5,1ui(:t)75\r‘5'1 - [T plan uint,j|F
j=0 1=0 ’
n n—j
= Zajpl aslulnt,J m, 6 Z p alflaint,j(mvo)v (53)

7=0 7=01=0
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and
n n— ]
RNg,n = 6115 2 gzz ,8|T5.2 Z Z I an ucxt,j\F
7=0 =0
= 25]p2 Os, Uext,j (M, §) — Zpgl 8l+1uexm (m,0). (5.4)
7=0 7=01=0

We shall rely on the following proposition to show the estimates of the remainders Rp, »

and Ry, n. The steps of its proof are very similar to those given in [37, Section 5. [

Proposition 5.1 There exists a constant ¢ > 0, independent of §, such as

HRNBJLHH (T's ﬁ) 5n+1/2

< "2 for j=0,1.

(4)
HVFJ Bpyn L2(T)

Moreover, there exists an extension PR of Rp, » into Qs with

0,, PR (m.15) s =0 and [PR]ps(q,) < e

[ns=(=1)Fps
Continuation of the proof of Theorem 5.1 Let r{}; 5, rj; and 7, 5 be the remain-

ders got by truncating Series (4.5), (4.6) and (4.8)

n R (n) n o (n) noo.__ (n)
Tint,s *= Wint,6 — Uipg g3 Text,s = Uext,d = Uexg 50 T'd,6 = Ud,s — Ug 5»

and L be the linear form defined on H'(Q)

.f — 2 =
Lsv = / JintVrﬁlw.Vvint — kmtri’zt’évint dQing,s
Q

int,s

+ / 5V(T§)5—'PR).VE1 — %Q(Tg)(;—PR)@d d€s
Qs

— 2 — o
+ /V Jextvrgxt,&vuext - kcxtrgxtyﬁvext dQext,é
Q

ext,s

+ Oext <TT€Xt’6‘OQ76‘QQ>H*1/2(89)><H1/2(8§2) ’ (55)
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in which PR is the extension function of Rp, , into {25 and ving, vq and vexs, are the
restrictions of v respectively to the domains x5, €25 and ﬁext)g. Using Green’s formula

in Qs and in Qexe 5 with the help of (4.7), we obtain
Lsv = —/ Tint (Fns Uing,0Ts0 + -+ + 6™ Onsy Uint,n|ls.1 ) Tint|rs, L6
s
2 PR—
- Z {(M[ﬂ] W + - 4 5mulB) YIAT) 4 sl (ugﬁ] 4 8" ul) U[ﬁ])}
+ / Oext (al’ltsguext,ouj(;,g +o 6nan5,zuext,n\l“5,2) ﬁext|1"5,2 dr6,2
Ts,2
- / GVPR.NT, — k*PRvy dQs.
Qs
It follows, from (5.1)-(5.4), that

L:5U = */ UintRNl,nﬁint\Fg,l dr&,l +/ chtRNQ,nﬁexﬂF(;yz dr5,2
Ts1 T

5,2

2
Z [6(1 Al + 4 0mulf) WA +(5b([5ﬁ](ugﬁ] +--- +(5”u%3],v[3})}

n n—k’ 1 k+
/O’lnt (Z Z 5 e kll") vl I(m, —1) det (1 — 20p1 HA+62p] ) dr

k=0 1=0

k=0 =0
- / GVPR.NVv, — k*PRv, dQs,
Qs

n—~k
6 -
T 1 n luext,kf‘> U[2] (m7 1) det (1 + 25p2H+52p§K:) dr’

where Ry, , and Ry, , are respectively the remainders of Taylor expansions in the

normal variable with respect to 6 up to order n of 9y, u 1(:1? 05, and Ong,u g:,z oirsat 2H

and K are respectively the mean and the Gaussian curvatures of the surface I'. Now, we

use that u([)m, e ugﬁl, (8 =1,2) are solutions of Equations (4.16)-(4.20), and obtain

Lsv = s+l Z{ a[ ( (6] U[ﬁ]) . ( (6] _|_a83]1 _|_b([)5]> (u%i]’m>

- (af]l + b[lﬁ]) ( L+ oulf 51) (a[zml + b[2m> (uLBlQ + 5u[ L+ 0%l y[B])
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— ol (a8 (W ) VT )

+/ UintRNl,nﬁint\Fg,l drzs,l _/ chtRNQ,n@exﬂl"(;Q dFJ,Q
Ts,1 Is2
—~ / GVPR.VT, — k*PRug dQs.

Qs

By the estimates based on the explicit expressions of the bilinear forms agf % (.,.) and those

from Propositions 5.1, we have

2
|£6U| < sl Z (HVI‘U[B]'
B=1

+5*1‘

0, 017! ‘

Hv[m‘

L%ﬂﬂ))

L2(Q8) L2(Q7)

2
+ 66n HvintHHl(Qint,a‘) + Z ||UB||H1(QJ,/3) + ||Uex‘c”H1(ﬁext‘6)

B=1
This implies,
2
nt3 3 [B]’ -3 m]’ 3 m]’
\£512| S eon Bz::l (52 Vv L2(QF) o Bsﬁv L2(QP) o || L2(QP)
2
+ " ||vintHH1(Qim15) + BZ ||UBHH1(QM) + ||”ext||H1(§exty5)

=1

Therefore

L0 < 8™ [[0]l g1y » Yo € H'(). (5.6)

We set in (5.5) ving = ri”ﬁt)(s, Vg = 7“2'15—731% and Vext = rgxty(;. Then, v is continuous over
the interfaces I's; and I'so. Hence, v € H' (£2). Using (5.6) and the stability theorem

2.2, we obtain

Hrﬁlt,éHHl(szintyé) + HTS,é*PRHHl(Q&) + Hrgxt’éHHl(ﬁext,s) < b

Thanks to Proposition 5.1, we find

7 s 1 g0 + I lars ) + sl ) < 07 67
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y = 0O(1) and || was

Finally, since ||’U/ext,j||H1(§eXt76) = O(1), ||tintjll g1 xjHHl(QM;) =

int,s

O(671/2), one gets

n+1 n+1
[T

TiTrth,éHH1(Q

int,s) HHl(Qintys)

(5.7)
< C(sn-i-l +c§n+1 < cén—&-l’

Hrgxt,lsHHl(ﬁ = HénJrluext,n-‘,J + Tn+1

’Hl(ﬂext,é)

ext,s) ext,d Q
(5.7) 1 1 1
< ed™ T 4 o™t Les™
n _ n+1 n+1
r = |lr + 6" H
|| d,6||H1(Q{;) ’ d,o d,n+1 H1(92)

(5<7) C(SnJrl +65n+1/2 < C(Sn+1/2,

which completes the proof. O

6 The first-order approximate transmission conditions

In this section, we model the effect of the thin layer by a problem with appropriate
transmission conditions and prove that the modelling error is of order two in §. We begin
to truncate the series defining the asymptotic expansions, keeping only the first two

terms. This yields

€0)

Uint,§ =~ uint,é ‘= Uint,0 + 6uint,1 m Qext;

(€0 R :
Uext,s = uext,6 1= Uext,0 + 5Uext,l m cht»

Udy,5(T) uélll),é(m, s1) == u([)” (m,s1) + 5u[11] (m,s1), Ve = ®1(m, s1) € Qs.1,

Udy,5(T) ~ u&iié(m, 89) = u([JQ] (m, s2) + 6u[12] (m, s2), Vo = ®a(m, s2) € Qs.2,
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where
“i)lc)t,é in Qexe,
U(l)
ui(it),é in Qing,
is the solution to
div (UmtVumt 5) + k‘mtumt s=0 in Qipg,
div (Uextvuix)t 5) + kextuext 5§ =0 in Qe
(1) 1) _ (1) (1)
uint,é\F - uext,é\F =0A (uint,tS’ Uext 6) 5255 on F7

(1) @ @ 2
OintOn Uint 0|0 O—eXtanucxt O T = 0B ( Uing, s> uext,é) -0 ps on L,

lim |£L'| (8|$‘ — ikext) (Uéi)tﬁ - uinc) =0,

|z|—+o0
with
P10ext0 + P20int0 — OintOext

A (u,v) := — (GintOntir + OextFnvr) ,

2Uint Oext0

1
B (u,v) := 5 (6 — p10int — P20ext) (Arur + Arovyr)

(k2 - plkmt p2k§x‘£> (U‘F + U|[‘) ’

P1 Oext0 + pQUintO' — Oint0ext

55 = Yoo (Uimanuint’ur + Uextanuext,1|F) )
intUext
1
ps = 5 (0 — P10int — pQUext) (AFuint,HI‘ + AFU@Xt»UF)
L (9 2 2
+5 (k — prkiy _kaext> (ting, 17 + Uext,1|T) -

The first-order approximation is defined by

ap
u

ext,d in Qextv

ap ,_
U =

ap

U’int,&

in Qine,
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where Ug? is the solution of (6.1) with ps = 0 and §; = 0. The approximate problem
(P§?) is then defined by equation (6.1) with the following transmission conditions

ap _,.ap _ §P10ext0+P20int0—TintText ( .. ap ap
uint,é\l—‘ uext,(ﬂl—‘ =0 20intText o Ulnta“uint,6|F + UeXta“uext,5|F ’

ap ap _ 51 /= ap ap
Jintanuint,éﬂ" - O—eXtanuext,ﬂF - 65 (0 — P10int — pQJEXt) (Aruint,é\l“ + Arucxt,zﬂl‘)

+03 (EQ — Piki _p2kgxt) (“?rimr + “th,ﬂr) :
(6.2)

Before proving that U is indeed an approximation of the field us far from the thin
layer with error O(6%), we study the well-posedness of (P5¥). However, the bilinear
form associated to (Pg”) is neither positive nor negative. To show the existence and
uniqueness of the solution Uj”, we reformulate Problem (P§*) into a nonlocal equation
on the interface I' (cf. e.g., [6, 9] for different problems). We introduce the DtN operators
(Dirichlet-to-Neumann) Siy; and Sey; defined from H'/2(I") onto H~/2(T") by Sing :=
aintanumt,n where u;yt is the solution to the boundary value problem

div (0int Viting) + k2 ting = 0 in Qiye,

Uint|T = ¥ on I,
and by Sext?) 1= TextO—nlUext|r, Where ey is the solution to the boundary value problem
div (Cext Vitext) + k2 qtiext =0 in Qexe,
Uext|r = ¢ on I,

lim || ((’“)‘_,,4 — ikext) Uext = 0.

|z|—+o00

Remark 6.1 The function uiy is defined only in the case where the constant k:?nt/oint

does not belong to the spectrum of the closed operator (—A,H&(Qint)). Fortunately, its
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spectrum is discrete since this operator has a compact resolvent and is composed only of

real numbers so we can always assume that iy is well-defined.
The following theorem gives the uniqueness of the solution Ug? to Problem (Pg").

Theorem 6.1 Assume that the following hypotheses hold

S (B = piki) > 0, (6.3)

20ext00int

P10extO + P20int0 — OintOext

1
)\571 = g

¢ o (Sint) s (6.4)

problem (P5?) admits at most one solution.

Remark 6.2 Note that we can always choose p1 and ps in such a manner that the

condition on As1 s fulfilled.

Proof Let us consider the homogeneous problem associated to (Pg"):

div (UimVu?ft’é) + ki 5 =0 in Qing, (6.5)
div (0o k5 ) + haquil s =0 in Qo (6.6)

o] (91 — ) 1% 5 = O

with transmission conditions on the interface I'
ap _,ap _y—1 X ap ap
Uipg i1~ UYoxt,s|0 = Ao,1 (Ulntan“int,5|r + chtan“ext,m) ,

. ap ap sl ap ap
TintInline 50 — TextOnllgy 50 = 03 (0 = P10t — P20ext) (Aruint,é\r‘ + AF“extmr)

3% (B = pkd, = pokie ) (uih e+ 0l o) -
(6.7)
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Standard regularity results for elliptic problems (see e.g. [1]) show that (uﬁﬂ 50 Yot 5) €

Cc> (m) x C>® (Qext). Let Bgr denote the ball with centre O and radius R large enough

to contain Qi and Qg be the domain of R? defined by Qg := Br N Qext. Multiplying

equations (6.5) and (6.6) respectively by u

int,

s and ul?, o integrating in Bg and using

Green formula, we obtain

2
ap 2
Oint / ‘vuint,é‘ innt - kint/
4 Qint

2
uiﬁm‘ dQR—I—’h/F(

2
ap
Vulls| don

2
ap
uint,é‘ dQing +UextA2
R

2
ap
uext,tﬂl’" ) dl’

2
ap
“im,5|r‘ +

1 _ 2
+ 51 (U — P10int — pQcht) /1“ ‘VFU?I‘Z,MF + VFUZ}Z,MF’ dar
ap —ap _ ap ap
+ 272 /r R (uint,ﬂl"uext,é\r‘) dl' = oext /s 6Ruext,5|SRuext,6|SR dSk, (6.8)
R
where
o= OintText 0 5k2 — Piki — P2kl
1-— = ~ ~ - )
6 (PerxtU + P20int0 — Uintaext) 4
Ny 1= aintaexta: _ 6k2 - plk?nt _p2kgxt
é (plo—cxtg + p20intg - Uintacxt) 4 ’

and Sk denotes the sphere with centre O and radius R. Hence, taking the imaginary part
of (6.8) and using (6.3), we have
8 ( . ORUL, 515U o15m dSR> <0. (6.9)
R
It follows from Rellich’s lemma and radiation condition (2.1 k) that
u

aP s =0 on Qe (6.10)

ext,
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Problem (6.6)-(6.7) is reduced to

div (o Vuil 5 ) + k2 uih 5 = 0 in Qi
u?ft,a\r = )‘ﬁan“?rﬁ,a\r on I, (6.11)
TintOntiin, 51 = 05 (T — P10t — P20ext) Arugn 51
+0% (B = pkd — pakl ) il onT.
The equation
“iﬁ,{sw = Ats_,%an“ﬁﬁ,swv (6.12)
implies
(Sint — As,11) @it = 0, (6.13)
where iy is the trace of ug}; 5 on the surface I'. By virtue of (6.4), we get uj; 5 =0 on
I' and therefore u?rﬁﬁ =0 in Qint. O

The existence of Ug? is based on properties of Laplace-Beltrami and Dtn operators.

The latter are given in the next lemma whose proof can be found, for example, in [40].

Lemma 6.1 (1) The Laplace—Beltrami operator —Ar on I is a pseudodifferential op-

erator of real symbol of order 2. It is Fredholm of index 0.

(2) The Dirichlet-to-Neumann operators Siny and Sext are elliptic pseudodifferential

operators of real symbol of order 1.
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Using the definition of Sin; and Sex, Problem (P§”) is equivalent to the boundary

equations

(Sint = As1l)w — (Sext — As1l) =g (6.14)

1
Sintw + Sext ¥ — 55 (U — P10int — p2aext) (AFW + AF%)
1 /~

05 (R = pik — pokiy ) (w+ ) = g, (6.15)

where
g = _Uextanuinc\F - Sextuinc\r‘ ecCc™ (F) ) (616)

w and s are the traces of u;h s and uib s on the surface I' respectively. From (6.4),

—Xs,1 ¢ 0 (Sint) thus the next pseudodifferential operator of order —1 is well-defined
Ks = (Sine — Asa D). (6.17)
Equation (6.14) then reduces to
w= Ks (Sext - )\5)1[) »+ Ksg, (618)
and Problem (6.14)-(6.15) is equivalent to the boundary equation
A(;% = Bg% - /\572A1"K§ (Sext + Sint - 2/\571[) = 0, (619)
where
1
sz =05 (0 = P10 — P20ext) , (6.20)
0:=—g— SintKs9 + Ns2ArKsg + A5 3K59,
Bs 1 = Sint K5Sext — 5,151t K5 + Sext — A5,3K5Sext + A5,30,1 K5 — As 31,
e 2 2
)‘5,3 L= 65 (k - plkint - p2kext) .

Some properties of the operator As are given in the next proposition.
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Proposition 6.1 For all integers k in N, the operator As defined from HF+1/2 (T) to

HF*=3/2(T) is Fredholm with index zero.

Proof Let k£ be an integer in N. Since Si,¢ and Seyt are pseudodifferential operators of
order 1, they map H*(T') to H*~! (I'). Ks being a pseudodifferential operator of order
—1, it maps H* (T') to H**1(T'). As a consequence, Bs; maps H*(T') to H*~1(T). The
injection H*~1 (T') < H*~2(T) being compact, the operator As defined from H**+/2 (T
to Hk=3/2 (T") is a compact perturbation of A\s 2 ArKs (Sext + Sint — 2As,11). Since Ar is
Fredholm with index zero, to show that As is Fredholm with index zero, it suffices to
show that Sext + Sint — 2Xs,1/1 is invertible.

Let us consider the equation
(Sext + Sint — 2Xs11) p =, ¥ € H*Y/2(I'), k € N. (6.21)

Using the definition of Sext and Sing, Equation (6.21) is equivalent to the following prob-

lem
div (010t VVint) + k2 Vine = 0 in Qe
div (Gext VVext) + k2 Vet = 0 in Qext,
Vintr — Vextir = 0 inl’ (6.22)

TintOn Vingr — Fext OnVext|r = 261 Vingr +¢ inl’

lim || (94 — ikext) Vext = 0,

|z]—+o00

where ¢ = Viygr = Vexejr- Standard arguments involving Rellich’s lemma and the Fred-
holm alternative show that, for all k in N, if ¢» € H*~/2(T), then Problem (6.22)

admits a unique solution (Viy, Vext) in HETL Q) ¥ Hlko‘gl (Qext), and hence a unique
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trace ¢ € HFH1/2 (T'). As a consequence, the operator Sex; + Sint — 2X5,11, defined from

HFEFY/2(T) to HF=1/2(T), is invertible. O
We are now in position to state the existence theorem.

Theorem 6.2 Under the assumptions of Theorem 6.1, Problem (P§") admits a unique

int,0° “ext,d loc

solution (uap u? ) in H*1 (Qine) ¥ HFT (Qext) , Vk € N.

Proof It follows from Proposition 6.1 that the uniqueness of Ug” implies the existence.

From Theorem 6.1, we then infer that, for all k£ in N, there exists a unique solution

loc

(ueh 5o 0ty o) i T (D) x HEF (). 0

Let us denote by ug” the approximate solution defined on Q by

ap .
uint,é n Qint,é;
ap ,__ ap : —
us: =94 uy' s infsg, (B=1or2),
ap .
Ugep s 10 Qext,o,

such that ugi s are defined on Q55 by

(1],ap

gy 5 () = ug7s (m, s1) =gy 50+ 0p1 [(s1+ 1)oimea ' — 1] OnUit 51>

Vr = ‘1)1(m, 81) S 9571,
and

uil s(x) = u?j:gp (m, s9) := quZwlF +0p2 [(s2 = 1)oextd ' +1] 8nu‘e1£t’5‘r,
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Vo = <I)2(m, 82) S 9572.

Finally, we want to derive an error estimate between us and the approximate solution
us?. To do so, we need once again a uniform stability result for the approximate problem.

Let H! (Q) be the Hilbert space defined by
H () 1= {0 = (vint, vext) € H' () x H' (Gt }
equipped with its natural norm and bs be a bilinear form defined on H* (Q) x H' (Q) by

R 2
bs (1, v) = Ommg / Viting Vo dQne — K2, / Uit ving At
Q. Q

int int

+ Oext /N
Qoxt

1
- 5)\5,1/ (Uing|r — Uext|r) (Ving|r — Vexr) dL
r

~ 9 ~
Vext-VUext dext — kext/N UextVext A ext
Qext

+ Oext <Tuext\897 ’U|89>H*1/2(8Q)><H1/2(8Q) :

We have the following lemma

Lemma 6.2 1) For all hs in (Hl (Q)),, there exists a positive constant ¢ independent of

& such that the solution to the variational problem
Find us € H' (), Vv € H! (Q),

b§ (U5, ’U) = h5 (’U) 5

satisfies
lusllan ) < 82 sl g gy - (6.23)

2) Furthermore, if p10ext0s + P20int05 — OintOext < 0, one has

lusllin ) < cllhsll g ) - (6.24)
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Proof 1) We need to prove that

b
sl oy < €872 sup [Ds (s, V)|
veH! () ||v||H1(Q)

We proceed by contradiction, assuming there exist sequences (5n)n>0 and (u(sn)n>0, de-

noted by (un),,¢, such that

=1, VneNand lim sup  |bs, (un, )| =0. (6.25)

HY(©) F0 oy

lim &, =0, H\/Su

n—-+oo

@=1

We can extract a subsequence of (\/gun) , still denoted by (\/gun) o such that

n>0 n=0

VU, — ug in L2 (),
(6.26)

Vou, — ug in H' (Q).

Furthermore, for all v in C*°(Qipg) X C‘X’(ﬁext), we have

1
lim 5\/3)\5,1/1_‘ (uint,n\l“ - uext,n|F) (’Uint\l“ - Uext|F) dr

n—-+oo

- Jin‘c\/ \/gvuint,'rrvvint innt - k?nt/ \/guint,nvint innt
Q; Q;

int int

+ Uext/~ \/Svuext,n-vvext dﬁext - kgxt ~ \/Suext,nvext dﬁext
Q

ext Qext

\/gbé (un7 U) + Oext <\/5Tucxt,n|aﬂa ’U\8Q>

CTint/

Qint

+ Uext/N
Q

+  Oext <Tuext,0\897 v|3Q>H—1/2(BQ)><H1/2(BQ) .

H=1/2(8Q) x H1/2(9%)

Vo Vo dum — k2, / ot A
Q

int

. }
Vit Vexs At — K2, /~ oo et
Qex‘c

ext

As the right-hand side is independent of §, we have

1 =
5\/3)\5,1 / (uint,n\l“ - uext,n|F) (’Uint\l“ - Uext|F) dl' =0 (1) , Yv € COO(Qint) X COO<Qext)7
r

(6.27)
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and by density of C% () X C(Qext) in H! (€2), we conclude that the equality is true

for all v in H* (Q). Setting v = %,,, we obtain
Huint,n|F - ucxt,n\FHLz(F) < 061/4' (628)
It follows that wuing.o = text,0 on I' and, for all v in H' (2), one gets

. . 2
lim V8 (1,0) = 0 | Ve Vot Sl — K [ i otine
norteo Qint Qint
~ 9 ~
+ Uext/~ Vuext,O-vvext AQext — kext s Uext,0Vext dQext
Q

ext Qoxt

+ Oext <Tuext,0|8ﬂv U|aQ>H—1/2(OQ)><H1/2(8Q) =0. (6.29)

Theorem 4.1 ensures that the problem: Find ug in H*' () satisfying (6.29), Vv € H' (Q),

is well-posed. We then infer that ug = 0 and it only remains to show that lim,, _, H Voup, .
H

0. Note that, since ug is uniquely determined, the whole sequence converges to ug = 0 in

L2 (©). To obtain a contradiction, we have to show that lim, 4 H\/EVun . =

One has

"ﬁVun

2
2 2
2 < cé Jin‘c\/ |vuint,n| innt + Uext/ |vuext,n| dQext
L2(©) Qint Qext

=cR <5b¢5 (Un,ﬁ) + kiznt / 4] |Uint,n|2 innt+k§xt/ ) |uext,n|2 dQext

int Qext
1 2
+ 55)\5,1 |uint,n|F - uext,n\F| ar
r
— 5Uext <Tuext,n|aﬂv uext,n|ag>

Hl/Z(aQ)xH1/2(aQ)> '

Using Lemma 2.1, we infer

H\/SVun

2
L2(9) < cR [6bn(unv%)+k?nt/ ] |uint,n|2 innt+ke2;xt/ 0 |uext,n|2 dQext

int Qext

1 2
+ 55)\5,1/ ‘uint,n|F_uext,n|F| dr’
r

— Oext <\/3Kuext,n\8§la \/gueXt7n|89>H1/2(BQ)><H1/2(BQ):| .
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Since K is compact and v/du,, — 0 in H' (Q2),

<\/5Kuext,n\8§la \@m>

H=1/2(9Q) x H1/2(8)

Finally, the assumption lim,, 4 o0 R [by, (Un, )] = 0 and (6.28) yield lim,— 4+ o H\@Vun

0 contradicting H Voun, =
H(R)

2) Similar arguments to those used to prove (6.23) guarantee Inequality (6.24).
We can now prove optimal error estimates.

Theorem 6.3 There exists a constant ¢ independent of & such that

2
. _ap 1/2 —uP
Uint,§ uint’éHHl(Q ) + é Z Hudﬁ,(; udﬂ76HH1(Qé 8)
int,s !
) B=1

+|

ap 2
Uext,5 — uext,dHHl(ﬁ 0s) < o0’
ext,s

L2(Q)

O

Proof According to the Convergence Theorem, it is enough to estimate the error Ug? —

U él). Therefore, as in [41], we perform an asymptotic expansion for Uy” which amounts

to postulating the ansatz

UsP =" 6w, (6.30)

J=0
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where wjjq_ , = Wext,j and Wi, = Wint,js satisfy the recurrence relations
div (aimeint,j) + kiQntwintJ =0 in Qint,
div (chticxt,j) =+ kgxtwcxt,j =0 in cht,
Wing j|0 — Wext, ;T = A (Wint,j—1, Wext,j—1) on I,

Jintanwint,jﬂ" - O—extanwcxt,j\l“ =B (wint,jfh wext,jfl) o1 F7

im [a| (O — thext) (Wext,j — do,5Uine) = 0,
|z| =400
with the convention that w_; = 0. A simple computation shows that the two first terms
(Win,05 Wext,0) and (Wing,1, Wext,1) coincide with the two first terms of (4.5) and (4.6).

Furthermore, each term of (6.30) is bounded in H!. Let R, be the remainder made by

truncating Series (6.30):

— 7. — o, 0P
Rwlgint = Rlnt,w = uint,5

2 3
— Wint,0 — 5wint,1 -6 Wint,2 — 5 Wint,3
and

— e, 0P 2 3
meext = Rext,w = Uy, s — Wext,0 — 6wext,1 -0 Wext,2 — o Wext,3-

Then R, is a solution of the following problem

div (UintVRint,w) + k?ntRint,w =0 in Qin‘w
div (chtVcht,w) + kzxtcht,w =0 in QCXU

4
Rint,w\l—‘ - Rext,w\l" =0A (Rint,un Rext,w) +46 A (wint,?n wext,?)) on F7
JintanRint,wu‘ - o-extanfwcxt,j\l“ =B (Rint,wa Rext,w)
4
+0*B (Wint,3, Wext,3) onl,

lim |l‘| (8‘1‘ - ikext) (Rext,w) =0,

|z|—+o00
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which gives, for all v = (Ving, Vext) in H (Q),

2
Oint / v,R/imt,w-vvin‘c innt - kint/ Rint,wvint innt
Qint Qint

+ Oext /~
Qext

1
- 5)\5,1/F (Rint,w|r‘ - Rexhw\l—‘) (Uint|F - Uext|F) dr

~ 9 ~
VRext,w'vvext dQext - kext/v Rext,wvext dQext
Qext

1 /~
- 51 (kg _plk?nt _pzkgxt) / (Rint,w|F +Rext,w|F) (’Uint\F + vext|F) ar
r

1

- 51 (gé — P10int — pQcht)/ (AFRint,w\F + AF’R'ext,wﬂ") (vint\l" + vext|1") dr’
r

+ Oext <TRext,w|BQa U‘89>H*1/2(69)><H1/2(8Q)
1
= 554 / B (wint,37wext,3) (’Uint\F + Uext|F) ar
r
Ly
+ 55 A5, 1A (Wing,3, Wext,3) (Vint|r — Vexeyr) I
r
Putting all terms of order 1 in § on the right hand side, we get
b5 (Rw, ’U) = h5 (’U) s
where
hs (’l)) =40 (Ez% - plk?nt - pzki{t) / (Rint,w\F + Rext,w|F) (’Uint|l" + ’Uext\F) ar
r

+ 6

N N

(05 — P10int — pQUext)/ (ArRint,wir + ArRext,wir) (Vint|r + Vextr) dl
T
Loy
+ 56 B (wint737 wext,?)) (Uint|F + vext\F) dr’
T

+ &t / A&,lA(wint,Sawcxt,B) (’Uint|1" - vext\F) dr.
r
From Lemma 6.2, there exists a constant ¢ independent of § such that

”RwHHl(Q) <o M? ||h5||(H1(Q))’ .
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Hence, we obtain

1Rl o < € (672 Rl oy + 872 sl )

SO

§5/2¢
IRl o) < —w?) [ws]lg () -

Since 0 is small enough, we have

”Rw”]Hll(Q) < c6” ||w3||H1(Q) )

which gives the desired result. |

Remark 6.3 There is a particularly interesting case when ooy, 05 and oy are strictly
positive constants satisfying oy < 0 < Oext OT Oext < O < Oing, it corresponds to the

case where the solution US" is continuous when crossing I'. Indeed, if we set

OintOext — P10ext0§ — P20int0§ = Oa

we obtain
p1= iint (Uext - 5) and Do = Sext (5 - Jint) )
0 (Text — Oint) 0 (Text — Oint)

Then, the transmission conditions (6.2) become

ap _ap _
uint,zﬂl" uext,ﬂl" - O’

) ap _ ap _ (Uext - U) (Uint - 0) ap
Ulntanuint,ﬂl" UeXtanuext,ﬂF =9 5 Al—‘uin‘c,é

5};2 (Uext - Uint) - O—intk?nt (Uext - &) - Uextkgxt (& - Uint) ap

+4 — .
g (Uext - Uint) uext,é\l‘
Problem (P5?) is equivalent to the boundary equation
Bsw := —Arw + 9%int Sintw + TText — SextW

0 (cht - E) (Uint - &) ' 1 (cht - 5) (Uint - U)
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Tint kiQnt (Jext - 5) + Uextkgxt (5 - Uint) - 3%2 (Jext - Uint)

(Uext - &) (Uint - 5) (Uext - Uint)

+

OextT Oext0

= = = anuinc + ~ ~
0 (Oext — ) (Oing — ) T (Gext — 0) (Oint — 0)

Sextuincﬂ—‘ on Fa

where w is the trace of uih s on the surface I'. As above, the existence and uniqueness
,

are obtained with a Fredholm alternative, and similar error estimates can be shown.

7 Extension to thin layer with high magnetic permittivity

In this section, we consider the case of a high value of magnetic permittivity of the
domain Qs (cf. e.g. [25, 34] for similar problems). More precisely, we consider the case
where 75 := /6 and E? = k2 /8 where 7 is a strictly positive constant and k2 is a
complex number with strictly positive real part and positive imaginary part.

The asymptotic analysis can be done in the same way and we are thus going to only
give the approximate transmission conditions without doing all computations. Although
the derivation of these new conditions can be done without additional difficulties, the
uniform stability estimate, which is the basis for optimal error estimates, can not be
proved as Theorem 2.2. Actually, the singularity of both the contrast and the refractive
index of the thin layer yield a limiting equation that involves Ventcel-like transmis-
sion condition. All the well-posedness and regularity results used below to get such a
uniform stability estimate are postponed to the appendix. The non-standard nature of
transmission conditions of the Ventcel problem lead us to introduce the Sobolev spaces

HYY (Qune) , HY! (Qexe) and HE (Q) defined by

loc

HY! (Qint) = {’U e H! (Qint>7 vr € H! (F)},



Scattering of a Scalar Time-Harmonic Wave 49

HE(Q):={veH" (Q), vyr e H' ()},

HM! (@) T = {v € Hlloc (m), vr € ot (1“)},

loc

where € is a bounded domain of R? containing i, (cf. Figure 4), equipped with their
natural norms and semi-norm.

This section is then organized as follows, we first prove the uniform stability estimate
and give next the first-order transmission conditions to take into account the effect of

the thin layer.

7.1 Uniform stability estimate

We prove here the uniform stability result for the high-permittivity case.

Theorem 7.1 (Uniform stability) Ifls € (Hl(Q))/, then Problem (2.5) admits a unique
solution in H(SY). Furthermore, there exists a positive constant ¢ independent of § such

that

lusll oy < clllsll gy - (7.1)

Proof We recall below the definition of the bilinear form
ags (ua, U) = /QO};V’UJ(S.V@ - k?’u(s@ dQ + oext <Tu6|8976\89>H71/2(69)XH1/2(39) ’ (72)

and we need to prove that

[usll 1) < ¢ sup M. (7.3)
veEHL(Q) HUHHl(Q)



50 K. E. Boutaréne and P. -H. Cocquet

To do so, we proceed by contradiction, assuming there exist sequences (5n)n>o and

(us,,) >0 such that

lim 0, =0, ||us,||gi =1, Yn € Nand lim sup |as, (us,, )| =0. (7.4)
n— 400 ( ) n—-+4o0o ”‘PHHl(Q):l

In the following, we assume that there exist two positive constants € et §; such that
5n <e<d < 50. (75)

Note that this can be done at least by extracting a subsequence of (67,,)”20. We show
in three steps that there exists a subsequence of (us, ) such that lirf [lus,, |l Q) = 0,
n—r-+0o0o

which will lead to a contradiction.

1/2

Step 1: There exists a subsequence (u(;n)n>0 such that Hudﬁ, <oy "

On HHl(anﬁ)

From (7.4) and Rellich’s theorem, we can extract a subsequence of (us, ), still

denoted by (us,, ), ¢, such that

us, — up in L? (Q),
(7.6)
us, — ug in H (Q).

Furthermore, for all v in C*(9), as(.,.) can be written as

as (us,v) = / 00Vus. VT — kjust dQ + Oexs <TU6|6975\BQ>H71/2(39)XH1/2(39)
Q

S 2 N S
— / Jintvudl’g.vvdl dQ(;J +/ kintud176vd1 dQJ,l —/ oextVud275.Vvd2 dQ(S’Q
Qs,1 Qs,1 Q5,2

~ 7%2
+ / k2 g, 5Ta; A0 + | SVuas Vg dQs — | = uqstq ds, (7.7)

Q5.2 Qs d Qs J
with

00 1= Oint X0 (T) F Text XQeyq (7)),

k% = k?ntXQint (l’) + kgxtXQext (1’),
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and ugq, s and vg, are respectively the restriction of us and v to the domain €25 5. Applying

the Cauchy-Schwarz and triangular inequalities, we get

Sc ||Ud1,6||H1(QM) Hvd1||wlroo(95,l) \ €251
Sc ||u5||H1(Q) ||U||W1»°°(Q) \ |€2,1]-

Using [[us, [l 1) = 1 and that [Qs, 1] = ¢y, we infer

_ 2 I
/ Uintvudl,é-vvdl - kintudl,évdl dQ‘Svl
Q5,1

lim Oint Vg, 5.V, — k2 ua, 50, dQ%, 1| =0, Yv € C(Q). (7.9)
n=too | Jo. , ;
Similarly, we show that
Eﬂr_l / Oext VUdy,5-VUd, — kgxtudzﬁ@ dQs, 2| =0, Yv € Coo(ﬁ) (7.10)
n oo Qs, 2

As a consequence, we infer from (7.4)-(7.10)
7.2

: o _ _
lim —Vudygn.wd — < Ud,5,Vd ngn
n—-+o0o an ) (5n

= lim |:CL§7L (us,,v) — / ooVus, VT — kjus, v dv
Q

n—-+oo

_ __ 2 _
- Oext <Tu6n\6§la ,U|69>H*1/2(89)><H1/2(8Q) +/ Uintvud1,5~vvd1 - kjntudl,évdl dQé,l
5,1

+ / Uextvudg,ts'v% - kgxtud275% dQ[S")Q
Q5,2
= —/ ooVug.Vu — k‘guoﬁ dx — Oext <Tu0|89’E|69>H*1/2(89)><H1/2(8Q) , Ywe Cm(ﬁ)
Q
As the right-hand side is independent of §, one has

~ 7.2
/ 5£Vud75n.V1Td — ?—udjnvfd dQs, =0 (1), Ve Coo(ﬁ), (7.11)
Q(;n n n

and by density, we conclude that the equality is true for all v in H* ().

Taking now v € C>(f2) one has for all x = 1g(m,n) in Qs g,

ng
Vdg (QJ) = '17(15 (m,rm) = 5(1[3 (m, 0) =+ Gmﬁdﬁ (m, )\) d)\, (712)
0
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SO

- 2 ~ 2 " ?
[Da; (m,mp)|” < 2 [0a, (m,0)]" +2 ‘/0 OnsVas (M, A) dA

By integrating on I', we find

3o
/F|5d5 (m,n6)|2dr<2/r|5dﬁ (m,0)|” dr+2/r/0[ |05, (my A)[* A,

SO

/F |a (m,ng)’Q dl' < 2 Hvdﬁ\FHiZ(r) +2 HanaadaHi%Qw) :

Integrating a second time with respect with ng, we obtain

pad 2 2 2
L [ s G ar g < 8 (e 3agey + 0070, )

SO

||’Ud5||L2(Qg,g) < col/? HUHHI(Q) .

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

Since v € C*(Q) is arbitrary, we conclude, by density, that the last estimate is true for

all v in H! (). Hence, for v = us, , we have

||ud/376n ||L2(Q(sn,5) < 6571/2.

Using both (7.11) and (7.18), one gets

||udﬁ*6’ﬂ ||H1(Q5n,5) < 05717'/2’

which proves the first claim.
Step 2: We show that ug =0 in .

In view of (7.19) and (3.4), one has

2
sl s, ) = P86 | 52 |Vruld'| det s dUdsg
(25,8) i

—1¢—1
+ g ) /Qﬁ

(7.18)

(7.19)

81| 812
0, ul ‘ det Js 5 dDdss + Opg /QB ‘ué ’ det Js 5 dl'dsg,
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we then infer the estimates

8
HVrugn]‘ o <e, (7.20)
‘asﬁugi} oy < B (7.21)
6]
‘ K - (7.22)

To compute the limiting equation, we introduce X as the Hilbert space defined by
X:= {V = (v,vm,vm) € HY(Q) x H' (I, H* (1)) x H' (I, H' (I)) ;
ol (m,0) = vr, §=1,2},

It follows from (7.4) and (7.20)-(7.22) that the sequence (Us,), defined by Us, :=
<U5n, ugl],u([fv is bounded in X. Therefore, there exists a subsequence of (U(;n)n>0, still
denoted by (Us, ), >0, such that Us, — Up := (uo,w([)l],w([)2]) in X . Inequality (7.21)

B]

implies 04 ﬁw([) = 0 resulting in

w([)ﬁ] (m,s5) = uor, V(m,sg) € 08, (7.23)
Let now v be a smooth function v in H* (), as(.,.) becomes

ags (uéa 'U) = / ooVus. Vv — kguﬁﬁ dQ + Oext <Tu6|8975\89>H—1/2(39)XH1/2(59)
Q

— 2 _ S
— / Uintvudl,é-vvdl dQ(;,l —I—/ kintud1,5Ud1 dQé,l —/ UeXtVud275.VUd2 ng,g
Q5.1 Q5.1 Q

8,2

2
+ / k2 Udy,50d; A2 + Z |:Pﬂ5/ J{gvrugﬁ}.vlﬂv[ﬁ] det Js 5 dUdsg
Qs.2 =1 Qs

+ pgld_zﬁ /Qﬁ Bsgugﬁ]asﬁﬁdet Js g dl'dsg — p,@A/{? /Qﬂ ugﬁ]ﬁ det Js g dFdSB:kT.QZl)

Now choosing a smooth v in H () (see Lemma 9.1) leads to

DPRO / J;L%BVpugﬂ].medet Js,.p dl'dsg —|—p515;25/ 8sﬁugi]835mdet Js, 5 dl'dsg
(1) QB8

n
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- p5E2/ ugi]ﬁ det J5, g dl'dsg
OB

G Bl v rolfl dhdsg — pak? / 1181 drd 7.25
S pﬁo/m Vrwy Vo 58— Dg Fwo v sg, (7.25)
otherwise, as w([)ﬁ Vis independent of sg, we would have
pga/ préﬁ].vpﬁ dl'dsg = pg&/ VFU0|I‘-VFU|T dI’ (7.26)
Q8 r
—pg’I?/ w([)B]W dl'dsg = —ngQ / uo 0T dl. (7.27)
QB T

Since w([)m is independent of sg and Uy € X, w([)m (m,sg) = w([)m (m,0) = ugr € H* (T"),

which gives meaning to the last two equalities. As a consequence, in view of (7.4) and

(7.25)-(7.27), we obtain

0= lm as, (us,,,v)

— /QUOVUO-VE - kguoﬂ A2 4 Text <Tu0‘8Q,6‘89>H_1/2(89)XH1/2(69)
+ 5/ VFUO\F-VFW dl' — %2 / Uo‘rm dr'. (728)
r r

By density (Lemma 9.1), we deduce that (7.28) is true for all v in H{ (). It follows
from Theorem 9.1 that the problem: Find ug in H{ (Q) satisfying (7.28), Vv € H{: (),
is well-posed, moreover uy = 0.

Step 3: Getting the contradiction.

To obtain the contradiction, we show that ngrfoo l[ws,, | 1) = 0. Since g is uniquely
determined, the whole sequence (Us) 4 converges to Uy = 0, then the whole sequence (us);
converges to ug = 0 in L? (Q2). It only remains to show that ngrfw Vs, 2y = 0. We

have

| Vus, 240

Vu[;”

2
L2(0) S C/ 75,
Q
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= cR{ as, (us,,u /k(; lus, | dQ

— Oext <T’u/5n\aﬂau6n‘ag>

).

H-1/2(8Q)x H/2(9Q)
Using Lemma 2.1, we infer
IV, ) < R as, (s, s,) + [ I3, Jus, * a9
— Oext <KU6”|89’W‘89>H*1/2(BQ)XH1/2(8Q) }.

As

/ ka |U6n

2 2
dQd = / int ‘uint,én

mt Sn
+ 6,1t § /
Qs
/th Sn

2
7 B
+ Z /Q R \ugg\ det Js, 5 dldss

2 2
dQint,s,, +/ Fext ‘uEXt56n| dQext 5,
Q

ext,ép

P ds, s

2 2 2 2
12, Jtints, > %5, + / 12 Ness, | ds

Qext,an

n

ko lug, | dQ+Z/ k2 ulf ‘ det Js, 5 dldss

- 6 / int

W — ug=0in L2 (Q) and v} — Wl =g = 0in L2 (15, HY (), it follows

n—-4o0o n n—-+o00 1nt 0

2% 4
uf|” det Js, » drdss,

ext

;]( det J5,1 dTds; — / k2

Uus

Jo 3 |U5n\2 dQ - 0. Since K is compact and us, — 0 in H* (Q),
" n—+o0o

<Kugn‘897W|BQ>H’1/2(QQ)XH1/2(8Q) n_>—>000 Finally, the hypothesis hr_{l R [as, (us, ,

0 leads to nEI-&r-loo [Vus,, |12 () = 0 contradicting [|us, || g1 (o) = 1- O

ug, )] =
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7.2 Approximate transmission conditions of order 2
Using the same techniques as in the previous section, we derive an asymptotic expansion
of the total field us and establish a convergence theorem. We now give the first two
terms of the asymptotic expansion, denoted by, (Uint,n; Uext,n ), <n< Satisfy the following
problem
div (Text Vltext,n) + kgxtuext,n =0 in Qex,

. 2 _ .
div (Uintvuint,n) + kintuint,n =0 m Qin‘m

lim |z] (6\90\ - ikext) (Uext,n - 6O,nuinc) =0,
|| —+o00

where Jy,, indicates the Kronecker symbol. The transmission conditions on I' are de-

scribed below:

At order 0.
Uint,0|T = Uext,0|T"» (7-29)
TintOnWing, 0|7 — TextOnlUext, 0|7 = TArUing o0 + EQUint,om (7.30)

At order 1.
Uing, 1|7 — Uext,1|T = P10nUing, 0|7 + P20nUext,0|T5 (7.31)

~ ~ 7.2
O-intanuint,lu1 - Uextanuext,1|F = pIUAFuint,HF + p20AFuext,1|F +P1k/’ Uint,1|T

7.2
+ ka Uext, 1T — pQchtAFuext,O\F - plaintAFuint,Oﬂ"

27.2 2 27.2
— pik Huint,O|F - p1/€intuint,0\1“ + pok Huext,()\r
— pok? sodivr (HI —R)V

D2 extucxt,O\F +p20 1r ( ) Fucxt,O\F

— piodivr (HI — R) V) ting o0 + P3GAT (Ontiext,or)
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+ P53k Ontiexsor — PIGAT (Oningor) — PTE>Onling o[- (7.32)

Moreover (uLﬂ ]) is determined by the following expressions
o<n<l1

1 2
Ug](”% 51) = u([)](m, S9) = Uint,0|T = Uext,0|T>
(1] _ M2 _ 9
Uy (m7 81) = Up (ma 82) - uext,1|r‘ +P2 nuext,0|1"
= Uing, 1|0 — P19nUint,00, V(M,s8) € 07,

We follow the approach used in Section 6 to derive an approximate problem of order
1. The proof of the uniqueness of the solution is then going to encounter two difficulties.
The first comes from terms Arp (anuext70|p) and Ar (6nuint,0‘p) in Condition (7.32). To
bypass this difficulty, we determine constants p; and py making these terms vanish. From

(7.29) and (7.30), Condition (7.32) becomes
TintOnUing, 1T — TextOnlUext,1|T = P1OAT Uing, 1T + P20 ArUexe, 1|0 +p1E2uint,1\F
+ pQEZUext,HF — P20ext AT Uext,0[T — P10int AT Uing, 0|7
+ D3R Hutet o1 — P2kext.or — DI Hiting o1 — D1k Uing ofr

+ p3adive (I — R) Vitex or) — piodivr (HI — R) Vr) Uing,ofr

~ 2
o k
2 2 2 2
+ (Uintp2 _plaext) Ar (8nuext,0|f‘) + (Uintpz - plgext) anuext,o\l“
int Oint
2 E2 2 o 2 2 E4
— 2pjo AFuint,0|F — D1 (AI‘uint,Oﬂ") — P1—— Uint,0|T- (7.33)
Oint Oint Oint

Then, by setting aintpg — p%acxt = 0, one obtains

P = vV Tint (\/ Tint — v/ Uext) and pg = V Oext (\/ Tint — / Uext)
! Oint — Oext 2 Oint — Oext ’

As a consequence, (7.33) becomes

Uintanuint,l\r‘ - chtanuext,l\l“ = plo—AFuint,l\l" +p20AFuext,1|F
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7.2 7.2
+ P1h Uing 1|1 + P2k Uext 1|1 — P20ext AT Uext, 0|7 — P10int AT Uing, 0|1
27.2 2 27.2 2
+ ka Huext,O|F - kacxtuext,0|F - plk Huint,0|1" - plkintuint,ou"

+ p%&divr [(HI - R) Vruext,o‘r] - p%&di’l}r [(HI - R) VF] uint,O\F

7.2 ~ 7{/,'4

k o

2~ 2 2 2

— 2pjo AFuint,O\F — D1 (AFuint,0|F) —P1
Tint Oint Tint

Uint,0|T - (7-34)

As a result, we assume in what follows that the following constraints hold

L= v Tint (\/ Oint — / Uext) and Py = VOext (\/ Oint — / Uext)
! Oint — Oext 2 Oint — Oext -

The second difficulty comes from complexity of Condition (7.34) which can be overcome
by rewriting the whole transmission condition. Thus, from (7.29) and (7.34), we deduce
a form, albeit longer but better adapted to treat, still, the uniqueness of the solution of

the approximate problem.

7 T2
TintOnUing, 1|7 — TextOnlUext,1|T = P15 Uing 11 + P2k Uexe 1|7

+ P10 AU 1T + P20 AT Uexe, 1|0

OextP1
TintP2 + TextP1

-~ . ’];4
<p3m R H a2 — puk — 17 ) .

Oint

7.4
OintP2 27.2 27.2 2 2 2 k
_ k*H — pik™H — pokZ — D1k — U;
OintP2 + OextP1 <p2 7 P2fe = P18 = P10 ) Hint Ol
OextP1 2~ 2
—————————— | —P20ext — P10int — 2P10 ApUeyso|r
TintP2 + OextP1 Tint
7.2
OintP2 -
——— = | —p2Gext — P10t — 2070 Artingo)r
TintP2 + OextP1 Tint
OextP1 ~ 7.
————————— (p2 — p1) odivr [(HI — R) V1] Uext o0
OintP2 + OextP1 ( ) ( ) Vel tex !
TintP2

(p2 — p1) odivr [(HI — R) V| Uing,0/0

) (A%‘uemt,ou—‘)

TintP2 + OextP1

OextP1 ( 2 a
— | -p
OintP2 + OextP1

Oint
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TintP2 o
e (ﬂﬁ) (A%Uint,O\F) :

OintP2 + TextP1 Oint

We are now in position to give the first-order model. Once again (see Section 6) we

define the approximate solution us” on Q by

uph s i Qing,s,
ug? = uggé in Qs.5, (8 = lor 2),
u(elpfm n Qext,s,
where ug? ; are defined on Qs by
ugh 5 (@) == g 57 (m. s) = ufl 50— Op1Oatig s

— ,,aP ap _
B uext,6|1" + 5p28nuext,6|l’" Vo = (I)B(ma 3,3) € 957,37
int,§°

and (uap ul? 6) is the solution to the following problem

: ap 2 ,ap :
div (aextVuext) 5) + et Uy s = 0 in Qext,

div (UintVuﬁf’t,(;) + B uim s = 0 in Qine, (7.35)

lim ] (90 — ihexc) (WD, 5 = tine) =0,

|| —+o00

with Ventcel-type transmission conditions I'

ap

_,.ap _ ap ap
Uint, 6|0~ Yext, 5|0 — 5planuint,6\r‘ + 0pa0ntigy 55

(7.36)

. ap _ ap _ ap ap
Ulnta“uint,6|F UeXtanuext,5|F =K (uint,é\l—" uext,é\l") ’

where
K (wr,vir) == asaur + as 200 + s 3Arur
+ asaArvr — asr Afur — s sAfur
+ assdivr [(HI — R) Vr]upr

+ a576divp [(HI — R) VF} ’U|1'*
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and

OintP2

pk? o2
OintP2 + OextP1

Qs -
Oint

- - K
<p2k27-[ - plk’zH - kagxt - plkiznt - p% ) ’

OextP1
OintP2 + TextP1

a5 = pok? + 6
Oint

B _ 7
<p2k27'l — p1k°H — pakly — prkin, — Dl ) ,

o TintP2 o K2
Q53 = P10 — o————— P20ext + P10int + 21010 5
OintP2 + OextP1 Tint
7.2
~ OextP1 _k
045,4 = P20 — 5L P20ext +p10int + QP%U )
TintP2 + OextP1 Oint
TintP2 ~ OextP1 ~
asp = 0——————— (pp—p1)T, Qsg:=20 = (p2 —p1) 0,

OintP2 + OextP1 OintP2 + OextP1

~9 ~2
(o o g o
a5 i= 5 intP2 (p% ) ’ a5 = 5 extP1 (p% ) 7

OintP2 + TextP1 Tint OintP2 + OextP1 Oint

Similar ideas to those used in Section 6 guarantee the existence and the uniqueness of
the solution to Problem (7.35)-(7.36). Optimal error estimates can also be obtained.

Nevertheless, note that we suppose here that o5 and k? are strictly positive constants.

8 Conclusion

In this work, we determined and justified an asymptotic expansion of the exact solution to
Problem (1.1) for different values of contrast and wavenumber. For each case we derive
approximate transmission conditions, validated thanks to optimal error estimates (see
Theorem 6.3 and the end of Section 7) to take into account the effect of the thin layer.
Ventcel-type transmission conditions, involving tangential differential operators of order
two, have also been obtained in the case of high values of magnetic permittivity and
wavenumber.

An interesting continuation of this work could be to consider the full Maxwell’s system

describing the scattering of electromagnetic waves by an obstacle.
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9 Appendix

This appendix contains some technical results needed in the proof of the uniform stability
estimate in the high-permittivity case (see Section 7). We first give the well-posedness
and regularity results for a Helmholtz equation with Ventcel-type transmission conditions

and provide next a density result.

Well-posedness and regularity results for a solution to a Ventcel

transmission problem

Recalling that &'Nlext = O\ Qjnt, one has the following result.

Theorem 9.1 Let h € H' (T') and ¢ € H= (T'). Then the following problem

div (UintVUint) + kiQntUint =0 in Qint,
div (UextVUext) + kgxt Uext =0 in Qext7
Uint\F - Uext\l“ =h onT,

9.1)
UintanUinﬂF - UextanUextH‘ = pla:AFUint\F + pleUinﬂF

+p25AFUext|F +p2%2Uext|F + C on F,

lim ‘Jfl (6‘z| - ikext) Uext = 0,

|z|—+o00

admits a unique solution (Ui, Uoxt) in HYL (Qing) X Hb! (Qext) satisfying the inequality

loc

”UintHHl'l(Qint) + ”UeXt”Hl’l(ﬁext) < ¢k (”hHHl(F) + ||C||H—1(F)) . (92)

Moreover, for all k € N*, if h € H*¥(I'), ¢ € H*¥2(T") and T' C**-continous, then

(Uint, Uext) € HF/2 (Qie) x HEPY? Q).

loc
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Proof Uniqueness follows by Rellich’s lemma. Existence of a solution can be obtained by
the Fredholm alternative. To show the regularity result, we proceed by induction in k. For
k = 1, we showed above that if h € H' (T') and ¢ € H~!(T'), then Problem (9.1) admits
a unique solution (Upg, Uext) in HYL (Qe) x HU (Qext); hence Uextr, Uner € H' (T).

loc

Since

div (Text VUext) + ki Uext = 0 in Qex,

div (UintVUint) + k2 Uint = 0 in Qint

int

and T'is C2, we get (cf. [10]) (Uint, Uext) € H3/? (Qgng) X ngo/cz (Qext ). Now assume that the
assertion holds up to k — 1. Let h € H* (T') and ¢ € H*~2(T"). Since H* (I') ¢ H*~1(T)
and H*=2(T) ¢ H*=3('), h € H*=1 (') and ¢ € H*3(T'). Then there exists a unique

solution (Uin, Uext) of (9.1) in HF=Y/2 () x H /2

loc

(Qext). Applying trace theorem
of functions in H*~1/2 (cf. [10]), we obtain 3nU$ € H2 ().

Now from

UintanUint\F - UextanUexﬂF = plgAFUinﬂF +p1E2Uint|F +p25AFUext|F +p2E2Uext\F + <7
(9.3)

we can write

FAr (P1Uingjr + P2Uesxtir) = OintOnUint)r — ext OnUexe|r — p1E2Uint|F _p2%2Uext|F -¢.
(9.4)
Thus A (p1Usngr + p2Uexer) € H* 2 (T). As prUingr+D2Uecxeir € H* (D), Ar (p1Uingjr + p2Uestir) €
H*=2(T') and the operator Ar is elliptic of order 2 on a compact manifold without

boundary I of class C**2, P1Uint|r + P2Uexiir € H* (') but Uint|r — Uext|r € HF* (T), then
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Uextirs Untr € H* (I'). Summarising, we have

Aiv (Text VUext) + k2 Uext = 0 in Qeye,

ext

div (01t VUint) + k2

int

Uint =0in Qint

and Ue |1, Uiner € HF* (), as a consequence (Uing, Uexs) € H* /2 (Qune) x /2 (Qext).

loc

O

The density lemma
Recall that, in view of the thin shells assumption (cf. [18]), there exists dp > 0 such that
Qs, = {z € R®; z:=m+nn(m) where — &y <1< d and m €'} (9.5)

defines a bijection between Qs, and I' x [—dg, dp]. Let now & > 0, satisfying e < dp. We

denote by H (2) the space of functions defined by
H(Q):={ve H(Q) /3e>0such as dyv(m,n) =0, V|| <e}. (9.6)

We have the following density lemma.

Lemma 9.1 H (Q) is dense in HE ().

Proof Let v € H}(Q). We construct a sequence (v.), C H(Q), € > 0, such that

€

lim v. — v in HL (). Since C* () is dense in H} (), it is sufficient to construct such
e—

a sequence for v € C* (ﬁ) Let £ > 0, we introduce the function ¢, defined on [—dy, do)
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6176
pe (1) := (9.7)
S5 if =6 <n< e,
n if |77| > 01,

where §; satisfies € < §; < dg. Then we set

vmge(n) = (m.) € Ty,
ve () = (9.8)
v (x) if € Qing,s, U Qextygg.

It is easy to show that v, € H () and v, 3 in H{ (). Hence the lemma. O

E—
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